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Abstract

The New Keynesian Phillips Curve is at the center of two raging empirical debates. First,
how can purely forward looking pricing account for the observed persistence in aggregate
inflation. Second, price-setting responds to movements in marginal costs, which should
therefore be the driving force to observed inflation dynamics. This is not always the case
in typical estimations. In this paper, we show how heterogeneity in pricing behavior is
relevant to both questions. We detail the conditions under which imposing homogeneity
results in overestimating a backward-looking component in (aggregate) inflation, and un-
derestimating the importance of (aggregate) marginal costs for (aggregate) inflation. We
provide intuition for the direction of these biases, and verify them in French data with
information on prices and marginal costs at the industry level. We show that the apparent
discrepancy in the estimated duration of nominal rigidities, as implied from aggregate or
microeconomic data, can be fully attributable to a heterogeneity bias.

JEL Classifications: C10, C22, E31, E52.

Keywords: New Keynesian Phillips Curve, Heterogeneity, Inflation Persistence, Marginal
Costs.
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Non-technical summary

Since it burst onto the scene of mainstream monetary economics, the New Keynesian Phillips
Curve has been the focus of two important empirical debates. First, to what extent purely
forward-looking pricing behavior can be reconciled with observed inflation persistence. Sec-
ond, to what extent properly measured marginal costs affect inflation dynamics. Both issues
are crucial for our ability to understand and predict movements in prices. If inflation is purely
forward looking, its persistence arises only from that of shocks to marginal costs (provided
they matter), and perfectly anticipated changes in inflation are costless. Second, that shocks
to marginal costs affect inflation is the basis of the forward-looking pricing rule profit max-
imizing firms are assumed to follow, and indeed the basis of a model of inflation driven by
economic fundamentals rather than mere autoregressive properties. What is more, the mag-
nitude of the relation between marginal costs and inflation relates directly to the duration of
nominal rigidities. Both issues have recently been hotly debated, and for good reason.

In this paper, we show that heterogeneity in the pricing behavior of firms matters for both em-
pirical questions. We consider two archetypical models of a hybrid Phillips curve, amended to
allow for differences in nominal rigidities and price setting behavior across industries. We pro-
vide the expressions for the inconsistencies that plague Phillips curve estimates in the presence
of heterogeneity, and argue the biases do not all have the same sign, nor the same magnitude.
We show analytically that an approach imposing homogeneity is likely to underestimate the
role of (aggregate) marginal costs in affecting (aggregate) prices, and overestimate the appar-
ent (aggregate) backward looking behavior in prices. Simulations suggest both inconsistencies
tend to originate from differences across industries in the duration of nominal rigidities, and
not from differences in the degree of indexation, or ad hoc backward looking behavior.

We investigate these analytics in French sectoral data, and verify they hold under less re-
strictive assumptions. In particular, we implement a battery of heterogeneous estimators,
allowing for deterministic or stochastic heterogeneity, and for the possibility that prices and
marginal costs be correlated across industries. Comparing our results and those implied by
standard homogeneous approaches confirms our analysis. Prices respond to marginal costs and
are more forward looking when firms’ pricing strategies are allowed to differ across industries.
The reduced form coefficient on marginal costs is up to ten times larger when heterogeneity is
permitted, and the proportion of backward looking behavior is around a quarter, as compared
with 0.4 to a half otherwise. Concomitantly our heterogeneous estimates imply an aggregate
duration of nominal rigidities in the vicinity of two quarters, as compared with four to five
when standard homogeneous approaches are implemented on our data. The difference is sig-
nificant, and accounts for the discrepancy between the type of nominal rigidities documented
in recent studies based on disaggregated data, and those that arise from standard aggregate
estimates. The latter simply do not allow for heterogeneity.
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1 Introduction

Since it burst onto the scene of mainstream monetary economics, the New Keynesian Phillips
Curve has been the focus of two important empirical debates. First, to what extent purely
forward-looking pricing behavior can be reconciled with observed inflation persistence. Second,
to what extent properly measured marginal costs affect inflation dynamics. Both issues are
crucial for our ability to understand and predict movements in prices. If inflation is purely
forward looking, its persistence arises only from that of shocks to marginal costs (provided they
matter), and perfectly anticipated changes in inflation are costless. Second, that shocks to
marginal costs affect inflation is the basis of the forward-looking pricing rule profit maximizing
firms are assumed to follow, and indeed the basis of a model of inflation driven by economic
fundamentals rather than mere autoregressive properties. What is more, the magnitude of
the relation between marginal costs and inflation relates directly to the duration of nominal
rigidities. Both issues have recently been hotly debated, and for good reason.1

In this paper, we show that heterogeneity in the pricing behavior of firms matters for
both empirical questions. If pricing is heterogeneous, any estimation that ignores the issue is
flawed. We show that the direction and magnitude of the bias are not the same for marginal
costs or for expected inflation. We derive analytical expressions for both biases, which are
helpful to garner intuition on their direction and magnitude. We use simulations to assess
the sensitivity of our conclusions, which we then confirm in sectoral quarterly French data
on prices and marginal costs, in two ways. We first use the data to calibrate our analytical
expressions for the biases. Then we compare Phillips Curve estimates arising from standard
homogeneous approaches to what is obtained when heterogeneity is allowed. The proportion
of backward looking behavior falls to between a fifth and a quarter when heterogeneity is
permitted, as compared with 0.4 to a half otherwise.

Inasmuch as it stresses a source of misspecification, the paper informs the empirical debate
surrounding the New Keynesian Phillips Curve in a general sense. Our contribution has two
further implications. First we inject heterogeneity within an archetypical model of the Phillips
curve. We build on Christiano, Eichenbaum, and Evans (2005) and allow for the possibility
that the extent of nominal rigidities and backward indexation both be heterogeneous. We
discuss the importance of each, and stress in particular the first one. In fact, heterogeneity in
nominal rigidities is the main source of a bias in aggregate estimations: if ignored, it attenuates
the importance of aggregate marginal costs, and exaggerates that of lagged inflation. By
contrast, heterogeneity in indexation affects lagged inflation only, and weakly so. This is
reassuring, for the notion that nominal rigidities are sector or good specific finds support in
the data, whereas empirical evidence that indexation should prevail at a disaggregated level

1A non exhaustive list of issues includes the model’s ability to capture inflation persistence (Fuhrer and

Moore, 1995, Fuhrer, 1997), the plausibility of its implied dynamics (Mankiw and Reis, 2002), and the validity

of the empirical approach. For instance, Guay and Pelgrin (2004), Rudd and Whelan (2003, 2005), Nason

and Smith (2005) or Lindé (2005) cast doubt on the validity of GMM estimates. Dufour, Khalaf, and Kichian

(2006) and Mavroeidis (2004) stress sensitivity to the choice of an instrument set. Jondeau and Le Bihan (2007)

and Kurmann (2007) argue Maximum Likelihood estimators ought to be preferred. See the special issue of the

Journal of Monetary Economics (2005).
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has proved elusive.2 We later show sector level Phillips curves are well supported by our French
data, and sector price inflation does indeed have heterogeneous autoregressive properties. But
that heterogeneity, which we choose to explain within the confines of the model proposed by
Christiano, Eichenbaum, and Evans (2005) - or Gaĺı and Gertler (1999) in a robustness section
- ends up having little effect in the aggregate.

Second, our approach underlines the importance of disaggregated information to improve
the structural modeling of aggregate inflation. This is related to the flurry of recent empirical
evidence on disaggregate price dynamics, pioneered by Bils and Klenow (2005) and the series
of country specific studies implemented by the European Central Bank. A conclusion drawn
from this vast body of evidence seems to be that price dynamics are heterogenous and inflation
persistence could be an artefact of aggregation. More specifically, macroeconomic estimates
have been widely criticized on the ground that the average duration of sticky prices is too large
to make economic sense and, in particular, is inconsistent with the results observed in microe-
conomic data.3 Heterogeneity is key in explaining this discrepancy. Like others, we evaluate
the duration of nominal rigidities at implausible levels, around one year, when the usual ho-
mogeneous estimators are used. But allowing for heterogeneity (especially in the extent of
nominal rigidities across sectors) brings it back to a magnitude commensurate with estimates
based on microeconomic data, closer to two quarters. We compare the performance of var-
ious approaches - homogeneous or otherwise - and show heterogeneous sectoral information
improves sizably our ability to model aggregate inflation.

Our paper is closely related to Zaffaroni (2004) and Altissimo, Mojon, and Zaffaroni (2007).
Both papers are also concerned with inflation dynamics, and apply insights on the effects of
cross-sectional aggregation of heterogeneous processes that were first introduced by Robinson
(1978) and Granger (1980, 1987).4 Unlike them however, here we ask from a structural model
what heterogeneity will do empirically. This makes it possible for us to evaluate the effect
heterogeneous pricing may have on the validity of a structural model of inflation, and correct
the estimates accordingly. In that sense, our approach is complementary to Carvalho’s (2006)
or Nakamura and Steinsson’s (2006), who derive a generalized New Keynesian Phillips Curve
in the presence of heterogeneity in the frequency of price adjustments across industries.5

Gertler and Leahy (2006) develop a theory where individual firms price according to a (S,s)
rule. Aggregate inflation displays standard dynamics, even with plausible firm-level rigidities.
Rather than introducing heterogeneity in a calibrated general equilibrium model, here we

2In fact, we confirm our conclusions continue to hold in an alternative model of backward looking price

setting, adapted from Gaĺı and Gertler (1999). There as well, heterogeneity in the extent of nominal rigidities

is what drives most inconsistencies in the aggregate, whereas the possibility that backward looking price setting

should vary per sector has but a limited effect on aggregate estimates. These results are briefly described in a

robustness section. A detailed account is available upon request.
3See Chari, Kehoe, and McGrattan (2000) or Dhyne et al. (2004) for an analysis of the issue as pertains to

the Euro zone.
4For more recent discussions of the effects of aggregation under heterogeneity, see Pesaran, Pierse, and

Kumar (1989), Granger (1990), Stoker (1993), Pesaran, Pierse, and Lee (1994) or Pesaran and Smith (1995).

Imbs et al. (2005) applied the insights to the real exchange rate.
5In these calibrated models, monetary shocks have larger and more persistent effects than under homogeneity,

and mimicking the data requires only shorter, more plausible, nominal rigidities.
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implement the adequate econometrics to account for heterogeneity in the data. We bring the
data closer to the theoretically standard homogeneous case, rather than sophisticating the
theory away from the representative firm case.6

Since our data contain information on real marginal costs at the industry level, we are also
able to aggregate theory-implied Phillips curves involving marginal cost rather than output
gap, which simplifies considerably the derivations. We are able to identify alternative sources of
sectoral heterogeneity, and test for their relevance. Our contribution details how, armed with
sector-level data on prices and marginal costs, it is possible to back out unbiased aggregate
estimates of the New Keynesian Phillips Curve, that account for possible heterogeneity in
pricing behavior.

The rest of the paper is organized as follows. In Section 2, we briefly review how to
derive an expression for a sectoral Phillips Curve allowing for nominal rigidities and back-
ward looking indexation that are sector specific. We aggregate sectors up and obtain the
standard New Keynesian inflation dynamics, amended for heterogeneity. We analyze a sim-
ple two-sector model and explain how heterogeneity matters qualitatively. In Section 3, we
present the expressions that render homogeneous estimators problematic when pricing is sec-
tor specific. We provide analytical expressions for heterogeneity biases, whose magnitude and
direction depend on parameter values. Simulations results are discussed, which illustrate how
heterogeneity matters. In Section 4, we describe the econometric methods used in the paper
to deal with heterogeneity. In Section 5, we introduce our data and discuss the discrepancies
between estimates implied by homogeneous and heterogeneous estimators. Section 6 reviews
some robustness checks and Section 7 concludes.

2 Aggregating Sectoral Phillips Curves

We first derive an expression for a sectoral Phillips Curve, as implied by the model of Chris-
tiano, Eichenbaum, and Evans (2005). A sector is characterized by the extent of nominal
rigidities and a degree of indexation to past inflation.7 We aggregate the model up to the
country level, assuming away any cross-sectoral influences as for instance ones implied by
input-output relations - just as most aggregate Phillips curves assume away international
linkages. Price dynamics in each sector are assumed to respond only to the dynamics of

6Using scanner data, Midrigan (2006) shows the cross-sectional distribution of (non zero) price changes has

fat tails. He argues the high moments properties of the heterogeneity in price adjustments are crucial when

aggregating microeconomic rigidities in menu-costs models of macroeconomic fluctuations.
7That indexation should prevail at a disaggregated level is not uncontroversial. For instance, Fougère, Le

Bihan, and Sevestre (2005) conclude that pure indexation is elusive in disaggregated French data. Bils and

Klenow (2005) uncover similar evidence in U.S. data. Fortunately, our results suggest that this very source of

heterogeneity has but a limited effect in the aggregate. In a robustness section, we show this continues to be

true in the model introduced by Gaĺı and Gertler (1999), where price setting may be purely backward looking.

The importance of heterogeneous nominal rigidities does not seem to depend on the model used to justify

lagged inflation in the Phillips curve: only the interpretation of reduced form coefficients does. What is more,

while evidence of indexation is elusive for individual firms, little is known at the sectoral level. In reconstructed

US data, Leith and Malley (2006) document the existence of Phillips curves at the 2-digit aggregation level.
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marginal costs there.8 We spend some time discussing the absence of relative sectoral prices
in the aggregate, due to the availability of disaggregated information on real marginal costs.9

2.1 A Sectoral Phillips Curve

We briefly derive the New Keynesian Phillips curve for a sector j, where technology shocks
and price rigidities are specific to j. In doing so, we conflate ingredients from Sbordone (2001),
Woodford (2003) and Christiano, Eichenbaum, and Evans (2005). Monopolistic competition
in each sector implies that the demand faced by firm i writes

Yij,t =
(
Pij,t

Pj,t

)−η

Yj,t

where η > 1 denotes the elasticity of substitution across varieties. Each firm i in sector j uses
labor Hij,t to produce a differentiated good according to the production function

Yij,t = Zj,t H
1−aj

ij,t

where Zj,t denotes (sector specific) labor productivity and 1 − aj is the share of labor in
industry j’s value added.

Firms maximize the expected discounted sum of real profits

Et

∞∑
k=0

βk

Pt+k
(Yij,t+k Pij,t+k − Yij,t+k Sij,t+k Pt+k)

where β is the discount factor and Sij,t+k the real marginal cost of firm i in sector j at date
t+ k, deflated by the aggregate price index. Under complete markets, the discount factor β is
the same across firms and sectors. In addition, the expected stream of profits is deflated by
the general price index Pt because firms are assumed to be owned by consumers who all face
identical consumption risk.

