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Abstract 

Engle and Manganelli (2004) propose CAViaR, a class of models suitable for estimating 
conditional quantiles in dynamic settings. Engle and Manganelli apply their approach to 
the estimation of Value at Risk, but this is only one of many possible applications. Here 
we extend CAViaR models to permit joint modeling of multiple quantiles, Multi-Quantile 
(MQ) CAViaR. We apply our new methods to estimate measures of conditional skewness 
and kurtosis defined in terms of conditional quantiles, analogous to the unconditional 
quantile-based measures of skewness and kurtosis studied by Kim and White (2004). We 
investigate the performance of our methods by simulation, and we apply MQ-CAViaR to 
study conditional skewness and kurtosis of S&P 500 daily returns. 

Keywords: Asset returns; CAViaR; Conditional quantiles; Dynamic quantiles; 
Kurtosis; Skewness. 

JEL Classifications: C13, C32. 



5
ECB

Working Paper Series No 957
November 2008

Non-technical Summary 

Higher moments of distributions of financial variables, such as skewness and kurtosis, 
can be important to assess the risk of a portfolio, complementing traditional variance 
measures, as well as for generally improving the performance of various financial 
models. Responding to this recognition, researchers and practitioners have started to 
incorporate these higher moments into their models, mostly using the conventional 
measures, e.g. the sample skewness and/or the sample kurtosis. Models of conditional 
counterparts of the sample skewness and the sample kurtosis, based on extensions of the 
GARCH model, have also been developed and used; see, for example, Leon, Rubio, and 
Serna (2004). Kim and White (2004) point out that because standard measures of  
skewness and kurtosis are essentially based on averages, they can be sensitive to one or a 
few outliers - a regular feature of financial returns data - making their reliability doubtful. 
To deal with this, Kim and White (2004) propose the use of more stable and robust 
measures of skewness and kurtosis, based on quantiles rather than averages. 
Nevertheless, Kim and White (2004) only discuss unconditional skewness and kurtosis 
measures. In this paper, we extend the approach of Kim and White (2004) by proposing 
conditional quantile-based skewness and kurtosis measures. For this, we extend Engle 
and Manganelli’s (2004) univariate Conditional Autoregressive Value at Risk (CAViaR)  
model to a multi-quantile version. This allows for a general vector autoregressive 
structure in the conditional quantiles, as well as the presence of exogenous variables. We 
then use this model to specify conditional versions of the more robust skewness and 
kurtosis measures discussed in Kim and White (2004). We apply our methodology to a 
sample of S&P500 daily returns. We find that conventional estimates of both skewness 
and kurtosis tend to be dwarfed by a few outliers, which typically plague financial data. 
Our more robust measures show more plausible variability, raising doubts about the 
reliability of unrobust measures. A Monte Carlo simulation is carried out to illustrate the 
finite sample behavior of our method. 
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1 Introduction

It is widely recognized that the use of higher moments, such as skewness and kur-

tosis, can be important for improving the performance of various nancial models.

Responding to this recognition, researchers and practitioners have started to in-

corporate these higher moments into their models, mostly using the conventional

measures, e.g. the sample skewness and/or the sample kurtosis. Models of con-

ditional counterparts of the sample skewness and the sample kurtosis, based on

extensions of the GARCH model, have also been developed and used; see, for ex-

ample, Leon, Rubio, and Serna (2004). Nevertheless, Kim and White (2004) point

out that because standard measures of skewness and kurtosis are essentially based

on averages, they can be sensitive to one or a few outliers — a regular feature of

nancial returns data — making their reliability doubtful.

To deal with this, Kim and White (2004) propose the use of more stable and

robust measures of skewness and kurtosis, based on quantiles rather than averages.

Nevertheless, Kim and White (2004) only discuss unconditional skewness and

kurtosis measures. In this paper, we extend the approach of Kim andWhite (2004)

by proposing conditional quantile-based skewness and kurtosis measures. For this,

we extend Engle and Manganelli’s (2004) univariate CAViaR model to a multi-

quantile version, MQ-CAViaR. This allows for both a general vector autoregressive

structure in the conditional quantiles and the presence of exogenous variables. We

then use the MQ-CAViaR model to specify conditional versions of the more robust

skewness and kurtosis measures discussed in Kim and White (2004).

The paper is organized as follows. In Section 2, we develop the MQ-CAViaR

data generating process (DGP). In Section 3, we propose a quasi-maximum likeli-

hood estimator for the MQ-CAViaR process and prove its consistency and asymp-

totic normality. In Section 4, we show how to consistently estimate the asymptotic

variance-covariance matrix of the MQ-CAViaR estimator. Section 5 speci es con-

ditional quantile-based measures of skewness and kurtosis based on MQ-CAViaR

estimates. Section 6 contains an empirical application of our methods to the S&P

500 index. We also report results of a simulation experiment designed to examine

the nite sample behavior of our estimator. Section 7 contains a summary and

concluding remarks. Mathematical proofs are gathered into the Mathematical

Appendix.
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2 The MQ-CAViaR Process and Model

We consider data generated as a realization of the following stochastic process.

Assumption 1 The sequence {( 0) : = 0 ±1 ±2 } is a stationary and
ergodic stochastic process on the complete probability space ( F 0), where

is a scalar and is a countably dimensioned vector whose rst element is one.

Let F 1 be the -algebra generated by 1 { ( 1 1) } i.e.

F 1 ( 1). We let ( ) 0[ |F 1] de ne the cumulative distri-

bution function (CDF) of conditional on F 1.

Let 0 1 1. For = 1 the th quantile of conditional

on F 1 denoted , is

inf{ : ( ) = } (1)

and if is strictly increasing,

= 1( )

Alternatively, can be represented asZ
( ) = [1[ ]|F 1] = (2)

where ( ) is the Lebesgue-Stieltjes probability density function (PDF) of

conditional on F 1, corresponding to ( )

Our objective is to jointly estimate the conditional quantile functions =

1 2 . For this we write ( 1 )0 and impose additional appropriate

structure.

First, we ensure that the conditional distribution of is everywhere contin-

uous, with positive density at each conditional quantile of interest, . We let

denote the conditional probability density function (PDF) corresponding to .

