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Abstract

In this paper we study the zero frequency spectral properties of
fractionally cointegrated long memory processes and introduce a new
frequency domain principal components estimator of the cointegration
space and the factor loading matrix for the long memory factors. We
find that for fractionally differenced (fractionally) cointegrated pro-
cesses the squared multiple coherence at the zero frequency is equal
to one, the spectral density matrix at the zero frequency is singular,
and the factor loading and cointegrating matrices can be obtained
from the eigenvectors of the spectral matrix at the zero frequency, as-
sociated with the positive and zero roots, respectively. A Monte Carlo
simulation reveals that the proposed principal components estimator
has already good properties with relatively small sample sizes.
Keywords: Fractional cointegration, long memory, frequency do-

main analysis.
J.E.L: C22
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Non-technical summary

As shown by Phillips (1986) and Robinson and Yajima (2002), for the case of I(1) and

long memory processes (I(d) 0<d<0.5), respectively, cointegration implies that the

spectral matrix of the differenced processes at the zero frequency is of reduced rank,

equal to the number of common persistent (I(1), I(d)) factors in the system. Phillips

(1986) and Phillips and Ouliaris (1988) have also shown that the number of zero

eigenvalues of the spectral matrix of the differenced series at the zero frequency is

equal to the number of cointegrating relationships, and that the cointegrating vectors are

the associated eigenvectors. In the paper we show that an estimator of the factor loading

and cointegrating matrices can be obtained from the eigenvectors of the spectral matrix

of the fractionally differenced processes at the zero frequency, associated with the

positive and zero roots, respectively. While the results in this paper are derived for long

memory processes, the same conclusions apply for the case of cointegrated I(1)

processes. This follows from the definition of cointegration adopted, which is the same

as the one employed by Engle and Granger (1987). In the paper we exploit this

important result and propose a frequency domain principal components estimator of the

cointegration space and the factor loading matrix for the common long memory factors,

which can then be estimated using the Kasa (1992) decomposition. We also show that

an equivalent approach can be implemented using the series in levels as the frequency

tends to zero. A Monte Carlo simulation shows that the proposed estimator has good

properties already with relatively small sample sizes. In the paper we also show that the

multiple squared coherence at the zero frequency for fractionally differenced

(fractionally) cointegrated processes is equal to one, while the simple squared

coherences assume a value greater than zero but lower than one. In the bivariate case

the multiple and simple squared coherence coincide and, therefore, the simple squared

coherence at the zero frequency assumes a unitary value. These results extend the

previous findings of Granger and Weiss (1983) and Levy (2002) for I(1) processes. We

also find that processes that are not fractionally cointegrated show in general positive,

but lower than one, multiple and simple squared coherences at the zero frequency. In

the case the dependent and independent variables are driven by different long memory

factors, i.e. in the case the dependent variable is orthogonal at the zero frequency to any

of the regressors, the squared multiple coherence will assume a zero value, as any of the

squared simple coherences. We finally show that all the above results also hold for the

series in levels, as the frequency tends to zero. In addition to be of theoretical interest,

all the properties derived in the paper may be exploited in practice, as is shown in the

two empirical applications which conclude the paper.
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1 Introduction

As shown by Phillips (1986) and Robinson and Yajima (2002), for the case
of I(1) and long memory processes (I(d) 0 < d < 0.5), respectively, cointe-
gration implies that the spectral matrix of the differenced processes at the
zero frequency is of reduced rank, equal to the number of common persistent
(I(1), I(d)) factors in the system.1 Phillips (1986) and Phillips and Ouliaris
(1988) have also shown that the number of zero eigenvalues of the spectral
matrix of the differenced series at the zero frequency is equal to the number
of cointegrating relationships, and that the cointegrating vectors are the as-
sociated eigenvectors. In the paper we show that an estimator of the factor
loading and cointegrating matrices can be obtained from the eigenvectors of
the spectral matrix of the fractionally differenced processes at the zero fre-
quency, associated with the positive and zero roots, respectively. While the
results in this paper are derived for long memory processes, the same conclu-
sions apply for the case of cointegrated I(1) processes. This follows from the
definition of cointegration adopted, which is the same as the one employed
by Engle and Granger (1987). In the paper we exploit this important result
and propose a frequency domain principal components estimator of the coin-
tegration space and the factor loading matrix for the common long memory
factors, which can then be estimated using the Kasa (1992) decomposition.
We also show that an equivalent approach can be implemented using the se-
ries in levels as the frequency tends to zero. A Monte Carlo simulation shows
that the proposed estimator has good properties already with relatively small
sample sizes. In the paper we also show that the multiple squared coherence
at the zero frequency for fractionally differenced (fractionally) cointegrated
processes is equal to one, while the simple squared coherences assume a value
greater than zero but lower than one. In the bivariate case the multiple and
simple squared coherence coincide and, therefore, the simple squared coher-
ence at the zero frequency assumes a unitary value. These results extend
the previous findings of Granger and Weiss (1983) and Levy (2002) for I(1)
processes.2 We also find that processes that are not fractionally cointegrated
show in general positive, but lower than one, multiple and simple squared
coherences at the zero frequency. In the case the dependent and independent

1Robinson and Yajima (2002) have demonstrated this result as the frequency tends to
zero. Marinucci and Robinson (1998) have also shown that this result holds for the series
in levels. The two results are related since for the I(d) vector process xt fx(ω) ∼ ω−2dG
ω → 0+ and f∆dx(ω) ∼G ω → 0+.

2As noted by Granger and Weiss (1983), these results are valid in general for the CI(d,0)
case. In the paper we also show that the same results hold for the CI(d,b) case, b > 0
d− b > 0.
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variables are driven by different long memory factors, i.e. in the case the
dependent variable is orthogonal at the zero frequency to any of the regres-
sors, the squared multiple coherence will assume a zero value, as any of the
squared simple coherences. We finally show that all the above results also
hold for the series in levels, as the frequency tends to zero. In addition to
be of theoretical interest, these properties may be exploited in practice in
empirical analysis.
The plan of the paper is as follows. In section two we provide definitions

of long memory processes. In sections three and four we introduce the fre-
quency domain principal components estimator and investigate the spectral
properties of fractionally cointegrated processes. In section five we present
the results of a Monte Carlo exercise aiming to evaluate the small sample
properties of the proposed estimator. Finally in section six we provide ap-
plications with real data and in section seven we conclude.

2 Definitions of long memory

There are two main definitions of long memory. Firstly, a stationary processes
xt is said to be long range dependent if the autocorrelation function (γx(τ))
is significantly different from zero at very long lags, that is

γx(τ) = cρτ
2d−1,

where cρ is a positive constant, τ is the order of the autocorrelation and
d ∈ (0, 0.5) is the coefficient of fractional integration. Differently from I(0)
processes, I(d) stationary processes do not show an exponentially fast decay
of the autocorrelation function, but a slow hyperbolic decay. An equivalent
definition in the frequency domain is

fx (ω) = cfω
−2d as ω → 0+

where cf is a positive constant, fx (ω) is the spectrum and ω is the frequency
in radians. Therefore, in the frequency domain, long memory is detected
on the basis of the presence of a singular point in the spectrum at the zero
frequency.
Hence, similarly to I(1) processes, long memory processes have non def-

inite spectral density at the zero frequency, but similarly to I(0) processes
the effects of shocks eventually die out, although at a very slow hyperbolic
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rate. It is the strong shock persistence of long memory processes that justify
cointegration analysis for stationary processes.
In the paper we assume that all the long memory processes share the same

order of integration d, and we consider the I(d)-I(0) case. Hence, the defini-
tion of fractional cointegration follows Engle and Granger (1987), namely p
long memory processes are fractionally cointegrated if there exists at least one
linear combination which is I(0), i.e. x1,t, x2,t, ..., xp,t ∼ CI(d, 0) d ∈ (0, 0.5) .
While for long memory processes other definitions of cointegration can be
envisaged (Robinson and Yajima, 2002), the case considered in this paper is
likely to be of empirical relevance, and is an important benchmark in any
case. However, we show that our results extend also to the general case
CI(d, b) b > 0 d − b > 0, i.e. where the cointegrating residuals still show
long memory, although their degree of integration is lower than the one of
the actual series.

3 Spectral properties for vector fractionally
cointegrated processes

Let us assume the following common long memory factor model

xt = Θµt + ut

∆dµt = εt, (1)

where xt is a p× 1 vector of observations on the p fractionally cointegrated
long memory processes, Θ is the p×k factor loading matrix with k < p, µt is
a k×1 vector of observations on the long memory factors (I(d) 0 < d < 0.5),
εt ∼ i.i.d.(0,Σε) with dimension k × 1 and Σε = Ik, ut is a p × 1 vector of
observations on the I(0) components with Φ(L)ut = Ω(L)vt, all the roots of
the polynomial matrices in the lag operator Φ(L) and Ω(L) are outside the
unit circle, and vt ∼ i.i.d.(0,Σu) with dimension p× 1.

Applying fractional differencing to [1] , yields

∆dxt = Θεt +∆dut (2)

Then the autocovariance and cross covariance functions can be computed
as Γ(τ) = E

h¡
∆dxt+τ −E[∆dxt] ∆dxt −E[∆dxt]

¢0i
, yielding
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Γ(τ) = E[
¡
Θεt+τ +∆dut+τ

¢ ¡
Θεt +∆dut

¢0
]

= E
h
Θεt+τε

0
tΘ

0
i
+E

h
Θεt+τ∆

du
0
t

i
+E

h
∆dut+τε

0
tΘ

0
i
+E

h
∆dut+τ∆

du
0
t

i
= ΘΓε(τ)Θ

0
+ΘΓε,∆du0(τ) + Γ∆du,ε0(τ)Θ

0 + Γ∆du(τ) (3)

Applying the definitions for the spectrum and cross spectrum to the el-
ements in [3] , the spectral density matrix for the fractionally differenced
processes

f (ω) =


f∆dx1(ω) f∆dx1∆dx2(ω) ... f∆dx1∆dxp(ω)

f∆dx2∆dx1(ω) f∆dx2(ω)
...

...
...

...
. . .

