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Abstract

Introducing bounded rationality into a standard consumption based
asset pricing model with a representative agent and time separable pref-
erences strongly improves empirical performance. Learning causes mo-
mentum and mean reversion of returns and thereby excess volatility, per-
sistence of price-dividend ratios, long-horizon return predictability and a
risk premium, as in the habit model of Campbell and Cochrane (1999),
but for lower risk aversion. This is obtained, even though we restrict con-
sideration to learning schemes that imply only small deviations from full
rationality. The �ndings are robust to the particular learning rule used
and the value chosen for the single free parameter introduced by learn-
ing, provided agents forecast future stock prices using past information
on prices.

JEL Class. No.: G12, D84

Keywords: asset pricing, learning, near-rational price forecasts
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This paper presents and estimates a very simple stock price model and shows
that this model is able to replicate a number of important asset pricing facts.
This �nding is remarkable because it has proven surprisingly di¢cult to repli-
cate these facts within the realm of rational expectations models. Speci�cally,
rational expectations models with standard (time-separable) preference assump-
tions are largely unable to explain: why the price dividend ratio of stocks is so
volatile and displays such persistent swings; why stock returns are so much more
volatile than dividend growth; why high (low) price dividend ratios predict low
(high) future stock returns over the medium to long term (next 1-10 years); or
why real stock returns are so much higher than the real returns on short-term
bonds.
The empirical success of the learning model in replicating all these facts

is due to a slight relaxation of the rational expectations assumption. More
precisely, the model assumes that investors� expectations about future capital
gains are revised slightly upwards (downwards) if they observe higher (lower)
than previously expected capital gains in the stock market. We show how even
weak feedback of this kind can give rise to persistent and large swings in stock
prices and thereby replicate the empirically observed stock price behavior.
The postulated feedback from observed capital gains to expected future cap-

ital gains can be very weak because this feedback mechanism is largely self-
reinforcing. In particular, if investors� capital gain expectations have increased,
this justi�es paying a higher price for stocks. Therefore, just because investors
have become more optimistic, there will be tendency for prices to increase at
a rate that is larger than the fundamentally justi�ed growth rate. This rein-
forces the initial belief of higher capital gains and imparts �momentum� on stock
prices, producing large and sustained deviations of the price dividend ratio from
its sample mean. Since the momentum e¤ect operates also in the opposite di-
rection, i.e., for downward revisions in expected capital gains, the postulated
feedback produces large and mean reverting swings in the price dividend ratio.
As we explain in the paper in the detail, the presence of these swings allows the
model to replicate all the asset pricing facts mentioned above.
To impose discipline on the modeling of deviations from fully rational expec-

tations, we introduce a learning scheme that will cause agents to asymptotically
learn the truth, i.e., to make rational forecasts eventually. This learning scheme
introduces a single free parameter, which can take on values between zero and
one, and allows to gauge how much expectations deviate from rational expec-
tations during the transition phase. If this parameters is set equal to zero, one
shuts down completely the feedback from observed capital gains to expected fu-
ture capital gains, causing the model to collapse to a rational expectations model
right away (which then cannot reproduce the empirical stock price behavior). If
this parameter is set equal to one, the feedback strength is maximal with agents�
expectations about future capital gains then being given by the sample average
of historically observed capital gains. We show that values very close to zero
(around 0.01 and 0.02), i.e., close to the rational expectations model, allow to
replicate the empirically observed stock price behavior.

Non-technical summary
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"Investors, their con�dence and expectations buoyed by past price increases,
bid up speculative prices further, thereby enticing more investors to do the
same, so that the cycle repeats again and again, .. "

Irrational Exuberance, Shiller (2005, p.56)

1 Introduction

The purpose of this paper is to show that a very simple asset pricing model is able
to reproduce a variety of stylized facts if one allows for small departures from
rational expectations. This result is somehow remarkable, since the literature
in empirical �nance had great di¢culties in developing dynamic equilibrium
rational expectations models accounting for all the facts we consider.
Our model is based on the representative agent time-separable utility endow-

ment economy developed by Lucas (1978). It is well known that the implications
of this model under rational expectations are at odds with basic asset pricing
observations: in the data the price dividend ratio is too volatile and persistent,
stock returns are too volatile and are negatively related to the price dividend
ratio in the long run, and the risk premium is too high. Our learning model
introduces just one additional free parameter into Lucas� framework and quan-
titatively accounts for all these observations. Since the learning model reduces
to the rational expectations model if the additional parameter is set to zero and
since this parameter is close to zero throughout the paper, we consider the learn-
ing model to represent only a small departure from rationality. Nevertheless,
the behavior of equilibrium prices di¤ers considerably from the one obtained
under rational expectations, implying that the asset pricing implications of the
standard model are not robust to small departures from rationality. As we doc-
ument, this non-robustness is empirically encouraging, i.e., the model matches
the data much better if this small departure from rationality is allowed for.
A very large body of literature has documented that stock prices exhibit

movements that are very hard to reproduce within the realm of rational expec-
tations and Lucas� tree model has been extended in a variety of directions to
improve its empirical performance. After many papers and a couple of decades
this line of research has succeeded: Campbell and Cochrane (1999) are able to
reproduce all the facts, albeit at the cost of imposing sophisticated non-time-
separabilities in preferences and high e¤ective degrees of risk aversion. Our
model retains simplicity and moderate curvature in utility, but instead deviates
from rational expectations.
The behavioral �nance literature tried to understand the decision making

process of individual investors by means of surveys, experiments and micro
evidence, exploring the intersection between economics and psychology. One
of the main themes of this literature was to test the rationality hypothesis in
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asset markets, see Shiller (2005) for a non-technical summary. We borrow some
of the economic intuition from this literature, but follow a di¤erent modeling
approach: we aim for a model that is as close as possible to the original Lucas
tree model, with agents who are quasi-rational and formulate forecasts using
statistical models that imply only small departures from rational expectations.
In the baseline learning model, we assume agents form their expectations re-

garding future stock prices with the most standard learning scheme used in the
literature: ordinary least squares (OLS).1 This rule has the property that in the
long run the equilibrium converges to rational expectations, but in the model
this process takes a very long time, and the dynamics generated by learning
along the transition cause prices to be very di¤erent from the rational expecta-
tions (RE) prices. This di¤erence occurs for the following reasons: if expecta-
tions about stock price growth have increased, the actual growth rate of prices
has a tendency to increase beyond the fundamental growth rate, thereby rein-
forcing the initial belief of higher stock price growth. Learning thus imparts
�momentum� on stock prices and beliefs and produces large and sustained devi-
ations of the price dividend ratio from its mean, as can be observed in the data.
The model thus displays something like the �naturally occurring Ponzi schemes�
described in Shiller�s opening quote above.
As we mentioned, OLS is the most standard assumption to model the evolu-

tion of expectations functions in the learning literature and its limiting proper-
ties have been used extensively as a stability criterion to justify or discard RE
equilibria. Yet, models of learning are still not commonly used to explain data
or for policy analysis.2 It is still the standard view in the economics research
literature that models of learning introduce too many degrees of freedom, so
that it is easy to �nd a learning scheme that matches whatever observation one
desires. One can deal with this important methodological issue in two ways:
�rst, by using a learning scheme with as few free parameters as possible, and
second, by imposing restrictions on the parameters of the learning scheme to
only allow for small departures of rationality.3 These considerations prompted
us to use an o¤-the-shelf learning scheme (OLS) that has only one free parame-
ter. In addition, in the model at hand, OLS is the best estimator in the long
run, and to make the departure form rationality during the transition small, we
assume that initial beliefs are at the rational expectations equilibrium, and that
agents initially have a very strong - but less than complete - con�dence in these
initial beliefs.
Models of learning have been used before to explain some aspects of asset

price behavior. Timmermann (1993, 1996), Brennan and Xia (2001) and Cogley
and Sargent (2006) consider Bayesian learning to explain various aspects of stock

1We show that results are robust to using other standard learning rules.
2We will mention some exceptions along the paper.
3Marcet and Nicolini (2003) dealt with this issue by imposing bounds on the size of the

mistakes agents can make in equilibrium. These bounds imposed discipline both on the type
of learning rule and on the exact value of the parameters in the learning rule. For the present
model we show that results are very robust to both the learning rule and the exact value of
the single learning parameter.
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prices. These authors assume that agents learn about the dividend process and
use the Bayesian posterior on the parameters of this process to estimate the
expected discounted sum of dividends. Therefore, while the beliefs of agents
in�uence the market outcomes, agents� beliefs remain una¤ected by market
outcomes because agents learn only about an exogenous dividend process. In
the language of stochastic control, these models are not self-referential. In the
language of Shiller, these models can not give rise to �naturally occurring Ponzi
schemes�. In contrast, we largely abstract from learning about the dividend
process and consider learning on the future stock price using past observations
of price, so that beliefs and prices are mutually determined. It is precisely
the learning about future stock price growth and its self-referential nature that
imparts the momentum to expectations and, therefore, is key in explaining the
data.4

Other related papers by Bullard and Du¤y (2001) and Brock and Hommes
(1998) show that learning dynamics can converge to complicated attractors, if
the RE equilibrium is unstable under learning dynamics.5 Branch and Evans
(2006) study a model where agents� expectations switch depending on which
of the available forecast models is performing best. By comparison, we look at
learning about the stock price growth rate, we address more closely the data,
and we do so in a model where the rational expectations equilibrium is stable
under learning dynamics, so the departure from RE behavior occurs only along
a transition related to the sample size of the observed data. Also related is
Cárceles-Poveda and Giannitsarou (2006) who assume that agents know the
mean stock price and learn only about the deviations from the mean; they �nd
that the presence of learning does then not signi�cantly alter the behavior of
asset prices.6

The paper is organized as follows. Section 2 presents the stylized facts we fo-
cus on and the basic features of the underlying asset pricing model, showing that
this model cannot explain the facts under the rational expectations hypothesis.
In section 3 we take the simplest risk neutral model and assume instead that
agents learn to forecast the growth rate of prices. We show that such a model
can qualitatively deliver all the considered asset pricing facts and that learning
converges to rational expectations. We also explain how the deviations from
rational expectations can be made arbitrarily small. In Section 4 we present
the baseline learning model with risk aversion and the baseline calibration pro-
cedure. We also explain why we choose to calibrate the model parameters in
a slightly di¤erent way than in standard calibration exercises. Section 5 shows
that the baseline model can quantitatively reproduce all the facts discussed in
section 2. The robustness of our �ndings to various assumptions about the

4Timmerman (1996) analyzes in one setting also a self-referential model, but one in which
agents use dividends to predict future price. He �nds that this form of self-referntial learning
delivers lower volatility than settings with learning about the dividend process. It is thus
crucial for our results that agents use information on past price behavior to predict future
price.

5 Stability under learning dynamics is de�ned in Marcet and Sargent (1989).
6Cecchetti, Lam, and Mark (2000) determine the misspeci�cation in beliefs about future

consumption growth required to match the equity premium and other moments of asset prices.
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model, the learning rule, or the calibration procedure is illustrated in section 6.
Readers interested in obtaining a glimpse of the quantitative performance

of the baseline learning model may - after reading section 2 - directly jump to
table 4 in section 5.

2 Facts

This section describes stylized facts of U.S. stock price data and explains why it
proved di¢cult to reproduce them using standard rational expectations models.
The facts presented in this section have been extensively documented in the
literature. We reproduce them here as a point of reference for our quantitative
exercise in the latter part of the paper and using a single and updated data set.7

It is useful to start looking at the data through the lens of a simple dynamic
stochastic endowment economy. Let Dt be the dividend of an inelastically sup-
plied stock in period t, evolving according to

Dt
Dt�1

= a"t (1)

where log "t � N( s2

2 ; s
2) is i:i:d: and a � 1.8 Obviously, this assumption

guarantees E
�

Dt

Dt�1

�
= a and ��D

D
= s.