In stating our next condition (and where helpful elsewhere), we make explicit the

dependence of the conditional CDF on by writing ( ) in place of ( )

Realized values of the conditional quantiles are correspondingly denoted ( )

Similarly, we write ( ) in place of ( )

After ensuring this continuity, we impose speci c structure on the quantiles of

interest.

Assumption 2 (i) is continuously distributed such that for each and each

( ·) and ( ·) are continuous on R; (ii) For given 0 1
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1 and { } as de ned above, suppose: (a) For each and = 1

( ( )) 0; (b) For given nite integers and there exist a stationary

ergodic sequence of random × 1 vectors { } with measurable F 1 and

real vectors ( 1 )0 and ( 1 )0 such that for all and

= 1

= 0 +
X
=1

0 (3)

The structure of eq. (3) is a multi-quantile version of the CAViaR process

introduced by Engle and Manganelli (2004). When = 0 for 6= we have the

standard CAViaR process. Thus, we call processes satisfying our structure "Multi-

Quantile CAViaR" (MQ-CAViaR) processes. For MQ-CAViaR, the number of

relevant lags can di er across the conditional quantiles; this is re ected in the

possibility that for given , elements of may be zero for values of greater

than some given integer. For notational simplicity, we do not represent as

depending on Nevertheless, by convention, for no do we have equal

to the zero vector for all .

The nitely dimensioned random vectors may contain lagged values of ,

as well as measurable functions of and lagged and In particular, may

contain Stinchcombe and White’s (1998) GCR transformations, as discussed in

White (2006).

For a particular quantile, say , the coe cients to be estimated are and

( 0
1

0 )0 Let 0 ( 0 0), and write = ( 0
1

0)0 an × 1
vector, where ( + ) We will call the "MQ-CAViaR coe cient vector."

We estimate using a correctly speci ed model of the MQ-CAViaR process.

First, we specify our model.

Assumption 3 LetA be a compact subset ofR (i) The sequence of functions { :

×A R } is such that for each and each A (· ) is measurable F 1;

for each and each ( ·) is continuous onA; and for each and = 1

(· ) = 0 +
X
=1

(· )0

Next, we impose correct speci cation and an identi cation condition. As-

sumption 4(i.a) delivers correct speci cation by ensuring that the MQ-CAViaR

coe cient vector belongs to the parameter space, A. This ensures that
optimizes the estimation objective function asymptotically. Assumption 4(i.b) de-

livers identi cation by ensuring that is the only such optimizer. In stating the
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identi cation condition, we de ne ( ) (· ) (· ) and use the

norm || || max =1 | |

Assumption 4 (i)(a) There exists A such that for all

(· ) = ; (4)

(b) There exists a non-empty set {1 } such that for each 0 there

exists 0 such that for all A with || || ,

[ {| ( )| }] 0

Among other things, this identi cation condition ensures that there is su cient

variation in the shape of the conditional distribution to support estimation of

a su cient number (# ) of variation-free conditional quantiles. In particular,

distributions that depend on a given nite number of parameters, say , will

generally be able to support variation-free quantiles. For example, the quantiles

of the ( 1) distribution all depend on alone, so there is only one "degree of

freedom" for the quantile variation. Similarly the quantiles of scaled and shifted

distributions depend on three parameters (location, scale, and kurtosis), so

there are only three "degrees of freedom" for the quantile variation.

3 MQ-CAViaR Estimation: Consistency and
Asymptotic Normality

We estimate by the method of quasi-maximum likelihood. Speci cally, we

construct a quasi-maximum likelihood estimator (QMLE) ˆ as the solution to

the following optimization problem:

min ¯ ( ) 1
X
=1

{
X
=1

( (· ))} (5)

where ( ) = ( ) is the standard "check function," de ned using the usual

quantile step function, ( ) = 1[ 0] We thus view

( ) {
X
=1

( (· ))}

as the quasi log-likelihood for observation In particular, ( ) is the log-likelihood

of a vector of independent asymmetric double exponential random variables
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(see White, 1994, ch. 5.3; Kim and White, 2003; Komunjer, 2005). Because

(· ) = 1 need not actually have this distribution, the method is

quasi maximum likelihood.

We can establish the consistency of ˆ by applying results of White (1994).

For this we impose the following moment and domination conditions. In stating

this next condition and where convenient elsewhere, we exploit stationarity to

omit explicit reference to all values of

Assumption 5 (i) | | ; (ii) let 0 max =1 sup | (· )|
= 1 2 Then ( 0 )

We now have conditions su cient to establish the consistency of ˆ

Theorem 1 Suppose that Assumptions 1 2( ) 3( ) 4( ) and 5( ) hold. Then

ˆ .

Next, we establish the asymptotic normality of 1 2(ˆ ). We use a method

originally proposed by Huber (1967) and later extended by Weiss (1991). We rst

sketch the method before providing formal conditions and results.

Huber’s method applies to our estimator ˆ provided that ˆ satis es the

asymptotic rst order conditions

1
X
=1

{
X
=1

(· ˆ ) ( (· ˆ ))} = ( 1 2) (6)

where (· ) is the × 1 gradient vector with elements ( ) (· ) =

1 and ( (· ˆ )) is a generalized residual. Our rst task is thus to

ensure that eq. (6) holds.

Next, we de ne

( )
X
=1

[ (· ) ( (· ))]

With continuously di erentiable at interior to A, we can apply the mean
value theorem to obtain

( ) = ( ) + 0( ) (7)

where 0 is an × matrix with (1× ) rows 0 = 0 (¯( )), where ¯( ) is a mean

value (di erent for each ) lying on the segment connecting and = 1 .
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It is straightforward to show that correct speci cation ensures that ( ) is zero.