We assume price setting decisions follow a modified version of the Calvo (1983) mechanism.
We follow Christiano, Christiano, and Eichenbaum (2005) and allow for the possibility that

8We later allow for industry shocks to be correlated across sectors. That is not quite the same as constructing

an explicit model of technological linkages between sectors. Going that route while preserving the level of

generality we endeavor would simply be intractable, both in theory and in empirical applications. Justiniano,

Kumhof, and Ravenna (2006) propose a model of specifically vertical input-output relations between industries.

They show appropriate linkages can account for the discrepancy between price sluggishness in the aggregate and

rapid adjustment at the microeconomic level. Dupor (1999) focuses on the persistence in real quantities, and

shows that, in general, input-output linkages are incapable of driving a wedge between sectoral and aggregate

real output dynamics.
9We are far from the first ones to take interest in heterogeneous pricing in monetary models. Erceg and

Levin (2002) characterize a sector on the demand side, focusing on differences between durable and non-

durables goods. Aoki (2001), Benigno (2004) and Huang and Liu (2004) analyze the implications of sectoral

heterogeneity for the design of monetary policy. Dixon and Kara (2005) study the impact of heterogeneity in

the context of Taylor staggered wage setting. Bouakez, Cardia, and Ruge-Murcia (2005) construct and estimate

a model with heterogenous production sectors, and show substantial heterogeneity across sectors in the degree

of sectoral sensitivity to monetary policy shocks. Álvarez, Burriel, and Hernando (2005) analyze the impact of

heterogeneity under a variety of different assumptions on price-setting behavior.
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firms that do not optimally set their prices may nonetheless adjust them to keep up with
the previous period increase in the general price level. In each period, firms face a constant
probability 1−αj of being able to re-optimize their price. Therefore, firms set prices according
to the following optimization program

max
P ∗ij,t

Et

∞∑
k=0

(βαj)
k

Pt+k

(
Yij,t+k P

∗
ij,t Ψij,t,t+k − Yij,t+k Sij,t,t+k Pt+k

)
where

Ψij,t,t+k =

{ ∏k−1
ν=0 (πij,t+v)

ξj (π̄j)
1−ξj k > 0

1 k = 0

and π̄j denotes the (sector specific) exogenous trend inflation, which we later account for
through detrending. The coefficient ξj ∈ [0, 1] indicates the degree of indexation to past
prices in sector j, during the periods in which firms are not allowed to re-optimize. Ψij,t,t+k

is a correcting term accounting for the fact that, if firm i does not re-optimize its price,
it is updated according to the rule Pij,t = (π̄j)

1−ξj (πij,t−1)
ξj Pij,t−1. When ξj = 0, firms

mechanically impute trend inflation when setting future prices; when ξj = 1, realized inflation
rates between t + v − 1 and t + v are used to choose prices in t + v + 1. Finally, Sij,t,t+k is
the real marginal cost of production at date t+ k for the firms that changed their price at t.
Sbordone (2001) and Gaĺı, Gertler, and López-Salido (2001) show it is related to the average
real marginal cost in sector j, Savg

j,t , as in

Sij,t,t+k =
Wj,t+k

Pt+k

∂Hij,t+k

∂Yij,t+k
=
Wj,t+k

Pt+k

1
aj

Z
− 1

aj

j,t+k Yij,t+k

1−aj
aj =

(
P ∗ij,t
Pj,t+k

)− η(1−aj)
aj

Savg
j,t+k (1)

where Wj,t are the nominal wages in sector j.

In the absence of any firm-specific shock, all firms that are allowed to re-optimize their
price at date t select the same optimal price P ∗ij,t = P ∗j,t, which ensures a symmetric equilibrium
across firms in each sector. Staggered price setting under partial indexation implies the price
index in sector j is given by

Pj,t =
[
αj

[
(πj,t−1)

ξj (π̄j)
1−ξj Pj,t−1

]1−η
+ (1− αj)

(
P ∗j,t
)1−η

] 1
1−η

. (2)

Log-linearizing the definitions of aggregate prices, of marginal costs and optimal pricing yields

πj,t =
ξj

1 + βξj
πj,t−1 +

β

1 + βξj
Etπj,t+1 +

(1− βαj) (1− αj)
(1 + βξj) αj

1
1 + hj

(
savg
j,t + pt − pj,t

)
where lower case variables denote log-deviations from the steady state, πj,t = Pj,t/Pj,t−1 and
hj = ηaj/ (1− aj). From equation (1), the term hj corrects for the fact that marginal costs
are heterogeneous ex post across firms, as they do not all adjust their prices at the same point
in time. Define a measure of real marginal costs in sector j, sj,t = (savg

j,t + pt − pj,t)/(1 + hj),
deflated by the industry price index, and corrected for staggered price setting. As we argue
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later, under relatively mild assumptions our data contain information on savg
j,t +pt−pj,t, which

we then amend using sector-specific measures of hj to obtain sj,t.10

To economize on notation, define λb
j = ξj/(1+βξj), λ

f
j = β/(1+βξj) and θj = (1−βαj)(1−αj)

(1+βξj)αj

to rewrite the Phillips Curve in its well known hybrid form

πj,t = λb
j πj,t−1 + λf

j Etπj,t+1 + θj sj,t + εj,t (3)

where we introduced an error term εj,t, which may include sectoral or aggregate shocks. In
the case where the only source of sectoral heterogeneity stems from the extent of nominal
rigidities αj , we have ξj = ξ, λb

j = λb, and λf
j = λf for all j. The autoregressive properties

of inflation ate then identical across sectors. Only the coefficient on marginal costs θj will be
heterogeneous. This will also be true in the absence of any backward-looking indexing when
ξ = 0. The Phillips Curve becomes then purely forward looking, and only the coefficient on
marginal costs is sector-specific.

The industry level Phillips curve we derive in equation (3) does not include any reference
to an aggregate variable, nor indeed to any relative prices. At face value, this may seem
a contradiction relative to the findings in Aoki (2001), Benigno (2004) or Carlstrom et al.
(2006). But all these authors use versions of the New Keynesian Phillips curve that refer
to the output gap as a measure of economic activity. In contrast, here we refer directly to
marginal costs, which, under relatively benign assumptions on the labor market, we actually
observe in our data. Relative prices are effectively subsumed in our definition of sj,t, which
we argue are observable in our data. This follows directly from Woodford (2003), who shows
that a sector-level New Keynesian Phillips curve ceases to refer to any aggregate variables,
or to relative sectoral prices, when it is written in terms of real marginal costs deflated by
the sector-specific price index.11 This result simplifies considerably the theoretical impact of
aggregation, and our econometric approach in addressing heterogeneity.

2.2 Aggregation

Heterogeneity enters as sector-specific deviations from a common mean. In particular, we
assume

αj = α+ α̃j

ξj = ξ + ξ̃j

where α̃j and ξ̃j have zero means and constant variances and covariances.12 Let wj denote the
weight of sector j = 1...J in the aggregate economy. Straightforward aggregation of equation

10This follows Sbordone (2001) or Gaĺı, Gertler, and López-Salido (2001). A complete description of the

model is provided in a technical report available upon request.
11This is developed in the Appendix B.7 to Chapter 3, and in particular in equation B.33 on page 668. What

is key is the price index used to deflate nominal marginal costs. Relative sectoral prices appear when aggregate

prices are used, but they do not if the deflator is sector specific. We observe the latter in our data, so that no

relative prices appear.
12Whether heterogeneity is random or deterministic will matter for the estimation procedure. Since this is

an empirical question, we leave the discussion for later, and stick for now to the most general specification.
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(3) gives

πt =
J∑

j=1

wj λ
b
j πj,t−1 +

J∑
j=1

wj λ
f
j Etπj,t+1 +

J∑
j=1

wj θj sj,t +
J∑

j=1

wj εj,t. (4)

Our purpose in this paper is to evaluate the validity of the standard Phillips curve at the
country level in the presence of heterogeneity at a lower level of aggregation. Therefore, we
seek to characterize the econometric properties of the residuals in a version of equation (4)
that simplifies into

πt = λb πt−1 + λf Et πt+1 + θ st + ε̄t (5)

with λb = ξ/ (1 + βξ), λf = β/ (1 + βξ) = β
(
1− βλb

)
and θ = (1−βα)(1−α)

(1+βξ) α .

This simplification implies a specific structure of heterogeneity: we assume that linear
heterogeneity at the level of the structural parameters ξj and αj translates into linear het-
erogeneity in the reduced form Phillips curve. In other words, we impose λb

j = λb + λ̃b
j ,

λf
j = λf + λ̃f

j , and θj = θ + θ̃j .13 This is obviously not the case in general, but ours is not
a paper proposing an alternative structural form to account for aggregate inflation dynam-
ics under sector-level heterogeneity. Rather it is one that seeks to evaluate the effects of (a
specific form of) heterogeneity on the empirical validity of the standard model. We leave the
alternative, more fundamental, route for further research.14

Estimates of λb, λf , and θ in equation (5) are the object of an enormous literature. Our
key assumption is all three estimates differ linearly from their average (aggregate) values at
the sectoral level because of different realizations of ξ̃j and α̃j . Under this assumption, the
residuals in equation (5) are given by

ε̄t =
J∑

j=1

wj εj,t +
J∑

j=1

wj λ̃
b
j πj,t−1 +

J∑
j=1

wj λ̃
f
j Etπj,t+1 +

J∑
j=1

wj θ̃j sj,t (6)

where

λ̃b
j =

ξj
1 + βξj

− ξ

1 + βξ
=

ξ̃j
(1 + βξ) (1 + βξj)

λ̃f
j =

β

1 + βξj
− β

1 + βξ
=

−β2ξ̃j
(1 + βξ) (1 + βξj)

= −β2λ̃b
j

θ̃j =
(1− βαj) (1− αj)

(1 + βξj) αj
− (1− βα) (1− α)

(1 + βξ) α
= −(1− βααj) (1 + βξ) α̃j + β (1− α)αj ξ̃j

(1 + βξj) (1 + βξ)ααj
.

As in Pesaran and Smith (1995) and Pesaran, Smith, and Im (1996), ignoring heterogeneity
in equation (5) results in a residual that is unavoidably correlated with the dependent variables.

13We also assume information is perfectly common across sectors, so that pricing decisions are taken across

the whole economy on the basis of exactly the same data.
14Equation (4) is hideously non linear when heterogeneity is introduced in the most general way. The linearity

hypothesis we maintain is akin to what Lewbel (1992) suggested, and amounts to a mean scaling transformation.

The model in Carvalho (2006) is solved in the aggregate under general heterogeneity at the industry level. But

it is a model - not an econometric correction of the data.
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Instrumenting will not alleviate the pathology since good instruments are correlated with
the dependent variables, and therefore will mechanically be so as well with the residuals.
The result is well known in theory, and a few applications have by now been developed
in macroeconomics.15 The issue is particularly pressing in the present case, and not only
because modeling inflation dynamics is important in and of itself. First, in a multivariate
setting, heterogeneity biases may have different signs and different magnitudes on different
co-variates. The next section shows how the biases may indeed have different signs on λb,
λf , and θ. We then implement simulations exercises suggestive that they also have different
magnitudes. Second, equation (5) involves an expected term, which complicates substantially
the approach, especially when it comes to instrumenting these expectations.

The standard approach to account for the expected term in New Keynesian Phillips curves
has been to implement Generalized Method of Moments (GMM) estimators. These impose
orthogonality conditions on an amended version of equation (3), where expected inflation is
replaced by the value effectively observed. In particular, identification requires an instrument
set, correlated with expected (sectoral) inflation but not with the residuals υj,t+1 = εj,t −
λf

j (πj,t+1 − Et πj,t+1) in

πj,t = λb
j πj,t−1 + λf

j πj,t+1 + θj sj,t + υj,t+1.

The necessity of this instrumentation fundamentally alters the properties of the heterogeneous
estimators established in Swamy (1970), Pesaran and Smith (1995) or Hsiao and Pesaran
(2004). Heterogeneous estimators rest on the property that an average (weighted or not,
depending on the stochastic nature of heterogeneity) of unit specific coefficients provides a
consistent estimate of the aggregate effects, in our case λb, λf , and θ. This holds because the
stacked system of unit specific estimations can be rewritten in a panel form, since heterogeneity
is assumed to enter linearly as unit-specific differences from the average of interest exactly as
we have assumed here. The panel can then be estimated consistently, provided the specific
type of heteroskedasticity caused by heterogeneity is accounted for, e.g. using a Generalized
Least Squares approach.

But in the GMM case, instrumentation is called for at the industry level, and no instru-
ments are available for expected sectoral inflation in a panel version of stacked sectoral Phillips
curves. A term in λ̃f

jEtπj,t+1 inevitably enters the panel residuals, and any variable uncor-
related with the residuals will not be correlated with expected inflation either. The panel
simply cannot be estimated when instruments are needed. In other words, even though sector
specific estimates of λb

j , λ
f
j , and θj may be obtained with GMM, no theory is available as to

the properties of their average, weighted or not, and its connection with an unbiased aggregate
estimate that accounts for heterogeneity. In general, we know how to account for heterogene-
ity by aggregating adequately unit-specific estimates, but we do not when instrumenting is
necessary at the disaggregated level. As a result, we restrict our analysis to estimations of the
Phillips curve that do not require a choice of instruments, and compare the results implied by

15Imbs et al. (2005) show heterogeneity biases the estimated persistence of the real exchange rate. Forni and

Lippi (1997) and Canova (2007) review the relevance of the issue across a wide range of empirical applications

in macroeconomics.
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estimators that allow for heterogeneity and those that do not. We also verify that the aggre-
gate estimates implied by GMM are in line with established results, which confirms there is
nothing anomalous to our dataset.

2.3 A Two-Sector Example

We illustrate the potential magnitude of heterogeneity biases in estimates of the New Key-
nesian Phillips Curve in the context of simulations based on a simple two-sector version of
the model just described. For simplicity, we impose additional structure on the model and in
particular assume marginal costs are driven by an autoregressive process of order two.16 In
particular, in each sector j we assume

πj,t = λb
j πj,t−1 + λf

j Etπj,t+1 + θj sj,t + εj,t

sj,t = ρ1j sj,t−1 + ρ2j sj,t−2 + uj,t.