Let the preferences of a representative consumer-investor be given by

E0

1X

t=0

�t U (Ct)

where Ct is consumption at time t, � the discount factor and U (�) strictly
increasing and concave. We assume also there is a riskless real bond that pays
one unit of consumption next period with certainty. With St denoting the end-
of-period t stock holdings and Bt the bond holdings, the budget constraint is

Ct + P
b
t Bt + Pt St = (Pt +Dt)St�1 +Bt�1;

where Pt is the real price of the stock and P bt the bond price. Under rational
expectations, the equilibrium stock price must satisfy the consumer�s �rst order
condition evaluated at Ct = Dt

Pt = �Et

�
U�(Dt+1)

U�(Dt)
(Pt+1 +Dt+1)

�
(2)

which de�nes a mapping from the exogenous dividend process to the stochastic
process of prices.9 The nature of this mapping obviously depends on the way

7Details on the underlying data sources are provided in Appendix A.1.
8As documented in Mankiw, Romer and Shapiro (1985) and Campbell (2003), this is a

reasonable �rst approximation to the empirical behavior of quarterly dividends in the U.S. It
is also the standard assumption in the literature.

9 In the data, consumption is much less volatile than dividends. This raises important
issues that will be discussed later in the paper.
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the intertemporal marginal rate of substitution moves with consumption. For
instance, in the standard case of power preferences U(Ct) = C

��
t and equation

(2) becomes

Pt = �Et

��
Dt
Dt+1

��
(Pt+1 +Dt+1)

�
(3)

With rational expectations about future price, the non-bubble equilibrium stock
price satis�es10

Pt =
��RE

1� ��REDt (4)

where

�RE = a1��e��(1��)
s2

2 (5)

Et

��
Dt
Dt+1

��
PREt+1

�
= �REPREt (6)

The model then implies that the price dividend (PD) ratio is constant over time
and states. Figure 1 confronts this prediction with the actual evolution of the
quarterly price dividend ratio in the U.S.11 Compared to the simple model we
just described, the PD ratio exhibits rather large �uctuations around its sample
mean (the horizontal line in the graph). For example, the PD ratio takes on
values below 30 in the year 1932 and values close to 350 in the year 2000. This
large discrepancy between the prediction of the basic model and the data is also
illustrated in table 1, which shows that the standard deviation of the PD ratio
(�PD) is almost one half of its sample mean (E(PD)). We have the following
asset pricing fact:

Fact 1: The PD ratio is very volatile.

It follows from equation (2) that matching the observed volatility of the
PD ratio under rational expectation requires alternative preference speci�ca-
tions. Indeed, maintaining the assumptions of i:i:d: dividend growth and of a
representative agent, the behavior of the marginal rate of substitution is the
only degree of freedom left to the theorist. This explains the development of a
large and interesting literature exploring non-time-separability in consumption
or consumption habits. Introducing habit amounts to consider consumers whose
preferences are given by

E0

1X

t=0

�t
(Ct)1�� � 1
1� � ;

10To see that this is an RE equilibrium note that plugging (6) in (3) gives (4), and using
the latter to substitute for prices con�rms that the expectations in (6) are rational.
11Throughout the paper we follow Campbell (2003) and account for seasonalities in dividend

payments by averaging actual payments over the last 4 quarters.
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Figure 1: Quarterly U.S. price dividend ratio 1927:1-2005:4

where Ct = H(Ct; Ct�1; Ct�2; :::) is a function of current and past consump-
tion.12 A simple habit model has been studied by Abel (1990) who assumes

Ct =
Ct
C�t�1

with � 2 (0; 1).13 In this case, the stock price under rational expectations is

Pt
Dt

= A (a"t)
�(��1) (7)

for some constant A, which shows that this model can give rise to a volatile
PD ratio. Yet, with "t being i:i:d: the PD ratio will display no autocorrelation,
which is in stark contrast to the empirical evidence. As �gure 1 illustrates, the
PD ratio displays rather persistent deviations from its sample mean. Indeed, as
table 1 shows, the quarterly autocorrelation of the PD ratio (denoted �PDt;�1)
is very high. Therefore, this is the second fact we focus on:

Fact 2: The PD ratio is persistent.

The previous observations suggest that matching the volatility and persis-
tence of the PD ratio under rational expectations would require preferences that
give rise to a volatile and persistent marginal rate of substitution. This is the

12We keep power utility for expositional purposes only.
13 Importantly, the main purpose of Abel�s model was to generate an �equity premium� - a

fact we discuss below - not to reproduce the behavior of the price dividend ratio.
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avenue pursued in Campbell and Cochrane (1999) who engineer preferences that
can match the behavior of the PD ratio we observe in Figure 1. Their speci-
�cation also helps in replicating the asset pricing facts mentioned later in this
section, as well as other facts not mentioned here.14 Their solution requires,
however, imposing a very high degree of relative risk aversion and relies on a
rather complicated structure for the habit function H (�).15
In our model we maintain the assumption of standard time-separable con-

sumption preferences with moderate degrees of risk aversion. Instead, we relax
the rational expectations assumption by replacing the mathematical expectation
in equation (2) by the most standard learning algorithm used in the literature.
Persistence and volatility of the price dividend ratio will then be the result of
adjustments in beliefs that are induced by the learning process.
Before getting into the details of our model, we want to mention three addi-

tional asset pricing facts about stock returns. These facts have received consid-
erable attention in the literature and are qualitatively related to the behavior
of the PD ratio, as we discuss below.

Fact 3: Stock returns are �excessively� volatile.

Starting with the work of Shiller (1981) and LeRoy and Porter (1981) it has
been recognized that stock prices are more volatile in the data than in standard
models. Related to this is the observation that the volatility of stock returns
(�rs) in the data is much higher than the volatility of dividend growth (��D=D),
see table 1.16 The observed return volatility has been called �excessive� mainly
because the rational expectations model with time separable preferences predicts
approximately identical volatilities. To see this, let rst denote the stock return

rst =
Pt +Dt  Pt�1

Pt�1
=

"
Pt
Dt
+ 1

Pt�1
Dt�1

#
Dt
Dt�1

 1 (8)

and note that with time-separable preferences and i:i:d: dividend growth, the
PD ratio is constant and the term in the square brackets above is approximately
equal to one.
From equation (8) follows that excessive return volatility is qualitatively re-

lated to Fact 1 discussed above, as return volatility depends partly on the volatil-
ity of the PD ratio.17 Yet, quantitatively return volatility also depends on the
volatility of dividend growth and - up to a linear approximation - on the �rst
two moments of the cross-correlogram between the PD ratio and the rate of

14They also match the pro-cyclical variation of stock prices and the counter-cyclical variation
of stock market volatility. We have not explored conditional moments in our learning model,
see also the discussion at the end of this section.
15The coe¢cient of relative risk aversion is 35 in steady state and higher still in states with

�low surplus consumption ratios�.
16This is not due to accounting for seasonalities in dividends by taking averages: stock

returns are also about three times as volatile as dividend growth at yearly frequency.
17Cochrane (2005) provides a detailed derivation of the qualitative relationship between

facts 3 and 1 for i:i:d: dividend growth.
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growth of dividends. Since the main contribution of the paper is to show the
ability of the learning model to account for the quantitative properties of the
data, we treat the volatility of returns as a separate asset pricing fact.

U.S. asset pricing facts, 1927:2-2000:4
(quarterly real values, growth rates & returns in percentage terms)

Fact 1 Volatility of E(PD) 113.20
PD ratio �PD 52.98

Fact 2 Persistence of �PDt;�1 0.92
PD ratio

Fact 3 Excessive return �rs 11.65
volatility ��D

D
2.98

Fact 4 Excess return c52 -0.0048
predictability R25 0.1986

Fact 5 Equity premium E [rs] 2.41
E
�
rb
�

0.18

Table 1: Stylized asset pricing facts

Fact 4: Excess stock returns are predictable over the long-run.

While stock returns are di¢cult to predict in general, the PD ratio is nega-
tively related to future excess stock returns in the long run. This is illustrated
in Table 2, which shows the results of regressing future cumulated excess re-
turns over di¤erent horizons on today�s price dividend ratio.18 The absolute
value of the parameter estimate and the R2 both increase with the horizon.
As argued in Cochrane (2005, chapter 20), the presence of return predictabil-
ity and the increase in the R2 with the prediction horizon are qualitatively a
joint consequence of Fact 2 and i:i:d: dividend growth. Nevertheless, we keep
excess return predictability as an independent result, since we are again inter-
ested in the quantitative model implications. Yet, Cochrane also shows that
the absolute value of the regression parameter increases approximately linearly
with the prediction horizon, which is a quantitative result. For this reason, we

18More precisely, the table reports results from OLS estimation of

Xt;t+s = c
s
1 + c

s
2PDt + u

s
t

for s = 1; 3; 5; 10; where Xt;t+s is the observed real excess return of stocks over bonds between
t and t+ s. The second column of Table 2 reports estimates of cs2:



14
ECB
Working Paper Series No 862
February 2008

summarize the return predictability evidence using the regression outcome for a
single prediction horizon. We choose to include the 5 year horizon in table 1.19

Years Coe¢cient on PD, cs1 R2

1 -0.0008 0.0438
3 -0.0023 0.1196
5 -0.0048 0.1986
10 -0.0219 0.3285

Table 2: Excess stock return predictability

Fact 5: The equity premium puzzle.

Finally, and even though the emphasis of our paper is on moments of the
PD ratio and stock returns, it is interesting to note that learning also improves
the ability of the standard model to match the equity premium puzzle, i.e., the
observation that stock returns - averaged over long time spans and measured in
real terms - tend to be high relative to short-term real bond returns. The equity
premium puzzle is illustrated in table 1, which shows the average quarterly real
return on bonds (E

�
rbt
�
) being much lower than the corresponding return on

stocks (E (rst )).
Unlike Campbell and Cochrane (1999) we do not include in our list of facts

any correlation between stock market data and real variables like consumption
or investment. In this sense, we follow more closely the literature in �nance. In
our model, it is the learning scheme that delivers the movement in stock prices,
even in a model with risk neutrality in which the marginal rate of substitution
is constant. This contrasts with the habit literature where the movement of
stock prices is obtained by modeling the way the observed stochastic process
for consumption generates movements in the marginal rate of substitution. The
latter explains why the habit literature focuses on the relationship between par-
ticularly low values of consumption and low stock prices. Since this mechanism
does not play a signi�cant role in our model, we abstract from these asset pricing
facts.

3 The risk neutral case

In this section we analyze the simplest asset pricing model assuming risk neu-
trality and time separable preferences (� = 0 and Ct = Ct). The goal of this
section is to derive qualitative results and to show how the introduction of learn-
ing improves the performance compared to a setting with rational expectations.
Sections 4 and 5 present a formal quantitative model evaluation, extending the
analysis to risk-averse investors. With risk neutrality and rational expectations

19We also used longer and shorter horizons. This did not a¤ect our �ndings.
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the model misses almost all of the asset pricing facts described in the previ-
ous section:20 the PD ratio is constant, stock returns are unforecastable (i:i:d:)
and approximately as volatile as dividend growth, i.e., do not display excess
volatility. In addition, there is no equity premium. For these reasons, the risk-
neutral model is particularly suited to illustrate how the introduction of learning
qualitatively improves model performance.
The consumer has beliefs about future variables, these beliefs are summa-

rized in expectations denoted eE that we now allow to be less than fully rational.
Under the assumptions of this section, equation (3) becomes21

Pt = � eEt (Pt+1 +Dt+1) (9)

This asset pricing equation will be the focus of our analysis in this section.
Some papers in the learning literature22 have studied stock prices when

agents formulate expectations about the discounted sum of all future dividends
and set

Pt = eEt
1X

j=1

�jDt+j (10)

and the evaluation of the expectation is based on the Bayesian posterior distrib-
ution of the parameters in the dividend process. It is well known that under RE
and some limiting condition on price growth the one-period ahead formulation
of (9) is equivalent to the discounted sum expression for prices.23

If agents learn on the price according to (10), the posterior is about para-
meters of an exogenous variable, i.e., the dividend process. Market prices do
then not in�uence expectations. As a result, learning in these papers is not
self-referential and Bayesian beliefs are straightforward to formulate. Yet, this
lack of feedback from market prices to expectations also limits the ability of the
model to generate interesting �data-like� behavior.
Here instead, we use the formulation in equation (9), where agents are as-

sumed to have a forecast model of next period�s price and dividend. They try to
estimate the parameters of this forecast model and will have to use data on stock
prices to do so. Our point will be that it is precisely when agents formulate ex-
pectations on prices to satisfy (9) that there is a large e¤ect of learning and that
many moments of the data are better matched. It is in fact this self-referential
nature of our model that makes it attractive in explaining the data.