We will also show that

0 = + (|| ||) (8)

where
P

=1 [ (0) (· ) 0 (· )] with (0) the value at zero of

the density of (· ) conditional on F 1 Combining eqs. (7)

and (8) and putting ( ) = 0, we obtain

( ) = ( ) + (|| ||2) (9)

The next step is to show that

1 2 (ˆ ) + = (1) (10)

where 1 2
P

=1 with
P

=1 (· ) ( ). Eqs. (9) and (10)

then yield the following asymptotic representation of our estimator ˆ :

1 2(ˆ ) = 1 1 2
X
=1

+ (1) (11)

As we impose conditions su cient to ensure that { F } is a martingale dif-
ference sequence (MDS), a suitable central limit theorem (e.g., theorem 5.24 in

White, 2001) applies to (11) to yield the desired asymptotic normality of ˆ :

1 2(ˆ ) (0 1 1) (12)

where ( 0).

We now strengthen the conditions above to ensure that each step of the above

argument is valid.

Assumption 2 (iii) (a) There exists a nite positive constant 0 such that for

each each and each R, ( ) 0 ; (b) There exists a

nite positive constant 0 such that for each each and each 1 2 R,
| ( 1) ( 2)| 0| 1 2|.

Next we impose su cient di erentiability of with respect to .

Assumption 3 (ii) For each and each ( ·) is continuously di er-
entiable on A; (iii) For each and each ( ·) is twice continuously
di erentiable on A;
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To exploit the mean value theorem, we require that belongs to the interior of

A (A).

Assumption 4 (ii) (A)

Next, we place domination conditions on the derivatives of

Assumption 5 (iii) Let 1 max =1 max =1 sup |( ) (· )| =

1 2 . Then (a) ( 1 ) ; (b) ( 2
1 ) ; (iv) Let 2 max =1

max =1 max =1 sup |( 2 ) (· )| = 1 2 . Then (a) ( 2 )

; (b) ( 2
2 )

Assumption 6 (i)
P

=1 [ (0) (· ) 0 (· )] is positive de nite;

(ii) ( 0) is positive de nite.

Assumptions 3(ii) and 5(iii.a) are additional assumptions helping to ensure that eq.

(6) holds. Further imposing Assumptions 2(iii), 3(iii.a), 4(ii), and 5(iv.a) su ces

to ensure that eq. (9) holds. The additional regularity provided by Assumptions

5(iii.b), 5(iv.b), and 6(i) ensures that eq. (10) holds. Assumptions 5(iii.b) and

6(ii) help ensure the availability of the MDS central limit theorem.

We now have conditions su cient to ensure asymptotic normality of our MQ-

CAViaR estimator. Formally, we have

Theorem 2 Suppose that Assumptions 1-6 hold. Then

1 2 1 2(ˆ ) (0 )

Theorem 2 shows that our QML estimator ˆ is asymptotically normal with

asymptotic covariance matrix 1 1. There is, however, no guarantee that

ˆ is asymptotically e cient. There is now a considerable literature investigating

e cient estimation in quantile models; see, for example, Newey and Powell (1990),

Otsu (2003), Komunjer and Vuong (2006, 2007a, 2007b). So far, this literature

has only considered single quantile models. It is not obvious how the results for

single quantile models extend to multi-quantile models such as ours. Nevertheless,

Komunjer and Vuong (2007a) show that the class of QML estimators is not large

enough to include an e cient estimator, and that the class ofM -estimators, which

strictly includes the QMLE class, yields an estimator that attains the e ciency

bound. Speci cally, they show that replacing the usual quantile check function

appearing in eq.(5) with

( (· )) = ( 1[ (· ) 0])( ( ) ( (· )))
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will deliver an asymptotically e cient quantile estimator under the single quantile

restriction. We conjecture that replacing with in eq.(5) will improve esti-

mator e ciency. We leave the study of the asymptotically e cient multi-quantile

estimator for future work.

4 Consistent Covariance Matrix Estimation

To test restrictions on or to obtain con dence intervals, we require a consistent

estimator of the asymptotic covariance matrix 1 1. First, we pro-

vide a consistent estimator ˆ for ; then we give a consistent estimator ˆ for

It follows that ˆ ˆ 1 ˆ ˆ 1 is a consistent estimator for

Recall that ( 0), with
P

=1 (· ) ( ). A straightfor-

ward plug-in estimator of is

ˆ 1
X
=1

ˆ ˆ0 with

ˆ
X
=1

(· ˆ ) (ˆ )

ˆ (· ˆ )

We already have conditions su cient to deliver the consistency of ˆ for

Formally, we have

Theorem 3 Suppose that Assumptions 1-6 hold. Then ˆ

Next, we provide a consistent estimator of

X
=1

[ (0) (· ) 0 (· )]

We follow Powell’s (1984) suggestion of estimating (0) with 1[ ˆ ˆ ˆ ] 2ˆ for

a suitably chosen sequence {ˆ } This is also the approach taken in Kim andWhite
(2003) and Engle and Manganelli (2004). Accordingly, our proposed estimator is

ˆ = (2ˆ ) 1
X
=1

X
=1

1[ ˆ ˆ ˆ ] (· ˆ ) 0 (· ˆ )

To establish consistency, we strengthen the domination condition on and

impose conditions on {ˆ }.
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Assumption 5 (iii.c) ( 3
1 )

Assumption 7 {ˆ } is a stochastic sequence and { } is a non-stochastic sequence
such that (i) ˆ 1; (ii) = (1); and (iii) 1 = ( 1 2).

Theorem 4 Suppose that Assumptions 1-7 hold. Then ˆ

5 Quantile-BasedMeasures of Conditional Skew-
ness and Kurtosis

Moments of asset returns of order higher than two are important because these

permit a recognition of the multi-dimensional nature of the concept of risk. Such

higher order moments have thus proved useful for asset pricing, portfolio con-

struction, and risk assessment. See, for example, Hwang and Satchell (1999) and

Harvey and Siddique (2000). Higher order moments that have received particular

attention are skewness and kurtosis, which involve moments of order three and

four, respectively. Indeed, it is widely held as a "stylized fact" that the distrib-

ution of stock returns exhibits both left skewness and excess kurtosis (fat tails);

there is a large amount of empirical evidence to this e ect.