A word of caution is in order. Our empirical results are based on the assumption that the
driving process underlying marginal costs is an autoregressive process of order two. This is
to allow enough flexibility that the observed heterogeneous dynamics of marginal costs in our
data can be accommodated, which an autoregressive process of order one is less able to do.
Inasmuch as this section purports to offer a preview of our empirical results, we maintain the
same assumption here.17

We have allowed for heterogeneity in λb
j , λ

f
j and θj , which the previous section showed is

akin to assuming heterogeneous values for ξj and αj . Appendix 1 shows this system implies
a reduced form expression for sectoral inflation

πj,t = ξj πj,t−1 + ψ1j sj,t + ψ2j sj,t−1 + ηj,t (7)

with

ψ1j =
1− βαj

1− βρ1j − β2ρ2j

1− αj

αj

ψ2j = β ψ1j ρ2j .

We use simulation exercises with two sectors to evaluate the relative impact of dispersion in
the sectoral values of ξj and αj on the aggregate structural parameters ξ and α, and the
implied dynamics of aggregate inflation.

The parameters in both sectors are assumed to take the same initial values. Specifically, we
choose ξj = 0.5, αj = 0.7, ρ1 = 1.1, ρ2 = −0.2 and V = σ2

ηj
/σ2

uj
= 1, where σ2

ηj
and σ2

uj
denote

the variances of ηj,t = (1 + βξj) εj,t and uj,t respectively.18 We only need to parameterize the
ratio of volatilities, as we only seek to simulate the second moments of aggregate inflation,

16This is discussed and motivated in more details in Section 3.2, where we introduce the Maximum Likelihood

estimator.
17We have checked that our empirical results continue to hold under higher order processes.
18These parameter values correspond to the unbiased estimates obtained from the French data used in this

paper. The results are robust to alternative initial values.
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and in particular its persistence. The subjective discount factor is set at β = 0.99. We
introduce sector-level heterogeneity by drawing ξj and αj from ranges centered around their
initial values. The extent of simulated heterogeneity increases with the range from which ξj
and αj are drawn.19 Armed with sector-specific (and heterogeneous) structural parameters,
we simulate inflation series according to the reduced form Phillips curve (and the assumed
process for marginal costs) in each sector. We then aggregate them up, using equal weights,
obtain a series for aggregate inflation and aggregate marginal costs, and use them to estimate
the values of α and ξ.20

Figure 1 reports the simulated values of ξ and α for values of ξj drawn from [0.25, 0.75],
and values of αj drawn from [0.45, 0.95]. We draw all values of each parameter by increments
of 0.05. The upper (lower) panel focuses on heterogeneity in ξj (αj). Several results are
worth mentioning. First, the Figure confirms the existence of a positive bias in the aggregate
estimates of α and ξ. On most plots, the highest values of the aggregate structural parameters
are obtained when the cross-sectoral dispersion of ξj and αj is maximal. Second, the plots
suggest that aggregate estimates are most affected by the heterogeneity in αj . The dispersion
in ξj affects the estimates of ξ, but leaves α virtually unchanged. In contrast, the dispersion
in αj creates biases on both α and ξ. Further, the biases induced by the dispersion in αj tend
to be larger in magnitude.

In words, our simulations are suggestive of an asymmetry in the manner heterogeneity
biases affect estimates of the New Keynesian Phillips curve. First, the heterogeneity in nominal
rigidities affects both structural estimates in the Phillips curve, α and ξ. Second, a given
dispersion in the extent of nominal rigidities has a substantially larger effect on α and ξ than
a comparable dispersion in ξj . Put differently, it is the heterogeneity in the Calvo parameter
that is most likely to induce biases in aggregate estimations. On the basis of these simulations,
heterogeneity biases tend to underestimate both the extent of forward-looking behavior (λf )
and the importance of nominal rigidities (θ).

3 The Biases

In this section, we describe analytically the biases that plague aggregate estimates of the New
Keynesian Phillips Curve in the presence of unaccounted heterogeneity. We discuss the biases
affecting both the coefficient on marginal costs and the coefficients on inflation and provide
analytical expressions corresponding to a Phillips Curve estimated assuming marginal costs
follow an autoregressive process of order one. This contrasts with our empirical sections,
where we assume throughout marginal costs are best represented by an autoregressive process
of order two, which has enough flexibility to accommodate the cross-sectional heterogeneity in
our data. Unfortunately, our analytical results become considerably more complicated under
autoregressive processes of orders higher than one, indeed at the cost of tractability. We

19We also considered heterogeneity on the autoregressive parameters ρ1j and ρ2j , and the ratio σ2
ηj
/σ2

uj
.

These alternative sources of heterogeneity played little role in the aggregate and the corresponding results are

not reported for the sake of brevity.
20We also experimented with asymmetric sectors, with no sizable differences.
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conjecture there is no fundamental reason why the intuition developed in this section should
not generalize. We close the section with simulation exercises that confirm our conjectures
and decompose the biases into the components we obtain analytically.

3.1 Analytics

The GMM estimator requires an instrument set for expected inflation, which forbids the
use of heterogeneous estimators. An alternative, introduced by Fuhrer and Moore (1995),
Sbordone (2001) or Kurmann (2007) assumes a data generating process for marginal costs
and implements a Maximum Likelihood estimator (ML) to estimate the model. Under the
additional hypothesis, it becomes possible to solve future expected inflation out of the Phillips
curve, and obtain a model that can be brought to the data directly. We now consider the role
of heterogeneity under this estimation approach.

The full model of inflation rests on the following system

πj,t = λb
j πj,t−1 + λf

j Etπj,t+1 + θj sj,t + εj,t

sj,t = ρj sj,t−1 + uj,t

where uj,t denotes an independent and identically distributed shock to real marginal costs in
sector j, |ρj | < 1, σ2

εj
= E(ε2j,t) and σ2

uj
= E(u2

j,t). Appendix 1 shows how the dynamics of
inflation rewrite

πj,t = ξj πj,t−1 + ψj sj,t + ηj,t (8)

with
ψj =

1− βαj

1− βρj

1− αj

αj
and ηj,t = (1 + βξj) εj,t.

Imposing homogeneity on an aggregated Phillips curve will force heterogeneity into the
residual, and thus result in inconsistency in parameter estimates.21 We continue to assume
that aggregation preserves the linearity property in heterogeneity; in particular, we assume the
aggregate Phillips curve is true on average whenever ξj = ξ+ ξ̃j , αj = α+ α̃j , and ρj = ρ+ ρ̃j .
Then we have

πt = ξ πt−1 + ψ st + η̄t (9)

st = ρ st−1 + ūt

where ψ = 1−βα
1−βρ

1−α
α . In particular, we have ψj = ψ + ψ̃j and

ψ̃j =
− (1− βααj) (1− βρ) α̃j + β (1− α)αj ρ̃j

(1− βρj) (1− βρ)ααj
.

21In fact, Carvalho (2006) finds a similar result in his theory. His equation (13) involves a term in gt, which

is akin to the perturbation in the residuals we build upon.
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As before, the residuals embed the dependent variables, since

η̄t =
J∑

j=1

wj ηj,t +
J∑

j=1

wj ξ̃j πj,t−1 +
J∑

j=1

wj ψ̃j sj,t

ūt =
J∑

j=1

wj uj,t +
J∑

j=1

wj ρ̃j sj,t−1.

Orthogonality conditions impose that the residuals should verify

E [(πt − ξML πt−1 − ψML st) πt−1] = 0

E [(πt − ξML πt−1 − ψML st) st] = 0

where ξML and ψML denote maximum likelihood estimates. The nature of η̄t under hetero-
geneity will induce biases in potentially all the coefficients in the Phillips curve. In probability
limits as T becomes large, these biases write

Λ̃ plim (ξML − ξ) = E
(
s2t
)
E (πt−1η̄t)− E (stπt−1) E (stη̄t)

Λ̃ plim (ψML − ψ) = E
(
π2

t−1

)
E (stη̄t)− E (stπt−1) E (πt−1η̄t)

plim (ρML − ρ) = E (st−1ūt) /E
(
s2t−1

)
where

Λ̃ = E
(
s2t
)
E
(
π2

t−1

)
− (E (stπt−1))2.

Since Λ̃ > 0, the signs of the asymptotic biases are given by the right-hand side expressions. We
maintain five simplifying assumptions. (H1) Heterogeneity is deterministic. (H2) The weights
of all sectors in the economy are exogenous and uncorrelated with the magnitude of sector-
specific estimates of the Phillips curve. (H3) Sector-specific shocks are independent. (H4)
Marginal costs follow a (potentially sector-specific) autoregressive process of order one. Our
estimations later relax all four hypotheses; our purpose now is to obtain tractable expressions
for all biases, at the cost of relatively benign assumptions. Under these hypotheses, the sign
of the bias affecting estimates for ξ and ψ are given in Proposition 1

Proposition 1 Under H1-H4,

• The asymptotic bias of (ξML − ξ) can be decomposed into the sum of two terms:

C1 = C11 + C12 =
E
(
s2t
)

Λ̃

J∑
j=1

wj ξ̃j E (πt−1πj,t−1)−
E (stπt−1)

Λ̃

J∑
j=1

wj ξ̃j E (stπj,t−1)

C2 = C21 + C22 =
E
(
s2t
)

Λ̃

J∑
j=1

wj ψ̃j E (πt−1sj,t)−
E (stπt−1)

Λ̃

J∑
j=1

wj ψ̃j E (stsj,t)

where

C11 > 0 C12 < 0,

C21 > 0 C22 < 0.
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• The asymptotic bias of (ψML − ψ) can be decomposed into the sum of two terms:

D1 = D11 +D12 =
E
(
π2

t−1

)
Λ̃

J∑
j=1

wj ξ̃j E (stπj,t−1)−
E (stπt−1)

Λ̃

J∑
j=1

wj ξ̃j E (πt−1πj,t−1)

D2 = D21 +D22 =
E
(
π2

t−1

)
Λ̃

J∑
j=1

wj ψ̃j E (stsj,t)−
E (stπt−1)

Λ̃

J∑
j=1

wj ψ̃j E (πt−1sj,t)

where

D11 > 0 D12 < 0,

D21 > 0 D22 < 0.

• The asymptotic bias of (ρML − ρ), given by

ρML − ρ =
J∑

j=1

wj ρ̃j E (stsj,t) /E
(
s2t−1

)
,

is positive.

�

Proof: See Appendix 2.

From our simple two-sector simulated economy, we know that a quantitatively important
source of bias is the dispersion in αj . Translated into analytical terms, this suggests C2 and
D2 should be the main sources of the biases. Indeed, in both cases, the biases decompose
into correlation terms involving ξ̃j (C1 and D1), and terms involving ψ̃j (C2 and D2). By
definition, ψ̃j is only affected by heterogeneity in αj .

Our simulations therefore suggest C2 andD2 should be the main source of the heterogeneity
bias. In order to garner an intuition in economic terms, it is useful to think of heterogeneity
across sectors in the terminology introduced by Angeloni et al. (2006). Industries with high
extrinsic persistence (high realizations of ψ̃j) will naturally tend to display high correlations
between marginal costs and inflation. This acts to increase the value of C21. In contrast,
under our assumptions on marginal costs, there is not reason to expect extrinsic persistence
to correlate in any systematic manner with the variance in marginal costs, which only depends
on its autoregressive properties. Ceteris paribus C22 should take low values. This accounts
for the fact that C2 will tend to take positive and large values when nominal rigidities are
sector-specific and heterogeneous.

By virtue of exactly identical reasoning, it is likely that D22 will take large and negative
values, since again by definition the correlation between marginal costs and inflation tends
to be high for high realizations of ψ̃j . In contrast, D21 measures whether sectors with high
extrinsic persistence are also ones with volatile marginal costs, like C22 did. There is no
systematic reasons to expect D21 to take high values. In other words, D2 should tend to take
high negative values in the presence of heterogeneity in αj .
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It is straightforward to follow the same line of reasoning and show that C1 and D1 will
tend to reinforce these biases when there is heterogeneity in indexation. Sectors with high
levels of intrinsic persistence (high realizations of ξ̃j) tend to display high inflation volatility,
which results in high positive values for C11 and negative values for D12. A contrario, the
correlation between marginal costs and inflation does not depend systematically on intrinsic
persistence, and there is no reason to expect the values of C12 and D11 significantly away from
zero. Taken together, these conjectures suggest positive values for C1 and negative ones for
D1.

Put simply, our simulations suggest a positive bias on ξ and a negative one on ψ. Estimates
of the aggregate Phillips curve that ignore heterogeneity tend to over-estimate the extent of
backward looking inflation, and under-estimate the response of prices to real marginal costs.22

The positive bias on the autoregressive properties of inflation is consistent with Granger
(1980), who demonstrated the emergence of long-memory when aggregating heterogeneous
autoregressive processes. The negative bias on ψ, the effect of marginal costs on pricing
decisions is, in turn, consistent with the possibility that aggregate marginal costs are but an
imperfect measure of sectoral costs, and their interactions. Equation (4) suggests the true
measure of costs in the aggregate Phillips curve should involve

∑J
j=1wjθjsjt, which θst may

just approximate imperfectly. The attenuating bias on ψ would then simply correspond to
measurement error. We now turn to a simulation exercise that explores quantitatively the
biases and their composition.

3.2 Simulations

We now perform some simulations that seek to confirm the analytical expressions just estab-
lished, and in particular the signs and relative magnitudes of their various components. Our
simulations now include sixteen sectors as in our French data. In addition, the simulations
purport to perform the bias decompositions just discussed, and therefore are computed under
the assumption that marginal costs follow an autoregressive process of order one as in the
previous section. To facilitate comparison, we express all estimates in terms of the structural
parameters (ξ and α), and infer the corresponding values for the reduced-form parameters.

The structural parameters (ξ, α and ρ) are initially set at the values implied by het-
erogeneous estimations performed on our French data. Cross-industry heterogeneity in the
structural parameters is drawn from a normal distribution with variances σ2

α = σ2
ξ = 0.1.23 We

deduce sector-specific reduced-form estimates and simulate samples of 1000 observations on
sectoral inflation and marginal cost. We use these artificial data to compute the corresponding
aggregate inflation and marginal cost (using uniform weights), as well as the unbiased, sector-
specific estimates of ξj and αj . We then estimate the aggregate Phillips Curve, using the ML

22In addition, the bias on ρML is unambiguously positive. The definition of ψj suggests that high realizations

of ρj will be associated with high values of the reduced form coefficient on marginal costs. In other words,

dispersion in ρj acts to increase the heterogeneity in ψj . This is an aspect we have ignored in our simulations.