20 Since the RE model implies a constant PD ratio the serial correlation of the PD ratio is
unde�ned.
21This equation is similarly implied by many other models, for example, it can be interpreted

as a no-arbitrage condition in a model with risk-neutral investors or can be derived from an
overlapping generations model. All that is required is that investors formulate expectations
about the future payo¤ Pt+1 + Dt+1 and for investors� choice to be in equilibrium, today�s
price has to equal next period�s discounted expected payo¤.
22For example, Timmermann (1993, 1996), Brennan and Xia (2001), Cogley and Sargent

(2006).
23More precisely, equivalence is obtained if eEt [�] = Et [�] and if the no-rational-bubble

requirement limj!1 �j EPt+j = 0 must hold.
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Focus on equation (9) not only improves empirical performance but can also
be justi�ed formally. Note that the in�nite sum expression (10) requires dis-
counting future dividends at the market discount rate. In a complete market
setting, the market discount factor is identical to that of each investor at all
times. This implies that an investor can obtain the in�nite sum (10) by simply
iterating on her �rst order condition (9). Under complete markets, equation
(10) is thus a direct consequence of assuming that agents know their individ-
ual decision problem.24 In more realistic settings, however, knowledge of the
individual decision problem ceases to imply (9). Suppose, for example, that
markets are incomplete, say, due to the presence of uninsurable liquidity shocks
that occassionally force investors to sell their stock. These shocks will drive a
wedge between individual and market discount factors, implying that individual
investors cannot iterate on their Euler equations to obtain a correct formulation
of how the market discounts future dividends. Instead, the investor will have to
formulate beliefs about the future price to be able to value the asset.25 In ap-
pendix A.2 we make this argument formally within an overlapping generations
(OLG) model where agents are forced to sell their assets in the last period of
their life. The RE equilibrium in the OLG economy is the same as in the Lucas
economy, but young agents� relevant �rst order condition is given by (9). Since
the same Euler equation does not apply when old, young agents cannot obtain
the in�nite sum (10) in a straightforward way.
More informally, using the discounted sum (10) may also not be a very

robust way to price the asset, even if markets are complete. The discounted
sum formulation implies that small approximation errors to the dividend process
may translate into a large pricing error. Speci�cally, if the forecast model for
dividends is slightly misspeci�ed it is suboptimal to simply iterate on it to derive
long-horizon forecasts, i.e., the �law of iterated expectations� which is required
to obtain the discounted sum may not hold.26 Learning about stock price is
then likely to be a more robust formulation of expectations. All this suggests
that our one-period formulation is an interesting avenue to explore.

3.1 Analytical results

In this section we show that the introduction of learning changes qualitatively
the behavior of stock prices in the direction of improving the match of the
stylized facts described above. At this point we consider a wide class of learning
schemes that includes the standard rules used in the literature. This serves to
prove that the e¤ects we discuss occur in a very general class of learning models.
Later on we will restrict attention to learning schemes that forecast well within
the model.
24One also needs to assume that limj!1 �j eEPt+j = 0 holds
25This may explain why participants in actual stock markets appear to care so much about

the selling price of the stock.
26Adam (2007) provides experimental evidence of the breakdown of the law of iterated

expectations in an experiment where agents become gradually aware that they use a possibly
misspeci�ed forecasting model.
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We �rst trivially rewrite the expectation of the agent by splitting the sum
in the expectation:

Pt = � eEt (Pt+1) + � eEt (Dt+1) (11)

We assume that agents know how to formulate the conditional expectation of the
dividend eEt (Dt+1) = aDt, which amounts to assuming that agents have rational
expectations about the dividend process. This simpli�es the discussion and
highlights the fact that it is learning about future prices that allows the model
to better match the data. Appendix A.5 shows that the pricing implications are
very similar if agents also learn how to forecast dividends.27

Agents are assumed to use a learning scheme in order to form a forecast
eEt(Pt+1) based on past information. Equation (4) shows that under rational
expectations Et [Pt+1] = aPt. As we restrict our analysis to learning rules that
behave close enough to rational expectations, we specify expectations under
learning as

eEt [Pt+1] = �t Pt (12)

where �t > 0 denotes agents� time t estimate of gross stock price growth. For
�t = a, agents� beliefs coincide with rational expectations. Also, if agents� beliefs
converge over time to the RE equilibrium (limt!1 �t = a), investors will realize
in the long-run that they were correct in using the functional form (12). Yet,
during the transition beliefs may deviate from rational ones.
It remains to specify how agents update their beliefs �t. We consider the

following general learning mechanism

��t = ft

�
Pt 1
Pt 2

� �t 1
�

(13)

for some exogenously chosen functions ft : R! R with the property

ft(0) = 0

f 0t > 0

We thus assume beliefs to adjust in the direction of the last prediction error,
i.e., agents revise beliefs upwards (downwards), if they underpredicted (over-
predicted) stock price growth in the past.28 Arguably, a learning scheme that
violates these conditions would appear quite unnatural. For technical reasons,
we also need to assume that the functions ft are such that

0 < �t < �
 1 (14)

at all times. This rules out beliefs �t > � 1 which would imply that expected
stock returns exceed the inverse of the discount factor, prompting the represen-
tative agent to have an in�nite demand for stocks at any stock price.
27 In section 6 we verify this also quantitatively in a model with learning about dividends

and prices.
28Note that �t is determined from observations up to period t � 1 only. The assumption

that the current price does not enter in the formulation of the expectations is common in the
learning literature and is entertained for simplicity. Di¢culties emerging with simultaneous
information sets are discussed in Adam (2003).
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Deriving quantitative and convergence results on learning will require spec-
ifying the learning scheme more explicitly. At this point, we show that the key
features of the model emerge within this more general speci�cation.

3.1.1 Stock prices under learning

Given the perceptions �t, the expectation function (12), and the assumption on
perceived dividends, equation (11) implies that prices under learning satisfy

Pt =
�aDt
1� ��t

: (15)

Since �t and "t are independent, the previous equation implies that

V ar

�
ln

Pt
Pt�1

�
= V ar

�
ln
1� ��t�1
1� ��t

�
+ V ar

�
ln

Dt
Dt�1

�
; (16)

and shows that price growth under learning is more volatile than dividend
growth. Clearly, this occurs because the volatility of beliefs adds to the volatility
generated by fundamentals. While this intuition is present in previous models of
learning, e.g., Timmermann (1993), it will be particular to our case that under

more speci�c learning schemes V ar
�
ln 1���t

1���t+1

�
is very high and remains high

for a long time.
Equation (15) shows that the PD ratio is monotonically related to beliefs �t.

One can thus understand the qualitative dynamics of the PD ratio by studying
the belief dynamics. To derive these dynamics notice

Pt
Pt�1

= T (�t;��t) "t (17)

where

T (�;��) � a+ a� ��

1� �� (18)

It follows directly from (17) that T (�t;��t) is the actual expected stock price
growth given that the perceived price growth has been given by �t;��t. Substi-
tuting (17) in the law of motion for beliefs (13) and using also (15) shows that
the dynamics of �t (t � 1) are described by a second order stochastic di¤erence
equation

��t+1 = ft+1 (T (�t;��t)"t � �t) (19)

for given initial conditions (D0; P�1), and the initial belief �0. This equation
can not be solved analytically due to non-linearities,29 but it is still possible to
gain qualitative insights into the belief dynamics of the model. We do this in
the next section.
29Notice that even in the case we consider below where ft is linear, the di¤erence equation

is non-linear due to the presence of T .
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3.1.2 Deterministic dynamics

To discuss the dynamics of beliefs �t under learning, we simplify matters by
considering the deterministic case in which "t � 1. Equation (19) then simpli�es
to

��t+1 = ft+1 (T (�t;��t) �t) : (20)

We thus restrict attention to the endogenous stock price dynamics generated
by the learning mechanism rather than the dynamics induced by exogenous
disturbances. Given the properties of ft, equation (20) shows that beliefs are
increasing whenever T (�t;��t) > �t, i.e., whenever actual stock price growth
exceeds expected stock price growth. Understanding the evolution of beliefs
thus requires studying the T -mapping.
We start by noting that the actual stock price growth implied by T depends

not only on the level of price growth expectations �t but also on the change
4�t. This imparts momentum on stock prices, leading to a feedback between
expected and actual stock price growth. Formally we can state

Momentum: For all �t 2 (0; ��1); if �t = a and ��t > 0; then30

��t+1 > 0

It also holds if both inequalities are reversed.

Therefore, if agents arrived at the rational expectations belief �t = a from
below (4�t > 0), the price growth generated by the learning model would
keep growing and it would exceed the fundamental growth rate a. Just because
agents� expectations have become more optimistic (in what a journalist would
perhaps call a �bullish� market), the price growth in the market has a tendency
to be larger than the growth in fundamentals. Since agents will use this higher-
than-fundamental stock price growth to update their beliefs in the next period,
�t+1 will tend to overshoot a, which will further reinforce the upward tendency.
Since beliefs are monotonically related to the PD ratio, see equation (15), there
will be momentum in the stock price, which could be interpreted as a �naturally
arising Ponzi process�. Conversely, if �t = a in a bearish market (��t < 0),
beliefs and prices display downward momentum, i.e., a tendency to undershoot
the RE value.
It can be shown, however, that stock prices and beliefs can not stay at levels

unjusti�ed by fundamentals forever and that after any deviation it will even-
tually move towards the fundamental value. Formally, under some additional
technical assumptions we have

Mean reversion: 31 For any � > 0 if there is a period t such that �t > a+ �
(< a �), there is a �nite time t > t such that �t < a+ � (> a �).

30This follows trivially from the fact that T (�t;��t) > a if �t = a; ��t > 0.
31 See Appendix A.3 for the assumptions and the proof.
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Since � can be chosen arbitrarily small, the previous statement shows that
beliefs will eventually move back arbitrarily close to fundamentals or even move
to the �other side� of fundamentals. This occurs even if agents� beliefs are cur-
rently far away from fundamentals. The monotone relationship between beliefs
and the PD ratio then implies mean reverting behavior of the PD ratio.
Momentum and mean reversion are also illustrated by the study of the phase

diagram for the dynamics of the beliefs (�t; �t�1): Figure 2 illustrates the direc-
tion that beliefs move, according to equation (20).32 The arrows in the �gure
thereby indicate the direction in which the di¤erence equation is going to move
for any possible state (�t; �t�1) and the solid lines indicate the boundaries of
these areas.33 Since we have a di¤erence rather than a di¤erential equation, we
cannot plot the evolution of beliefs exactly. Nevertheless, the arrows suggest
that the beliefs are likely to move in ellipses around the rational expectations
equilibrium (�t; �t�1) = (a; a). Consider, for example, point A in the diagram.
Although at this point �t is already below its fundamental value, the phase dia-
gram indicates that beliefs will fall further. This is the result of the momentum
induced by the fact that �t < �t�1 at point A. Beliefs can go, for example,
to point B where they will start to revert direction and move on to points C
then, to D etc.: beliefs thus display mean reversion. The elliptic movements
imply that beliefs (and thus the PD ratio) are likely to oscillate in sustained
and persistent swings around a.

Momentum together with the mean reversion allows the model to match the
volatility and serial correlation of the PD ratio (facts 1 and 2). Also, according to
our discussion around equation (16), momentum imparts variability to the ratio
1���t�1
1���t and is likely to deliver more volatile stock returns (fact 3). As discussed
in Cochrane (2002), a serially correlated and mean reverting PD ratio should
give rise to excess return predictability (fact 4). The next section specializes
the learning scheme. This allows to prove asymptotic results and to study
by simulation that introducing learning in the risk-neutral model causes a big
improvement in the ability of the model to explain stock price volatility. It can
also generate a sizable equity premium (fact 5).

3.2 The Risk Neutral Model with OLS

3.2.1 The learning rule

We specialize the learning rule by assuming the most common learning schemes
used in the literature on learning about expectations. We assume the standard
updating equation from the stochastic control literature

�t = �t�1 +
1

�t

�
Pt�1
Pt�2

� �t�1
�

(21)

32Appendix A.4 explains in detail the construction of the phase diagram.
33The vertical solid line close to ��1 is meant to illustrate the restriction � < ��1 imposed

on the learning rule.
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Figure 2: Phase diagram illustruating momentum and mean-reversion

for all t � 1, for a given sequence of �t � 1, and a given initial belief �0 which
is given outside the model.34 This essentially requires ft to be linear. The
sequence 1=�t is called the �gain� sequence and dictates how strongly beliefs are
updated in the direction of the last prediction error. In this section, we assume
the simplest possible speci�cation:

�t = �t�1 + 1 t � 2 (22)

�1 � 1 given.