...
f∆dxp∆dx1(ω) ... ... f∆dxp(ω)

 , (4)

where ωmeasures the frequency in radians, f∆dxi(ω) =
1
2π

Z +∞

−∞
γ∆dxi

(τ)e−iωdτ

is the spectral density function for the ith fractionally differenced process,

f∆dxi∆dxj(ω) =
1
2π

Z +∞

−∞
γ∆dxi∆dxj

(τ)e−iωdτ is the cross spectral density func-

tion for the fractionally differenced processes i and j, γ∆dxi
(τ) denote the

autocovariance function, and γ∆dx∆dy(τ) is the cross covariance function, can
be written as

f (ω) = Θf ε(ω)Θ
0
+Θf ε,∆du0(ω) + f∆du,ε0(ω)Θ

0 + f∆du(ω), (5)

where the fi(ω) matrices contain the spectral and cross spectral functions for
the given vectors, evaluated at the frequency ω. By noting that
1) fε(ω) = 1

2π
Σε − π ≤ ω ≤ π since εj ∼ i.i.d j = 1, ..., k;

2) f∆dui(ω) = |1− e−iω|2d fui(ω) = [2 sin(ω/2)]2d fui(ω) i = 1, ..., p;
f∆dui,∆duj(ω) = |1− e−iω|2d fui,uj(ω) =W (e−iω) |1− e−iω|2d fuj(ω) =
sP

h=−q
wh cos(ωh) [2 sin(ω/2)]

2d fuj(ω) i, j = 1, ..., p i 6= j.
Hence f∆du(0) = 0, since un ∼ I(0) n = 1, ..., p and has a finite spectrum

at frequency zero, cos(0) = 1, sin(0) = 0, i.e. since∆dun ∼ I(−d) n = 1, ..., p,
i.e. ∆dun is an antipersistent process;
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3) fε,∆du0(0) = 0, f∆du,ε0(0) = 0, since εj ∼ i.i.d. j = 1, ..., k, ∆dun ∼
I(−d) n = 1, ..., p, and exploiting the orthonormality property of the matrix
Σε (Σε = Ik), yields

f (0) =
1

2π
ΘΘ

0
. (6)

Hence f (0) inherits the properties of the matrix ΘΘ
0
, namely f (0) is sym-

metric, it is of reduced rank equal to k < p, and it is positive semidefinite.3,4

3.1 The frequency domain principal components esti-
mator

Estimation of the factor loading matrix From the symmetry prop-

erty, it follows that the spectral matrix can be factorised as

2πf(0) = QΛQ0, (7)

where Λ is the p × p diagonal matrix of (real) eigenvalues and the matrix
Q is the p × p matrix of its associated orthogonal eigenvectors. Since f(0)
is of reduced rank k, only k eigenvalues are greater than zero. Hence, QΛ

1
2

contains k non zero columns and Λ
1
2Q0 k non zero rows. Without lack of

generality, by assuming that the eigenvalues are ordered in descending order,

the matrix QΛ
1
2 can be partitioned as

· µ
QΛ

1
2

p×k

¶∗
0

p×(p−k)

¸
, so that by the

3Note that the same results hold for the case in which the u vector is I(b) b > 0 d−b > 0,
since ∆du ∼I(b-d).

4The reduced rank of the spectral matrix for the differenced series was firstly noted by
Phillips (1986) and Phillips and Ouliaris (1988) for the I(1) case. Phillips and Ouliaris
(1988) have proposed a cointegrating rank test based on the number of non zero eigenvalues
of the spectral density matrix at the zero frequency, which provides the number of common
trends k, and therefore the number of cointegration relationships r = p−k. Robinson and
Marinucci (1998) and Robinson and Yajima (2002) have shown that a similar result holds
for the I(d) case (0 < d < 0.5) for the series in levels as the frequency tends to zero, i.e.

given the I(d) vector process xt, fx(ω) ∼ ω−2dG ω → 0+, where G =
ΘΘ0

2π
. Differently

from what is done in these latter papers, by fractionally differencing we work with I(0)
series, and therefore with well defined spectral density functions at the zero frequency.
This allows us to establish results exactly at the zero frequency. A fractional cointegrating
rank test, based on the number of non zero eigenvalues of the matrixG, has been suggested
by Robinson and Yajima (2002), along the lines of Phillips and Ouliaris (1988).
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rule of the product of partitioned matrices we haveµ
QΛ

1
2

p×p

¶µ
Λ

1
2Q0
p×p

¶
=

µ
QΛ

1
2

p×k

¶∗µ
Λ

1
2Q0
k×p

¶∗
+ 0
p×p

= ΘΘ0
p×p
. (8)

The matrix
³
QΛ

1
2

´∗
is therefore our estimator of the factor loading ma-

trix Θ.5

Interestingly, the procedure implemented has an interpretation in terms
of principal components analysis. By construction, the normalised linear

combinations Q
0
i∆

dx0 or
³
Λ

1
2Q

0
´∗
i
∆dx0, i = 1, ..., k, where ∆dx is the T × p

matrix of the observations on the p fractionally differenced processes, are
the orthogonal linear combinations of the fractionally differenced processes
which are characterised by the largest (long-run) variances.6

Estimation of the cointegration space Moreover, while the (scaled)
eigenvectors, associated with the largest k roots, as shown above, yield an
estimate of the factor loadings, the eigenvectors associated with the p − k
zero roots yield an estimate of the cointegration space. This result follows
from the following consideration. Given the orthogonality property of the
eigenvectors, it follows that

Q
0
1,..,kQk+1,..,p = 0

k×(p−k)
, (9)

where Q
0
1,..,k and Qk+1,..,p denote the submatrices composed of the k eigen-

vectors associated with the first k largest roots, and the last r = p − k
eigenvectors associated with the zero roots, respectively. Hence Qk+1,..,p is a
right null space basis of the factor loading matrix, which is the definition of
the cointegration space, since the cointegration relationships are the linear
combinations of the variables which remove the persistent (I(d)) or perma-
nent (I(1)) component from them (see Engle and Granger, 1987). We can
write therefore β = Qk+1,..,p, where β denote the p× r cointegration matrix,
obtaining

5Note that this decomposition is always possible since f(0) is positive semidefinte, so
that the non null eigenvalues are real and positive.

6Since for an I(d) vector process xt fx(ω) ∼ ω−2dG ω → 0+ the eigenvectors of fx(ω)

ω → 0+ are the same as the eigenvectors of G, f(0), or ΘΘ0. Therefore,
³
Λ

1
2Q

0
´∗
i
x0 are

the orthogonal linear combinations of the series in levels characterised by the largest (long-
run) variances. These linear combinations bear the interpretation of ”long-run” principal
components. See the section on the interpretation of the proposed estimator.
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β0
³
QΛ

1
2

´∗
= β0Θ = 0

r×k
.7

Identification of the factor loading matrix The identification of the
factor loading matrix Θ can be obtained following the approach proposed by
King et al. (1991) and Warne (1993) for the identification of the common
trends model in time domain. The identification strategy can be implemented
as follows.
Let us write the factor loading matrix as

Θ = Q∗0ρ, (10)

where ρ is a k × k matrix collecting the free parameters in Θ and Q∗0 is the

matrix
³
QΛ

1
2

´∗
with the identification conditions imposed in such a way that

the upper square submatrix of order k is the identity matrix (see Anderson,
1984; p. 556).8 This will yield k(k − 1)/2 zero restrictions in Θ. From the
relationship ΘΘ

0
= 2πf (0) we then have

ρρ0 = (Q0∗
0Q

∗
0)
−1
Q∗0 (2πf (0))Q

∗
0 (Q

0∗
0Q

∗
0)
−1
. (11)

The matrix ρρ0 is positive definite and symmetric, containing k(k+1)/2
distinct parameters which can be estimated through its Choleski decompo-
sition, leading to a lower triangular ρ matrix and to k(k+1)/2 independent
equations.9 A total of k2 over pk parameters in Θ will result to be identified
using the above discussed procedure. Finally, the remaining (p − k)k pa-
rameters will result to be identified by using the condition Q

0
k+1,..,pQ

∗
0 = 0.

After estimation the matrix Θ may be rotated by means of a Givens rotation
matrix (Anderson, 1984; p.606) to add further interpretability to the results.

8Note that the imposition of the identification conditions is always possible. In the
case the upper submatrix of dimension k is singular, the identity matrix can be positioned
differently in the factor loading matrix, without any consequences for the identification of
the model.

9Note that a lower triangular ρ matrix does not imply any recursive structure for the
factor loading matrix, since the way the common trends affect the vector xt is determined
by the identification condition imposed on Q∗. See Warne (1993).

12
ECB
Work ing Paper Ser ie s No . 321
March 2004



Estimation of the common long memory factors and persistent-
non persistent decomposition A persistent-non persistent decompo-
sition (P-NP decomposition) of the observed variables can be performed
through the decomposition of Kasa (1992), which can be written as

xt = Θµt + ut

µt = (Θ0Θ)−1Θ0xt
ut = β (β0β)−1 β0xt (12)

whereΘ (Θ0Θ)−1Θ0xt is the persistent (long memory component) and β (β0β)
−1
β0x

t

is the non persistent (I(0)) component or the less persistent I(b) component
b > 0, d − b > 0, when ut ∼ I(b).10 This decomposition has the important
advantage of being implemented using the observed series and is suitable also
for the case of fractionally cointegrated I(d) processes. In fact, the decom-
position follows from the projection theorem, and it is always valid provided
that, given a vector xt in Rp, a closed subspace Θ of Rp is available. Then
the vector xt can be decomposed in the sum of its projections on Θ and Θ⊥,
where the projection operators are Θ (Θ0Θ)−1Θ0 and β (β0β)−1 β0 (see Kasa,
1992).11

The frequency domain principal components estimator: inter-
pretation Further insights on the interpretation of the proposed estimator
of the cointegration space can be gauged by noting that the principal com-
ponents approach and the FDLS (frequency domain least squares) estimator
can be understood in terms of orthogonal regression theory.12 Note in fact
that 2πf(0) = ΘΘ0, and that the orthogonal regression problem can be writ-
ten as

10The ut vector is I(b) when the cointegrating residuals are I(b) or when the largest
order of fractional integration of the cointegrating residuals is I(b). Note in fact that the
ut vector is computed as a linear combination of the cointegrating residuals.
11There are more differences than similarities between our approach and the approach of