Recently, Kim and White (2004) have challenged this stylized fact and the

conventional way of measuring skewness and kurtosis. As moments, skewness and

kurtosis are computed using averages, speci cally, averages of third and fourth

powers of standardized random variables. Kim and White (2004) point out that

averages are sensitive to outliers, and that taking third or fourth powers greatly

enhances the in uence of any outliers that may be present. Moreover, asset re-

turns are particularly prone to containing outliers, as the result of crashes or

rallies. According to Kim and White’s simulation study, even a single outlier of a

size comparable to the sharp drop in stock returns caused by the 1987 stock mar-

ket crash can generate dramatic irregularities in the behavior of the traditional

moment-based measures of skewness and kurtosis.

Kim and White (2004) propose using more robust measures instead, based on

sample quantiles. For example, Bowley’s (1920) coe cient of skewness is given by

2 =
3 + 1 2 2

3 1

where 1 =
1(0 25) 2 =

1(0 5) and 3 =
1(0 75), where ( ) 0[

] is the unconditional CDF of . Similarly, Crow & Siddiqui’s (1967) coe cient
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of kurtosis is given by

4 =
4 0

3 1

2 91

where 0 =
1(0 025) and 4 =

1(0 975). (The notations 2 and 4

correspond to those of Kim and White (2004).)

A limitation of these measures is that they are based on unconditional sam-

ple quantiles. Thus, in measuring skewness or kurtosis, these can neither incor-

porate useful information contained in relevant exogenous variables nor exploit

the dynamic evolution of quantiles over time. To avoid these limitations, we

propose constructing measures of conditional skewness and kurtosis using condi-

tional quantiles in place of the unconditional quantiles . In particular, the

conditional Bowley coe cient of skewness and the conditional Crow & Siddiqui

coe cient of kurtosis are given by

2 =
3 + 1 2 2

3 1

4 =
4 0

3 1

2 91

Another quantile-based kurtosis measure discussed in Kim and White (2004)

is Moors’s (1988) coe cient of kurtosis, which involves computing six quantiles.

Because our approach requires joint estimation of all relevant quantiles, and, in our

model, each quantile depends not only on its own lags, but also possibly on the lags

of other quantiles, the number of parameters to be estimated can be quite large.

Moreover, if the ’s are too close to each other, then the corresponding quantiles

may be highly correlated, which can result in an analog of multicollinearity. For

these reasons, in what follows we focus only on 2 and 4 as these require

jointly estimating at most ve quantiles.

6 Application and Simulation

6.1 Time-varying skewness and kurtosis for the S&P500

In this section we obtain estimates of time-varying skewness and kurtosis for the

S&P 500 index daily returns. Figure 1 plots the S&P 500 daily returns series used

for estimation. The sample ranges from January 1, 1999 to September 28, 2007,

for a total of 2,280 observations.

First, we estimate time-varying skewness and kurtosis using the GARCH-type

model of Leon, Rubio and Serna (2004), the LRS model for short. Letting
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denote the return for day , we estimate the following speci cation of their model:

=
1 2

= 1 + 2
2
1 + 3 1

= 4 + 5
3
1 + 6 1

= 7 + 8
4
1 + 9 1

where we assume that 1( ) = 0, 1(
2) = 1, 1(

3) = , and 1(
4) =

where 1 denotes the conditional expectation given 1 2 The likeli-

hood is constructed using a Gram-Charlier series expansion of the normal density

function for , truncated at the fourth moment. We refer the interested reader

to Leon, Rubio, and Serna (2004) for technical details.

The model is estimated via (quasi-) maximum likelihood. As starting values

for the optimization, we use estimates of 1 2 and 3 from the standard GARCH

model. We set initial values of 4 and 7 equal to the unconditional skewness and

kurtosis values of the GARCH residuals. The remaining coe cients are initialized

at zero. The point estimates for the model parameters are given in Table 1.

Figures 3 and 5 display the time-series plots for and respectively.

Next, we estimate the MQ-CAViaR model. Given the expressions for 2

and 4, we require ve quantiles, i.e. those for = 0 025 0 25 0 5 0 75 and

0 975. We thus estimate an MQ-CAViaR model for the following DGP:

0 025 = 11 + 12| 1|+ 0
1 1

0 25 = 21 + 22| 1|+ 0
1 2

...

0 975 = 51 + 52| 1|+ 0
1 5

where 1 ( 0 025 1 0 25 1 0 5 1 0 75 1 0 975 1)
0 and ( 1 2 3

4 5)
0 = 1 5 Hence, the coe cient vector consists of all the coe cients

and as above.

Estimating the full model is not trivial. We discuss this brie y before present-

ing the estimation results. We perform the computations in a step-wise fashion as

follows. In the rst step, we estimate the MQ-CAViaR model containing just the

2 5% and 25% quantiles. The starting values for optimization are the individual

CAViaR estimates, and we initialize the remaining parameters at zero. We repeat

this estimation procedure for the MQ-CAViaR model containing the 75% and

97 5% quantiles. In the second step, we use the estimated parameters of the rst

step as starting values for the optimization of the MQ-CAViaR model containing
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the 2 5%, 25%, 75% and 97 5% quantiles, initializing the remaining parameters

at zero. Third and nally, we use the estimates from the second step as starting

values for the full MQ-CAViaR model optimization containing all ve quantiles of

interest, again setting to zero the remaining parameters.

The likelihood function appears quite at around the optimum, making the

optimization procedure sensitive to the choice of initial conditions. In particu-

lar, choosing a di erent combination of quantile couples in the rst step of our

estimation procedure tends to produce di erent parameter estimates for the full

MQ-CAViaR model. Nevertheless, the likelihood values are similar, and there

are no substantial di erences in the dynamic behavior of the individual quantiles

associated with these di erent estimates.

Table 2 presents our MQ-CAViaR estimation results. In calculating the stan-

dard errors, we have set the bandwidth to 1. Results are slightly sensitive to the

choice of the bandwidth, with standard errors increasing for lower values of the

bandwidth. We observe that there is interaction across quantile processes. This is

particularly evident for the 75% quantile: the autoregressive coe cient associated

with the lagged 75% quantile is only 0 04, while that associated with the lagged

97 5% quantile is 0 29. This implies that the autoregressive process of the 75%

quantile is mostly driven by the lagged 97 5% quantile, although this is not sta-

tistically signi cant at the usual signi cance level. Figure 2 displays plots of the

ve individual quantiles for the time period under consideration.