With these assumptions the model evolves as follows. In the �rst period, �0 de-
termines the �rst price P0 and, given the historical price P�1, the �rst observed
growth rate P0

P�1
, which is used to update beliefs to �1 using (21); the belief �1

determines P1 and the process evolves recursively in this manner. As in any
self-referential model of learning, prices enter in the determination of beliefs and
vice versa. As we argued in the previous section, it is this feature of the model
that generates the dynamics we are interested in.
Using simple algebra, equation (21) implies

�t =
1

t+ �1  1

0
@
t�1X

j=0

Pj
Pj�1

+ (�1  1) �0

1
A :

34 In the long-run the particular initial value �0 is of little importance.
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Obviously, if �1 = 1 this is just the sample average of the stock price growth
and, therefore, it amounts to OLS if only a constant is used in the regression
equation. For the case where �1 is an integer, this expression shows that �t is
equal to the average sample growth rate, if - in addition to the actually observed
prices - we would have (�1 � 1) observations of a growth rate equal to �0. A
high �1 thus indicates that agents possess a high degree of �con�dence� in their
initial belief �0.

In a Bayesian interpretation, �0 would be the prior mean of stock price
growth, (�1 � 1) the precision of the prior, and - assuming that the growth
rate of prices is normally distributed and i.i.d. - the beliefs �t would be equal
to the posterior mean. One might thus be tempted to argue that �t is e¤ec-
tively a Bayesian estimator. Obviously, this is only true for a �Bayesian� placing
probability one on Pt

Pt�1
being i.i.d.. Since learning causes price growth to de-

viate from i.i.d. behavior, such priors fail to contain the �grain of truth� that
should be present in Bayesian analysis. While the i.i.d. assumption will hold
asymptotically (we will prove this later on), it is violated under the transition
dynamics.35

For the case �1 = 1, �t is just the sample average of stock price growth, i.e.,
agents have no con�dence in their initial belief �0: In this case �0 matters only
for the �rst period, but ceases to a¤ect anything after the �rst piece of data has
arrived. More generally, assuming a value for �1 close to 1 would spuriously
generate a large amount of price �uctuations, simply due to the fact that initial
beliefs are heavily in�uenced by the �rst few observations and thus very volatile.
Also, pure OLS assumes that agents have no faith whatsoever in their initial
belief and possess no knowledge about the economy in the beginning.
In the spirit of restricting equilibrium expectations in our learning model to

be close to rational, we set initial beliefs equal to the value of the growth rate
of prices under RE

�0 = a

and choose a very large �1. Thus, we assume that beliefs start at the RE value,
and that the initial degree of con�dence in the RE belief is high, but not perfect.
Clearly, in the limit 1=�1 ! 0; our learning model reduces to the RE model, so
that the initial gain can be interpreted as a measure of how �close� the learning
model is to the rational expectations model. The maximum distance from RE
is achieved for �1 = 1, i.e., pure OLS learning.
Finally, we need to introduce a feature that prevents perceived stock price

growth from violating the upper inequality in (14). For simplicity, we follow
Timmermann (1996) and Cogley and Sargent (2006) and apply a projection
facility: if in some period the belief �t as determined by (21) is larger than

35 In a proper Bayesian formulation agents would use a likelihood function with the property
that if agents use it to update their posterior, it turns out to be the true likelihood of the
model in all periods. Since the �correct� likelihood in each period depends on the way agents
learn, it would have to solve a complicated �xed point. Finding such a truly Bayesian learning
scheme is very di¢cult and the question remains how agents could have learned a likelihood
that has such a special property. For these reasons Bray and Kreps (1987) concluded that
models of self-referential Bayesian learning were unlikely to be a fruitful avenue of research.
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some constant �U � ��1, then we set

�t = �t�1 (23)

in that period, otherwise we use (21). One interpretation is that if the observed
price growth implies beliefs that are too high, agents realize that this would
prompt a crazy action (in�nite stock demand) and they decide to ignore this
observation. Obviously, it is equivalent to require that the PD is less than the
upper bound UPD � �a

1���U . An alternative interpretation is that if the PD is
higher than this upper bound either agents will start fearing a downturn or some
government agency will intervene to bring the price down.36 In the simulations
below this facility is binding only rarely and the properties of the learning model
are not sensitive to the precise value we assign to UPD.

3.2.2 Asymptotic Rationality

In this section we study the limiting behavior of the model under learning,
drawing on results from the literature on least squares learning. This literature
shows that the T -mapping de�ned in equation (18) is central to whether or not
agents� beliefs converge to the RE value.37 It is now well established that in a
large class of models convergence (divergence) of least squares learning to (from)
RE equilibria is strongly related to stability (instability) of the associated o.d.e.
_� = T (�) �. Most of the literature considers models where the mapping from
perceived to actual expectations does not depend on the change in perceptions,
unlike in our case where T depends on ��t. Since for large t the gain (�t)

�1

is very small, we have that (21) implies ��t � 0. One could thus think of
the relevant mapping for convergence in our paper as being T (�; 0) = a for
all �: Asymptotically the T -map is thus �at and the di¤erential equation _� =
T (�; 0) � = a � is stable. This seems to indicate that beliefs should converge
to the RE equilibrium value � = a: Also, the convergence should be fast, so that
one might then conclude that there is not much to be gained from introducing
learning into the standard asset pricing model.38

Appendix A.7 shows in detail that the above approximations are partly
correct. In particular, learning globally converges to the RE equilibrium in this
model, i.e., �t ! a almost surely. The learning model thus satis�es �Asymptotic
Rationality� as de�ned in section III in Marcet and Nicolini (2003). It implies
that agents using the learning mechanism will realize in the long run that they

36To mention one such intervention that has been documented in detail, Voth (2003) ex-
plains how the German central bank intervened indirectly in 1927 to reduce lending to equity
investors. This intervention was prompted by a "genuine concern about the �exuberant� level of
the stock market" on the part of the central bank and it caused stock prices to go down sharply.
More recently, announcements by central bankers (the famous speech by Alan Greenspan on
October 16th 1987) or interest rate increases may have played a similar role.
37 See Marcet and Sargent (1989) and Evans and Honkapohja (2001).
38That convergence should be fast follows from results in Marcet and Sargent (1995) and

Evans and Honkapohja (2001), showing that the asymptotic speed of convergence depends on
the size of T 0. Since in this model we have T 0 = 0 these results would seem to indicate that
convergence should be quite fast.
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are using the best possible forecast, therefore, they would not have incentives
to change their learning scheme.
Yet, the remainder of this paper shows that our model behaves very di¤erent

from RE during the transition to the limit. This occurs even though agents are
using an estimator that starts with strong con�dence at the RE value, that
converges to the RE value, and that will be the best estimator in the long run.
The di¤erence is so large that even this very simple version of the model together
with the very simple learning scheme introduced in section 3.1 qualitatively
matches the asset pricing facts much better than the model under RE.

3.2.3 Simulations

We now illustrate the previous discussion of the model under learning by re-
porting simulation results for certain parameter values. We compare outcomes
with the RE solution to show in what dimensions the behavior of the model
improves when learning is introduced.
We choose the parameter values for the dividend process (1) so as to match

the observed mean and standard deviation of US dividends:

a = 1:0035; s = 0:0298 (24)

We bias results in favor of the RE version of the model by choosing the discount
factor so that the RE model matches the average PD ratio we observe in the
data.39 This amounts to choosing

� = 0:9877:

As we mentioned before, for the learning model we set �0 = a: We also choose

1=�1 = 0:02

These starting values are chosen to insure that the agents� expectations will not
depart too much from rationality: initial beliefs are equal to the RE value and
the �rst quarterly observation of stock price growth obtains a weight of just 2%,
with the remaining weight of 98% being placed on the RE �prior�. This means
that with this value �1 it takes more than twelve years for �t to converge half
way from the initial RE value towards the observed sample mean of stock price
growth. Finally, we set the upper bound on �t so that the quarterly PD ratio
will never exceed UPD =500.

Table 3 shows the moments from the data together with the corresponding
model statistics.40 The column labeled US data reports the statistics discussed
in section 2. It is clear from table 3 that the RE model fails to explain key asset

39This di¤ers from the latter part of the paper where we choose � to match globally the
moments of interest.
40We compute model statistics as follows: for each model we use 5000 realizations of 295

periods each, i.e., the same length as the available data. The reported statistic is the average
value of the statistics across simulations, which is a numerical approximation to the expected
value of the statistic for this sample size.
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pricing moments. Consistent with our earlier discussion the RE equilibrium is
far away from explaining the observed equity premium, the volatility of the PD
ratio, the variability of stock returns, and the predictability of excess returns.41

US Data RE model Learning Model
Statistic

E(rs) 2.41 1.24 2.04
E(PD) 113.20 113.20 86.04

�rs 11.65 3.01 8.98
�PD 52.98 0.00 40.42

�PD;�1 0.92 - 0.91
c52 -0.0048 - -0.0070
R25 0.1986 0.00 0.2793

E(rb) 0.18 1.24 1.24

Table 3: Data and model under risk neutrality

In table 3, the learning model shows a considerably higher volatility of stock
returns, high volatility and high persistence of the PD ratio, and the coe¢-
cients and R2 of the excess predictability regressions all move strongly in the
direction of the data. This is consistent with our earlier discussion about the
price dynamics implied by learning. Clearly, the statistics of the learning model
do not match the moments in the data quantitatively, but the purpose of the
table is to show that allowing for small departures from rationality substantially
improves the outcome. This is surprising, given that the model adds only one
free parameter (1=�1) relative to the RE model and that we made no e¤ort to
choose parameters that match the moments in any way. Additional simulations
we conducted show that the qualitative improvements provided by the model
are very robust to changes in 1=�1, as long as it is neither too close to zero - in
which case the model behaves as the RE model - nor too large - in which case
the model delivers too much volatility.
Table 3 also shows that the learning model delivers a positive equity pre-

mium. To understand why this occurs it proves useful to re-express the (gross)
stock return between period 0 and period N as the product of three terms

NY

t=1

Pt +Dt
Pt�1

=
NY

t=1

Dt
Dt�1

| {z }
=R1

�
�
PDN + 1

PD0

�

| {z }
=R2

�
N�1Y

t=1

PDt + 1

PDt
| {z }

=R3

:

The �rst term (R1) is independent of the way expectations are formed, thus
cannot contribute to explaining the emergence of an equity premium in the

41Since PD is constant under RE, the coe¢cient c52 of the predictability equation is unde-
�ned. This is not the case for the R2 values.
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learning model. The second term (R2) can potentially generate an equity pre-
mium if the terminal price dividend ratio in the learning model (PDN ) is on
average higher than under rational expectations.42 Yet, our simulations show
that the opposite is the case: under learning the terminal price dividend ratio
in the sample is lower (on average) than under rational expectations; this term
thus generates a negative premium under learning. The equity premium must
thus be due to the behavior of the last component (R3). This term gives rise to
an equity premium via a mean e¤ect and a volatility e¤ect.
The mean e¤ect emerges if agents� beliefs �t tend to converge �from below�

towards their rational expectations value. Less optimistic expectations about
stock price growth during the convergence process imply lower stock prices and
thereby higher dividend yields, i.e., higher ex-post stock returns. Our simula-
tions show that the mean e¤ect is indeed present and that on average the price
dividend ratio under learning is lower than under rational expectations. This
explanation for the equity premium is related to the one advocated by Cogley
and Sargent (2006).
Besides this mean e¤ect, there exists also a volatility e¤ect, which emerges

from the convexity of PDt+1
PDt

in the price dividend ratio. It implies that the
ex-post equity premium is higher under learning since the price dividend ratio
has a higher variance than under rational expectations.43 The volatility e¤ect
suggests that the inability to match the variability of the price dividend ratio
and the equity premium are not independent facts and that models that gen-
erate insu¢cient variability of the price dividend ratio also tend to generate an
insu¢ciently high equity premium.