Forni et al. (2000). While both approaches rely on frequency domain principal components
estimation, we focuses on the zero frequency only, and shows that the estimator retrieves
the cointegration space and the factor loading matrix. Also the approach followed to iden-
tify and estimate the common factors is different, since we exploit time domain methods,
which are adapted to the frequency domain. Moreover, the use of the Kasa (1992) de-
composition allows the extraction of the common long memory factors from the series,
which would not be achieved by applying the Forni et al. (2000) approach to fractionally
differenced processes.
12See Pollock (1978; p.88-94) for results in time domain and Brillinger (1981; ch. 8,9,10)

for frequency domain least squares and principal components estimation.
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min
α
2πα0f(0)α

sub α0α =1, (13)

yielding the eigenvalue problem

[2πf(0)−λI]α = 0, (14)

A vector α, solution to this problem, is an eigenvector of 2πf(0). By
noting that 2πα0f(0)α =λ, it is immediate to verify that choosing the eigen-
vector associated with the smallest eigenvalues is the solution to the problem.
The same eigenvalue problem arises in principal component analysis, al-

though the objective function is expressed as

max
α
2πα0f(0)α

sub α0α =1. (15)

The solution to the problem now requires the selection of the eigenvector
α associated with the largest eigenvalue. We denote the linear combination
α0∆dx0 as the first “long-run” principal component of ∆dx.13

Hence, in principal component analysis the eigenvectors are selected start-
ing from the one associated with the largest eigenvalue, while the solution
of the general orthogonal regression problem is obtained by selecting the
eigenvectors starting from the one associated with the smallest eigenvalue.
It is straightforward now to show that the FDLS problem is a particular

case of the orthogonal regression problem. For the generic cointegrating
regression

x1,t = α2x2,t + ...+ αpxp,t + ²t, (16)

we have

13Since for an I(d) vector process xt fx(ω) ∼ ω−2dG ω → 0+ the eigenvectors of fx(ω)
ω → 0+ are the same as the eigenvectors of G, f(0), or ΘΘ0. Therefore, α0x0 is the first
“long-run” principal component of x.

14
ECB
Work ing Paper Ser ie s No . 321
March 2004



min
α
2πα0f(0)α

sub α0Jα =1, (17)

where f(0) is the spectral matrix of the fractionally differenced process ∆dxi

i = 1, ..., p at the zero frequency, with J =
·
1 0
0 0

¸
, leading to normal

equations that can be expressed in the form

[2πf(0)−λJ]α = 0, (18)

and, after appropriate partition, as

µ
2π

·
f∆dx1(0) f∆dx1;∆dx2,...,∆dxp(0)

f
0
∆dx1;∆dx2,...,∆dxp

(0) f∆dx2,...,∆dxp(0)

¸
− λ

·
1 0
0 0

¸¶·
1
−α∗,i

¸
= 0,

(19)

yielding

α∗,i=
¡
f∆dx2,...,∆dxp(0)

¢−1
f
0
∆dx1;∆dx2,...,∆dxp

(0), (20)

i.e. the FDLS estimator at the zero frequency. Note that λ = 2πf∆dx1(0)−
2πf∆dx1;∆dx2,...,∆dxp(0)

¡
f∆dx2,...,∆dxp(0)

¢−1
f
0
∆dx1;∆dx2,...,∆dxp

(0)measures the long-
run variance of the fractionally differenced cointegrating residuals, which is
zero since∆d²t ∼I(-d) when ²t ∼I(0), or I(b-d) when ²t ∼I(b) b > 0, d−b > 0.
Since in the previous section we have established that the cointegration

space is estimated by the eigenvectors associated with the smallest (zero)
eigenvalues, it follows that, provided the specification is known, an equivalent
estimator of the cointegration space is provided by the FDLS estimator.14

Therefore, there exists an important duality between the principal com-
ponents approach proposed in the paper and the FDLS estimator, with both
providing the same information concerning the long-run features of the data
when the cointegration space is known. However, the proposed methodol-
ogy has the clear advantage of not suffering from the well known problem
given by the existence of multiple cointegrating vectors, which is relevant for
multivariate models, since, in general, the specification of the cointegration
space is not known.

14The equivalence of working with series in fractional differences or in levels will be also
shown in the subsection below.
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Asymptotic results Consistent estimation of the spectral matrix at
the zero frequency for the fractionally differenced series can be obtained by
smoothing the periodogram matrix. Many approaches have been suggested
in the literature as for instance the Daniell window, the Parzen window or
the Bartlett window (see Priestly, 1981, ch.6), relying on the assumption
m → ∞ m

T
→ 0 as T → ∞, in order to provide a consistent estimate of

the spectral matrix at a given frequency. As above, we denote the estimator
of the long-run variance covariance matrix obtained from the fractionally
differenced processes as 2πf̂ (0) .
Robinson (1994) has shown that the averaged periodogram can pro-

vide consistent estimates of the spectral matrix in the neighborohood of
the zero frequency for long memory processes. The suggested estimator is
f̂x(ωm) =

2π
T

Xm

j=1
ReI (ωj) ωm → 0+, where I (ω) is the periodogram ma-

trix for the series in levels and ωj = 2πj/T , while in Robinson and Yajima
(2002) f̂∗∆dx

(ωm) =
1
m

Xm

j=1
ω2dj ReI (ωj) =

1
2π
ΘΘ

0
ωm → 0+, yielding a con-

sistent estimator of the long-run variance covariance matrix computed as
2πf̂∗∆dx (ωm) ωm → 0+. In both cases estimation is carried out in the neigh-
borhood of the origin and the assumption on the bandwidth m is stated as
1
m
+ m

T
→ 0 as T → ∞ in Robinson (1994), and 1

m
+ m1+2ξ log(m2)

T 2ξ
→ 0

ξ ∈ (0, 2] as T →∞ in Robinson and Yajima (2002).
It is interesting to show the linkage between the FDLS estimator of the

cointegrating vector obtained by working on the series in levels or in fractional
differences. For the cointegrating regression yt = βxt + et, we have

β̂m =

Xm

j=1
Re Iy,x (ωj)Xm

j=1
Ix (ωj)

ωm → 0+ (21)

for the series in levels.

As shown by Robinson and Marinucci (1998), for vector long memory
processes the following representation holds fx(ωj) ∼ ΛGΛ ωj → 0+, with

Λ =diag
n
ω−d1j , ...,ω

−dp
j

o
. Since, as shown by Robinson and Yajima (2002),

f̂∗
∆d∗x (ωm) ωm → 0+ is a consistent estimator of the matrix G, as also
f̂ (0) is, we can consistently estimate the matrix fx(ωj) as ω−2d

∗
m f̂∗

∆d∗x (ωm)

or ω−2d
∗

m f̂ (0) ωm → 0+, where d∗ =
Pp
i=1 d̂i
p

, assuming that the bandwidth

employed to compute d̂i increaseas sufficiently faster than the one employed
to compute the matrix Ĝ, so that the fact that d∗ needs to be estimated has
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no consequences on the asymptotic distribution of Ĝ. The FDLS estimator
can then be written as

β̂
∆

m =
ω−2d

∗
m

Xm

j=1
ω2d

∗
j Re Iy,x (ωj)

ω−2d∗m

Xm

j=1
ω2d

∗
j Ix (ωj)

=

Xm

j=1
ω2d

∗
j Re Iy,x (ωj)Xm

j=1
ω2d

∗
j Ix (ωj)

ωm → 0+

(22)

or

β̂
∆

0 =
ω−2d

∗
m f̂∆d∗y,∆d∗x (0)

ω−2d∗m f̂∆d∗x (0)
=
f̂∆d∗y,∆d∗x (0)

f̂∆d∗x (0)
, (23)

for the series in differences, where m in the expression for β̂
∆

0 corresponds to
the bandwidth employed by the Daniell window.

A proof of the consistency of the β̂
∆

m estimator can follow the one given by

Robinson and Marinucci (1998) for the β̂m estimator, while for β̂
∆

0 the refer-
ence is theorems 8.6.1 and 8.7.1 in Brillinger (1981) for the case in which the
the error term and the regressor are orthogonal. Analogously to Robinson

(1994), the consistency of the FDLS estimator implemented on the fraction-
ally differenced processes can be shown to hold also when the orthogonality
condition between the regressor and error term is not assumed. As T →∞,
we have

p lim
¯̄̄
β̂
∆

0 − β
¯̄̄
≤ |f∆dx∆de(0)|

f∆dx(0)
≤
µ
f∆de(0)

f∆dx(0)

¶1/2
,

by the Cauchy-Schwarz inequality, where f∆dx∆de(0)
f
∆dx

(0)
explains the inconsistency

of the FDLS estimator when the orthogonality between the regressor and
error term does not hold, ∆de and ∆dx refer to the fractionally differenced
cointegrating residuals and regressor, respectively. Since under cointegration
the residual x ∼ I(0) or I(b) b > 0 d − b > 0 and ∆de ∼ I(−d) or ∆de ∼
I(b − d), hence from f̂∆dx∆de(ω) = |1− e−iω|2d f̂x,e(ω) = W (e−iω)f∆de(ω),

we have f̂∆dx∆de(0) = 0 since f∆de(0) = 0 (see property ii), i.e β̂
∆

0 →p β as
T → ∞. Therefore, this result follows from the fact that the residuals from
the FDLS regression in fractional differences corresponds to the fractionally
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differenced residuals from the FDLS regression in levels and hence they are
an antipersisent process, which shows a zero spectrum at the zero frequency.
This result can also be understood by noting that 2πf∆de(0) = λi, where
λi is the eigenvalue associated with the eigenvector [1 − β] in the FDLS
problem, which is zero under the assumption of fractional cointegration.

Asymptotic results II From Theorem 9.4.4 of Brillinger (1981) it
follows that

Q̂i(0)
a∼ N (Qi(0),Υi) ,

where Υi =
1
2m

λi(0)
X
l 6=i

λl(0) [λi(0)− λl(0)]
−2Qi(0)Qi(0)

0, and m is the pa-

rameter associated with the spectral matrix. Since, as argued by Robinson
ans Yajima (2002), Theorem 1 of Anderson (1963) and Theorem 13.5.1 of
Anderson (1984) are still true in the singular case, it follows that the above
asymptotic distribution should be valid for the eigenvectors associated to
the non zero eigenvalues, assuming these are ordered in descending order,
with i = 1, ..., k. Approximate standard errors can also be computed using
resampling techniques, as, for instance, the block bootstrap or the jack-knife.