Next, we use the estimates of the individual quantiles 0 025 0 975 to calcu-

late the robust skewness and kurtosis measures 2 and 4. The resulting

time-series plots are shown in Figures 4 and 6, respectively.

We observe that the LRS model estimates of both skewness and kurtosis do not

vary much and are dwarfed by those for the end of February 2007. The market was

doing well until February 27, when the S&P 500 index dropped by 3 5%, as the

market worried about global economic growth. (The sub-prime mortgage asco

was still not yet public knowledge.) Interestingly, this is not a particularly large

negative return (there are larger negative returns in our sample between 2000 and

2001), but this one occurred in a period of relatively low volatility.

Our more robust MQ-CAViaR measures show more plausible variability and

con rm that the February 2007 market correction was indeed a case of large neg-

ative conditional skewness and high conditional kurtosis. This episode appears

to be substantially a ecting the LRS model estimates for the entire sample, rais-

ing doubts about the reliability of LRS estimates in general, consistent with the

ndings of Sakata and White (1998).
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6.2 Simulation

In this section we provide some Monte Carlo evidence illustrating the nite sample

behavior of our methods. We consider the same MQ-CAViaR process estimated

in the previous subsection,

0 025 = 11 + 12| 1|+ 0
1 1

0 25 = 21 + 22| 1|+ 0
1 2

...

0 975 = 51 + 52| 1|+ 0
1 5 (13)

For the simulation exercise, we set the true coe cients equal to the estimates re-

ported in Table 2. Using these values, we generate the above MQ-CAViaR process

100 times, and each time we estimate all the coe cients, using the procedure de-

scribed in the previous subsection.

Data were generated as follows. We initialize the quantiles = 1 5 at

= 1 using the empirical quantiles of the rst 100 observations of our S&P 500

data. Given quantiles for time , we generate a random variable compatible

with these using the following procedure. First, we draw a random variable

uniform over the interval [0 1]. Next, we nd such that 1 . This

determines the quantile range within which the random variable to be generated

should fall. Finally, we generated the desired random variable by drawing it

from a uniform distribution within the interval [
1

]. The procedure can

be represented as follows:

=

+1X
=1

( 1 )[
1
+ (

1
) ]

where and are i.i.d. U(0,1), 0 = 0, +1 = 1,
0
=

1
0 05 and

+1
= +0 05. It is easy to check that the random variable has the desired

quantiles by construction. Further, it doesn’t matter that the distribution within

the quantiles is uniform, as that distribution has essentially no impact on the

resulting parameter estimates. Using these values of and we apply eq.(13)

to generate conditional quantiles for the next period. The process iterates until

= Once we have a full sample, we perform the estimation procedure described

in the previous subsection.

Tables 3 and 4 provide the sample means and standard deviations over 100

replications of each coe cient estimate for two di erent sample sizes, = 1 000

and = 2 280 (the sample size of the S&P 500 data), respectively. The mean
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estimates are fairly close to the values of Table 2, showing that the available sample

sizes are su cient to recover the true DGP parameters. (To obtain standard error

estimates for the means, divide the reported standard deviations by 10.)

A potentially interesting experiment that one might consider is to generate data

from the LRS process and see how the MQ-CAViaR model performs in revealing

underlying patterns of conditional skewness and kurtosis. Nevertheless, we leave

this aside here, as the LRS model depends on four distributional shape parameters,

but we require ve variation-free quantiles for the present exercise. As noted

in Section 2, the MQ-CAViaR model will generally not satisfy the identi cation

condition in such circumstances.

7 Conclusion

In this paper, we generalize Engle and Manganelli’s (2004) single-quantile CAViaR

process to its multi-quantile version. This allows for (i) joint modeling of multiple

quantiles; (ii) dynamic interactions between quantiles; and (iii) the use of exoge-

nous variables. We apply our MQ-CAViaR process to de ne conditional versions of

existing unconditional quantile-based measures of skewness and kurtosis. Because

of their use of quantiles, these measures may be much less sensitive than standard

moment-based methods to the adverse impact of outliers that regularly appear in

nancial market data. An empirical analysis of the S&P 500 index demonstrates

the use and utility of our new methods.
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Mathematical Appendix

Proof of Theorem 1: We verify the conditions of corollary 5.11 of White (1994),
which delivers ˆ , where

ˆ argmax 1
X
=1

( (· ))
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and ( (· ))
P

=1 ( (· )). Assumption 1 ensures White’s

Assumption 2.1. Assumption 3(i) ensures White’s Assumption 5.1. Our choice of

satis es White’s Assumption 5.4. To verify White’s Assumption 3.1, it su ces

that ( (· )) is dominated on A by an integrable function (ensuring White’s
Assumption 3.1(a,b)) and that for each in A, { ( (· ))} is stationary
and ergodic (ensuring White’s Assumption 3.1(c), the strong uniform law of large

numbers (ULLN)). Stationarity and ergodicity is ensured by Assumptions 1 and

3(i). To show domination, we write

| ( (· ))|
X
=1

| ( (· ))|

=
X
=1

|( (· ))( 1[ (· ) 0])|

2
X
=1

| |+ | (· )|

2 (| |+ | 0 |)

so that

sup | ( (· ))| 2 (| |+ | 0 |)

Thus, 2 (| | + | 0 |) dominates | ( (· ))| and has nite expectation by

Assumption 5(i,ii).

It remains to verify White’s Assumption 3.2; here this is the condition that

is the unique maximizer of ( ( (· )) Given Assumptions 2(ii.b) and

4(i), it follows by argument directly parallel to that in the proof of White (1994,

corollary 5.11) that for all A

( ( (· )) ( ( (· ))

Thus, it su ces to show that the above inequality is strict for 6= Letting

( )
P

=1 ( ( )) with ( ) ( (· )) ( (· )), it

su ces to show that for each 0 ( ) 0 for all A such that || ||
Pick 0 and A such that || || With ( ) ( )

( ) by Assumption 4(i.b), there exist {1 } and 0 such that

[ {| ( )| }] 0. For this and all , some algebra and Assumption
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2(ii.a) ensure that

( ( )) = [

Z ( )

0

( ( ) ) ( ) ]

[
1

2
21[| ( )| ] +

1

2
( )21[| ( )| ])]

1

2
2 [1[| ( )| ]]

The rst inequality above comes from the fact that Assumption 2(ii.a) implies

that for any 0 su ciently small, we have ( ) for | | . Thus,

( )
X
=1

( ( ))
1

2
2
X
=1

[1[| ( )| ]]

=
1

2
2
X
=1

[| ( )| ]
1

2
2
X

[| ( )| ]

1

2
2 [ {| ( )| }]

0

where the nal inequality follows from Assumption 4(i.b). As 0 and are

arbitrary, the result follows.