4 Baseline model with risk aversion

The remaining part of the paper shows that the learning model can also quan-
titatively account for the moments in the data, once one allows for moderate
degrees of risk-aversion, and that this �nding is robust to a number of alter-
native speci�cations. Here we present the baseline model with risk aversion,
our simple baseline speci�cation for the learning rule (OLS), and the baseline
calibration procedure. The quantitative results are discussed in section 5, while
section 6 illustrates the robustness of our quantitative �ndings to a variety of
changes in the learning rule and the calibration procedure.

4.1 Learning under risk aversion

We now present the baseline learning model with risk aversion and show that
the insights from the risk neutral model extend in a natural way to the case
with risk aversion.
42The value of PD0 is the same under learning and rational expectations since initial ex-

pectations in the learning model are set equal to the rational expectations value.
43The data suggest that this convexity e¤ect is only moderately relevant: for the US data

1927:2-2000:4, it is at most 0.16% in quarterly real terms, thus explains about 8% of the equity
premium.
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The investor�s �rst-order conditions (3) together with the assumption that
agents know the conditional expectations of dividends deliver the stock pricing
equation under learning:44

Pt = � eEt
��

Dt
Dt+1

��
Pt+1

�
+ �Et

 
D�
t

D��1
t+1

!
(25)

To specify the learning model, in close analogy to the risk-neutral case, we
consider learning agents whose expectations in (25) are of the form

eEt
��

Dt
Dt+1

��
Pt+1

�
= �tPt (26)

where �t denotes agents� best estimate of E (Dt=Dt+1)
�
Pt+1=Pt, i.e., their ex-

pectations of risk-adjusted stock price growth. As shown in (6) if �t = �RE

agents have rational expectations and if �t ! �RE the learning model will sat-
isfy Asymptotic Rationality, where the expression for �RE is given in equation
(5).
As a baseline speci�cation, we consider again the case where agents use OLS

to formulate their expectations of future (risk-adjusted) stock price growth

�t = �t�1 +
1

�t

��
Dt�2
Dt�1

��
Pt�1
Pt�2

 �t�1
�

(27)

where the gain sequence 1=�t continues to be described by (22).
Again, in the spirit of allowing for only small deviations from rationality,

we restrict initial beliefs to be rational (�0 = �RE). Appendix A.7 shows
that learning will cause beliefs to globally converge to RE, i.e., �t ! �RE and��PREt  Pt

�� ! 0 almost surely. The learning scheme thus satis�es Asymptotic
Rationality.
For � = 0 the setup above reduces to the risk-neutral model with learning

studied in section 3. For � > 0 the setup is analogous to that under risk neutral-
ity, except that 1. the beliefs � now have an interpretation as risk-adjusted stock
price growth rather than simple stock price growth; 2. The term (Dt�2=Dt�1)

�

now enters the belief updating formula (27). Since for su¢ciently large � the
variance of realized risk-adjusted stock price growth under RE increases with �,
the latter implies that larger risk aversion is likely to generate more volatility in
beliefs and, therefore, of actual prices under learning.45 This will improve the
ability of the learning model to match the moments in the data.
44As in section 2, we impose the market clearing condition Ct = Dt and will associate

consumption with dividends in the data. This is not entirely innocuous as dividend growth
in the data is considerably more volatile than consumption growth,. Section 6 will illustrate
the robustness of our quantitative �ndings when allowing for the fact that Ct 6= Dt.
45The formula for the variance risk adjusted stock price growth under rational expectations

is

V AR

 �
Dt�2
Dt�1

�� PREt�1
PREt�2

!
= a2(1��)e(��)(1��)

s2

2 (e(1��)
2s2  1)

This variance reaches a minimum for � = 1.
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As in the risk-neutral case we need to impose a projection facility to insure
that beliefs satisfy inequality (14). To facilitate model calibration, described
in the next section, we change the projection facility slightly in order to insure
di¤erentiability of the solution with respect to parameter values. Details are
described in appendix A.6.3. As before, the projection facility insures that the
PD ratio will never exceed a value of 500.
Finally, we show that beliefs continue to display momentum and mean-

reversion, similar to the case with risk-neutrality. Using equations (26), (25),
and the fact that Et

�
D�
t D

1��
t+1

�
= �RE Dt shows that stock prices under learn-

ing are given by

Pt =
��RE

1� ��t
Dt (28)

Pt
Pt�1

=

�
1 +

� ��t
1� ��t

�
a"t (29)

From equations (27) and (29) follows that the expected dynamics of beliefs in
the risk averse model can be described by

Et�1��t+1 =
1

�t+1
(T (�t;��t)� �t�1) (30)

where

T (�t;��t) =

�
�RE +

�RE� ��t
1� ��t

�
(31)

The updating equation (30) has the same structure as equation (20) and the T-
map (31) is identical to (18), which has been studied before.46 The implications
regarding momentum and mean reversion from section 3.1 thus directly apply
to the expected belief dynamics in the model with risk-aversion.
We conclude that, qualitatively, the main features of the model under learn-

ing are likely to remain after risk aversion is introduced, but that the model
now has an even larger chance to generate high volatility.

4.2 Baseline calibration procedure

This section describes and discusses our preferred calibration procedure. Recall
that the parameter vector of our baseline learning model is � � (�; �; 1=�1; a; s),
where � is the discount factor, � the coe¢cient of relative risk aversion, �1 the
agents� initial con�dence in the rational expectations value, and a and s the
mean and standard deviation of dividend growth, respectively.
We choose the parameters (a; s) to match the mean and standard deviation

of dividend growth in the data, as in equation (24). Since it is our interest to
show that the model can match the volatility of stock prices for low levels of
risk aversion, we �x � = 5:

46The latter holds because �RE = a in the case with risk-neutrality.
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This leaves us with two free parameters (�; 1=�1) and eight remaining asset
price statistics from table 1

bS 0 �
�
bE(rs); bE(PD); b�rs ; b�PD; b�PDt; 1;bc52; bR25; bE(rb)

�

As discussed in detail in section 2, these statistics quantitatively capture the
asset pricing observations we seek to explain. Our aim is to show that there are
parameter values that make the model consistent with these moments.47

We could have proceeded further by �xing � and/or 1=�1 to match some
additional moments exactly and use the remaining moments to test the model.
Yet, many of these moments have a rather large standard deviation in the
data (see the column labeled "US Data std" in table 4 below) and their value
varies a lot depending on the precise sample period used. Matching any of
these moments exactly, therefore, appears arbitrary. Also, one obtains rather
di¤erent parameter values depending on which moment is chosen for calibration.
For these reasons, we depart from the usual calibration practice and choose
the values for (�; 1=�1) so as to �t all eight moments in the vector bS as well
as possible. Of course, it is a challenging task for the model to match eight
moments with just two parameters.
As in standard calibration exercises, we measure the goodness-of-�t using

the t-ratios
bSi  eSi(�c)
b�Si

(32)

where bSi denotes the i-th sample moment, eSi(�c) the corresponding statistic
implied by the model at the calibrated parameter values �c, and b�Si the esti-
mated standard deviation of the moment. As in standard calibration exercises,
we conclude that the model�s �t is satisfactory if the t-ratios are less than, say,
two or three in absolute value. We choose the values for (�; 1=�1) that minimize
the sum of squared t-ratios, where the sum is taken over for all eight moments.
This implies that moments with a larger standard deviation receive less weight
and are matched less precisely. Notice that the calibration result is invariant to
a potential rescaling of the moments. The details of the procedure are de�ned
and explained in appendix A.6.
In the calibration literature it is standard to set the estimate of the standard

deviation of the moments (b�Si in equation (32)) equal to the model implied
standard deviation of the considered moment. This practice has a number of
problems. First, it gives an incentive to the researcher to generate models
with high standard deviations, i.e., unsharp predictions, as these appear to
improve model �t because they arti�cially increase the denominator of the t-
ratio. Second, to increase comparability with Campbell and Cochrane (1999) we
chose a model with a constant risk free rate, so that the model-implied standard
47Strictly speaking some of the elements of S are not �moments�, i.e., they are not a sample

average of some function of the data. The R-square coe¢cient, for example, is a highly
non-linear function of moments, rather than being a moment itself. This generates some
slight technical problems discussed in appendix A.5. To be precise, we should refer to S as
�statistics�, but for simplicity we will proceed by refering to bS as �moments �.
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deviation is b�E(rb) = 0. The above procedure would then require to match the
average risk free rate exactly, not because the data suggests that this moment
is known very precisely (which it is not), but only as a result of the modelling
strategy.
To avoid all these problems we prefer to �nd an estimate of the standard

deviation of each statistic b�Si that is based purely on data sources. This has the
additional advantage that b�Si is constant across alternative models and thereby
allows for model comparisons in a meaningful way. We show in appendix A.6
how to obtain consistent estimates of these standard deviations from the data.
With these estimates we use these resulting t-ratios as our measure of ��t� for
each sample statistic and claim to have a good �t if this ratio is below two or
three.
The procedure just described is in some ways close to estimation by the

method of simulated moments, and using the t-ratios as measures of �t may
appear like using test statistics. In appendix A.6 we describe how this inter-
pretation could be made, but we do not wish to interpret our procedure as a
formal econometric method.48

Finally, since many economists feel uncomfortable with discount factors
larger than 1, we restrict the search to � � 1:We relax this constraint in section
6.
In summary, we think of the method just described as a way to pick the

parameters (�; 1=�1) in a systematic way, such that the model has a good chance
to meet the data, but where the model could also easily be rejected since there
are many more moments than parameters.

5 Quantitative results

We now evaluate the quantitative performance of the baseline learning model
(using OLS, � = 5; and Ct = Dt) when using the baseline calibration approach
described in the previous section.
Our results are summarized in table 4 below. The second and third column

of the table report, respectively, the asset pricing moments from the data that
we seek to match and the estimated standard deviation for each moment. The
table shows that some of the reported moments are estimated rather imprecisely.
The calibrated parameters values of the learning model are reported at the

bottom of the table. Notice that the gain parameter 1=�1 is small, re�ecting
the tendency of the data to give large (but less than full) weight to the RE
prior about stock price growth. As has been explained before, high values of
1=�1 would cause beliefs to be very volatile tend and give rise to too much
volatility, this is why the calibration procedure chooses a low value for 1=�1.
The calibrated gain reported in the table implies that when updating beliefs in

48This is because the distribution of the parameters and test statistics for these formal
estimation methods relies on asymptotics, but asymptotically our baseline learning model is
indistinguishable from RE. Therefore, one would have to rely on short-sample distribution of
statistics. Developing such distributions is well beyond the scope of this paper.
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the initial period, the RE prior receives a weight of approximately 98,5% and
the �rst quarterly observation a weight of about 1.5%. The discount factor is
quite high.

US Data Model (OLS)
Statistics std t-ratio

E(rs) 2.41 0.45 2.41 0.01
E(PD) 113.20 15.15 95.93 1.14

�rs 11.65 2.88 13.21 -0.54
�PD 52.98 16.53 62.19 -0.56

�PDt;�1 0.92 0.02 0.94 -1.20
c52 -0.0048 0.002 -0.0067 0.92
R25 0.1986 0.083 0.3012 -1.24

E(rb) 0.18 0.23 0.48 -1.30

Parameters: � = :999; 1=�1 = 0:015

Table 4: Moments and parameters.
Baseline model and baseline calibration

The fourth column in table 4 reports the moments implied by the calibrated
learning model and the �fth column the corresponding t-ratios. The learning
model performs remarkably well. In particular, the model with risk aversion
maintains the high variability and serial correlation of the PD ratio and the
variability of stock returns, as in section 3. In addition, it now succeeds in
matching the mean of the PD ratio and it also matches the equity premium
quite well. As discussed in section 2 before, it is natural that the excess return
regressions can be explained reasonably well once the serial correlation of the
PD is matched.
Clearly, the point estimate of some model moments does not match exactly

the observed moment in the data, but this tends to occur for moments that, in
the short sample, have a large variance. This is shown in the last column of
table 4 which reports the goodness-of-�t measures (t-ratios) for each considered
moment. The t-ratios are all well below two and thus well within what is a 95%
con�dence interval, if this were be a formal econometric test (which it is not).
Notice in particular that the calibration procedure chooses a value of � that
implies a risk-free interest rate that is more than twice as large as the point
estimate in the data. Since the standard deviation of bE(rb), reported in the
third column of Table 4, is fairly large, on nevertheless obtains a low t-ratio.
In summary, the results of table 4 show that introducing learning substan-

tially improves the �t of the model relative to the case with RE and is overall
very successful in quantitatively accounting for the empirical evidence described
in section 2. We �nd this result remarkable, given that we used the simplest
version of the asset pricing model and combined it with the simplest available
learning mechanism.
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6 Robustness

This section shows that the quantitative performance of the model is robust to a
number of extensions. We start by exploring alternative learning schemes, then
consider a di¤erent model, and �nally discuss alternative calibration procedures.