4 Additional spectral properties for vector
fractionally cointegrated processes

In this section we discuss further spectral properties of fractionally cointe-
grated processes at the zero frequency, providing results which may be of
practical use in empirical analysis. In particular, we show that the squared
multiple coherence at the zero frequency for the fractionally differenced pro-
cesses assumes a unitary value, while in the bivariate case it is the squared
simple coherence to assume a unitary value.15 In addition, we also find that
processes that are not fractionally cointegrated show in general positive, but
lower than one, multiple and simple squared coherences at the zero frequency.
In the case the dependent and independent variables are driven by different
long memory factors, i.e. in the case the dependent variable is orthogonal at
the zero frequency to any of the regressors, the squared multiple coherence

15Granger and Weiss (1983) and Levy (2002) have shown that these results hold for the
I(1) case. Granger and Weiss (1983) have also noted that the results are still valid for the
I(d) CI(d,0) case.
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will assume a zero value, as any of the squared simple coherences.16 We also
show that all the above results holds for the series in levels as the frequency
tends to zero.
Since the asymptotic distribution of the squared coherences and squared

multiple coherence is known, formal tests can be undertaken to determine
whether the computed coherences for the fractionally differenced processes
are statistically different from one or zero, and therefore whether there exists
or not fractional cointegration between the series in levels, the number of
such relationships and their specification.
The main results are summarised in the theorems and corollaries below.

Theorem 1 Conditions for unitary squared multiple coherence
at the zero frequency Given a vector of p fractionally differenced long
memory (I(d)) processes, a necessary and sufficient condition for the squared
multiple coherence at the zero frequency to show a unitary value is that the
processes involved are fractionally cointegrated in levels.
Proof.

Let us consider a vector of p fractionally differenced I(d) processes. The
associated spectral density matrix can be written as

f (ω) =


f∆dx1(ω) f∆dx1∆dx2(ω) ... f∆dx1∆dxp(ω)

f∆dx2∆dx1(ω) f∆dx2(ω)
...

...
...

...
. . .

...
f∆dxp∆dx1(ω) ... ... f∆dxp

(ω)

 . (24)

Without lack of generality, let us now consider the power decomposi-
tion for the fractionally differenced I(d) process ∆dx1 at the zero frequency
(Priestly, 1981; p.682), in terms of the other p− 1 variables in our model:

f∆dx1(0) = f∆dx1(0) = K
2
∆dx1;∆dx2,...,∆dxp

(0)f∆dx1(0) + fν(0), (25)

where K2
∆dx1;∆dx2,...,∆dxp

(0) is the squared multiple coherence between ∆dx1,

∆dx2, ..., ∆
dxp at the zero frequency

K2
∆dx1;∆dx2,...,∆dxp

(0) =
f∆dx1;∆dx2,...,∆dxp(0)

¡
f∆dx2,...,∆dxp(0)

¢−1
f
0
∆dx1;∆dx2,...,∆dxp

(0)

f∆dx1(0)
,

16These latter results also hold for cointegrated I(1) processes.
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which is the frequency domain equivalent of the time domain coefficient of de-
termination, and the fi(0) are appropriate submatrices of the spectral density
matrix at the zero frequency f (0), namely:
f∆dx1;∆dx2,...,∆dxp(0) is the 1× (p− 1) vector

£
f∆dx1∆dx2(0) f∆dx1∆dx3(0) ... f∆dx1∆dxp(0)

¤
,

f∆dx2,...,∆dxp(0) is the (p− 1)× (p− 1) matrix


f∆dx2(0) f∆dx2∆dx3(0) ... f∆dx2∆dxp(0)

f∆dx3∆dx2(0) f∆dx3(0)
...

...
...

...
. . .

...
f∆dxp∆dx2(0) ... ... f∆dxp(0)


and f∆dx1(0) is the scalar f∆dx1(0).

Rearranging the expression in [25], we have

1 = K2
∆dx1;∆dx2,...,∆dxp

(0) +
fν(0)

f∆dx1(0)
, (26)

which suggests that the squared multiple coherence at the zero frequency
measures the proportion of power of ∆dx1, at the zero frequency, explained
by the zero frequency FDLS regression on ∆dx2, ..., ∆

dxp, and the second
term measures the residual or unexplained proportion of power. As for the
coefficient of determination, the squared multiple coherence can range be-
tween zero and one, being one when the unexplained proportion of power is
zero.
We can now show that fractional cointegration between the set of variables

x1, x2, ..., xp will necessarily imply that the squared multiple coherence for
∆dx1, ∆

dx2, ..., ∆
dxp takes a unitary value.

First of all note that the residual variable ν corresponds to the fractionally
differenced residuals in the fractional cointegrating regression

x1,t = β2x2,t + ...+ βpxp,t + et,

since

∆dx1,t = β2∆
dx2,t + ...+ βp∆

dxp,t +∆det,
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and hence νt = ∆det. This follows from the fact that, as shown in Section 3.1,
the FDLS estimator at the zero frequency consistently estimate the known
cointegration space.
Now if the set of variables x1, x2, ..., xp fractionally cointegrate, et ∼ I(0)

and therefore νt ∼ I(−d), or et ∼ I(b) b > 0, d − b > 0 and therefore
νt ∼ I(b − d), hence the spectral density function at the zero frequency
will assume a zero value (property ii), i.e. fν(0) = 0, since the fractionally
differenced residual is an antipersistent process.

The same result can be obtained from the interpretation provided in
section 3, by noting that 2πfν(0) = λi, where λi is one of the p − k zero
eigenvalues, since the zero eigenvalues measure the long-run variance of the
fractionally differenced cointegrating residuals, i.e. they are the minimand
in the zero fequency FDLS objective function. We can therefore also write

K2
∆dx1;∆dx2,...,∆dxp

(0) = 1− λi/2π

f∆dx1(0)
, (27)

Hence, from [26, 27] we haveK2
∆dx1;∆dx2,...,∆dxp

(0) = 1. Since in the bivari-

ate case the squared multiple coherence and the squared coherence coincide,
this result obviously holds for the bivariate case, predicting a unitary squared
coherence at the zero frequency between fractionally differenced cointegrated
processes.
It also follows that, if the subset of processes are not fractionally coin-

tegrated, the squared multiple coherence will take values in the range 0 ≤
K2

∆dx1;∆dx2,...,∆dxp
(0) < 1, as 0 ≤ K2

∆dx1;∆dxi
(0) < 1 i = 2, ..., p, being zero

when f∆dx1;∆dx2,...,∆dxp(0) = 0, i.e. when ∆dx1 is orthogonal to any of the
regressors at the zero frequency. In fact,

K2
∆dx1;∆dx2,...,∆dxp

(0) = β2
f∆dx1∆dx2(0)

f∆dx1

+ ...+ βp
f∆dx1∆dxp(0)

f∆dx1

= K2
∆dx1;∆dx2

(0) + ...+K2
∆dx1;∆dxp

(0).

This result therefore suggests that fractional cointegration between a set
of I(d) processes implies and it is implied by a unitary squared multiple
coherence for the fractionally differenced processes involved. An important
implication of this result is that the number of unitary squared multiple co-
herences will be equal to the number of fractional cointegration relationships,
since the theorem has established necessary and sufficient conditions.
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Note that these results hold also for the series in levels as ωj → 0+. In
fact, we can write

1 = K2
x1;x2,...,xp

(ωj) +
fe(ωj)

fx1(ωj)
= K2

x1;x2,...,xp
(ωj) ωj → 0+, (28)

since, in the case of cointegration fe(ωj)

fx1 (ωj)
→ 0 ωj → 0+, the denominator

dominating the numerator. In fact, for the CI(d, b) case we have fe(ωj) ∼
ceω

−2b
j and fx1(ωj) ∼ cx1ω−2dj as ωj → 0+, hence fe(ωj)

fx1(ωj)
= ce

cx1
ω
2(d−b)
j , while for

the CI(d, 0) case we have fe(ωj)

fx1 (ωj)
= ce

cx1
ω2dj . On the other hand, if the processes

are not fractionally cointegrated we have 0 ≤ K2
x1;x2,...,xp

(ωj) < 1 ωj → 0+,

since fe(ωj)

fx1(ωj)
= ce

cx1
ω
2(d−d)
j = ce

cx1
> 0, being zero when fx1;x2,...,xp(ωj) = 0, i.e.

when x1 is orthogonal to any of the regressors as ωj → 0+. In this latter case
fe(ωj)

fx1(ωj)
=

fx1 (ωj)

fx1 (ωj)
= 1.

The linkage between bivariate fractional cointegration and unitary squared
coherences may be also established following a different approach, which leads
to further insights into the spectral properties of fractionally cointegrated
processes. These are discussed in the theorem and corollaries below.

Theorem 2. Conditions for unitary squared coherence at the
zero frequency Given a vector of p fractionally differenced long memory
processes (I(d)), a necessary and sufficient condition for the squared coher-
ence matrix at the zero frequency to show one unitary upper (lower) diagonal
element is that the two processes involved are fractionally cointegrated in lev-
els, with bivariate cointegrating vector.
Proof
See the Appendix.
Discussion
This theorem establishes that bivariate fractional cointegration implies

and it is implied by a unitary simple squared coherence for the two processes
involved, following a different approach from the one used to demonstrate
Theorem 1.

Corollary 2.1 The number of unitary squared coherences at the

zero frequency The number of the upper (lower) diagonal unitary ele-
ments in the squared coherence matrix at the zero frequency is equal to
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kX
i=1

ri (ri + 1)

2
, where ri is the number of bivariate cointegration relationships

annihilating the ith factor,
kX
i=1

ri = p− k.
Proof
See the Appendix.

Corollary 2.2 The number of zero squared coherences at the zero
frequency The number of the upper (lower) diagonal zero elements in the
squared coherence matrix at the zero frequency is equal to the number of
couples of long memory processes which are orthogonal at the zero frequency.
Proof
See the Appendix.
Discussion
Orthogonality at the zero frequency implies but is not implied by the lack

of fractional cointegration for the processes involved. Processes which are not
fractionally cointegrated will be orthogonal at the zero frequency only if the
they are driven by different orthogonal common long memory factors.

Corollary 2.3 Conditions for a sparse squared coherency matrix
at the zero frequency Given a vector of p fractionally differenced pro-
cesses, a necessary and sufficient condition for the squared coherence matrix
at the zero frequency to show only unitary or zero upper (lower) diagonal
elements is that each variable in levels is driven by only one common long
memory factor. If the number of common long memory factors is k < p,
and therefore the number of bivariate fractional cointegration relationships
(the only to be admitted) is r = p− k, then the number of zero elements is
in the range

(2p− k) (k − 1)
2

≤ n0 ≤ p(p− 3) + 2k
2

; the number of unitary

elements is in the range p− k ≤ n1 ≤ (p− k) (p− k + 1)
2

.