Of course, the possibility is very much present in our empirical estimates.
23In order that we focus on the biases discussed analytically, and their composition, we impose homogeneity

in ρj .
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estimator on simulated aggregate series. The resulting coefficient estimates are then used to
back out the corresponding structural estimates ξ and α. We iterate the procedure, saving
for each sample both the theoretical values of the structural parameters, and their empirical
counterparts. We report the median value of the obtained estimates.24

Table 1 presents our baseline results. The homogeneous estimator unambiguously biases
ξ upwards and ψ downward. Further, most of each bias originates in C2 and D2, which
take by far the largest absolute values. It seems therefore that heterogeneity in the extent of
nominal rigidities αj drives most of the inconsistencies. The Table also reports the reduced
form estimates of equation (5), and the biases on the structural parameters. As expected, we
document a positive bias on λb and a negative bias on θ. As a result of this, homogeneous
estimates of the duration of nominal rigidities are (slightly) biased upwards.

Our simulations largely confirm our analytics. We find sizable biases in all the coefficients
of a reduced form Phillips curve, under rather restrictive hypotheses that do not necessarily
hold in our data. We have imposed that marginal costs follow an autoregressive process of
order one, constrained to be homogeneous across industries. We have assumed away any
common influences on price across industries, and we have used uniform weights to aggregate
industry-specific price dynamics. All four assumptions are likely to alter the magnitude of the
biases we are concerned with. We now turn to real data, relax all hypotheses, and verify that
heterogeneity continues to generate sizable inconsistencies.

4 Econometric Methods

We now introduce the estimators we use to account for sectoral heterogeneity. We discuss
two estimators: the Mean Group (MG) and the Random Coefficient (RC) models, introduced
by Swamy (1970, 1971) and Pesaran and Smith (1995). The main difference between the
two estimators comes from their assumptions on the nature of heterogeneity. MG assumes
sector-specific deviations from mean parameters are deterministic, whereas RC assumes they
are random. As a result, MG implements a simple arithmetic averaging of sector specific
estimates, whereas RC requires a generalized least squares procedure that optimally accounts
for the stochastic nature of heterogeneity.25

The RC estimator relaxes assumption H1. In this section, we also relax the other con-
straints that afforded analytical expressions for the biases. In particular, some of our estimates
use the industry weights directly implied by French data (H2), and we allow for cross-industry
interdependence (H3). We do this in two ways. First, we implement the Seemingly Unrelated

24Reporting averages would render our simulation results quite sensitive to the odd extreme realization of

heterogeneity. We choose instead to focus on median values, with the consequence that our decomposition will

not hold perfectly.
25The difference is akin to that between fixed effect and random effect estimators, and can be tested accord-

ingly. Hsiao and Pesaran (2004) shows that MG and RC estimators are equivalent in the limit. In other words,

our analytical results, which were calculated on the basis of deterministic heterogeneity, become valid in the

limit, even if heterogeneity is actually stochastic.
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Regression Estimation (SURE) correction to both heterogeneous estimators.26 Second, we
introduce the common correlated effects Mean Group estimator (MG-CCE) and its random
coefficient version (RC-CCE) introduced by Pesaran (2006). As already discussed, it is impos-
sible to eschew assumption H4, since instrumentation is forbidden under heterogeneity. We
allow for more flexible marginal costs, and model them as autoregressive processes of order
two. We have verified that our empirical results stand under higher order processes.

4.1 Mean Group

The MG estimator introduced in Swamy (1970, 1971) simply consists in an arithmetic average
of sector-specific parameter estimates. In particular, let Υj denote the vector of sector-specific
parameters. The MG estimator Υ̂MG is given by

Υ̂MG =
1
J

J∑
j=1

Υ̂j .

A consistent estimator of the covariance matrix of Υ̂MG can be computed as

V (Υ̂MG) =
1

J(J − 1)

J∑
j=1

(
Υ̂j − Υ̂MG

)(
Υ̂j − Υ̂MG

)′
.

Two complications arise in our case. The arithmetic average of sector-specific inflation is
not the object whose dynamics we are interested in. Aggregate inflation is given by a weighted
average of sector-specific price changes, with weights wj corresponding to industry shares in
the GDP deflator. We amend the MG estimator and introduce weights wj in computing
aggregate estimates, which then indeed evaluate the dynamics of aggregate inflation as befits.
Introducing these empirical weights does not affect the consistency of the MG estimator.27

Second, the parameters estimated by ML are not all structural. To preserve coherence,
we obtain industry-level estimates of the reduced form coefficients ξj , ψ1j , ψ2j , ρ1j and ρ2j ,
and perform the aggregation on the basis of these estimates. Then MG (or indeed RC) yields
consistent estimates for the aggregate coefficients ξ, ψ1, ψ2, ρ1 and ρ2, which we use to back
out the aggregate structural parameters. Thus we avoid aggregating non-linear estimates of
αj . When evaluating the existence of a heterogeneity bias, we therefore compare homogeneous
estimates of ξ, ψ1, ψ2, ρ1 and ρ2 to the corresponding weighted average of their industry level
values.28 The alternative would be to estimate the structural parameters ξ and α at both levels
of aggregation, infer the true aggregate estimates from a weighted average of disaggregated
results, and compare homogeneous and heterogeneous estimates. But this might conflate the
heterogeneity bias with one induced by aggregated non-linearities. We only present results
that pertain to the former approach, which in fact is more in line with the initial insight in
Pesaran and Smith (1995). This is true of all our heterogeneous estimations.

26This is directly applicable since we have sixteen sectors but 111 observations.
27This builds on the asymptotic result in Hsiao and Pesaran (2004) that RC and MG are equivalent in the

limit.
28This is exactly the approach recommended in Stoker (1993).
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4.2 Random Coefficients

Following Swamy (1970, 1971), Pesaran and Smith (1995), and Hsiao and Pesaran (2004), we
define the RC estimator as a weighted average of the least squares estimates, with weights
inversely proportional to their covariance matrices. In particular, the best linear unbiased
estimator of the mean coefficient vector is given by

Υ̂RC =
J∑

j=1

WjΥ̂j

The weighting scheme is given by

Wj =

 J∑
j=1

(∆ + ΣΥ̂j
)−1

−1

(∆ + ΣΥ̂j
)−1

where

∆ =
1

J − 1

J∑
j=1

(Υj −ΥMG) (Υj −ΥMG)′ − 1
J

J∑
j=1

ΣΥ̂j

and ΣΥ̂j
= σ2

j (X
′
jXj)−1. Xj,t = (πj,t−1, sj,t)

′ is the vector of regressors, and σ2
j is estimated

by σ̂2
j = 1

T−5 π
′
j (IT −Xj (X ′

jXj) X ′
j) πj . In words, ∆ + ΣΥ̂j

captures the dispersion of the
industry-specific estimates, so that Wj will optimally act to associate a large weight to sectors
where the estimates are precise. The MG estimator is efficient when the optimal weights are
not different from the arithmetic ones.29

A weighting issue arises when implementing RC for our purposes. The optimal weights Wj

are not necessarily aligned with the empirical sector shares, wj . Although the exact pattern of
weights does not matter in the limit, as exemplified by the asymptotic equivalence between RC
and MG, we ascertain how much our results are affected by a particular patterns of industry
weights. In what follows, we report RC estimates as implied by both optimal and observed
weights. In particular, we constrain the weighing scheme used to compute Υ̂MG to be either
uniform (which boils down to standard RC) or to entail observed weights (which boils down
to our augmented version of MG, as discussed in the previous section).

4.3 Cross-Industry Linkages

It is eminently likely that shocks to sectoral inflation or marginal costs be correlated across
sectors. This would happen for instance in the presence of macroeconomic aggregate shocks,
or input-output linkages between industries. We now discuss how to deal econometrically
with this possibility, while preserving a high level of generality in the nature of cross-industry
linkages.

29Swamy (1970) includes the first term only in his suggested empirical estimates for ∆̂. This is not uncontro-

versial. More recent contributions recommend including both terms in the expression, as for instance in Hsiao

and Pesaran (2004). We later report RC estimates corresponding to both hypotheses.
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We first apply a SURE correction to both our heterogeneous estimators. In particular,
assume now E[εi,tεj,t] = σεiεj , E[ui,tuj,t] = σuiuj , and E[εi,tuj,t] = σεiuj , for i 6= j. Stacking
all sectors, 

Y1

Y2

...
YJ

 =


X1 0 · · · 0
0 X2 · · · 0
...

. . . . . .
...

0 · · · 0 XJ




φ1

φ2

...
φJ

+


v1
v2
...
vJ


where Yj =

(
πj

sj

)
, Xj =

(
πj,−1 sj sj,−1 0 0

0 0 0 sj,−1 sj,−2

)
, vj =

(
εj
uj

)
, πj = (πj,t),

πj,−1 = (πj,t−1), sj = (sj,t), sj,−k = (sj,t−k), and φj = (ξj , ψ1j , ψ2j , ρ1j , ρ2j)
′. The stacked

disturbances vj have a covariance matrix Ω which standard ML techniques can account for.
We correct both RC and MG accordingly.

The SURE correction requires the estimation of a large-dimensional covariance matrix,
which may affect the finite-sample properties of the estimators. An alternative is proposed
by Pesaran (2006), who introduced a correction technique to account for unobserved common
factors potentially correlated with sector-specific regressors. The sector-specific estimations
are filtered by means of cross-section aggregate regressors, which purge the differential effects of
unobserved common factors. The approach is particularly appealing because of its simplicity.
It merely requires the addition of an auxiliary regressor, given by the cross-sectional average of
the regressors, which suffices to filter the common correlated effect (CCE) out. In particular,
the model rewrites

πj,t = ξj πj,t−1 + ψ1j sj,t + +ψ2j sj,t−1 + f ′j,t γπ,j + η̄j,t

sj,t = ρ1j sj,t−1 + ρ2j sj,t−2 + f ′j,t γs,j + ūj,t

where ft = (π̄t, π̄t−1, s̄t, s̄t−1, s̄t−2)′, x̄t is the cross-sectional average of xj,t, and η̄j,t (resp. ūj,t)
denotes an independent and identically distributed shock to inflation (resp. real marginal
costs) in sector j. We implement the CCE correction onto both our heterogeneous estima-
tors.30

5 Results

We first describe our sectoral data, which include production, prices, wages and employment
in sixteen French sectors. We discuss some summary statistics. Next we present the industry
specific estimates of the Phillips curve, and identify the main sources of heterogeneity in our
data. Finally, we discuss the heterogeneity bias.

30A consistent estimator of ΣΥ̂ is obtained using the Newey and West (1987) type procedure. The CCE

estimator of sector-specific parameters are consistent as J, T →∞. As a result, the CCE correction of the MG

(or RC) estimator is asymptotically unbiased as J → ∞, for T either fixed or T → ∞. A rank condition is

necessary regarding the factor loadings ft. The asymptotic distribution can only be derived if
√
T/J → 0 as

J, T →∞.
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5.1 Data

Our data is constructed by INSEE, the French statistical institute. We have observations on
output, prices, wages and employment for sixteen sectors of the French economy, comprising all
activities and listed in Appendix 3. Coverage includes agriculture, manufacturing (six sectors)
and services (nine sectors). For each industry, the inflation rate is computed as the quarter-
on-quarter growth rate of the value-added deflator. In computing a sector-specific measure of
marginal costs, we follow Sbordone (2001) or Gaĺı, Gertler, and López-Salido (2001). sj,t is
the (logarithm) deviation of the share of labor income in value added from its sample mean, to
which we apply the sector specific correction implied by hj . From its definition, the correction
itself is computed on the basis of the observed industry share of labor in production aj , and
a value for η which is pinpointed by a level of markups calibrated at ten percent.31 Our data
are quarterly from 1978:1 to 2005:3, for a total of 111 observations.

Table 2 presents some summary statistics.32 We report average inflation and average
growth in real marginal costs, their serial correlations, and their contemporaneous correlation,
at both industry and aggregate levels. There is extensive heterogeneity across sectors in both
average measures. Annual inflation ranges between 0.2% and 5.5%, and the average annual
growth in real marginal costs ranges between −3.6% and 0.1%. The same is true of serial
correlation in inflation, and the cross-correlation between sj,t and πj,t. In contrast marginal
costs are consistently highly serially correlated. Figures 2 and 3 plot sectoral inflation rates and
real marginal costs. There is again considerable heterogeneity across sectors in the patterns
of both variables, although they tend to track each other within each industry as testified in
the industry-level Phillips curves we later estimate.

Table 2 also reveals that aggregate inflation and real marginal costs are highly serially
correlated, and covary to an extent that is much larger than most industry-level series. Figure
4 plots both aggregate series, and illustrates that both series experienced a similar downward
trend over the sample. Aggregate inflation and marginal costs track each other closely, quite
reassuringly given the existing empirical support for aggregate Phillips curves.

5.2 Industry Estimates

Table 3 presents industry-level estimates of the New Keynesian Phillips curve on the basis of
a Maximum Likelihood approach. We maintain the assumption that marginal costs are well
characterized at the industry level by an autoregressive process of order two, and estimate
the resulting reduced form equation. We focus on ML estimates of the Phillips curve at
the industry level because the aggregation of heterogeneous coefficients obtained from GMM

31This follows directly from Sbordone (2001) or Gaĺı, Gertler, and López-Salido (2001). The latter in par-

ticular argue that different markup values do not alter any of their results (in footnote 24). We checked that

using a unique, aggregate measure of aj does not change any of our results either. Effectively, the correcting

term hj affects identically homogeneous and heterogeneous estimates of the Phillips curve, and thus does not

matter at all for the magnitude or existence of a heterogeneity bias.
32We subtracted its industry-specific mean from each series. We also experimented with filtering the data,

with minimal end effects.
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estimations is uncharted territory. Our MG and RC heterogeneous estimators (and their
corrections) are only equipped to aggregate industry-level estimates that arise from a ML
estimator.