Learning about dividends. In the baseline model we assume agents
know the conditional expectation of dividends. This was done to simplify the
exposition and because learning about dividends has been considered in previ-
ous papers.49 Since it may appear inconsistent to assume that agents know the
dividend growth process but do not know how to forecast stock prices, we con-
sider a model where agents learn about dividend growth and stock price growth.
In Appendix A.5 we lay out the model and show that, while the analysis is more
involved, the basic results do not change. Table 5 below shows the quantitative
results with learning about dividends using the baseline calibration procedure
described in section 5. It shows that introducing dividend learning does not
lead to signi�cant changes.

Constant gain learning. An undesirable feature of the OLS learning
scheme is that volatility of stock prices decreases over time, which may seem
counterfactual. Therefore, we go away from OLS and introduce a learning
scheme with a constant gain, where the weight on the forecast error in the
learning scheme is constant: �t = �1 for all t.50 Beliefs then respond to forecast
errors in the same way throughout the sample and stock price volatility does
not decrease at the end of the sample period. As discussed extensively in the
learning literature, such a learning scheme improves forecasting performance
when there are changes in the environment. Agents who suspect the existence
of switches in the average growth rate of prices or fundamentals, for example,
may be reasonably expected to use such a scheme. Table 5 reports the quantita-
tive results for the constant gain model using the baseline calibration approach.
For obvious reasons, stock prices are now more volatile, even if the initial gain
is substantially lower than in the baseline case. Overall, the �t of the model is
very good.51

Switching weights. We now introduce a learning model in which the gain
switches over time, as in Marcet and Nicolini (2003).52 The idea is to combine

49E.g., Timmermann (1993, 1996).
50The derivations for this model are as in section 4 and require only changing the evolution

of �.
51We do not use constant gain as our main learning scheme because �t does then not

converge, i.e., we loose asymptotic rationality. Nevertheless, constant gain would generate
better forecasts than OLS in a setup where there are trend switches in fundamentals, so that
in a model with constant gain agents� forecasts will perform better than OLS. We leave this
for future research.
52The advantage of using switching gains, relative to using simple constant gain, is that

under certain conditions, the learning model converges to RE, i.e., Asymptotic Rationality is
preserved, while the learning scheme still reacts quickly if there is a change in the environment.
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constant gain with OLS, using the former in periods where a large forecast error
occurs and the latter when the forecast error is low. We report the quantitative
results in Table 5, which are very similar to those with pure constant gain
learning. The latter occurred because the model was frequently in �constant
gain mode�.

US Data Learning on Div. Constant gain Switching weights
Statistic t-ratio t-ratio t-ratio

E(rs) 2.41 2.41 0.00 2.26 0.34 2.25 0.36
E(rb) 0.18 0.48 -1.29 0.44 -1.11 0.44 -1.11

E(PD) 113.20 96.17 1.12 109.82 0.22 110.00 0.21
�rs 11.65 13.23 -0.55 14.55 -1.00 14.51 -0.99
�PD 52.98 62.40 -0.57 74.60 -1.31 74.50 -1.30

�PDt;�1 0.92 0.94 -1.22 0.94 -0.81 0.94 -0.82
c52 -0.0048 -0.0067 0.96 -0.0059 0.5344 -0.0059 0.5308
R25 0.1986 0.2982 -1.20 0.2443 -0.5516 0.2454 -0.5650

Parameters:
� 0.999 1 1

1=�1 0.015 0.00628 0.00626

Table 5: Robustness, Part I

Consumption data. Throughout the paper we made the simplifying as-
sumption C = D: Then we calibrated this process to dividend data because
when studying stock price volatility the data on dividends has to be brought
out. However, it is well known that consumption growth is much less volatile
than dividend growth, so that these two choices are likely to help in explaining
volatility and risk premium. Therefore, we now allow for C 6= D and cali-
brate the volatility of the consumption and dividend processes separately to the
data.53 While the dividends process remains as before, we set

Ct+1
Ct

= a"ct+1 for ln "ct s iiN( 
s2c
2
; s2c)

The presence of two shocks modi�es the equations for the RE version of the
model in a well known way and we do not describe it in detail here. We calibrate
the consumption process following Campbell and Cochrane (1999), i.e., set sc =
s
7 and �("

c; ") = :2.54

The quantitative results are reported in table 6 below, which shows that
we do not �t the data as well as before and, in particular, for the calibrated

53This would require changing the model described in section 4 to one with an exogenous
endowment that is added to the budget constraint of the agent and to the resource constraint.
The modi�cation is obvious and we omit the details.
54We take these ratios and values from table 1 in Campbell and Cochrane (1999), which is

based on a slightly shorter sample than the one used in this paper.
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parameters we do not match the risk-free rate. Equivalently, one could say that
this simulation does not match the risk premium puzzle. We do not wish to
make much of this quasi-rejection: �rst, it was not the objective of this paper
to match perfectly all moments, second, the equity premium is not the main
focus of this paper. Furthermore, to a fundamentalist of rational expectations,
who would dismiss models of learning as being "non rigorous because they can
always match the data", this shows that this is not always the case. One way
to improve the �t of this model is considered below.

Full weighting matrix from method of simulated moments We now
investigate the robustness of our �ndings to changes in the calibration procedure.
In an econometric MSM setup, one would have to �nd the parameters that
minimize a quadratic form with a certain optimal weighting matrix, while the
baseline calibration amounted to using a diagonal weighting matrix with b��2Si
in the diagonal. Therefore, a more econometrically-oriented reader could think
that the objective function that we minimize when we selected the parameters
is not justi�ed. For details see the discussion around equation (44) in appendix
A.6. Table 6 shows the results when we use an estimate of the optimal weighting
matrix. We still obtain a good �t, con�dence in initial beliefs is high. Some
moments are matched less well, for example, the serial correlation of the PD
ratio. This is natural since the weighting matrix does not bring down the t-ratios
per se.

US Data C 6= D OLS, Full matrix
Statistics t-ratio t-ratio

E(rs) 2.41 2.36 0.12 2.12 0.64
E(rb) 0.18 1.76 -6.91 0.44 -1.11

E(PD) 113.20 63.56 3.28 102.43 0.71
�rs 11.65 8.42 1.12 11.88 -0.08
�PD 52.98 30.14 1.38 61.07 -0.49

�PDt;PDt�1 0.92 0.91 0.49 0.96 -1.94
c52 -0.0048 -0.0073 1.2410 -0.0060 0.6207
R25 0.1986 0.2641 -0.7911 0.3322 -1.6127

Parameters:
� 1 1

1=�1 0.0178 0.0128

Table 6: Robustness, Part II

Relaxing constraint on � The attentive reader will have noticed that
the constraint � � 1 of the baseline calibration is binding in many of the cases
considered in tables 5 and 6. It turns out that this restriction is unnecessary
because risk aversion causes agents to discount future dividends more heavily.
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As a result, the discounted sum of dividends can be �nite even if � > 1.55

Table 7 below shows how the model improves when � is estimated without this
constraint and the only constraints are that a rational expectations PD exists
and it is below the price implied by �L, where the projection facility starts to
operate. To save on space we only report the constant gain and C 6= D models.
Obviously, the �t of the model improves. In the case of constant gain, which
already performed very well, there is not much room for improvement. The
C 6= D model now sustains a lower interest rate, with a t-ratio close to three,
so that the equity premium is now much larger. We conclude that this model
�ts the data well.

Model-generated standard deviations As a �nal exercise we demon-
strate the robustness of our �nding to using t-ratios based on model-generated
standard deviations. This is the preferred approach in most calibration exer-
cises. Again, the �t of the model is quite good.56

US Data C 6= D Constant gain Model b�Si
Statistics t-ratio t-ratio t-ratio

E(rs) 2.41 2.01 0.89 2.26 0.34 2.28 0.52
E(rb) 0.18 0.84 -2.89 0.31 -0.55 0.31 �

E(PD) 113.20 112.85 0.02 110.46 0.18 111.05 0.12
�rs 11.65 10.43 0.42 14.77 -1.08 16.53 -1.40
�PD 52.98 61.16 -0.49 75.41 -1.36 77.04 -2.10

�PDt;PDt�1 0.92 0.95 -1.43 0.94 -0.84 0.94 -0.77
c52 -0.0048 -0.0089 2.0440 -0.0059 0.5622 -0.0061 1.5195
R25 0.1986 0.2397 -0.4966 0.2412 -0.5151 0.2306 -0.6420

Parameters:
� 1.00906 1.000375 1.0013

1=�1 0.0244 0.0063 0.0065

Table 7: Robustness, Part III, � unrestricted

The previous robustness exercises allowed for deviations from the baseline
model and calibration. We found the results to be quite robust and that the
model continues to be able to explain the moments surprisingly well.

55More precisely, in the context of the above simple model, it is obvious from (4) and (5)
that all that is needed in order to have a �nite price under RE is that � <

�
�RE

��1, and since
risk aversion can bring �RE below 1 this allows for � > 1: For a discussion, see Kocherlakota
(1990).
56For this case delta is chosen to match the E(rb) as close as possible. This means that we

set � to have the lower possible value of rb under the constraint PDRE < PDlow. It turns
out that in this column this constraint was binding.
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7 Conclusions and Outlook

A one parameter learning extension of a very simple asset pricing model strongly
improves the ability of the model to quantitatively account for a number of
asset pricing facts, even with moderate degrees of risk aversion. This outcome
is remarkable, given the di¢culties documented in the empirical asset pricing
literature in accounting for these facts. The di¢culties of rational expectations
models suggests that learning processes may be more relevant for explaining
empirical phenomena than previously thought.
While we relax the assumption of rational expectations, the learning scheme

used here is a small deviation from full rationality. It is surprising, therefore,
that such a large improvement in the �t of the data can be achieved. Indeed,
it seems that the most convincing case for models of learning can be made by
explaining facts that appear �puzzling� from the rational expectations viewpoint,
as we attempt to do in this paper.
The simple setup presented in this paper could be extended in a number

of interesting ways and also applied to study other substantive questions. One
avenue that we currently explore is to ask whether learning processes can ac-
count also for the otherwise puzzling behavior of exchange rates. Clearly, the
ability of simple models of learning to explain puzzling empirical phenomena in
more than one market would further increase con�dence in that learning-induced
small deviations from rationality are indeed economically relevant.

A Appendix

A.1 Data Sources

Our data is for the United States and has been downloaded from �The Global
Financial Database� (http://www.global�nancialdata.com). The period covered
is 1925:4-2005:4. For the subperiod 1925:4-1998:4 our dataset corresponds very
closely to Campbell�s (2003) data (http://kuznets.fas.harvard.edu/~campbell/data.html).
In the calibration part of the paper we use moments that are based on the

same number of observations. Since we seek to match the return predictability
evidence at the �ve year horizon, the e¤ective sample end for the means and
standard deviations reported in table 1 has been shortened by �ve years to
2000:4. In addition, due to the seasonal adjustment procedure for dividends
described below and the way we compute the standard errors for the moments
described in appendix A.6, the e¤ective starting date was 1927:2.
To obtain real values, nominal variables have been de�ated using the �USA

BLS Consumer Price Index� (Global Fin code �CPUSAM�). The monthly price
series has been transformed into a quarterly series by taking the index value of
the last month of the considered quarter.
The nominal stock price series is the �SP 500 Composite Price Index (w/GFD

extension)� (Global Fin code �_SPXD�). The weekly (up to the end of 1927) and
daily series has been transformed into quarterly data by taking the index value
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of the last week/day of the considered quarter. Moreover, the series has been
normalized to 100 in 1925:4.
As nominal interest rate we use the �90 Days T-Bills Secondary Market�

(Global Fin code �ITUSA3SD�). The monthly (up to the end of 1933), weekly
(1934-end of 1953), and daily series has been transformed into a quarterly se-
ries using the interest rate corresponding to the last month/week/day of the
considered quarter and is expressed in quarterly rates, i.e., not annualized.
Nominal dividends have been computed as follows

Dt =

�
ID(t)=ID(t� 1)
IND(t)=IND(t� 1) � 1

�
IND(t)

where IND denotes the �SP 500 Composite Price Index (w/GFD extension)�
described above and ID is the �SP 500 Total Return Index (w/GFD extension)�
(Global Fin code �_SPXTRD �). We �rst computed monthly dividends and
then quarterly dividends by adding up the monthly series. Following Campbell
(2003), dividends have been deseasonalized by taking averages of the actual
dividend payments over the current and preceding three quarters.