Proof of Theorem 2: As outlined in the text, we rst prove

1 2
X
=1

X
=1

(· ˆ ) ( (· ˆ )) = (1) (14)

The existence of is ensured by Assumption 3(ii). Let be the × 1 unit
vector with element equal to one and the rest zero, and let

( ) 1 2
X
=1

X
=1

( (· ˆ + ))

for any real number . Then by the de nition of ˆ , ( ) is minimized at = 0.

Let ( ) be the derivative of ( ) with respect to from the right. Then

( ) = 1 2
X
=1

X
=1

(· ˆ + ) ( (· ˆ + ))

where (· ˆ + ) is the element of (· ˆ + ). Using the facts that

(i) ( ) is non-decreasing in and (ii) for any 0, ( ) 0 and ( ) 0,
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we have

| (0)| ( ) ( )

1 2
X
=1

X
=1

| (· ˆ )|1[ (· ˆ )=0]

1 2 max
1

1

X
=1

X
=1

1[ (· ˆ )=0]

where the last inequality follows by the domination condition imposed in Assump-

tion 5(iii.a). Because 1 is stationary, 1 2max1 1 = (1). The second

term is bounded in probability:
P

=1

P
=1 1[ (· ˆ )=0] = (1) given Assump-

tion 2(i,ii.a) (see Koenker and Bassett, 1978, for details). Since (0) is the

element of 1 2
P

=1

P
=1 (· ˆ ) ( (· ˆ )), the claim in (14) is

proved.

Next, for each A, Assumptions 3(ii) and 5(iii.a) ensure the existence and
niteness of the × 1 vector

( )
X
=1

[ (· ) ( (· ))]

=
X
=1

[ (· )

Z 0

( )

( ) ]

where ( ) (· ) (· ) and ( ) = ( ) ( + (· )) rep-

resents the conditional density of (· ) with respect to Lebesgue

measure The di erentiability and domination conditions provided by Assump-

tions 3(iii) and 5(iv.a) ensure (e.g., by Bartle, corollary 5.9??) the continuous

di erentiability of on A, with

( ) =
X
=1

[ { 0 (· )

Z 0

( )

( ) }]

Since is interior to A by Assumption 4(ii), the mean value theorem applies to

each element of to yield

( ) = ( ) + 0( ) (15)

for in a convex compact neighborhood of ,where 0 is an × matrix with

(1 × ) rows (¯( )) =
0 (¯( )), where ¯( ) is a mean value (di erent for each

) lying on the segment connecting and = 1 . The chain rule and an

application of the Leibniz rule to
R 0

( )
( ) then give

( ) = ( ) ( )
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where

( )
X
=1

[ 0 (· )

Z 0

( )

( ) ]

( )
X
=1

[ ( ( )) (· ) 0 (· )]

Assumption 2(iii) and the other domination conditions (those of Assumption 5)

then ensure that

(¯( )) = (|| ||)
(¯( )) = + (|| ||)

where
P

=1 [ (0) (· ) 0 (· )] Letting
P

=1 [ (0)

× (· ) 0 (· )], we obtain

0 = + (|| ||) (16)

Next, we have that ( ) = 0 To show this, we write

( ) =
X
=1

[ (· ) ( (· ))]

=
X
=1

( [ (· ) ( (· ))|F 1])

=
X
=1

( (· ) [ ( (· ))|F 1])

=
X
=1

( (· ) [ ( )|F 1])

= 0

as [ ( )|F 1] = [1[ ]|F 1] = 0 by de nition of = 1

(see eq. (2)). Combining ( ) = 0 with eqs. (15) and (16), we obtain

( ) = ( ) + (|| ||2) (17)

The next step is to show that

1 2 (ˆ) + = (1) (18)

where 1 2
P

=1 with ( ) ( )
P

=1 (· ) (

(· )). Let ( ) sup{ :|| || } || ( ) ( )||. By the results of Huber
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(1967) and Weiss (1991), to prove (18) it su ces to show the following: (i) there

exist 0 and 0 0 such that || ( )|| || || for || || 0; (ii) there

exist 0 0 0 and 0 such that [ ( )] for || || + 0;

and (iii) there exist 0 0 0 and 0 such that [ ( )2] for

|| ||+ 0.

The condition that is positive-de nite in Assumption 6(i) is su cient for

(i). For (ii), we have that for given (small) 0

( ) sup
{ :|| || }

X
=1

|| (· ) ( (· )) (· ) ( (· ))||

X
=1

sup
{ :|| || }

|| ( (· ))|| × sup
{ :|| || }

|| (· ) (· )||

+
X
=1

sup
{ :|| || }

|| ( (· )) ( (· ))|| × sup
{ :|| || }

|| (· )||

2 + 1

X
=1

1[| (· )| 2 ] (19)

using the following; (i) || ( (· ))|| 1 (ii) || ( (· )) (

(· ))|| 1[| (· )| | (· ) (· )|], and (iii) the mean value theorem applied

to (· ) and (· ). Hence, we have

[ ( )] 0 + 2 1 0

for some constants 0 and 1 given Assumptions 2(iii.a), 5(iii.a), and 5(iv.a).

Hence, (ii) holds for = 0 + 2 1 0 and 0 = 2 The last condition (iii) can

be similarly veri ed by applying the inequality to eq. (19) with 1 (so that
2 ) and using Assumptions 2(iii.a), 5(iii.b), and 5(iv.b). Thus, eq. (18) is

veri ed .