Several results stand out from Table 3. First, our data are supportive of inflation dynamics
at the industry level that are consistent with the New Keynesian framework. In ten of the six-
teen sectors, marginal costs affect significantly the pricing decisions of firms, to an extent that
display substantial heterogeneity. Estimates of ξ are adequately bounded, and marginal costs
are unanimously persistent. Estimates of the reduced form Phillips curve given in equation (3)
confirm large differences in the extent of backward looking behavior, with values of λb rang-
ing from zero to around a half. The heterogeneity carries through to sector-level estimates
of the structural parameters. The extent of indexation ξ varies between zero in Energy or
Transportation to 0.8 or 0.9 in Agriculture, Real Estate or Government Services. Similarly we
obtain estimates of αj between zero and virtually one, with vastly different implied durations.
These values, whose heterogeneity our simulations suggest is crucial in the aggregate, range
from around one quarter in sectors like Agriculture, Food, Energy or Transportation, to more
than five years in Real Estate and Business or Personal Services. On the whole, duration is
found to take high values in virtually all service industries.33

Figure 5 plots observed inflation for each industry as against the path predicted by the
estimated Phillips curve in that sector. The fit is remarkably close for as many as ten out of
the sixteen industries with data. In fact, both series are virtually identical for eight of our
sectors, including for instance Agriculture, Consumption Goods, Personal Services or Financial
Services. Our results are broadly consistent with the estimates reported in Vermeulen et al.
(2007), Fougère et al. (2005) or Baudry et al. (2005), also based on French data.34 For
instance, Fougère et al. (2005) estimate long-lived nominal rigidities in services on average, but
especially short ones in Food Manufacturing or Energy. The papers also document relatively
homogeneous estimates within services and within manufactures, as we do.35 Interestingly,
Vermeulen et al (2007) document similar patterns in other European countries.

5.3 Heterogeneity Bias

We now quantify the heterogeneity bias in our data, and compare estimates of the structural
parameters implied by standard ML estimators performed on aggregated data, with the corre-

33We have implemented Fisher tests to investigate coefficient equality across sectors. We used the industry-

level estimates in Table 3, and found overwhelming rejection of the homogeneity assumption across all pa-

rameters ξ, α, ρ1 and ρ2. When using instead (unreported) industry-level estimates that implement SURE to

correct for cross-industry correlations, rejection becomes even stronger.
34These papers are not directly comparable because of different data sources, aggregation levels and modeling

strategies. For instance, they use CPI data, and focus on consumption goods only, whereas we have information

on producers goods as well. But all these papers find substantial heterogeneity, in particular between services

and manufacturing industries. Vermeulen et al. (2007) also document the importance of labor costs in driving

disaggregated price dynamics, a result entirely consistent with the existence of sectoral Phillips curves.
35In fact, we ran our heterogeneous estimators within both manufacturing industries and services, and in

each case found barely any evidence of a heterogeneity bias. In contrast as will become clearer, the bias is

large when considering the complete sample. In other words, the extent of heterogeneity in our data is largest

between manufacturing industries and services.
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sponding estimates implied by heterogeneous estimators that make use of sectoral information.
For completeness, we also report the estimates of an aggregate Phillips curve as implied by the
standard (homogeneous) GMM approach. Our empirical results are based on the constraint
that real marginal costs are well characterized by an autoregressive process of order two at the
industry level. We therefore estimate a generalization of the system of equations (9), derived
in Appendix 1, that accounts for the autoregressive properties of marginal costs, i.e.

πt = ξ πt−1 + ψ1 st + ψ2 st−1 + η̄t (10)

st = ρ1 st−1 + ρ2 st−2 + ūt

with

ψ1 =
1− βα

1− βρ1 − β2ρ2

1− α

α

ψ2 = β ψ1 ρ2.

Table 4 reports our results. The first two columns report estimates for the aggregate
New Keynesian Phillips curve, as implied by GMM and ML. The subsequent specifications
correspond to the results that pertain to variants of our heterogeneous estimators, depending
on what weighting pattern is used in aggregating.36

We find a large and positive heterogeneity bias on ξ. The homogeneous ML estimator
implies a value of 0.666, but accounting for heterogeneity, estimates range between 0.488 and
0.530, and all are significantly smaller. This implies estimates of firms backward looking
behavior close to 0.33 when accounting for heterogeneity, as opposed to 0.40 from aggregate
ML. Interestingly, the bias on λb is smaller when comparing aggregate GMM estimates with
heterogeneous results.37 The same is not true of the importance of marginal costs, which is
systematically under-estimated when heterogeneity is ignored. GMM implies they are on the
whole irrelevant in our data (θ = 0), and ML implies a small and weakly significant role for
st (θ = 0.034). In contrast, the mean group estimator implies a value for θ close to 0.12, and
0.31 when uniform weights are used in aggregating industry level estimates.38

How do these discrepancies in reduced form estimates translate into structural coefficients?
Table 4 suggests the duration of nominal rigidities is seriously over-estimated by ML aggregate
estimators, which imply prices remain unchanged for close to five quarters. This is close to
the estimates obtained by Gaĺı, Gertler, and López-Salido (2001) or Benigno and López-Salido

36To be precise, the use of different weights only matters for computing Υ̂MG. The RC model continues to

use the optimal weights Wj when aggregating.
37But the comparison is somewhat diagonale, as heterogeneous estimators are based on assumptions on the

process generating marginal costs, and make use of no instruments. It is however possible to use analytical

expressions akin to what we developed in Section 3.1 to account for the smaller bias on λb implied by a GMM

estimator.
38RC estimators, in contrast, imply values for θ that are still large, but not significantly different from zero.

In unreported results, we have performed Hausman tests to ascertain whether MG or RC provided a better

representation of our data, and have concluded MG results are to be preferred.
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(2006) who both use European data to estimate a duration of nominal rigidities upwards from
one year.39

Our heterogeneous estimators, in contrast, all imply durations below three quarters, and a
majority lies close to two quarters. These differences are also significant at standard confidence
levels. A duration for price rigidities around two quarters is consistent with the estimates
based on disaggregated data, documented among others in Bils and Klenow (2005). For
instance, Bils and Klenow conclude that “the time between price changes remains under 5.5
months for half of consumption”. Our aggregate estimates that account for heterogeneity
are in that same vicinity, even though they also imply implausible (homogeneous) results.
Heterogeneous estimators help translating short nominal durations up into aggregate data,
and the heterogeneity bias explains away the anomaly.40

5.4 Correcting for Cross-Industry Linkages

We now implement two corrections to our heterogeneous estimators that allow for the possibil-
ity that shocks be correlated across industries. Our corrections are general enough to account
for common macroeconomic shocks, input-output production linkages or indeed anything that
would engender influences on sectoral prices or marginal costs that are contemporaneously
correlated across industries.

In Appendix 4, we report various estimates that help quantifying cross-industry linkages in
our data. Table A1 reports the cross-correlations between the residuals ηj,t of each industry-
specific Phillips curve estimate, as implied by equation (7). Table A2 focuses instead on the
cross-industry correlations in uj,t, the cost-push shock. On average, the values in Table A1 are
positive, though relatively few are significant. This is consistent with price pressures affecting
simultaneously several industries. We note significantly positive correlations tend to occur
within manufactures, and within services. The same can be said of shocks to marginal costs in
Table A2, providing support that cost-push shocks tend to affect more than one sector. This
would characterize aggregate macroeconomic shocks, or perhaps production linkages across
industries.

In short, shocks are correlated across sectors. Table 5 presents the two corrections we
implement, SURE and CCE, along with the aggregate estimates from Table 4 for comparison
purposes. The corrections only act to reinforce our conclusions. The corrected biases on
ξ become substantially larger, irrespective of the correcting approach, and heterogeneous
estimates are as low as 0.348 under RC-CCE, as compared with 0.666 under homogeneity.
This is a large bias, with considerable impact on the estimated role for backward looking

39For the Euro area as a whole, Gaĺı, Gertler, and López-Salido (2001) report duration estimates equal to 4.7

quarters in their Table 2. Benigno and López-Salido (2006) present country-specific estimates in their Table 1.

French nominal rigidities are estimated to last above 6 quarters.
40The GMM estimator implies a duration close to three quarters, but riddled with great uncertainty. Because

of large standard errors, it is impossible to conclude whether the bias is significant in this case. But again,

even if it were possible, the comparison would be diagonal, as heterogeneous estimators rely on fundamentally

different hypotheses than GMM.

27
ECB 

Working Paper Series No 785
July 2007



pricing. Unbiased estimates of λb are as low as 0.25, as compared with 0.40 when imposing
homogeneity. These differences are significant at any standard confidence level.

As in Table 4, the role of marginal costs in affecting prices is restored once heterogeneity
is accounted for, especially as regards the MG estimator. Estimates of θ are up to five times
larger when comparing aggregate ML results and heterogeneous estimates. This translates
in significantly lower heterogeneous estimates for α, ranging between 0.51 and 0.65, as com-
pared with 0.79. The duration of nominal rigidities continues to range between two and 2.8
quarters, depending on which correction is implemented to account for correlated residuals.
These differences are always significant. The durations we continue to obtain in the aggre-
gate once heterogeneity is accounted for are consistent with existing studies concerned with
disaggregated firm behavior. The durations that impose homogeneity are not.

6 Robustness

The results discussed so far rested on an indexation assumption to generate a hybrid Phillips
curve. We have argued that heterogeneity in the extent of indexation is quantitatively unim-
portant in generating inconsistencies in aggregate estimates. In effect therefore, the justifi-
cation for a term involving lagged inflation in the reduced form Phillips curve seems to be
largely innocuous in terms of the implied aggregation biases. We now turn to an alternative,
equally standard modeling of the hybrid Phillips curve.

Gaĺı and Gertler (1999) introduced purely backward looking firms, assumed to obey a rule
of thumb whereby the price in period t depends only on information dated t − 1 or earlier.
In this section, we describe the sectoral Phillips curve this implies, which entails a different
structural interpretation of the estimates of lagged inflation. We briefly introduce the implied
inconsistencies, argue heterogeneity in the extent of backward looking behavior continues to
be relatively innocuous in this model, and discuss the biases implied by French data.

The crucial difference with the model described in Section 2 rests on the assumption that
a proportion ωj of the firms that are allowed to adjust their prices do so in a pure backward
looking manner. In particular, the sectoral (log) price level is given by

pj,t = αj pj,t−1 + (1− αj) p∗j,t

where P ∗jt is an index of prices newly set at time t. By definition, newly set prices are given
by

p∗j,t = ωj p
b
j,t + (1− ωj) p

f
j,t

where pb
jt (pf

jt) denote the price set by backward (forward) looking firms. Forward looking
firms choose prices optimally as they would in the standard Calvo (1983) framework, i.e.

pf
j,t = (1− βαj)

∞∑
k=0

(βαj)
k Et (sj,t,t+k + pt+k) .

28
ECB 
Working Paper Series No 785
July 2007



In turn, backward looking firms merely adjust for inflation the prices they set the last time
they could, i.e.

pb
j,t = p∗j,t−1 + πj,t−1.

As is well known, these four conditions combine to imply a (linearized) hybrid Phillips
curve:

πj,t = λb
j πj,t−1 + λf

j Etπj,t+1 + θj sj,t + εj,t (11)

with λb
j = ωj / φ, λf

j = β αj / φ, and θj = (1−ωj)(1−αj)(1−βαj)
αj+ωj [1−αj(1−β)] , and φ = αj +ωj [1− αj (1− β)].

As before since marginal costs are heterogeneous ex post across firms, the corrected real
marginal cost in sector j writes sj,t = (savg

j,t + pt − pj,t)/ (1 + hj). Both models have an
identical reduced form, but imply different interpretations of the structural parameters.

It continues to be impossible to estimate our model using the GMM approach, as no satis-
factory instruments are available. We therefore continue to impose the additional assumption
that marginal costs are well represented by an autoregressive process of order two. This also
ensures the comparability of our estimates across models. The model we estimate is given by

πt = δ1 πt−1 + ψ
1
st + ψ

2
st−1 + η̄t (12)

In results available upon request, we show analytically that the heterogeneity biases in
this model have virtually identical properties to the ones described in Section 2. In particular,
ML tends to bias estimates of both ω and α upwards. Imposing homogeneity increases both
the apparent prevalence of backward looking behavior and the estimated duration of nomi-
nal rigidities in the aggregate. What is more, the bulk of these inconsistencies stems from
heterogeneity in αj , rather than ωj .

We also estimated industry level Phillips curves as implied by the model in Gaĺı and Gertler
(1999). Since the model implies reduced form that are identical to Christiano, Eichenbaum,
and Evans (2005), Figure 2 continues to illustrate the ability of this theory to fit price dynamics
at the industry level. The interpretation of the structural estimates is however fundamentally
different. We find values for ωj ranging from zero in Energy, Transportation and Business
Services to 0.8 in Personal and Government Services.41 The duration of nominal rigidities,
in turn, ranges from a few days in Food Manufacturing, around one quarter in Agriculture,
Energy or Transportation, to two years and above in the Car industry, Business Services,
Health or Education. As far as nominal rigidities are concerned, these results are in line with
those obtained in Section 5.

Table 6 illustrates how heterogeneity continues to generate sizable inconsistencies in the
context of an alternative model.42 In particular, estimates of λb continue to suffer from

41These results are available upon request.
42The aggregate Phillips curve is estimated as follows. The reduced form is written in terms of the structural

parameters α and ω, and it is this expression that is used to impose restrictions on δ1, ψ1
, and ψ

2
.
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an upwards bias, and on the contrary θ is kept artificially low. We obtain heterogeneous
estimates of λb around 0.33, as opposed to 0.40 under homogeneity. This corresponds to
striking differences in the estimated proportion of backward looking firms, close to a half under
ML, to 0.4 under GMM, and down to 0.23 under the Mean Group estimator. The duration
of nominal rigidities, in turn, range from 1.9 to 2.5 quarters allowing for heterogeneity, while
it is closer to 3 to 3.5 quarters under the standard approach.

Table 7 repeats the exercise allowing for correlated residuals, which strengthens all our
results. Heterogeneous estimates of λb are now down to 0.25, and those of ω as low as 0.17 –
almost three times smaller than the homogeneous ML value of 0.47, and twice smaller than the
GMM estimate. Nominal rigidities continue to last less than 2.5 quarters in all cases, down to
less than 2 under MG-CCE. All these discrepancies are significant at standard confidence levels.
These suggest our conclusions do not hinge on the use of a particular device when modeling
a hybrid Phillips curve. What changes is the interpretation of the structural estimates, but
not the magnitude nor the sign of the inconsistencies we document. In particular, it continues
to be true that backward looking behavior and nominal rigidities are both magnified when
homogeneity is imposed on the data.

7 Conclusion

We show estimates of the aggregate Phillips Curve are biased in the presence of heterogeneity
in firms pricing behavior. We consider two archetypical models of a hybrid Phillips curve,
amended to allow for differences in nominal rigidities and price setting behavior across indus-
tries. We provide the expressions for the inconsistencies that plague Phillips curve estimates
in the presence of heterogeneity, and argue the biases do not all have the same sign, nor the
same magnitude. We show analytically that an approach imposing homogeneity is likely to
underestimate the role of (aggregate) marginal costs in affecting (aggregate) prices, and over-
estimate the apparent (aggregate) backward looking behavior in prices. Simulations suggest
both inconsistencies tend to originate from differences across industries in the duration of
nominal rigidities, and not from differences in the degree of indexation, or ad hoc backward
looking behavior.