A.2 OLG foundations

A.3 Proof of mean reversion

To proof mean reversion of beliefs we need two additional technical assumptions:

A1 ft is such that 0 < �t < �U < ��1 for all realizations

A2 Letting

Dt � inf
�

@ft
@�

(�)

we assume
P

tDt =1

The �rst assumption slightly strengthens (14). The second assumption is
standard in the stochastic control literature. It is satis�ed by all the learning
mechanisms considered in this paper and is needed to avoid beliefs getting stuck
away from the fundamental value simply because updating ceases too quickly.
For example, it is guaranteed in the OLS case Dt = 1=t and constant gain where
Dt = 1=�1.
We start proving mean reversion for the case �t > a + �. Fix � > 0 and

choose " = �
 
1� ��U

�
. Since " > 0 it cannot be that ��t0 � " for all t0 > t as

this would imply �t !1, violating the upper bound on �. Therefore, for some
t0 > t we have ��t0 < ".

Take t0 > t to be the �rst period where ��t0 < ". Since � only increased
between t and t0 it is clear that �t0 � �t and therefore

�t0 > a+ �
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Furthermore, we have

T (�t0 ;��t0) = a+
��t0

1� ��t0
< a+

"

1� ��U = a+ �

where the �rst equality follows from the de�nition of T , the inequality uses
��t0 < " and that �U is the upper bound for �; the last equality follows from
the way " is chosen above. The previous two relations imply

�t0 > T (�t0 ;��t0)

which together with (20) and the fact that ft is increasing and ft(0) = 0 gives

��
t0+1 = ft0+1 (T (�t0 ;��t0)� �t0) < 0 (33)

There are two possibilities: either

i) �
t0+j � a+ � eventually, for some j > 0, or

ii) �
t0+j > a+ � for all j > 0.

We now prove that case ii) is impossible by setting up an inductive argument
that leads to a contradiction. For any j > 0, ��

t0+j < 0 implies a+
��t0+j
1���t0+j

< a

and if ii) holds T (�t0+j ;��t0+j) < �t0+j . From the properties of ft it follows
��t0+j+1 < 0. Thus, ��t0+j < 0 implies ��t0+j+1 < 0 for any j > 0: Since (33)
is the initial condition for the inductive argument, this proves that if ii) holds
then ��

t0+j < 0 for all j > 0.
The negativity of ��

t0+j for j > 0 implies the �rst inequality below

a+
��t0+j
1� ��t0+j

� �t0+j < a� �t0+j < a� (a+ �) = �� for all j > 0 (34)

the second inequality following from ii). We thus have

��t0+j+1 = ft0+j+1

�
a+

��t0+j
1� ��t0+j

� �t0+j
�
< ft0+j+1 (��) � ��Dt0+j+1

for all j > 0, where the �rst inequality follows from (34) and the second from
the mean value theorem and Dt � 0. The previous result implies

�t0+j =

jX

i=1

��t0+i + �t0 � ��
jX

i=1

Dt0+i + �t0

for all j > 0. The assumption A2 above would then imply �t ! �1 contra-
dicting ii).
For the case �t < a � � we choose " = � and we can use a symmetric

argument to make the proof.
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A.4 Details on the phase diagram

The second order di¤erence equation (20) describing the deterministic evolution
of beliefs allows to construct non-linear �rst-order learning dynamics in the
(�t; �t�1) plane. For clarity, we de�ne x0t � (x1;t; x2;t) � (�t; �t�1) ; whose
dynamics are given by

xt+1 =

 
x1;t + ft+1

�
a+

a�(x1;t�x2;t)
1��x1;t  x1;t

�

x1;t

!

The zeros of the phase diagram are �x2 = 0 at points x1 = x2 and �x1 = 0 for
x2 =

1
�  

x1(1��x1)
a� . So the zeroes for �x1 and �x2 intersect are at x1 = x2 = a

which is the REE and, interestingly, at x1 = x2 = ��1 which is the limit of
rational bubble equilibria. Moreover, as is easy to verify �x2 > 0 for x1 > x2
and �x1 > 0 for x2 < 1

� 
x1(1��x1)

a� . These results give rise to the phase diagram
shown in �gure 2.

A.5 Model with learning about dividends

This section considers agents who learn to forecast future dividends in addition
to forecast future price. We make the arguments directly for the general model
with risk aversion from section 4. Equation (25) then becomes

Pt = � eEt
��

Ct
Ct+1

��
Pt+1

�
+ � eEt

 
D�
t

D��1
t+1

!

Under RE one has

Et

 
D�
t

D��1
t+1

!
= Et

 
D1��
t+1

D��
t

!
= Et

 �
Dt+1
Dt

�1��!
Dt

= Et

�
(a")

1��
�
Dt

= �REDt

This justi�es that learning agents will forecast future dividends according to

eEt
 
D1��
t+1

D��
t

!
= 
tDt

where 
t is agents�s best estimate of eEt
��

Dt+1

Dt

�1���
, which can be interpreted

as risk-adjusted dividend-growth. In close analogy to the learning setup for
future price we assume that agents� estimate evolves according to


t = 
t�1 +
1

�t

 �
Dt�1
Dt�2

�1��
 
t�1

!
(35)
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which can be given a proper Bayesian interpretation. In the spirit of allowing
for only small deviations from rationality, we assume that the initial belief is
correct


0 = �
RE :

Moreover, the gain sequence �t is the same as the one used for updating the
estimate for �t. Learning about �t remains to be described by equation (27).
With these assumptions realized price and price growth are given by

Pt =
�
t

1� ��t
Dt

Pt
Pt�1

=

t

t�1

�
1 +

�4�t
1� ��t

�
a"t

The map T from perceived to actual expectations of the risk-adjusted price

growth Pt+1
Pt

�
Dt

Dt+1

��
in this more general model is given by

T (�t+1;��t+1) �

t+1

t

�
�RE +

�RE� ��t+1
1� ��t+1

�
(36)

which di¤ers from (31) only by the factor 
t+1

t
. From (35) it is clear that 
t+1


t

evolves exogenously and that limt!1

t+1

t

= 1 since limt!1 
t = �RE and
�t ! 1. Thus, for medium to high values of �t and initial beliefs not too far
from the RE value, the T-maps with and without learning about dividends are
very similar.
For the deterministic setting with risk-neutrality considered in section 3, one

has 
t = 
0 = a and �RE = a so that (36) becomes identical to (18).

A.6 Calibration procedure

This section describes the details of our calibration approach and explains how
we estimate the standard deviation of the sample statistics reported in table 4.
Let N be the sample size, (y1; :::yN ) the observed data sample, with yt

containing m variables. In the text we talked about "moments" as describing
all statistics to be matched (see footnote 46). In this section we do distinguish
between proper moments and functions of these moments, to which we just refer
as statistics
We consider the sample statistics S(MN ) which are a function of the sample

moment MN : Here S : Rq ! Rs is a statistic function that maps moments
into the considered statistics. For a given function h : Rm ! Rq; the sample
moments on which our statistics are based are de�ned as MN � 1

N

PN
t=1 h(yt).

The explicit expressions for h(�) and S(�) for our particular application are stated
in A.6.1 below.
In the main text we have denoted the observed sample statistics as bS �

S(MN ):
We now explain how we compute the corresponding model statistics for a

given model parameterization � 2 Rn. Let !s denote a realization of shocks
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and (y1(�; !s); :::yN (�; !s)) the random variables corresponding to a history of
length N generated by the model for shock realization !s. Furthermore, let

MN (�; !
s) � 1

N

NX

t=1

h(yt(�; !
s))

denote the model moment for realization !s and

S(MN (�; !
s))

the corresponding model statistics for this realization. The model statistics
we wish to report are the expected value of the statistic across possible shock
realizations:

eS(�) � E [S(MN (�; !
s))]

One can obtain a numerical approximation to the theoretical model statistic
eS(�) by averaging (for a given a parameter vector �) across a large number of
simulations of length N the statistics S(MN (�; !

s)) implied by each simulation.
We report this average in the tables of the main text.
Now that we have explained how to compute statistics in the data and the

model, we explain how we calibrate the parameters so as to match the model
statistics to the statistics of the data. Let bSi = Si(MN ) denote the i-th statistic
from the data and let b�Si be an estimate for the standard deviation of the i-th
statistic. How we obtain b�Si will be explained in detail below. The baseline
parameter choice b�N is then found as follows

b�N � argmin
�

sX

i=1

 
bSi  eSi(�)
b�Si

!2
(37)

subject to the restrictions on a; s; �; � that have been described in the text.
Our procedure thus tries to match the model statistics as closely as possible
to the data statistics, but gives less weight to statistics with a larger standard
deviation. Notice that the calibration result is invariant to a rescaling of the
variables of interest. Of course, the number of parameters should be less than
the number of statistics s. In order to avoid a certain singularity it will be
required, in addition, that s � q.
In order to solve the minimization problem (37) with standard numerical

procedures we slightly modify the projection facility described in (23) to insure
that the objective function in (37) is continuously di¤erentiable. Appendix A.6.3
describes this in detail.
We now explain how we obtain the estimate for the standard deviation of

the i-th statistic b�Si . We start by discussing desirable asymptotic properties of
such an estimate and then explain how it has been constructed.
We would like to have an estimator b�Si that converges to the standard

deviation of the statistic su¢ciently fast, so that asymptotically the t-ratio
has a standard normal distribution. More precisely, assuming stationarity, let
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M0 = E [h(yt(�0; !
s))] denote the theoretical moment at the true parameter

value, we require

p
N
bSi  Si(M0)

b�Si
! N (0; 1) in distribution (38)

as N !1 . Once we have such an estimator, it is somehow justi�ed to interpret
t-ratios as goodness of �t measures that should be below two or three in absolute
value.
For this purpose we �nd an estimate for the full covariance matrix b�S;N of

model statistics from a sample of N observations such that

b�S;N ! �S almost surely, for (39)
p
N [S(MN ) S(M0)]! N (0;�S) (40)

as N !1. Then, taking b�2Si in (37) to be the diagonal entries of b�S;N insures

that (38) is satis�ed, as required. Now we need to build b�S;N that satis�es
(39): For this purpose we �rst �nd an expression for �S under some additional
assumptions.
Assume y to be stationary and ergodic, S to be continuously di¤erentiable

at M0, and that the matrix

Sw �
1X

j= 1
E
�
(h(yt) M0) (h(yt j) M0)

0� (41)

is �nite. We then have �S in (39) given by

�S =
@S(M0)

@M 0 Sw
@S 0(M0)

@M
(42)

This follows from standard arguments: by the mean value theorem

p
N [S(M0) S(MN )] =

@S(MN )

@M 0

p
N [M0  MN ] (43)

whereMN is a certain convex combination ofMN andM0.57 Under stationarity
and ergodicity of y, we have MN !M0 a.s. by the ergodic theorem. Since MN

is between MN and M0, this implies fMN ! M0 a.s. and, since
@S(�)
@M 0 has been

assumed continuous at M0 we have that

@S(fMN )

@M 0 ! @S(M0)

@M 0 a.s.