Proof
See the Appendix.

Discussion
Corollary 2.3 exploits the results of Corollary 2.1 and Corollary 2.2. It

is assumed that just one long memory factor drives each process, which is
common for the fractionally cointegrated processes (bivariate fractional coin-
tegration) and it is different for the processes that are not fractionally coin-
tegrated.
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5 Monte Carlo results

In the Monte Carlo exercise we have compared the small sample properties
of the zero freequency FDLS estimator for the series in fractional differences
and the FDLS estimator for the series in levels as the frequency tends to zero
(Robinson and Marinucci, 1998). We have considered the model

yt = βxt + et

∆dxt = εt d > 0 εt ∼ N.I.D(0, 1)
∆bet = vt, b > 0, d > b vt ∼ N.I.D(0, 1)

E [εtvt] = ρ,

and assumed three different values for the fractional differencing parameter
d (d = 0.15, 0.30, 0.45), three values for the fractional differencing parameter
b (b = 0, 0.15, 0.30), six values for the correlation coefficient ρ = 0, 0.10,
0.30, 0.50, 0.70, 0.90. The bandwidth has been set to m = 0.375

√
T for both

the Daniell window and the averaged periodogram, and four sample sizes
have been considered T = 50, 100, 300, 500. The number of Monte Carlo
replications for each case has been set equal to 500. 17 In the simulation, in
addition to the performance of the estimator of the restricted cointegration
space, we have also analysed the distribution of the unitary squared coher-
ence, and of the proportion of variance explained by the smallest eigenvalue
of the spectral matrix at the zero frequency for the fractionally differenced
processes and for the series in levels as the frequency tends to zero.

We have also investigated the effectivess of a bias reduction approach,
based on the results

p lim
¯̄̄
β̂
∆

0 − β
¯̄̄
≤ |f∆dx∆de(0)|

f∆dx(0)
≤
µ
f∆de(0)

f∆dx(0)

¶1/2
,

f∆de(0)

f∆dx(0)
=

λ0/2π

f∆dx(0)
,

where λ0 is the eigenvalue of the scaled spectral matrix at the zero frequency
for the fractionally differenced processess associated with the cointegrating

17The simulation of the model was performed by means of a Gauss code made available
by Marc Henry, to whom the author is grateful.
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vector, which should be zero under the assumption of cointegration. A similar
approach has been followed for the series in levels for ωj → 0+.

The estimated rules for bias correction are as follows

bias∆ = −1.1263
(0.0332)

λ0
f∆dx(0)

− 1.1997
(0.0867)

λ0
λ0 + λ1

− 0.7869
(0.0204)

(d− b) + 0.7062
(0.0337)

(d− b)2

+0.0013
(0.0021)

ln(
1

T
) + 0.8429

0.0041
ln

µ
λ0

f∆dx(0)

1

T

¶
− 0.8406

(0.0036)
ln

µ
λ0

λ0 + λ1

1

T

¶
+0.0725
(0.0022)

ln

µ
d− b
T

¶
+ 0.0040

(0.0001)

µ
ln

µ
d− b
T

¶¶2
for the series in differences and

biasL = −0.9418
(0.0423)

λ+0
fx(0+)

− 1.7371
(0.1120)

λ+0
λ+0 + λ+1

− 0.9313
(0.0255)

(d− b) + 0.8713
(0.0423)

(d− b)2

+0.0051
(0.0026)

ln(
1

T
) + 0.7937

(0.0050)
ln

µ
λ+0

fx(0+)

1

T

¶
− 0.7953

(0.0044)
ln

µ
λ+0

λ+0 + λ+1

1

T

¶
+0.0628
(0.0027)

ln

µ
d− b
T

¶
+ 0.0034

(0.0001)

µ
ln

µ
d− b
T

¶¶2
for the series in levels. The coefficient of determination of the two OLS
regressions is close to one in both cases (R2∆ = 0.9995 and R2L = 0.9991),
suggesting that bias correction rules may be usefully employed in practice.18

For reason of space in Tables 1-12 we have reported the results for T =
100, 500, which however allow for an accurate evaluation of the performance
of the FDLS estimator.19

The main findings of the Monte Carlo analysis are the following. Firstly,
the FDLS estimator show the same performance independently on whether
it is employed on the series in levels or in fractional differences.
Secondly, it is unbiased for moderate degrees of correlation between the

cointegrating residuals and the regressor. The bias of the estimator tends to
increase with the degree of correlation of the cointegrating residuals and the

18A larger number of Monte Carlo replications was employed for the estimation of the
rule: 1000 replications for T = 50, 100, 300 and 500 replications for T = 500. The rule was
estimated assuming d = 0.45. The rule depends on the assumption made concerning the
value of the cointegrating vector. A following work will consider a generalisation of the
proposed rules for bias correction.
19The full set of results is available upon request from the author.
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regressor, and tends to decrease as the sample size, the spread between the
fractional differencing parameter for the series and the cointegrating residu-
als, and the fractional differencing parameter increase. The proposed rules
for bias correction are however effective, yielding an unbiased estimator in all
the cases considered. On the other hand, the efficiency of the estimator tends
to increase with the spread between the fractional differencing parameter of
the series and the cointegrating residuals, the sample size and the degree of
correlation between the cointegrating residuals and the regressor.
Thirdly, the unitary squared coherence at the zero frequency and the zero

eigenvalue show a downward and upward bias, respectively. In both cases
the bias tends to fall as the sample size and the spread between the fractional
differencing parameter of the series and the cointegrating residual increase.
On the other hand, the dependence of the bias of the unitary squared coher-
ence and the zero eigenvalue on the degree of correlation of the regressor and
the error term is related to the sign of the correlation. When the correlation
is positive the bias falls as the correlation increases, while, when the corre-
lation is negative, the bias increases as the correlation increases. This result
can be understood by noting that when the correlation is positive the FDLS
estimator is upward biased, so that the long-run variance of the cointegrat-
ing residual, i.e. the eigenvalue associated with the cointegrating vector, will
tend to fall as the correlation increases. Conversely, when the correlation
is negative the FDLS estimator is downward biased, so that the long-run
variance of the cointegrating residual will tend to increase as the correlation
increases. By noting that K2

y,x = 1 − λ/2π
fy
, it is also possible to understand

why, when the correlation is positive, the bias in the squared coherence tends
to fall as the degree of correlation increases, while, when the correlation is
negative, it tends to increase as the degree of correlation increases. These
results suggest some caution when using fractional cointegrating rank tests
as Robinson and Yajima (2002) and Phillips and Ouliaris (1988), since se-
lecting a threshold value equal to 0.1/p may lead to too conservative results.
The Monte Carlo analysis therefore supports the proposed estimator, which
provides a good performance also with relatively small samples.

6 Empirical applications

6.1 Long memory processes

In the empirical application with long memory processes we have studied
the cointegration properties of the volatility of stock returns for four EMU
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member countries, namely France, Germany, Spain and Italy over the period
January 1988- May 2000. Following Andersen et al. (1998), monthly realized
variances have been computed by summing squared daily returns, yielding a
total of 142 observations.
A value of the fractional differencing parameter equal to 0.36 was em-

ployed for the cointegration analysis.20 As shown in Table 13, Panel A, the
Robinson and Yajima (2002) test and the Phillips and Ouliaris (1988) test
provide similar results, pointing to a single large eigenvalue explaining about
80% of total variance. The remaining proportion of variance is explained
by the other three eigenvalues, with the second largest one explaining about
10% of total variance.21 Since for both tests the selection of a threshold is
arbitrary, we have preferred to conclude in favour of the existence of three
cointegrating vectors on the basis of the estimated proportion of variance ex-
plained by each eigenvalue.22 This conclusion is also supported by the tests
for unitary and zero squared coherences carried out below. Since the exis-
tence of three cointegrating vectors among four processes implies that all the
identified cointegration relationships are bivariate, we expect all the off di-
agonal elements in the squared coherence matrix at the zero frequency to be
not statistically different from one, and therefore no zero squared coherences
at the zero frequency. The results of the tests for unitary and zero squared
coherences are reported in Table 13, Panels B,C. As shown in the table, the
null of zero squared coherence is strongly rejected for all the possible couples
of variables, while the null of unitary squared coherence is never rejected
for any of the possible couples at the 1% level, for the series in levels and
differences. A Bonferroni bounds test for the unitary value of all the upper
(lower) off diagonal elements suggests that the joint null is surely not rejected
at the 5% level. The results therefore provide support for the existence of
three bivariate cointegrating regressions, and validate the imposition of such
identifying structure. In Table 14 the unrestricted and restricted eigenvectors
are reported, the latter being the identified cointegrating and factor loading
matrices. As shown in the table, there is evidence of near homogenous coin-
tegrating vectors among the different log variance processes. From the term
(Θ0Θ)−1Θ0 in the Kasa (1992) decomposition it is also possible to note that
Germany, Italy, France and Spain have a similar weight in the determina-

20For reason of space we do not report detailed results for the persistence analysis. A
full set of results is available upon request to the author.
21The bandwidth was set equal to sixteen ordinates. Qualitatively similar results have

been obtained by using smaller bandwidths.
22Moreover, the Monte Carlo exercise suggests the possibility of a downward bias in the

estimation of the proportion of variance explained by the non zero eigenvalues, particularly
for sample sizes as the one considered in this application.
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tion of the common long memory factor (0.34, 0.35, 0.32, 0.35 for the series
in differences and 0.21, 0.19, 0.20, 0.19, for the series in levels) allowing to
interpret the latter as a European volatility factor. Finally, in Figure 1 we
plot the actual realised variance series and the estimated persistent volatility
components.

6.2 I(1) processes

In the empirical application with I(1) processes we have studied the cointe-
gration properties of quarterly US national accounts data, namely real GDP,
real private consumption and real private investment, for the period 1947:1
through 1988:4, for a total of 168 observations. Differenced variables were
expressed in percentage terms.
The results of the cointegrating rank test of Phillips and Ouliaris (1988)

are reported in Table 15. For comparison we have also reported the results
of the Johansen (1988) trace test.
As shown in the Table, the Phillips and Ouliaris (1988) test points to a

single cointegrating vector when the threshold level is fixed at 0.10/p, while
the Johansen (1988) test points to two cointegrating vectors linking the three
variables at the 5% level. However, the proportion of variance explained by
the largest eigenvalue of the spectral matrix is close to 95%, allowing to
conclude that just one eigenvalue of the spectral matrix is different from
zero. This conclusion is supported by the squared coherence tests, since no
squared coherence is statistically different from one. The estimated restricted
eigenvectors are reported in Table 16. As is shown in the table, the FDLS
estimator and the Johansen estimator yield similar estimates of the cointe-
gration space, pointing to homogeneity of the cointegrating vectors. Finally,
the estimated factor loading matrix obtained from the frequency domain
PC approach provides similar long-run responses to the permanent shock to
those obtained following the time domain approach of King et al. (1991) and
Warne (1993).