We investigate these analytics in French sectoral data, and verify they hold under less
restrictive assumptions. In particular, we implement a battery of heterogeneous estimators,
allowing for deterministic or stochastic heterogeneity, and for the possibility that prices and
marginal costs be correlated across industries. Comparing our results and those implied by
standard homogeneous approaches confirms our analysis. Prices respond to marginal costs and
are more forward looking when firms’ pricing strategies are allowed to differ across industries.
The reduced form coefficient on marginal costs is up to ten times larger when heterogeneity is
permitted, and the proportion of backward looking behavior is around a quarter, as compared
with 0.4 to a half otherwise. Concomitantly our heterogeneous estimates imply an aggregate
duration of nominal rigidities in the vicinity of two quarters, as compared with four to five when
standard homogeneous approaches are implemented on our data. The difference is significant,
and accounts for the discrepancy between the type of nominal rigidities documented in recent
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studies based on disaggregated data, and those that arise from standard aggregate estimates.
The latter simply do not allow for heterogeneity.

Our results are based on French data, and it is thus difficult to ascertain their generality.
To our knowledge, it has so far proved elusive to construct similar datasets elsewhere, that
include quarterly measures of prices and real marginal costs at a disaggregated level. Given the
current interest in disaggregated price dynamics, it is our hope the present exercise provides
but a first step on the way. Whether our conclusions continue to be true elsewhere is an open
question.

Ours is an empirical exercise. We set out to investigate the relevance of heterogeneity in
explaining some of the anomalous results obtained when estimating aggregate Phillips curves.
We have therefore assumed throughout the very shape of a hybrid Phillips curve continues
to hold true on average even in the presence of heterogeneity. We have discussed how stan-
dard estimates ought to be corrected, rather than introducing an altogether novel structural
expression for inflation dynamics. We view this alternative as complementary, and indeed
liable to shed light on the economics behind our results. For instance, our conclusions are
consistent with the presence of strategic complementarities in firms’ pricing across industries,
where price changes are triggered in part by decisions taken in other sectors. There, inaction
is contagious and aggregate prices may appear to barely respond to changes in marginal costs.
The importance of such complementarities is destined to remain a conjecture until a tractable
model of heterogeneous pricing is proposed and estimated.
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Appendix 1: Derivation of the reduced form (Equation (7) in Section 2.3)
The full model of (sectoral) inflation rests on the following system

πj,t = λb
j πj,t−1 + λf

j Etπj,t+1 + θj sj,t + εj,t

sj,t = ρ1j sj,t−1 + ρ2j sj,t−2 + uj,t.

Using the companion form of the second equation, we have

πj,t = λb
j πj,t−1 + λf

j Etπj,t+1 +
(
θj 0

)( sj,t

sj,t−1

)
+ εj,t(

sj,t

sj,t−1

)
= Λj

(
sj,t−1

sj,t−2

)
+

(
uj,t

0

)
where

Λj =

(
ρ1j ρ2j

1 0

)
.

The characteristic equation of the Phillips Curve writes(
1− λb

j L− λf
j L

−1
)
πj,t =

(
θj 0

)( sj,t

sj,t−1

)
+ εj,t

where L denotes the lag operator. The two roots are ξj < 1 and 1
β > 1. The dynamics of

inflation therefore rewrite

1
β

(1− ξjL)
(
1− βL−1

)
πj,t =

1
λj,f

(
θj 0

)( sj,t

sj,t−1

)
+
εj,t
λj,f

.

After some manipulations, this implies

πj,t = ξjπj,t−1 +
β

λf
j

(
θj 0

)
Et

∞∑
k=0

βk

(
sj,t+k

sj,t+k−1

)
+ ηj,t

where ηj,t = (1 + βξj) εj,t.

Using

Et

(
sj,t+k

sj,t+k−1

)
= Λk

j

(
sj,t

sj,t−1

)
we have

πj,t = ξjπj,t−1 +
β

λf
j

(
θj 0

) ∞∑
k=0

(βΛj)
k

(
sj,t

sj,t−1

)
+ ηj,t

= ξjπj,t−1 +
β

λf
j

(
θj 0

)
(I2 − βΛj)

−1

(
sj,t

sj,t−1

)
+ ηj,t

where I2 is the identity matrix of dimension two, and

(I2 − βΛj)
−1 =

1
∆j

(
1 βρ2j

β 1− βρ1j

)



with ∆j = 1− βρ1j − β2ρ2j .

The sectoral reduced-form can thus be expressed as

πj,t = ξjπj,t−1 + ψ1jsj,t + ψ2jsj,t−1 + ηj,t

with

ψ1j =
1− βαj

1− βρ1j − β2ρ2j

1− αj

αj

ψ2j = β ψ1j ρ2j .

Under the assumption that the aggregate Phillips Curve is true on average, aggregate dynamics
are then given by

πt = ξ πt−1 + ψ1 st + ψ2 st−1 + η̄t

st = ρ1 st−1 + ρ2 st−2 + ūt

where the residuals are defined in the text and

ψ1 =
1− βα

1− βρ1 − β2ρ2

1− α

α

ψ2 = β ψ1 ρ2.
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Appendix 2: Proof of Proposition 1

We first establish two lemmas.

Lemma 1 Let X be a random variable and, f and g be two increasing functions, then

cov(f(X), g(X)) ≥ 0.

�

Proof: Assume two independent draws, Xi and Xj (i 6= j), from the distribution of X. Since
f and g are increasing, we have

[f(Xi)− f(Xj)] [g(Xi)− g(Xj)] ≥ 0.

Using the expectation operator, we obtain

E([f(Xi)− f(Xj)] [g(Xi)− g(Xj)]) ≥ 0

which, since Xi and Xj are independent, is equivalent to

E [f(Xi)g(Xi)]− Ef(Xj)Eg(Xi)− Ef(Xi)Eg(Xj) + E [f(Xj)g(Xj)] ≥ 0

or equivalently, since Xi and Xj have the same distribution,

2 (E [f(X)g(X)]− Ef(X)Eg(X)) ≥ 0

Thus
cov(f(X), g(X)) ≥ 0.

�

Lemma 2 Consider the following reduced form

πt = ξ πt−1 + ψ st + η̄t

st = ρj st−1 + ūt

where ψ = 1−βα
1−βρ

1−α
α . Then,

E
(
s2j,t
)

=
σ2

uj

1− ρ2
j

= σ2
Sj

E(πj,tsj,t) =
ψj

1− ξjρj
σ2

Sj

E(πj,t−1sj,t) =
ψjρj

1− ξjρj
σ2

Sj

E(πj,t+1sj,t) =
(

ξjψj

1− ξjρj
+ ψjρj

)
σ2

Sj

E(π2
j,t) =

σ2
ηj

1− ξ2j
+

1 + ξjρj(
1− ξ2j

)
(1− ξjρj)

ψ2
jσ

2
Sj

E(πj,t+1πj,t−1) = ξ2j
σ2

ηj

1− ξ2j
+

 ξ2j (1 + ξjρj)(
1− ξ2j

)
(1− ξjρj)

+
ρj (ξj + ρj)
(1− ξjρj)

ψ2
jσ

2
Sj

�
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Proof: Assuming that all stochastic processes are weakly stationary, we have

E(πj,tsj,t) = E (ξjπj,t−1 + ψjsj,t + ηj,t, sj,t) =
ψj

1− ξjρj
σ2

Sj

E(πj,t−1sj,t) = E (πj,t−1 (ρjsj,t−1 + uj,t)) =
ψjρj

1− ξjρj
σ2

Sj

E(πj,t+1sj,t) = E ((ξjπj,t + ψjsj,t+1 + ηj,t+1) sj,t) =
(

ξjψj

1− ξjρj
+ ψjρj

)
σ2

Sj

E(π2
j,t) = ξ2jE

(
π2

j,t−1

)
+ ψ2

jE
(
s2j,t
)

+ 2ξjψjE (πj,t−1sj,t) + σ2
ηj

=
1

1− ξ2j

[
ψ2

jE
(
s2j,t
)

+ 2ξjψjE (πj,t−1sj,t) + σ2
ηj

]
=

σ2
ηj

1− ξ2j
+

1 + ξjρj(
1− ξ2j

)
(1− ξjρj)

ψ2
jσ

2
Sj

E(πj,t+1πj,t−1) = E ((ξjπj,t + ψjsj,t+1 + ηj,t+1)πj,t−1)

= ξjE ((ξjπj,t−1 + ψjsj,t + ηj,t)πj,t−1) + ψjE ((ρjSj,t + uj,t+1)πj,t−1)

= ξ2jE
(
π2

j,t

)
+ ξjψjE (sj,tπj,t−1) + ψjρjE (sj,tπj,t−1)

= ξ2j

 σ2
ηj

1− ξ2j
+

1 + ξjρj(
1− ξ2j

)
(1− ξjρj)

ψ2
jσ

2
Sj

+
ρjψ

2
j (ξj + ρj)
1− ξjρj

σ2
Sj

= ξ2j
σ2

ηj

1− ξ2j
+

 ξ2j (1 + ξjρj)(
1− ξ2j

)
(1− ξjρj)

+
ρj (ξj + ρj)
(1− ξjρj)

ψ2
jσ

2
Sj
.

�

The ML estimator of (ξ, ψ)′ is given by the two orthogonality conditions

E [(πt − ξML πt−1 − ψML st) πt−1] = 0

E [(πt − ξML πt−1 − ψML st) st] = 0

The nature of η̄t under heterogeneity will induce biases in potentially all the coefficients in the
Phillips curve. In probability limits (when T →∞), these biases write

Λ̃ plim (ξML − ξ) = E
(
s2t
)
E (πt−1η̄t)− E (stπt−1) E (stη̄t)

Λ̃ plim (ψML − ψ) = E
(
π2

t−1

)
E (stη̄t)− E (stπt−1) E (πt−1η̄t)

plim (ρML − ρ) = E (st−1ūt) /E
(
s2t−1

)
where

Λ̃ = E
(
s2t
)
E
(
π2

t−1

)
− (E (stπt−1))2

η̄t =
J∑

j=1

wj ηj,t +
J∑

j=1

wj ξ̃j πj,t−1 +
J∑

j=1

wj ψ̃j sj,t

ūt =
J∑

j=1

wj uj,t +
J∑

j=1

wj ρ̃j sj,t−1

35
ECB 

Working Paper Series No 785
July 2007



Since Λ̃ > 0, the signs of the asymptotic biases are given by the right-hand side expression.
We suppose that (H1) heterogeneity is deterministic, (H2) the weights of all sectors in the
economy are exogenous and uncorrelated with the magnitude of sector-specific estimates of
the Phillips curve, (H3) sector-specific shocks are independent, and (H4) marginal costs follow
a (potentially sector-specific) autoregressive process of order one.

Under H1, we have

plim
T→∞

(ξML − ξ) =
E
(
s2t
)

Λ̃

J∑
j=1

wj ξ̃j E (πt−1πj,t−1) +
E
(
s2t
)

Λ̃

J∑
j=1

wj ψ̃j E (πt−1sj,t)

−E (stπt−1)

Λ̃

J∑
j=1

wj ξ̃j E (stπj,t−1)−
E (stπt−1)

Λ̃

J∑
j=1

wj ψ̃j E (stsj,t)

and

plim
T→∞

(ψML − ψ) =
E
(
π2

t−1

)
Λ̃

J∑
j=1

wj ξ̃j E (stπj,t−1) +
E
(
π2

t−1

)
Λ̃

J∑
j=1

wj ψ̃j E (stsj,t)

−E (stπt−1)

Λ̃

J∑
j=1

wj ξ̃j E (πt−1πj,t−1)−
E (stπt−1)

Λ̃

J∑
j=1

wj ψ̃j E (πt−1sj,t) .

The expression for plimT→∞ (ξML − ξ) can be written as the sum of two terms

C1 = C11 + C12 =
E
(
s2t
)

Λ̃

J∑
j=1

wj ξ̃j E (πt−1πj,t−1)−
E (stπt−1)

Λ̃

J∑
j=1

wj ξ̃j E (stπj,t−1)

C2 = C21 + C22 =
E
(
s2t
)

Λ̃

J∑
j=1

wj ψ̃j E (πt−1sj,t)−
E (stπt−1)

Λ̃

J∑
j=1

wj ψ̃j E (stsj,t) .

Similarly, plimT→∞ (ψML − ψ) can be decomposed into

D1 = D11 +D12 =
E
(
π2

t−1

)
Λ̃

J∑
j=1

wj ξ̃j E (stπj,t−1)−
E (stπt−1)

Λ̃

J∑
j=1

wj ξ̃j E (πt−1πj,t−1)

D2 = D21 +D22 =
E
(
π2

t−1

)
Λ̃

J∑
j=1

wj ψ̃j E (stsj,t)−
E (stπt−1)

Λ̃

J∑
j=1

wj ψ̃j E (πt−1sj,t) .

Applying Lemma 2, H4 and H5, C11 becomes

C11 =
E
(
s2t
)

Λ̃J

J∑
j=1

ξ̃j

 σ2
ηj

1− ξ2j
+

1 + ξjρj(
1− ξ2j

)
(1− ξjρj)

ψ2
jσ

2
Sj

 .

Under weak stationary, and assuming for simplicity wj = 1/J for all j, we have

lim
J→∞

1
J

J∑
j=1

ξ̃j

 σ2
ηj

1− ξ2j
+

1 + ξjρj(
1− ξ2j (1− ξjρj)

ψ2
jσ

2
Sj

 = cov
(
ξ̃j , C̃11j

)
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where we have defined C̃11j =
σ2

ηj

1−ξ2
j

+ 1+ξjρj

(1−ξ2
j )(1−ξjρj)

ψ2
jσ

2
Sj

. Therefore we have

lim
J→∞

C11 =
1
Λ̃
E
(
s2t
)
cov

(
ξ̃j , C̃11j

)
whose sign we now seek to determine. Since Λ̃ and E

(
s2t
)

are always positive, the sign of

C11 depends asymptotically on the sign of cov
(
ξ̃j , C̃11j

)
. It is straightforward to show that

ξ̃j and C̃11j both increase in ξj . Therefore a direct application of lemma 1 implies that C11 is
positive as J →∞.

Following a similar line of reasoning, one can show that

lim
J→∞

C12 = − 1

Λ̃
E(stπt−1) cov

(
ξ̃j ,

ψjρj

1− ξjρj
σ2

Sj

)
< 0

lim
J→∞

C21 =
1

Λ̃
E(s2t ) cov

(
ψ̃j ,

ψjρj

1− ξjρj
σ2

Sj

)
> 0

lim
J→∞

C22 = − 1

Λ̃
E(stπt−1) cov

(
ψ̃j ,

σ2
uj

1− ρ2
j

)
< 0.