From the central limit theorem
p
N (M0  MN )! N(0; Sw) in distribution

57As is well known, a di¤erent MN is needed for each row of S but this issue is inconse-
quential for the proof and we ignore it here.
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Plugging the previous two relationships into (43) shows (42).
The expression that we have found for �S suggests that given an estimate

Sw;N that converges a.s. to Sw we need to set

b�S;N �
@S(MN )

@M 0 Sw;N
@S 0(MN )

@M

An explicit expression for @S(MN )=@M
0 is given in appendix A.6.2. It now only

remains to �nd the estimates Sw;N from the data. We follow standard practice
and employ the Newey West estimator, which truncates the in�nite sum in (41)
and weighs the autocovariances in a particular way. This is standard and we do
not describe the details here. It is the diagonal terms of b�S;N that we use for
the denominator in the t-ratio.
Our baseline procedure for choosing parameter values described above can

be thought of as a hybrid between the method of simulated moments (MSM)
and calibration. It di¤ers from fully-�edged MSM (described below) because
we do not perform any formal estimation, we do not attempt to use an optimal
weighting matrix, and because we do not think of this as an exercise in accepting
or rejecting the model. Instead, our procedure is simply a way of systematically
choosing parameter values that allows us to display the behavior of the model
and to interpret the t-ratios as giving a measure of goodness of �t.
We also di¤er from calibration because we do not pin down each parame-

ter with a given moment and use the remaining moments to test the model.
Instead, we let the algorithm �nd the parameters that best �t the statistics
considered. Moreover, in our procedure the standard deviation of the moment
b�Si is computed from the data, we already commented on the advantages of
this option in the text, when we discussed the baseline calibration.
In addition to the baseline calibration procedure above, we engage in a ro-

bustness exercise, reported under the heading �full matrix� in table 6, which is
closer to MSM. In particular, we choose parameters to solve

b�N � argmin
�
[S(MN (�)) S(MN )]

0 b� 1S;N [S(MN (�)) S(MN )] (44)

subject to the constraints in the text. This way of �tting the model is less
intuitive but generally has the advantage that b� 1S;N is an optimal weighting
matrix so the estimate should be closer to the true model parameter if the
model was the true one and if asymptotic distribution is to be trusted. One
problem we encountered is that b�S;N is nearly singular and it is well known
that in this case the weighting matrix in short samples does not produce good
results. While the literature suggests ways to address this problem, this is
clearly beyond the scope of this paper.

A.6.1 The statistic and moment functions

This section gives explicit expressions for the statistic function S(�) and the
moment functions h(�) introduced in appendix A.6.
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The underlying sample moments are

MN �

2
66664

M1;N

:
:
:

M9;N

3
77775
� 1

N

NX

t=1

h(yt)

where h(�) and yt are de�ned as

h(yt) �

2
666666666666664

rst
PDt
(rst )

2

(PDt)
2

PDt PDt�1
rs;20t�20�
rs;20t�20

�2

rs;20t�20PDt�20
rbt

3
777777777777775

; yt �

2
66666666666664

PDt
Dt=Dt�1
PDt�1

Dt�1=Dt�2
...

PDt�19
Dt�19=Dt�20
PDt�20
rbt

3
77777777777775

where rs;20t denotes the stock return over 20 quarters, which can be computed
using from yt using (PDt; Dt=Dt�1; :::; PDt�19; Dt�19=Dt�20).

The eight statistics we consider can be expressed as function of the moments:

S(M) �

2
66666666664

E(rst )
E(PDt)
�rst
�PDt

�PDt;�1
c52
R25
E(rbt )

3
77777777775

=

2
66666666666664

M1

M2q
M3  (M1)

2

q
M4  (M2)

2

M5�(M2)
2

M4�(M2)
2

c52(M)
R25(M)
M9

3
77777777777775

where the functions c52(M) and R
2
5(M) de�ning the OLS and R

2 coe¢cients of
the excess returns regressions, respectively, are

c5(M) �
�
1 M2

M2 M4

��1 �
M6

M8

�

R25(M) � 1 
M7  [M6;M8] c

5(M)

M7  (M6)
2
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A.6.2 Derivatives of the statistic function

This appendix gives explicit expressions for @S=@M 0 using the statistic function
stated in appendix A.6.1. Straightforward but tedious algebra shows

@Si
@Mj

= 1 for (i; j) = (1; 1); (2; 2); (8; 9)

@Si
@Mi

=
1

2Si(M)
for i = 3; 4

@Si
@Mj

=
 Mj

Si(M)
for (i; j) = (3; 1); (4; 2)

@S5
@M2

=
2M2(M5  M4)

(M4  M2
2 )
2
;

@S5
@M5

=
1

M4  M2
2

;
@S5
@M4

=  M5  M2
2

(M4  M2
2 )
2

@S6
@Mj

=
@c52(M)

@Mj
for i = 2; 4; 6; 8

@S7
@Mj

=
[M6;M8]

@c5(M)
@Mj

M7  M2
6

for j = 2; 4

@S7
@M6

=

h
c51(M) + [M6;M8]

@c5(M)
@M6

i  
M7  M2

6

�
 2M6 [M6;M8] c

5(M)

(M7  M2
6 )
2

@S7
@M7

=
M2
6  [M6;M8] c

5(M)

(M7  M2
6 )
2

@S7
@M8

=
c52(M) + [M6;M8]

@c5(M)
@M8

M7  M2
6

Using the formula for the inverse of a 2x2 matrix

c5(M) =
1

M4  M2
2

�
M4M6  M2M8

M8  M2M6

�

we have

@c5(M)

@M2
=

1

M4  M2
2

�
2M2c

5(M) 
�
M8

M6

��

@c5(M)

@M4
=

1

M4  M2
2

�
 c5(M) +

�
M6

0

��

@c5(M)

@M6
� 1

M4  M2
2

�
M4

 M2

�

@c5(M)

@M8
� 1

M4  M2
2

�
 M2

1

�

All remaining terms @Si=@Mj not listed above are equal to zero.
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A.6.3 Di¤erentiable projection facility

As discussed in the main text, we need to introduce a feature that prevents
perceived stock price growth from being higher than ��1, so as to insure a �nite
stock price. In addition, it is convenient for our calibration exercises if the
learning scheme is a continuous and di¤erentiable function, see the discussion in
appendix A.6. The standard projection facility described in (23) causes a series
for a given realization Pt(�:!s) to be discontinuous in �, because the price will
jump at a parameter value where the facility is exactly binding.
We thus introduce a projection facility that �phases in� more gradually. We

de�ne

��t = �t�1 +
1

�t

"�
Dt�1
Dt�2

���
Pt�1
Pt�2

� �t�1

#
(45)

and modify the updating scheme (27) to

�t =

�
��t if ��t � �L

�L + w(��t � �L)(�U � �L) otherwise
(46)

where �U is the upper bound on beliefs, chosen to insure that the implied PD
ratio is always less than a certain upper bound UPD � �a

1���U , where �
L < �U

is some arbitrary level of beliefs above which the projection facility starts to
operate, and w(�) : R+ ! [0; 1] is a weighting function. Since w(��t ) is between
zero and one this formula insures that the beliefs are below �U . We further
require that w is increasing, w(0) = 0 and w(1) = 1, and we want to insure
that the resulting beliefs are continuously di¤erentiable w.r.t. ��t at the point
�L.

In particular, we de�ne

w(x) = 1� �U � �L
x+ �U � �L .

With this weighting function

lim
��t%�L

�t = lim
��t&�L

�t = �
L

lim
��t&�L

@�t
@��t

= 1

lim
��t!1

�t = �
U

In our numerical applications we choose �U so that the implied PD ratio
never exceeds UPD = 500 and �L = ��1 � 2(��1 � �U ), which implies that the
dampening e¤ect of the projection facility starts to come into e¤ect for values
of the PD ratio above 250.
The �gure below shows how the standard projection facility operates versus

the continuous projection facility proposed in this appendix. It displays the
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discontinuity introduced by the standard projection facility and that for most
�� the projection facility is irrelevant. For this graph, �RE = 1; 0035

A.7 Convergence of least squares to RE

We show convergence directly for the learning model when agents use least
squares learning and they have risk aversion as in section 4. The proof shows
global convergence, that is, it obtains a stronger result that is usually found
with applications of the associated o.d.e. approach. The proof below is for
the standard projection facility, a similar proof would apply for the continuous
facility we used in sections (5) and (6).
To obtain convergence we need to assume that "t is non-negative. Also,

we need "1 �t to be bounded, formally we assume existence of some positive
U" <1 such that

Prob("1 �t < U") = 1

This excludes log-normality but it still allows for a very general distribution for
"t. Obviously, if � < 1 this is satis�ed if "t is bounded above a.s. by a �nite
constant, and if � > 1 this is satis�ed if "t is bounded away from zero.
Furthermore, we assume that the projection facility is not binding in the RE

equilibrium:
�RE < �U
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where �RE is as in (5): Obviously, if �RE > �U there would be no chance to
converge to RE. Recall that we denote the highest PD ratio that can be achieved
with this projection facility as UPD � ��U

1���U <1:
We �rst show that the projection facility will almost surely cease to be

binding after some �nite time. In a second step, we prove that �t converges to
�RE from that time onwards.

The standard projection facility implies

�t =

(
�t�1 + �

�1
t

�
(a"t�1)

�� Pt�1
Pt�2

 �t�1
�

if �t�1 + �
�1
t

�
(a"t�1)

�� Pt�1
Pt�2

 �t�1
�
< �U

�t�1 otherwise
(47)

If the lower equality applies one has (a"t�1)
�� Pt�1

Pt�2
� �t�1 and this gives rise

to the following inequalities

�t � �t�1 + ��1t
�
(a"t�1)

�� Pt�1
Pt�2

 �t�1
�

(48)

j�t  �t�1j � ��1t
����
�
(a"t�1)

�� Pt�1
Pt�2

 �t�1
����� (49)

which hold for all t. Substituting recursively backwards in (48) for past ��s
delivers

�t �
1

t 1 + �1

0
@
t�1X

j=0

(a"j)
�� Pj
Pj�1

+ (�1  1) �0

1
A

=
t

t 1 + �1

0
@1
t

t�1X

j=0

(a "j)
1��

+
�1  1
t

�0

1
A

| {z }
=T1

+
1

t 1 + �1

0
@
t�1X

j=0

� ��j
1 ��j

(a"j)
1��

1
A

| {z }
=T2

(50)

where the second line follows from (29). Clearly, T1 ! �RE = E((a "j)
1��

) as
t ! 1 a.s. Also, if we can establish jT2j ! 0 a.s. this will show that �t will
eventually be bounded away from its upper bound. This is achieved by noting
that

jT2j �
1

t 1 + �1

t�1X

j=0

� (a "j)
1��

1 ��j
j��j j

� U"

t 1 + �1

t�1X

j=0

a1��� j��j j
1 ��j

� U"

t 1 + �1
a1��UPD

�RE

t�1X

j=0

j��j j (51)
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where the �rst inequality results from the triangle inequality and the fact that
both "j and 1

1���j are positive, the second inequality follows from the a.s. bound
on "j , and the third inequality from the bound on the price dividend ratio
insuring that ��RE (1� ��j)�1 < UPD. Next, observe that

(a"t)
�� Pt
Pt�1

=
1� ��t�1
1� ��t

(a"t)
1��

<
(a"t)

1��

1� ��t
<
a1��U"UPD

��RE
(52)

where the equality follows from (28), the �rst inequality from �t�1 > 0, and the
second inequality from the bounds on " and PD. Using this result and the fact
that �t�1 < ��1, applying the triangle inequality in the right side of equation
(49) implies

j�t � �t�1j � ��1t
�
a1��U"UPD

��RE
+ ��1

�

Since �t !1 and the terms in the large parenthesis are �nite, this establishes
that j��tj ! 0 and, therefore, 1

t�1+�1
Pt�1

j=0 j��j j ! 0. Then (51) implies that
jT2j ! 0 a.s. as t ! 1. Taking the lim sup on both sides on (50), it follows
from T1 ! �RE and jT2j ! 0 that

lim sup
t!1

�t � �RE < �U

a.s. The projection facility is thus operative in�nitely often with probability
zero. Therefore, there exists a set of realizations ! with measure one and a
t < 1 (which depends on the realization !) such that the projection facility
does not operate for t > t.
We now proceed with the second step of the proof. Consider, for a given

realization !, a period t as in the previous paragraph. Then the upper equality
in (47) holds for all t > t and simple algebra gives
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(53)

for all t > t. Equations (48) and (49) now hold with equality for all t > t.
Similar operations as before then deliver

1

t� t

t�1X

j=t

� ��j
1� ��j

(a"j)
1�� ! 0

a.s. for t!1. Finally, taking the limit on both sides of (53) establishes

�t ! a1��E("1��t ) = �RE

a.s. as t!1.�
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