7 Conclusions

In this paper we have proposed a new frequency domain principal compo-
nents approach to the estimation of the fractional cointegration space and the
factor loading matrix for the common long memory factors, which can then
be recovered by the Kasa (1992) decomposition. A Monte Carlo simulation
exercise suggests that the proposed estimator has good properties already
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with relatively small samples. While the estimator is proposed for fraction-
ally cointegrated processes, the approach outlined can be also employed for
I(1) cointegrated processes. Empirical applications for the two cases have
been provided. Differently from the Johansen (1988) approach, the proposed
methodology is potentially suited to handle also very large systems of coin-
tegrated processes.
We have also shown that the squared multiple coherence at the zero fre-

quency for the fractionally differenced processes assumes a unitary value,
while in the bivariate case it is the squared simple coherence to assume a
unitary value. These results extends the previous findings of Granger and
Weiss (1983) and Levy (2002) for the I(1) case. In addition, we also find that
processes that are not fractionally cointegrated show in general positive, but
lower than one, multiple and simple squared coherences at the zero frequency.
In the case the dependent and independent variables are driven by different
long memory factors, i.e. in the case the dependent variable is orthogonal at
the zero frequency to any of the regressors, the squared multiple coherence
will assume a zero value, as any of the squared simple coherences. Finally,
the same results hold for the series in levels as the frequency tends to zero.

8 Appendix: proof of theorems

The proof of the theorem and corollaries is given by making reference to a
very special right null space basis of the cointegration space, which can be
understood in terms of the ”simple structure” of Thurstone (1947). This is
the basis which contains the largest number of zero entries, and, theoretically,
can always be recovered from a given basis through appropriate rotations.
Therefore, despite we make reference to a specific basis, the derived results
have general validity.

Proof of Theorem 2: Conditions for unitary squared coherence

at the zero frequency For the general model in [1] the squared coherence
matrix23 at the zero frequency can be written as

K2(0) = A(0)−1(|f(0)|2)A(0)−1

K2(0) = B(0)−1
¯̄̄
ΘΘ

0
¯̄̄2
B(0)−1, (29)

23We denote as squared coherence matrix the p × p matrix collecting all the possible
squared coherence between the p different processes. This matrix has unitary elements on
the main diagonal by construction.
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where A(0) = diag(f(0)) is a diagonal matrix containing the elements on the

main diagonal in f(0) and B(0) is a diagonal matrix containing the elements
on the main diagonal of the matrix ΘΘ

0
.

Let us denote the generic element in the factor loading matrix Θ as θi,j
i = 1, ..., p, j = 1, ..., k. The generic ith diagonal element in B(0) can then
be written as

kX
l=1

θ2i,l i = 1, ..., p,

while the generic upper diagonal element in
¯̄̄
ΘΘ

0
¯̄̄2
as

¯̄̄̄
¯
kX
l=1

θi,lθj,l

¯̄̄̄
¯
2

i = 1, ..., p− 1, j = i+ 1, ..., p.

The generic upper diagonal element in the squared coherence matrix K2
i,j(0)

is therefore

K2
i,j(0) =

¯̄̄̄
¯
kX
l=1

θi,lθj,l

¯̄̄̄
¯
2

kX
l=1

θ2i,l

kX
l=1

θ2j,l

i = 1, ..., p− 1, j = i+ 1, ..., p.

From the Cauchy-Schwarz inequality we know that

K2
i,j(0) ≤ 1.

In order for the Cauchy-Schwarz inequality to hold with equality it must
be that

kX
l<m

kX
(θi,lθj,m − θi,mθj,l)

k = 0. (30)

Now the existence of a single bivariate fractional cointegration relation-
ship between processes i and j in levels implies that the p×k (k < p) simple
structure for the identified factor loading matrix Θ contains two rows, θi,
θj,with a single non zero element in the same column position, i.e. there
exists only one element s, s = 1, ..., k, such that θi,s 6= 0 and θj,s 6= 0. If this
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is the case, then all the cross products terms in [30] will be zero, and so will
be the sum of their powers. We have therefore

¯̄̄̄
¯
kX
l=1

θi,lθj,l

¯̄̄̄
¯
2

= |θi,sθj,s|2

kX
l=1

θ2i,l

kX
l=1

θ2j,l = θ2i,sθ
2
j,s,

that is

K2
i,s(0) = 1.

Since in general
kX
l=1

θ2h,l

kX
l=1

θ2j,l >

¯̄̄̄
¯
kX
l=1

θh,lθj,l

¯̄̄̄
¯
2

h 6= j, h, j 6= i, s, all

the other upper triangular elements in the squared coherence matrix will be
smaller than one. Because of the symmetry of the squared coherence matrix,
it will also results K2

s,i(0) = 1 and all the other lower diagonal entries will be
smaller than one.24

Proof of Corollary 2.1: The number of unitary squared coher-

ences at the zero frequency From Theorem 2 we know that a sufficient
condition for the Cauchy-Schwarz inequality to hold with equality between
two generic processes i and j is that the corresponding rows in the factor
loading matrix must contain a single non zero element in the same column
position.
When more than a bivariate fractional cointegration relationship exists,

the number of unitary squared coherences at the zero frequency is given by
the number of combinations of class two of the row vectors satisfying the
above condition. Let us denote with ri i = 1, ..., k the number of cointe-
gration relationships annihilating the ith common factor. Then, the number

24Note that it could be argued that Theorem 2 establishes only a sufficient condition
for a unitary squared coherence, since theoretically one could not exclude complicated
non linear restrictions between the factor loadings which satisfy [30], and therefore yield
a unitary coherence without requiring bivariate fractional cointegration. However, since
the existence of such restrictions may be regarded as unlikely in practice, Theorem 2
establishes also necessary conditions.
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of combinations of row vectors satisfying Theorem 2 are
(ri + 1)!

2! ((ri + 1)− 2)! =
(ri + 1)!

2! (ri − 1)! =
ri (ri + 1)

2
. Since there are k common factors, we then have

that the total number of unitary squared coherences is
kX
i=1

ri (ri + 1)

2
. 25

Proof of Corollary 2.2: The number of zero squared coherences
at the zero frequency Note that a necessary and sufficient condition for
the generic upper diagonal squared coherence at the zero frequency K2

i,j(0)
to be zero is that

K2
i,j(0) = 0↔

kX
l=1

θi,lθj,l = 0 i 6= j, i = 1, ..., p− 1, j = i+ 1, ..., p,

i.e. a squared zero coherence at the zero frequency between two generic
processes i and j implies, and it is implied, by the orthogonality of the
subvectors containing the corresponding entries in the factor loading matrix.
In the case which is most likely to hold in practice, i.e. the two processes
are driven by different common long memory factors, this condition would
be satisfied because the row vectors θi and θj in the simple structure for
the identified factor loading matrix do not contain non zero elements in the
same column position (l), so that the products of their elements will always be
zero, and so would be the sum of their products. Note that the orthogonality
condition implies by it is not implied by the lack of fractional cointegration.
Hence for i, j = 1, ..., p, i 6= j, l = 1, ..., k

K2
i,j(0) = 0↔ θi,l = 0, or θj,l = 0, or both.

If the above condition holds, then

θi,lθj,l = 0 ∀l,
25Note that it could be argued that Corollary 2.1 only establishes a lower bound for the

number of unitary squared coherences at the zero frequency, since theoretically one could
not exclude complicated non linear restrictions between the factor loadings which satisfy
[30], and therefore yield a unitary coherence without requiring bivariate fractional cointe-
gration. However, as for Theorem 2, the existence of such restrictions may be regarded as
unlikely in practice, so that Corollary 2.1 establishes the exact number of unitary squared
coherences at the zero frequency.
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and therefore K2
i,j(0) =

¯̄̄̄
¯
kX
l=1

θi,lθj,l

¯̄̄̄
¯
2

kX
l=1

θ2i,l

kX
l=1

θ2j,l

= 0.

Proof of Corollary 2.3Conditions for a sparse squared coherency
matrix at the zero frequency Given a vector of p fractionally differenced
processes, the number of upper diagonal elements in the squared coherence

matrix at the zero frequency is
p(p− 1)
2

. The conditions stated in the Corol-

lary requires that the p× k simple structure for the identified factor loading
matrix Θ can be partitioned, after reordering of the variables if necessary, as
Θ =

£
Θ1 Θ2

¤0
, where Θ1 is diagonal with dimension equal to the number

of common factors (k < p), and Θ2 has dimension (p− k)× k and contains
only row vectors with a single non zero element. Hence, the rows of the factor
loading matrix satisfy either the conditions in Theorem 2 or in Corollary 2.2,
and therefore all the off diagonal elements in the squared coherence matrix
will be either one or zero. The number of unitary and zero coherences can
be determined as follows.
To establish the number of zero squared coherences at the zero frequency

let us focus on the submatrices Θ1 and Θ2 separately. Since Θ1 is diagonal
of dimension k, the number of couples of vectors which satisfy the conditions

in Corollary 2.2 is
k!

2!(k − 2)! , i.e. the number of combinations of k elements

with class two, yielding
k(k − 1)

2
zero squared coherences coming from the

elements in Θ1. Since by assumption there are p− k bivariate cointegration
relationships, and given the diagonal structure of Θ1, it is possible to combine
each of the (p− k) rows in Θ2 with (k − 1) rows in Θ1, so that the new k
rows yields a diagonal matrix. Hence, the number of zero squared coherences
given by the combinations of the rows of the matrices Θ1 and Θ2 which

satisfy the conditions in Corollary 2.2 is (p − k)
·

k!

2!(k − 2)! −
(k − 1)!
2!(k − 3)!