In other words, C12, C21 and C22 all have signs unambiguously determined by covariance
terms. A direct application of lemma 1 makes it possible to sign all three expressions. C21

and C22 involve covariance terms between functions that are both increasing in ρj , whereas
they increase in ξj as pertains to C12.

Similarly, the asymptotic biases on Dis are given by

lim
J→∞

D11 =
1

Λ̃
E(π2

t−1) cov
(
ξ̃j ,

ψjρj

1− ξjρj
σ2

Sj

)
> 0

lim
J→∞

D12 = − 1

Λ̃
E(stπt−1) cov

ξ̃j , σ2
ηj

1− ξ2j
+

1 + ξjρj(
1− ξ2j

)
(1− ξjρj)

ψ2
jσ

2
Sj

 < 0

lim
J→∞

D21 =
1

Λ̃
E(π2

t−1) cov

(
ψ̃j ,

σ2
uj

1− ρ2
j

)
> 0

lim
J→∞

D22 = − 1

Λ̃
E(stπt−1) cov

(
ψ̃j ,

ψjρj

1− ξjρj
σ2

Sj

)
< 0.

Again, all components of the bias have signs that are fully determined by covariance
terms, and lemma 1 is sufficient to establish the signs of each element given unambiguous
monotonicity properties of the functions whose covariances we seek to evaluate. Finally,
the bias on ρML depends on the covariance between the persistence of the marginal cost
ρ̃j = (ρj − ρ) and the parameters δj = wjE (stsj,t). Under (H2) and (H3), we have δj =
wjσ

2
uj/(1 − ρ2

j ), which increases in ρj . As a consequence, the asymptotic bias on ρML is
positive.
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Appendix 3: List of Industries

• Agriculture [1]

• Manufacturing

– Food manufacturing [2]

– Consumption goods [3]

– Car industry [4]

– Equipment goods [5]

– Intermediary goods [6]

– Energy [7]

• Service

– Construction [8]

– Trade [9]

– Transportation [10]

– Financial activities [11]

– Real estate [12]

– Business services [13]

– Personal services [14]

– Education and health services [15]

– Government [16]
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Appendix 4: Cross-Industry Linkages

Table A1: Correlations of sectoral Phillips Curve residuals

Industry [1] [2] [3] [4] [5] [6] [7] [8]

[1] 1.000
[2] 0.098 1.000
[3] 0.222∗ −0.019 1.000
[4] −0.081 0.079 0.293∗ 1.000
[5] 0.094 0.113 0.333∗ 0.422∗ 1.000
[6] 0.035 0.075 −0.127 0.025 0.089 1.000
[7] 0.044 0.256∗ −0.042 −0.084 0.198∗ −0.059 1.000
[8] −0.017 0.202∗ 0.078 0.151 0.120 0.171 0.038 1.000
[9] −0.064 0.186 −0.103 −0.229∗ −0.206∗ 0.070 −0.007 −0.145
[10] 0.191 −0.021 0.193 0.091 0.004 0.173 −0.016 0.121
[11] 0.030 −0.068 0.122 0.114 0.120 −0.217∗ 0.031 −0.129
[12] −0.119 0.094 0.086 −0.047 0.033 −0.116 0.313∗ 0.213∗

[13] 0.112 −0.062 0.048 −0.068 0.033 −0.009 −0.673∗ 0.034
[14] 0.140 0.076 0.305∗ 0.152 0.260∗ 0.071 0.178 0.262∗

[15] −0.010 0.017 0.283∗ 0.216∗ 0.281∗ −0.031 −0.023 0.142
[16] −0.035 0.173 0.005 0.065 0.034 0.024 0.061 0.069

Industry [9] [10] [11] [12] [13] [14] [15] [16]

[9] 1.000
[10] −0.034 1.000
[11] −0.281∗ −0.034 1.000
[12] −0.104 0.040 −0.085 1.000
[13] 0.067 0.022 −0.025 −0.261∗ 1.000
[14] −0.288∗ 0.111 0.027 0.439∗ −0.080 1.000
[15] −0.116 −0.013 0.018 0.167 −0.052 0.235∗ 1.000
[16] 0.045 −0.011 −0.037 0.088 0.028 0.072 0.259∗ 1.000

Note: The notation ∗ means that the correlation is statistically significant at 5% level.
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Table A2: Correlations of sectoral real marginal cost residuals

Industry [1] [2] [3] [4] [5] [6] [7] [8]

[1] 1.000
[2] −0.008 1.000
[3] 0.209∗ −0.003 1.000
[4] 0.233∗ 0.092 0.177 1.000
[5] 0.247∗ −0.014 0.098 0.398∗ 1.000
[6] 0.244∗ 0.109 0.289∗ 0.259∗ 0.309∗ 1.000
[7] −0.038 0.193 −0.013 −0.064 0.074 0.015 1.000
[8] 0.099 0.003 0.252∗ 0.188 0.088 0.349∗ −0.019 1.000
[9] 0.120 0.210∗ 0.311∗ 0.206∗ 0.076 0.346∗ −0.022 0.140
[10] 0.137 0.100 0.177 0.169 0.025 0.331∗ 0.070 0.095
[11] 0.006 −0.054 0.091 0.180 0.041 0.073 −0.018 0.055
[12] −0.060 0.082 0.188 −0.179 0.019 0.246∗ 0.152 0.106
[13] 0.068 −0.042 0.208∗ 0.078 0.070 0.056 −0.672∗ 0.066
[14] 0.013 0.100 0.135 0.115 −0.050 −0.005 0.056 0.275∗

[15] −0.090 −0.079 0.066 0.140 0.116 0.047 −0.062 0.084
[16] 0.085 −0.113 −0.097 0.000 0.111 −0.102 −0.046 −0.113

Industry [9] [10] [11] [12] [13] [14] [15] [16]

[9] 1.000
[10] 0.191 1.000
[11] −0.080 0.133 1.000
[12] 0.145 −0.056 −0.005 1.000
[13] 0.089 −0.070 0.085 0.055 1.000
[14] 0.031 0.115 0.169 −0.087 0.005 1.000
[15] 0.054 −0.011 −0.026 −0.047 −0.032 0.198 1.000
[16] −0.101 −0.086 0.162 −0.267∗ −0.023 0.159 0.493∗ 1.000

Note: The notation ∗ means that the correlation is statistically significant at 5% level.
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Table 1: Simulations with 16 Sectors

True Value ML Decomposition

Reduced Form - Equation (9)
C1 C2

ξ 0.489 0.786 0.041 0.250
D1 D2

ψ 3.637 2.114 −0.197 −1.310
ρ 0.935 0.934
Reduced Form - Equation (5)
λb 0.328 0.442
λf 0.668 0.556
θ 0.182 0.089
Structural Estimates
ξ 0.489 0.786
α 0.600 0.677
Duration 2.503 3.092

Note: The true values used for the simulations correspond to the random coefficient estimation of the
aggregate Phillips Curve with an AR(1) dynamic for the real marginal cost (unreported estimates).
The variances of the random parameters are set at 0.1 for ξ and α. There is no heterogeneity in ρ.
Uniform weights are used to compute aggregate estimates. The sample size is T = 1000.
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Table 2: Summary statistics

Industry Weights π̄ s̄ corr(πt−1, πt) corr(st−1, st) corr(πt, st)

Aggregate 100.00 3.996 −0.095 0.921 0.984 0.887
Agriculture 2.92 1.255 −0.276 0.782 0.977 −0.247
Food Mfg 2.33 3.477 −0.102 −0.075 0.778 −0.320
Cons. Goods 3.02 2.639 −0.087 0.620 0.939 0.367
Car 0.96 3.293 −3.616 0.291 0.981 0.198
Equip. Goods 2.96 0.237 −0.128 0.041 0.915 −0.412
Inter. Goods 5.72 2.788 −1.007 0.725 0.988 0.600
Energy 2.18 5.393 −0.934 −0.281 0.683 −0.449
Construction 6.67 4.889 −0.327 0.511 0.977 0.389
Trade 10.57 4.241 −0.253 0.760 0.974 0.662
Transportation 3.76 2.935 −0.112 0.027 0.777 0.034
Finance 5.01 3.366 −0.410 0.600 0.971 0.143
Real Estate 11.82 5.023 −0.272 0.864 0.983 −0.683
Business Serv. 14.19 3.635 −0.021 −0.290 0.946 −0.362
Personal Serv. 5.75 5.486 0.062 0.758 0.961 −0.707
Educ. & Health 13.94 5.542 −0.261 0.933 0.986 0.848
Govt. 8.21 4.419 −0.050 0.954 0.917 0.484
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Table 3: Sectoral Phillips Curves

Industry Agriculture Food Cons. Car Equip. Interm. Energy Construction

Reduced Form - Equation (7)
ξ 0.776∗∗∗

(0.061)
0.519∗∗∗

(0.085)
0.612∗∗∗

(0.074)
0.296∗∗∗

(0.077)
0.149∗
(0.084)

0.462∗∗∗
(0.066)

0.082
(0.114)

0.503∗∗∗
(0.071)

ψ1 16.01
(11.32)

13.22∗∗
(4.005)

1.499∗∗∗
(0.528)

0.228∗∗∗
(0.081)

0.010
(0.168)

0.851∗∗∗
(0.162)

21.08∗
(12.12)

1.964∗∗∗
(0.599)

ψ2 −12.01∗∗∗
(0.889)

−3.535∗∗∗
(0.557)

0.038
(0.130)

−0.063∗∗
(0.019)

0.010
(0.033)

−0.136∗∗∗
(0.064)

−1.685
(1.433)

−0.422∗∗∗
(0.158)

ρ1 1.708∗∗∗
(0.058)

0.916∗∗∗
(0.086)

0.913∗∗∗
(0.088)

1.249∗∗∗
(0.078)

0.855∗∗∗
(0.088)

1.134∗∗∗
(0.077)

0.710∗∗∗
(0.080)

1.194∗∗∗
(0.082)

ρ2 −0.758∗∗∗
(0.056)

−0.270∗∗∗
(0.042)

0.026
(0.088)

−0.278∗∗∗
(0.077)

0.009
(0.087)

−0.162∗∗∗
(0.075)

−0.081
(0.069)

−0.217∗∗∗
(0.082)

Reduced Form - Equation (3)
λb 0.438∗∗∗

(0.019)
0.343∗∗∗

(0.037)
0.380∗∗∗

(0.029)
0.229∗∗∗

(0.046)
0.130∗∗
(0.064)

0.317∗∗∗
(0.031)

0.076
(0.098)

0.336∗∗∗
(0.032)

λf 0.560∗∗∗
(0.019)

0.653∗∗∗
(0.036)

0.617∗∗∗
(0.028)

0.765∗∗∗
(0.045)

0.862∗∗∗
(0.063)

0.679∗∗∗
(0.030)

0.916∗∗∗
(0.096)

0.661∗∗∗
(0.031)

θ 0.466
(0.400)

3.126∗∗
(1.381)

0.066
(0.047)

0.006
(0.005)

0.001
(0.021)

0.021∗
(0.012)

7.349
(5.352)

0.040∗∗∗
(0.035)

Structural Estimates
ξ 0.776∗∗∗

(0.061)
0.519∗∗∗

(0.084)
0.612∗∗∗

(0.074)
0.296∗∗∗

(0.077)
0.149∗
(0.084)

0.462∗∗∗
(0.066)

0.082
(0.114)

0.503∗∗∗
(0.071)

α 0.416∗∗∗
(0.150)

0.152∗∗∗
(0.052)

0.727∗∗∗
(0.084)

0.918∗∗∗
(0.034)

0.967∗∗∗
(0.310)

0.843∗∗∗
(0.040)

0.102
(0.066)

0.786∗∗∗
(0.083)

Duration 1.712∗∗∗
(0.441)

1.179∗∗∗
(0.072)

3.663∗∗∗
(1.131)

12.26∗∗
(5.068)

30.42∗∗∗
(28.69)

6.378∗∗∗
(1.627)

1.113∗∗∗
(0.082)

4.673∗∗
(1.810)

Industry Trade Transp. Finance Real Estate Business Pers. Serv. Educ. Health Govt

Reduced Form - Equation (7)
ξ 0.531∗∗∗

(0.066)
0.049
(0.084)

0.577∗∗∗
(0.067)

0.845∗∗∗
(0.047)

0.010
(0.079)

0.771∗∗∗
(0.066)

0.718∗∗∗
(0.062)

0.930∗∗∗
(0.034)

ψ1 2.306∗∗∗
(0.438)

5.481∗∗∗
(1.552)

3.409∗∗∗
(1.047)

0.010
(0.100)

0.010
(0.010)

0.010
(0.411)

0.694∗∗∗
(0.185)

0.040
(0.061)

ψ2 −0.582∗∗
(0.179)

0.479
(0.422)

−1.931∗∗∗
(0.192)

−0.007
(0.239)

0.010
(0.010)

−0.002
(0.112)

0.137∗
(0.070)

0.008
(0.009)

ρ1 1.219∗∗∗
(0.081)

0.704∗∗∗
(0.083)

1.525∗∗∗
(0.060)

1.664∗∗∗
(0.069)

0.872∗∗∗
(0.074)

1.129∗∗∗
(0.097)

0.767∗∗∗
(0.101)

0.733∗∗∗
(0.096)

ρ2 −0.255∗∗∗
(0.079)

0.088
(0.077)

−0.572∗∗∗
(0.055)

−0.701∗∗∗
(0.068)

0.015
(0.069)

−0.202∗∗
(0.096)

0.199∗∗
(0.099)

0.207∗∗
(0.097)

Reduced Form - Equation (3)
λb 0.348∗∗∗

(0.028)
0.047
(0.076)

0.367∗∗∗
(0.027)

0.460∗∗∗
(0.014)

0.009
(0.078)

0.437∗∗∗
(0.021)

0.419∗∗∗
(0.021)

0.484∗∗∗
(0.009)

λf 0.648∗∗∗
(0.028)

0.943∗∗∗
(0.075)

0.630∗∗∗
(0.027)

0.539∗∗∗
(0.014)

0.980∗∗∗
(0.076)

0.561∗∗∗
(0.021)

0.579∗∗∗
(0.021)

0.516∗∗∗
(0.009)

θ 0.065∗
(0.040)

1.132∗
(0.604)

0.112∗
(0.066)

0.001
(0.008)

0.001
(0.026)