Combining eqs. (17) and (18) thus yields

1 2(ˆ ) = 1 2
X
=1

+ (1)

But { F } is a stationary ergodic martingale di erence sequence (MDS). In par-
ticular, is measurable F , and ( |F 1) = (

P
=1 (· ) ( )|F 1) =P

=1 (· ) ( ( )|F 1) = 0, as [ ( )|F 1] = 0 for all = 1

Assumption 5(iii.b) ensures that ( 0) is nite. The MDS central limit

theorem (e.g., theorem 5.24 of White, 2001) applies, provided is positive de -

nite (as ensured by Assumption 6(ii)) and that 1
P

=1
0 = + (1), which
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is ensured by the ergodic theorem. The standard argument now gives

1 2 1 2(ˆ ) (0 )

which completes the proof.

Proof of Theorem 3: We have

ˆ = ( 1
X
=1

ˆ ˆ0 1
X
=1

0) + ( 1
X
=1

0 [ 0])

where ˆ
P

=1 ˆ ˆ and
P

=1 with ˆ (· ˆ ) ˆ
( (· ˆ )) (· ), and ( (· )) Assump-

tions 1 and 2(i,ii) ensure that { 0} is a stationary ergodic sequence. Assump-
tions 3(i,ii), 4(i.a), and 5(iii) ensure that [ 0] It follows by the er-

godic theorem that 1
P

=1
0 [ 0] = (1) Thus, it su ces to prove

1
P

=1 ˆ ˆ
0 1

P
=1

0 = (1)

The ( ) element of 1
P

=1 ˆ ˆ
0 1

P
=1

0 is

1
X
=1

{
X
=1

X
=1

ˆ ˆ ˆ ˆ }

Thus, it will su ce to show that for each ( ) and ( ) we have

1
X
=1

{ˆ ˆ ˆ ˆ } = (1)

By the triangle inequality,

| 1
X
=1

{ˆ ˆ ˆ ˆ }| +

where

= | 1
X
=1

ˆ ˆ ˆ ˆ ˆ ˆ |

= | 1
X
=1

ˆ ˆ |

We now show that = (1) and = (1), delivering the desired result.

For the triangle inequality gives

1 + 2 + 3
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where

1 = 1
X
=1

|1[ 0] 1[ˆ 0]|| ˆ ˆ |

2 = 1
X
=1

|1[ 0] 1[ˆ 0]|| ˆ ˆ |

3 = 1
X
=1

|1[ 0]1[ 0] 1[ˆ 0]1[ˆ 0]|| ˆ ˆ |

Theorem 2, ensured by Assumptions 1 6, implies that 1 2||ˆ || = (1)

This, together with Assumptions 2(iii,iv) and 5(iii.b), enables us to apply the

same techniques used in Kim and White (2003) to show 1 = (1), 2 =

(1) 3 = (1), implying = (1)

It remains to show = (1). By the triangle inequality,

1 + 2

where

1 = | 1
X
=1

[ ]|

2 = | 1
X
=1

ˆ ˆ [ ]|

Assumptions 1, 2(i,ii), 3(i,ii), 4(i.a), and 5(iii) ensure that the ergodic theorem

applies to { } so 1 = (1) Next, Assumptions 1, 3(i,ii), and

5(iii) ensure that the stationary ergodic ULLN applies to { (· ) (· )}
This and the result of Theorem 1 (ˆ = (1)) ensure that 2 = (1) by

e.g., White (1994, corollary 3.8), and the proof is complete.

Proof of Theorem 4: We begin by sketching the proof. We rst de ne

(2 ) 1
X
=1

X
=1

1[ ]
0

and then we will show the following:

( ) 0 (20)

( ) 0 (21)

ˆ 0 (22)
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Combining the results above will deliver the desired outcome: ˆ 0.

For (20), one can show by applying the mean value theorem to ( )

( ), where ( )
R
1{ } ( ) , that

( ) = 1
X
=1

X
=1

[ ( ) 0 ] =
X
=1

[ ( ) 0 ]

where is a mean value lying between and and the second equality

follows by stationarity. Therefore, the ( ) element of | ( ) | satis es

|
X
=1

©
( ) (0)

ª |
X
=1

©| ( ) (0)|| |ª
X
=1

0

©| || |ª
0 [ 2

1 ]

which converges to zero as 0. The second inequality follows by Assumption

2(iii.b), and the last inequality follows by Assumption 5(iii.b). Therefore, we have

the result in eq.(20).

To show (21), it su ces simply to apply a LLN for double arrays, e.g. theorem

2 in Andrews (1988).

Finally, for (22), we consider the ( ) element of | ˆ |, which is given by

| 1

2ˆ

X
=1

X
=1

1[ ˆ ˆ ˆ ] ˆ ˆ
1

2

X
=1

X
=1

1[ ] |

=
ˆ
| 1

2

X
=1

X
=1

(1[ ˆ ˆ ˆ ] 1[ ]) ˆ ˆ

+
1

2

X
=1

X
=1

1[ ]( ˆ ) ˆ

+
1

2

X
=1

X
=1

1[ ] ( ˆ )

+
1

2
(1

ˆ
)
X
=1

X
=1

1[ ] |

ˆ
[ 1 + 2 + 3 + (1

ˆ
) 4 ]
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where

1
1

2

X
=1

X
=1

|1[ ˆ ˆ ˆ ] 1[ ]| × | ˆ ˆ |

2
1

2

X
=1

X
=1

1[ ]| ˆ | × | ˆ |

3
1

2

X
=1

X
=1

1[ ]| | × | ˆ |

4
1

2

X
=1

X
=1

1[ ]| |

It will su ce to show that 1 = (1) 2 = (1) 3 = (1) and 4 =

(1) Then, because ˆ 1, we obtain the desired result: ˆ 0.