¸
,

where the second term in the square brackets is to avoid double accounting
of the combinations of the rows in the matrix Θ1. By simplifying the previous
expression we have (p− k)(k − 1).
Finally, depending on the structure of the matrix Θ2, the number of zero

squared coherences determined by the combinations of the rows in the matrix

Θ2 is 0 ≤ q ≤ (p− k)!
2!((p− k)− 2)! =

(p− k) (p− k − 1)
2

, with q = 0 when all the
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rows satisfy the condition in Theorem 2 and q =
(p− k) (p− k − 1)

2
when

all its rows satisfy Corollary 2.2.

Therefore the number of zero squared coherences is n0 =
k(k − 1)

2
+

(p − k)(k − 1) + q = (2p− k) (k − 1)
2

+ q, that is
(2p− k) (k − 1)

2
≤ n0 ≤

p(p− 3) + 2k
2

.

As far as the unitary squared coherences are concerned, since the condi-
tions in Theorem 2 hold, from Theorem 2 and Corollary 2.1 it follows that the

number of unitary squared coherences will be equal to
kX
i=1

ri (ri + 1)

2
, where

ri is the number of bivariate cointegration relationships annihilating the ith

factor, and
kX
i=1

ri = p − k. It is now possible to note that when q = 0,

kX
i=1

ri (ri + 1)

2
=
(p− k) (p− k + 1)

2
, and when q =

(p− k) (p− k − 1)
2

,

kX
i=1

ri (ri + 1)

2
= p− k. Hence p− k ≤ n1 ≤ (p− k) (p− k + 1)

2
.

In both cases we have
kX
i=1

ri (ri + 1)

2
+
k(k − 1)

2
+ (p − k)(k − 1) + q =

p(p− 1)
2

.26
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Table 1: Monte Carlo results; sample length: 100 observations, m = 4

d = 0.15 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.388
−0.380

0.520
0.048

−0.024
−0.024

0.108
0.095

0.022
0.040

0.014
0.011

0.104
0.102

0.006
0.005

bias mse
−0.324
−0.324

0.039
0.036

0.076
0.076

0.102
0.091

0.008
0.027

0.010
0.008

0.083
0.082

0.004
0.003

bias mse
−0.288
−0.281

0.036
0.032

0.194
0.195

0.088
0.078

0.010
0.025

0.005
0.005

0.069
0.067

0.003
0.002

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.181
−0.180

0.016
0.015

0.380
0.369

0.062
0.056

−0.003
0.014

0.003
0.003

0.040
0.040

0.001
0.001

bias mse
−0.133
−0.132

0.012
0.012

0.479
0.475

0.050
0.046

−0.004
0.016

0.003
0.003

0.028
0.028

0.001
0.001

bias mse
−0.056
−0.055

0.002
0.002

0.636
0.629

0.021
0.019

−0.001
0.018

0.001
0.001

0.010
0.010

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 2: Monte Carlo results; sample length: 100 observations, m = 4

d = 0.30 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.251
−0.234

0.027
0.023

0.007
0.009

0.055
0.048

0.022
0.040

0.006
0.006

0.066
0.061

0.003
0.002

bias mse
−0.246
−0.226

0.031
0.027

0.047
0.051

0.061
0.052

0.026
0.042

0.006
0.006

0.064
0.059

0.003
0.002

bias mse
−0.184
−0.169

0.018
0.016

0.154
0.146

0.046
0.040

0.014
0.032

0.004
0.005

0.046
0.043

0.002
0.002

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.150
−0.138

0.014
0.011

0.254
0.239

0.042
0.036

0.014
0.033

0.003
0.003

0.036
0.033

0.001
0.001

bias mse
−0.105
−0.101

0.006
0.006

0.342
0.320

0.031
0.025

0.010
0.031

0.002
0.002

0.024
0.023

0.000
0.000

bias mse
−0.056
−0.053

0.002
0.001

0.431
0.408

0.012
0.010

0.005
0.026

0.001
0.001

0.012
0.012

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 3: Monte Carlo results; sample length: 100 observations, m = 4

d = 0.30 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.348
−0.338

0.041
0.040

0.008
0.002

0.095
0.078

0.015
0.025

0.008
0.009

0.092
0.089

0.004
0.004

bias mse
−0.326
−0.314

0.041
0.040

0.064
0.070

0.092
0.091

0.012
0.027

0.007
0.009

0.085
0.082

0.004
0.004

bias mse
−0.273
−0.263

0.034
0.032

0.205
0.203

0.092
0.089

0.005
0.019

0.007
0.008

0.066
0.064

0.003
0.003

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.202
−0.195

0.021
0.019

0.371
0.362

0.079
0.068

0.004
0.019

0.004
0.004

0.045
0.044

0.001
0.001

bias mse
−0.131
−0.128

0.009
0.009

0.502
0.491

0.053
0.047

0.001
0.018

0.003
0.003

0.028
0.027

0.001
0.001

bias mse
−0.051
−0.049

0.002
0.002

0.644
0.627

0.018
0.018

−0.002
0.015

0.001
0.002

0.010
0.010

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 4: Monte Carlo results; sample length: 100 observations, m = 4

d = 0.45 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.164
−0.133

0.016
0.011

0.005
0.006

0.033
0.022

0.005
0.014

0.003
0.003

0.042
0.034

0.001
0.001

bias mse
−0.159
−0.132

0.014
0.010

0.019
0.011

0.030
0.023

0.005
0.014

0.003
0.003

0.041
0.034

0.001
0.001

bias mse
−0.129
−0.109

0.011
0.008

0.092
0.078

0.023
0.020

0.003
0.015

0.002
0.002

0.033
0.028

0.008
0.006

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.107
−0.092

0.008
0.006

0.156
0.138

0.025
0.020

0.005
0.019

0.002
0.002

0.028
0.023

0.001
0.001

bias mse
−0.084
−0.074

0.005
0.003

0.206
0.185

0.016
0.014

0.003
0.018

0.001
0.001

0.021
0.018

0.000
0.000

bias mse
−0.055
−0.049

0.001
0.001

0.276
0.245

0.007
0.006

0.002
0.017

0.000
0.001

0.013
0.012

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 5: Monte Carlo results; sample length: 100 observations, m = 4

d = 0.45 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.243
−0.223

0.029
0.028

0.000
−0.003

0.063
0.051

−0.014
−0.030

0.066
0.057

0.063
0.058

0.003
0.002

bias mse
−0.226
−0.208

0.023
0.023

0.054
0.040

0.051
0.048

0.016
0.032

0.004
0.006

0.058
0.054

0.002
0.002

bias mse
−0.188
−0.174

0.050
0.041

0.158
0.135

0.050
0.042

0.015
0.030

0.003
0.005

0.046
0.044

0.001
0.001

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.151
−0.136

0.012
0.011

0.250
0.224

0.043
0.037

0.015
0.029

0.003
0.003

0.036
0.033

0.001
0.001

bias mse
−0.104
−0.094

0.007
0.005

0.334
0.313

0.033
0.029

0.009
0.026

0.002
0.002

0.024
0.022

0.001
0.000

bias mse
−0.056
−0.051

0.002
0.001

0.431
0.398

0.015
0.013

0.006
0.022

0.001
0.001

0.012
0.011

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 6: Monte Carlo results; sample length: 100 observations, m = 4

d = 0.45 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0.30
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.352
−0.334

0.043
0.046

0.011
0.019

0.086
0.097

0.017
0.030

0.008
0.012

0.093
0.089

0.004
0.005

bias mse
−0.329
−0.319

0.039
0.041

0.100
0.090

0.103
0.103

0.010
0.020

0.009
0.014

0.081
0.080

0.003
0.004

bias mse
−0.258
−0.248

0.030
0.033

0.220
0.216

0.098
0.108

0.004
0.015

0.006
0.008

0.062
0.059

0.003
0.002

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0.30
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.198
−0.190

0.020
0.020

0.361
0.338

0.065
0.070

−0.001
0.013

0.003
0.005

0.044
0.043

0.001
0.001

bias mse
−0.117
−0.114

0.007
0.008

0.499
0.491

0.049
0.053

−0.005
0.011

0.003
0.004

0.025
0.024

0.000
0.000

bias mse
−0.052
−0.050

0.003
0.003

0.626
0.604

0.021
0.023

−0.005
0.010

0.001
0.002

0.010
0.010

0.002
0.002

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 7: Monte Carlo results; sample length: 500 observations, m = 8

d = 0.15 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.281
−0.287

0.019
0.016

−0.014
−0.029

0.045
0.037

0.010
0.026

0.004
0.004

0.075
0.076

0.002
0.001

bias mse
−0.246
−0.253

0.013
0.012

0.051
0.052

0.025
0.022

0.001
0.017

0.002
0.003

0.063
0.065

0.001
0.001

bias mse
−0.212
−0.216

0.011
0.010

0.170
0.171

0.029
0.025

0.004
0.019

0.002
0.002

0.052
0.053

0.001
0.001

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.150
−0.154

0.006
0.005

0.297
0.303

0.023
0.020

−0.004
0.012

0.001
0.001

0.035
0.036

0.000
0.000

bias mse
−0.095
−0.096

0.003
0.002

0.413
0.417

0.014
0.012

−0.007
0.009

0.001
0.001

0.021
0.021

0.000
0.000

bias mse
−0.036
−0.037

0.000
0.000

0.527
0.534

0.006
0.005

−0.007
0.008

0.000
0.000

0.008
0.007

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 8: Monte Carlo results; sample length: 500 observations, m = 8

d = 0.30 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.132
−0.129

0.005
0.004

−0.003
0.001

0.012
0.010

−0.000
0.009

0.000
0.000

0.034
0.033

0.000
0.000

bias mse
−0.118
−0.119

0.004
0.004

0.032
0.035

0.012
0.009

−0.001
0.014

0.001
0.001

0.030
0.030

0.000
0.000

bias mse
−0.102
−0.100

0.003
0.002

0.101
0.102

0.010
0.009

0.003
0.017

0.001
0.001

0.026
0.025

0.000
0.000

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.078
−0.077

0.002
0.002

0.159
0.158

0.008
0.007

0.002
0.016

0.000
0.001

0.019
0.019

0.000
0.000

bias mse
−0.056
−0.055

0.001
0.001

0.233
0.235

0.006
0.005

0.005
0.020

0.000
0.000

0.013
0.013

0.000
0.000

bias mse
−0.028
−0.028

0.000
0.000

0.301
0.301

0.002
0.002

0.006
0.021

0.000
0.000

0.007
0.007

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 9: Monte Carlo results; sample length: 500 observations, m = 8