0.001
(0.019)

0.018∗∗
(0.009)

0.002
(0.002)

Structural Estimates
ξ 0.531∗∗∗

(0.066)
0.049
(0.084)

0.577∗∗∗
(0.067)

0.845∗∗∗
(0.047)

0.010
(0.010)

0.771∗∗∗
(0.066)

0.718∗∗∗
(0.062)

0.930∗∗∗
(0.034)

α 0.734∗∗∗
(0.071)

0.944∗∗∗
(0.075)

0.663∗∗∗
(0.084)

0.984∗∗∗
(0.344)

0.970∗∗∗
(0.368)

0.976∗
(0.560)

0.842∗∗∗
(0.034)

0.952∗∗∗
(0.040)

Duration 3.762∗∗∗
(1.011)

1.547∗∗∗
(0.218)

2.966∗∗∗
(0.737)

64.30∗∗∗
(21.49)

33.50∗∗∗
(12.26)

42.60
(101.2)

3.326∗∗∗
(1.349)

21.06
(17.66)

Note: Standard deviation in parentheses. Marginal costs are allowed to follow an autoregressive process
of order two. The estimates are obtained using a Maximum Likelihood procedure.
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Table 4: Aggregate Phillips Curves

GMM ML MG MG∗ RC RC∗ RC2 RC∗
2

Reduced Form - Equation (10)
ξ 0.467∗∗

(0.119)
0.666∗∗∗

(0.065)
0.530∗∗∗

(0.025)
0.489∗∗∗

(0.018)
0.488∗∗∗

(0.076)
0.488∗∗∗

(0.075)
0.496∗∗∗

(0.085)
0.497∗∗∗

(0.084)

ψ1 1.513∗∗∗
(0.363)

2.171∗∗∗
(0.205)

4.176∗∗∗
(0.398)

2.714
(1.792)

2.669
(1.715)

2.834∗
(1.584)

2.790∗∗
(1.425)

ψ2 0.006
(0.159)

−0.334∗∗∗
(0.051)

−0.762∗∗∗
(0.073)

−0.523∗∗
(0.201)

−0.515∗∗
(0.197)

−0.564∗∗
(0.232)

−0.556∗∗
(0.228)

ρ1 0.969∗∗∗
(0.106)

1.080∗∗∗
(0.025)

1.081∗∗∗
(0.020)

1.099∗∗∗
(0.085)

1.100∗∗∗
(0.085)

1.101∗∗∗
(0.095)

1.102∗∗∗
(0.095)

ρ2 0.004
(0.106)

−0.155∗∗∗
(0.024)

−0.184∗∗∗
(0.018)

−0.195∗∗∗
(0.076)

−0.195∗∗∗
(0.075)

−0.201∗∗
(0.084)

−0.201∗∗
(0.083)

Reduced Form - Equation (5)
λb 0.319∗∗∗

(0.056)
0.402∗∗∗

(0.024)
0.347∗∗∗

(0.011)
0.329∗∗∗

(0.008)
0.329∗∗∗

(0.035)
0.329∗∗∗

(0.034)
0.333∗∗∗

(0.038)
0.333∗∗∗

(0.038)

λf 0.680∗∗∗
(0.057)

0.597∗∗∗
(0.024)

0.659∗∗∗
(0.017)

0.667∗∗∗
(0.008)

0.667∗∗∗
(0.034)

0.667∗∗∗
(0.034)

0.664∗∗∗
(0.037)

0.664∗∗∗
(0.037)

θ 0.098
(0.071)

0.034∗
(0.019)

0.118∗∗∗
(0.015)

0.311∗∗∗
(0.047)

0.187
(0.169)

0.183
(0.161)

0.203
(0.173)

0.199
(0.161)

Structural Estimates
ξ 0.467∗∗

(0.119)
0.666∗∗∗

(0.065)
0.530∗∗∗

(0.025)
0.489∗∗∗

(0.018)
0.488∗∗∗

(0.076)
0.488∗∗∗

(0.075)
0.496∗∗∗

(0.085)
0.497∗∗∗

(0.084)

α 0.688∗∗∗
(0.197)

0.794∗∗∗
(0.058)

0.659∗∗∗
(0.017)

0.515∗∗∗
(0.024)

0.593∗∗∗
(0.136)

0.599∗∗∗
(0.131)

0.583∗∗∗
(0.128)

0.585∗∗∗
(0.120)

Duration 3.201
(2.028)

4.843∗∗∗
(1.364)

2.931∗∗∗
(0.143)

2.060∗∗∗
(0.102)

2.477∗∗∗
(0.832)

2.496∗∗∗
(0.815)

2.396∗∗
(0.733)

2.411∗∗∗
(0.699)

Note: Standard deviation in parentheses. All estimators use observed industry weights, except those
denoted by an asterisk where uniform weights are used instead. RC denotes the estimator proposed
by Swamy (1970), and RC2 denotes the alternative where both terms in ∆̂ are included.

48
ECB 
Working Paper Series No 785
July 2007



Table 5: Aggregate Phillips Curves - Correlated Effects

SURE CCE
GMM ML MG RC MG RC

Reduced Form - Equation (10)
ξ 0.467∗∗∗

(0.119)
0.666∗∗∗

(0.065)
0.470∗∗∗

(0.020)
0.403∗∗∗

(0.067)
0.405∗∗∗

(0.021)
0.348∗∗∗

(0.071)

ψ1 1.513∗∗∗
(0.363)

1.920∗∗∗
(0.213)

1.921
(1.646)

1.975∗∗∗
(0.216)

3.125∗
(1.756)

ψ2 0.006∗∗∗
(0.159)

−0.550∗∗∗
(0.032)

−0.494∗∗∗
(0.111)

−0.180∗∗∗
(0.054)

−0.054
(0.189)

ρ1 0.969∗∗∗
(0.106)

1.197∗∗∗
(0.018)

1.154∗∗∗
(0.072)

0.983∗∗∗
(0.029)

0.887∗∗∗
(0.125)

ρ2 0.004∗∗∗
(0.106)

−0.290∗∗∗
(0.017)

−0.260∗∗∗
(0.060)

−0.093∗∗∗
(0.028)

−0.028
(0.097)

Reduced Form - Equation (5)
λb 0.319∗∗∗

(0.056)
0.402∗∗∗

(0.024)
0.321∗∗∗

(0.009)
0.288∗∗∗

(0.034)
0.289∗∗∗

(0.011)
0.258∗∗∗

(0.039)

λf 0.680∗∗∗
(0.057)

0.597∗∗∗
(0.024)

0.675∗∗∗
(0.009)

0.708∗∗∗
(0.033)

0.707∗∗∗
(0.030)

0.736∗∗∗
(0.038)

θ 0.098∗∗∗
(0.071)

0.034∗
(0.019)

0.129∗∗∗
(0.017)

0.154
(0.143)

0.166∗∗∗
(0.022)

0.345
(0.251)

Structural Estimates
ξ 0.467∗∗∗

(0.119)
0.666∗∗∗

(0.065)
0.470∗∗∗

(0.020)
0.403∗∗∗

(0.067)
0.405∗∗∗

(0.021)
0.348∗∗∗

(0.071)

α 0.688∗∗∗
(0.197)

0.794∗∗∗
(0.058)

0.652∗∗∗
(0.019)

0.633∗∗∗
(0.133)

0.623∗∗∗
(0.018)

0.513∗∗∗
(0.120)

Duration 3.209
(2.028)

4.843∗∗∗
(1.364)

2.872∗∗∗
(0.152)

2.726∗∗∗
(0.992)

2.650∗∗∗
(0.128)

2.055∗∗∗
(0.508)

Note: Standard deviation in parentheses. All estimators use observed industry weights.

49
ECB 

Working Paper Series No 785
July 2007



Table 6: Aggregate Phillips Curves - Gaĺı and Gertler (1999)

GMM ML MG MG∗ RC RC∗ RC2 RC∗
2

Reduced Form - Equation (12)
δ1 0.538∗∗∗

(0.094)
0.666∗∗∗

(0.064)
0.531∗∗∗

(0.025)
0.491∗∗∗

(0.018)
0.492∗∗∗

(0.077)
0.492∗∗∗

(0.076)
0.520∗∗∗

(0.074)
0.531∗∗∗

(0.073)

ψ1 1.514∗∗∗
(0.424)

2.122∗∗∗
(0.199)

4.082∗∗∗
(0.390)

2.664
(1.737)

2.632∗
(1.615)

2.927∗∗
(1.352)

2.913∗∗
(1.248)

ψ2 0.006
(0.146)

−0.582∗∗∗
(0.088)

−1.148∗∗∗
(0.167)

−0.620
(0.726)

−0.611∗∗
(0.711)

−0.746∗
(0.421)

−0.765∗
(0.456)

ρ1 0.969∗∗∗
(0.098)

1.080∗∗∗
(0.025)

1.081∗∗∗
(0.020)

1.102∗∗∗
(0.085)

1.100∗∗∗
(0.085)

1.115∗∗∗
(0.082)

1.117∗∗∗
(0.082)

ρ2 0.004
(0.099)

−0.155∗∗∗
(0.024)

−0.185∗∗∗
(0.018)

−0.195∗∗∗
(0.076)

−0.195∗∗∗
(0.075)

−0.217∗∗∗
(0.072)

−0.220∗∗
(0.072)

Reduced Form - Equation (11)
λb 0.351∗∗∗

(0.064)
0.402∗∗∗

(0.024)
0.349∗∗∗

(0.011)
0.331∗∗∗

(0.008)
0.331∗∗∗

(0.035)
0.331∗∗∗

(0.035)
0.344∗∗∗

(0.032)
0.349∗∗∗

(0.032)

λf 0.645∗∗∗
(0.065)

0.595∗∗∗
(0.024)

0.647∗∗∗
(0.011)

0.664∗∗∗
(0.008)

0.664∗∗∗
(0.035)

0.664∗∗∗
(0.035)

0.651∗∗∗
(0.033)

0.647∗∗∗
(0.032)

θ 0.080∗
(0.042)

0.039∗
(0.022)

0.119∗∗∗
(0.012)

0.314∗∗∗
(0.030)

0.187
(0.124)

0.184∗
(0.112)

0.218∗
(0.104)

0.219∗∗
(0.093)

Structural Estimates
ω 0.368∗∗∗

(0.037)
0.475∗∗∗

(0.064)
0.320∗∗∗

(0.015)
0.231∗∗∗

(0.011)
0.270∗∗∗

(0.066)
0.271∗∗∗

(0.062)
0.270∗∗∗

(0.057)
0.275∗∗∗

(0.054)

α 0.684∗∗∗
(0.097)

0.708∗∗∗
(0.059)

0.600∗∗∗
(0.014)

0.469∗∗∗
(0.014)

0.546∗∗∗
(0.095)

0.548∗∗∗
(0.088)

0.518∗∗∗
(0.066)

0.515∗∗∗
(0.059)

Duration 3.165∗∗∗
(0.094)

3.430∗∗∗
(0.690)

2.502∗∗∗
(0.085)

1.881∗∗∗
(0.050)

2.073∗∗∗
(0.408)

2.061∗∗∗
(0.375)

2.073∗∗
(0.283)

2.062∗∗∗
(0.250)

Note: Standard deviation in parentheses. All estimators use observed industry weights, except those
denoted by an asterisk where uniform weights are used instead. RC denotes the estimator proposed
by Swamy (1970), and RC2 denotes the alternative where both terms in ∆̂ are included.
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Table 7: Aggregate Phillips Curves - Correlated Effects, Gaĺı and Gertler (1999)

SURE CCE
GMM ML MG RC MG RC

Reduced Form - Equation (12)
δ1 0.538∗∗∗

(0.094)
0.666∗∗∗

(0.064)
0.470∗∗∗

(0.007)
0.411∗∗∗

(0.067)
0.346∗∗∗

(0.017)
0.347∗∗∗

(0.070)

ψ1 1.514∗∗∗
(0.424)

1.895∗∗∗
(0.650)

1.923
(1.600)

3.095∗∗∗
(0.406)

3.009∗
(1.692)

ψ2 0.006
(0.146)

−0.756∗
(0.422)

−0.723
(0.979)

−1.150∗∗∗
(0.274)

−1.426
(1.151)

ρ1 0.969∗∗∗
(0.098)

1.197∗∗∗
(0.018)

1.165∗∗∗
(0.072)

0.975∗∗∗
(0.022)

0.975∗∗∗
(0.092)

ρ2 0.004
(0.099)

−0.290∗∗∗
(0.017)

−0.267∗∗∗
(0.060)

−0.101∗∗∗
(0.019)

−0.101∗∗∗
(0.079)

Reduced Form - Equation (11)
λb 0.351∗∗∗

(0.064)
0.402∗∗∗

(0.024)
0.321∗∗∗

(0.003)
0.292∗∗∗

(0.034)
0.258∗∗∗

(0.009)
0.258∗∗∗

(0.039)

λf 0.645∗∗∗
(0.065)

0.595∗∗∗
(0.024)

0.674∗∗∗
(0.009)

0.702∗∗∗
(0.034)

0.736∗∗∗
(0.009)

0.736∗∗∗
(0.038)

θ 0.080∗
(0.042)

0.039∗
(0.022)

0.130∗∗∗
(0.045)

0.150
(0.126)

0.312∗∗∗
(0.040)

0.304∗
(0.164)

Structural Estimates
ω 0.368∗∗∗

(0.037)
0.475∗∗∗

(0.064)
0.284∗∗∗

(0.019)
0.245∗∗∗

(0.056)
0.173∗∗∗

(0.008)
0.175∗∗∗

(0.034)

α 0.684∗∗∗
(0.097)

0.708∗∗∗
(0.059)

0.602∗∗∗
(0.049)

0.594∗∗∗
(0.121)

0.499∗∗∗
(0.021)

0.503∗∗∗
(0.091)

Duration 3.165∗∗∗
(0.094)

3.430∗∗∗
(0.690)

2.512∗∗∗
(0.307)

2.466∗∗∗
(0.889)

1.995∗∗∗
(0.085)

2.013∗∗∗
(0.369)

Note: Standard deviation in parentheses. All estimators use observed industry weights.
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Figure 1: Two-Sector Simulations
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Figure 2: Sectoral Inflation Rates (unfiltered)
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Figure 2: Sectoral Inflation Rates (unfiltered) - Continued
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Figure 3: Sectoral Marginal Costs (unfiltered)
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Figure 3: Sectoral Marginal Costs (unfiltered) - Continued
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Figure 4: Aggregate Inflation and Marginal Costs (unfiltered)
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Figure 5: Industry Phillips Curves
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