We rst show 1 = (1). It will su ce to show that for each ,

1

2

X
=1

|1[ ˆ ˆ ˆ ] 1[ ]| × | ˆ ˆ | = (1)

Let lie between ˆ and and put || (· )||×||ˆ ||+|ˆ |
Then

(2 ) 1
X
=1

|1[ ˆ ˆ ˆ ] 1[ ]| × | ˆ ˆ | +

where

(2 ) 1
X
=1

1[| | ]| ˆ ˆ |

(2 ) 1
X
=1

1[| + | ]| ˆ ˆ |

It will su ce to show that 0 and 0 Let 0 and let be an arbitrary

positive number. Then, using reasoning similar to that of Kim and White (2003,

lemma 5), one can show that for any 0

( ) ((2 ) 1
X
=1

1[| | (|| ( 0)||+1) ])| ˆ ˆ | )

0
X
=1

{(|| ( )||+ 1)| ˆ ˆ |}

0{ | 3
1 |+ | 2

1 |}
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where the second inequality is due to the Markov inequality and Assumption

2(iii.a), and the third is due to Assumption 5(iii.c). As can be chosen arbitrarily

small and the remaining terms are nite by assumption, we have 0. The

same argument is used to show 0 Hence, 1 = (1) is proved.

Next, we show 2 = (1). For this, it su ces to show 2
1

2

P
=1

1[ ]| ˆ | × | ˆ | = (1) for each . Note that

2
1

2

X
=1

| ˆ | × | ˆ |

1

2

X
=1

|| 2 (· ˜)|| × ||ˆ || × | ˆ |

1

2
||ˆ || 1

X
=1

2 1

=
1

2 1 2
1 2||ˆ || 1

X
=1

2 1

where ˜ is between ˆ and , and 2 (· ˜) is the rst derivative of ˆ

with respect to which is evaluated at ˜. The last expression above is (1)

because (i) 1 2||ˆ || = (1) by Theorem 2, (ii) 1
P

=1 2 1 = (1)

by the ergodic theorem and (iii) 1 ( 1 2) = (1) by Assumption 7(iii). Hence,

2 = (1). The other claims 3 = (1) and 4 = (1) can be analogously

and more easily proven. Hence, they are omitted. Therefore, we nally have
ˆ 0 which, together with (20) and (21), implies that ˆ 0.

The proof is complete.
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Table 1. S&P500 index: Estimation results for the LRS model  

1 2 3 4 5 6 7 8 9

0.01 0.05 0.94 -0.04 0.01 0.01 3.25 0.00 0.00 
(0.18) (0.19) (0.04) (0.15) (0.01) (0.02) (0.04) (0.00) (0.00) 
Note: standard errors are in parentheses. 

Table 2. S&P500 index : Estimation results for the MQ-CAViaR model 

j 1j 2j 1j 2j 3j 4j 5j

0.025 -0.04 
(0.05) 

-0.11 
(0.07) 

0.93 
(0.12) 

0.02 
(0.10) 

0
(0.29) 

0
(0.93) 

0
(0.30) 

0.25 0.001 
(0.02) 

-0.01 
(0.05) 

0
(0.06) 

0.99 
(0.03) 

0
(0.04) 

0
(0.63) 

0
(0.20) 

0.50 0.10 
(0.02) 

0.04 
(0.04) 

0.03 
(0.04) 

0
(0.02) 

-0.32 
(0.02) 

0
(0.52) 

-0.02 
(0.17) 

0.75 0.03 
(0.31) 

-0.01 
(0.05) 

0
(0.70) 

0
(0.80) 

0
(2.33) 

0.04 
(0.84) 

0.29
(0.34) 

0.975 0.03 
(0.06) 

0.24 
(0.07) 

0
(0.16) 

0
(0.16) 

0
(0.33) 

0.03 
(0.99) 

0.89
(0.29) 

Note: standard errors are in parentheses. 

Table 3. Means of point estimates through 100 replications (T  = 1,000) 
 True parameters 

j 1j 2j 1j 2j 3j 4j 5j

0.025 -0.05 -0.10 0.93 0.04 0.00 0.00 0.00 
 (0.08) (0.02) (0.14) (0.34) (0.00) (0.01) (0.00) 
0.25 -0.05 -0.01 0.04 0.81 0.00 0.00 0.00 
 (0.40) (0.05) (0.17) (0.47) (0.01) (0.00) (0.00) 
0.50 -0.08 0.02 0.00 0.00 -0.06 0.00 0.00 
 (0.15) (0.06) (0.01) (0.00) (0.81) (0.00) (0.01) 
0.75 0.20 0.05 0.00 0.00 0.00 0.38 0.13 
 (0.42) (0.11) (0.02) (0.02) (0.00) (0.63) (0.19) 
0.975 0.06 0.22 0.00 0.00 0.00 0.10 0.87 
 (0.16) (0.03) (0.00) (0.01) (0.00) (0.56) (0.16) 
Note: standard deviations are in parentheses. 
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Table 4. Means of point estimates through 100 replications (T  = 2,280) 
 True parameters 

j 1j 2j 1j 2j 3j 4j 5j

0.025 -0.04 -0.10 0.93 0.03 0.00 0.00 0.00 
 (0.03) (0.01) (0.07) (0.21) (0.00) (0.00) (0.00) 
0.25 -0.04 -0.01 0.03 0.88 0.00 0.00 0.00 
 (0.18) (0.02) (0.12) (0.38) (0.00) (0.00) (0.00) 
0.50 -0.01 0.02 0.00 0.00 -0.03 0.00 0.00 
 (0.11) (0.04) (0.00) (0.01) (0.75) (0.00) (0.02) 
0.75 0.09 0.01 0.00 0.00 0.00 0.33 0.19 
 (0.21) (0.07) (0.00 (0.01) (0.00) (0.58) (0.18) 
0.975 0.05 0.24 0.00 0.00 0.00 0.18 0.83 
 (0.13) (0.02) (0.00) (0.03) (0.00) (0.69) (0.22) 
Note: standard deviations are in parentheses. 
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Figure 1: S&P500 daily returns: January 1, 1999 — September 30, 2007.
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Figure 2: S&P500 conditional quantiles: January 1, 1999 - September 30, 2007.
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Figure 3: S&P 500: Estimated conditional skewness, LRS model.
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Figure 4: S&P 500: Estimated conditional skewness, MQ-CAViaR model.
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Figure 5: S&P 500: Estimated conditional kurtosis, LRS model.
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Figure 6: S&P 500: Estimated conditional kurtosis, MQ-CAViaR model.
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