d = 0.30 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.273
−0.275

0.016
0.015

0.001
0.003

0.029
0.025

−0.005
−0.017

0.035
0.033

0.072
0.072

0.001
0.001

bias mse
−0.261
−0.260

0.018
0.015

0.051
0.049

0.035
0.028

0.009
0.021

0.003
0.003

0.068
0.068

0.002
0.001

bias mse
−0.198
−0.197

0.010
0.008

0.169
0.159

0.027
0.022

−0.004
0.007

0.002
0.002

0.049
0.049

0.001
0.001

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.160
−0.159

0.007
0.006

0.293
0.291

0.024
0.020

0.000
0.013

0.001
0.001

0.037
0.037

0.000
0.000

bias mse
−0.097
−0.096

0.003
0.003

0.413
0.412

0.016
0.014

−0.005
0.008

0.001
0.001

0.021
0.021

0.001
0.001

bias mse
−0.037
−0.037

0.000
0.000

0.532
0.528

0.006
0.005

−0.006
0.007

0.000
0.000

0.008
0.008

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 10: Monte Carlo results; sample length: 500 observations, m = 8

d = 0.45 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.058
−0.050

0.001
0.001

−0.002
0.001

0.004
0.003

−0.001
0.005

0.003
0.003

0.015
0.013

0.001
0.001

bias mse
−0.053
−0.048

0.001
0.001

0.017
0.018

0.005
0.003

−0.000
0.007

0.000
0.000

0.013
0.012

0.000
0.000

bias mse
−0.048
−0.042

0.001
0.001

0.054
0.054

0.004
0.003

0.004
0.011

0.000
0.000

0.012
0.011

0.000
0.000

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.040
−0.035

0.000
0.000

0.085
0.081

0.003
0.003

0.005
0.013

0.000
0.000

0.010
0.010

0.000
0.000

bias mse
−0.032
−0.028

0.000
0.000

0.123
0.120

0.003
0.002

0.009
0.017

0.000
0.000

0.008
0.007

0.000
0.000

bias mse
−0.022
−0.019

0.000
0.000

0.161
0.154

0.001
0.001

0.011
0.019

0.000
0.000

0.005
0.005

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 11: Monte Carlo results; sample length: 100 observations, m = 4

d = 0.45 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.128
−0.121

0.005
0.004

0.001
0.000

0.011
0.010

−0.001
0.008

0.001
0.001

0.033
0.031

0.000
0.000

bias mse
−0.126
−0.116

0.005
0.004

0.029
0.027

0.013
0.010

0.002
0.010

0.001
0.001

0.033
0.030

0.000
0.000

bias mse
−0.099
−0.092

0.003
0.003

0.095
0.092

0.010
0.008

0.000
0.010

0.001
0.001

0.025
0.023

0.000
0.000

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0.15
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.088
−0.082

0.002
0.002

0.164
0.157

0.010
0.008

0.007
0.018

0.001
0.001

0.022
0.020

0.000
0.000

bias mse
−0.059
−0.054

0.001
0.001

0.234
0.225

0.007
0.005

0.006
0.018

0.000
0.000

0.014
0.013

0.000
0.000

bias mse
−0.031
−0.028

0.000
0.000

0.299
0.284

0.003
0.002

0.006
0.017

0.000
0.000

0.007
0.007

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.
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Table 12: Monte Carlo results; sample length: 500 observations, m = 8

d = 0.45 ρ = 0.0 ρ = 0.1 ρ = 0.3
b = 0.30
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.279
−0.263

0.018
0.017

−0.003
−0.003

0.035
0.032

0.008
0.013

0.003
0.004

0.073
0.069

0.002
0.002

bias mse
−0.256
−0.250

0.015
0.015

0.064
0.057

0.032
0.030

0.008
0.016

0.003
0.003

0.066
0.064

0.001
0.001

bias mse
−0.203
−0.196

0.011
0.010

0.192
0.186

0.031
0.027

0.003
0.011

0.002
0.002

0.050
0.048

0.001
0.001

ρ = 0.5 ρ = 0.7 ρ = 0.9
b = 0.30
K2

∆

K2
L

β∆

βL
βc∆
βcL
γ0
γ+0

bias mse
−0.154
−0.148

0.007
0.007

0.299
0.288

0.027
0.024

−0.002
0.007

0.001
0.002

0.035
0.035

0.000
0.000

bias mse
−0.097
−0.094

0.003
0.003

0.418
0.404

0.021
0.019

−0.004
0.005

0.001
0.001

0.021
0.021

0.000
0.000

bias mse
−0.040
−0.038

0.000
0.000

0.532
0.515

0.007
0.007

−0.005
0.004

0.000
0.001

0.008
0.008

0.000
0.000

The table reports the results of the Monte Carlo simulation. bias and mse
denote the bias and the Monte Carlo Mean square error, respectively. d is
the fractional differencing operator for the series, b is the fractional

differencing parameter for the cointegrating residuals, m is the bandwidth
for the Daniell window or the averaged periodogram, ρ is the correlation
coefficient between the innovations of the cointegrating residuals and the
regressor. K2

i is the unitary squared coherence at the zero frequency, βi is
the cointegrating parameter obtained from the restricted PC estimator
(FDLS estimator), where i = ∆ denotes the series in fractional differences
and i = L denotes the series in levels. γ0 and γ+0 is the proportion of
variance explained by smallest eigenvalue for the series in fractional

differences and the series in levels, respectively.

48
ECB
Work ing Paper Ser ie s No . 321
March 2004



Table 13, Panel A, Fractional cointegration analysis
RY
eig 0.376 0.045 0.018 0.011
pv 0.83 0.10 0.04 0.02

1% 5% 10%
r = 1 0.036 0.032 0.030
r = 2 0.100 0.087 0.082
r = 3 0.246 0.223 0.210

PO
eig 0.396 0.063 0.019 0.013
pv 0.81 0.13 0.04 0.03

1% 5% 10%
r = 1 0.038 0.034 0.032
r = 2 0.094 0.085 0.081
r = 3 0.283 0.256 0.242

Table 13, Panels B, C: zero and unitary squared coherence tests

B GE FR SP IT
GE 0.000 0.000 0.033
FR 0.000 0.000 0.000
SP 0.000 0.000 0.000
IT 0.000 0.000 0.000

C GE FR SP IT
GE 0.148 0.058 0.011
FR 0.160 0.220 0.142
SP 0.136 0.222 0.234
IT 0.673 0.172 0.213

Panel A reports the Robinson and Yajima (2002) (RY) and Phillips
Ouliaris (1988) fractional cointegrating rank test. eig denotes the estimated

eigenvalues, pv the proportion of explained variance, and rank = i,
i = 1, ..., 3, denotes the corresponding test at the given significance level

(1%, 5%, 10%). The Daniell window was used for the Phillips Ouliaris test,
with bandwidth set to sixteen ordinates for both tests. Panel B reports the
p-values of the zero squared coherence tests. Panel C reports the p-values
of the unitary squared coherence tests (z-trasform approach), computed
according to the modified procedure suggested in Priestly (1981, p.705).
Lower diagonal elements are for the series in fractional differences, upper

diagonal elements are for the series in levels.
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Table 14, Unrestricted and restricted eigenvectors
Fractional differences

E1 E2 E3 E4
GE -0.251 0.243 -0.798 0.492
FR 0.909 -0.035 -0.042 0.413
SP -0.279 -0.739 0.217 0.574
IT -0.181 0.628 0.561 0.508

GE FR SP IT

GE
1
(−)

0
(−)

0
()

0.742
(0.007)

FR
−0.994
(0.009)

−1.010
(0.010)

0
(−)

0.747
(0.006)

SP
0
(−)

0
(−)

1
(−)

0.693
(0.009)

IT
0
(−)

1
(−)

−0.918
(0.010)

0.754
(0.007)

Levels
E1 E2 E3 E4

GE 0.294 -0.153 -0.803 0.494
FR -0.913 -0.090 -0.078 0.391
SP 0.166 0.714 0.300 0.610
IT 0.229 -0.677 0.509 0.480

GE FR SP IT

GE
1
(−)

0
(−)

0
()

1.341
(0.012)

FR
−1.115
(0.010)

−1.014
(0.009)

0
(−)

1.203
(0.001

SP
0
(−)

0
(−)

1
(−)

1.243
(0.016)

IT
0
(−)

1
(−)

−1.019
(0.009)

1.220
(0.012)

The Table reports the unrestricted (first four rows) and restricted (second
four rows) eigenvectors of the scaled spectral matrix. The first three
columns refer to the cointegration space, while the latter column is the

factor loading matrix. Standard errors were computed using the jack-knife.

50
ECB
Work ing Paper Ser ie s No . 321
March 2004



Table 15, Panel A, Cointegration analysis
J
eig 0.190 0.088 0.006
pv 0.67 0.31 0.02

95%
r = 0 51.23 29.7
r = 1 16.18 15.4
r = 2 0.981 3.8

PO
eig 0.693 0.023 0.008
pv 0.96 0.03 0.01

1% 5% 10%
r = 1 0.036 0.029 0.025
r = 2 0.139 0.111 0.096
cv 0.033 0.033 0.033

Table 15, Panels B,C: zero and unitary squared coherence tests

B Y C I
Y 0.000 0.000
C 0.000 0.000
I 0.000 0.000

C Y C I
Y 0.362 0.362
C 0.295 0.362
I 0.354 0.362

Panel A reports the Johansen (1988) (J) and Phillips Ouliaris (1988) (PO)
cointegrating rank test. eig denotes the estimated eigenvalues, pv the
proportion of explained variance, and rank = i, i = 0, ..., 2, denotes the
corresponding test (at significance levels 1%, 5%, 10% for the Phillips

Ouliaris test). The Daniell window was used for the Phillips Ouliaris test,
with bandwidth set to two ordinates.

Panel B reports the p-values of the zero squared coherence tests. Panel C
reports the p-values of the unitary squared coherence tests (z-trasform
approach), computed according to the modified procedure suggested in
Priestly (1981, p.705). Lower diagonal elements are for the series in
differences, upper diagonal elements are for the series in levels.
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Table 16, Unrestricted and restricted eigenvectors
Y C I Y C I

EdPC,3 0.501 0.250 -0.829 J1 1 -2.014 1.192
EdPC,2 -0.652 0.739 -0.171 J2 -1.557 1 0.493
EdPC,3 0.570 0.626 0.533 J3 -0.858 -1.620 1

RdPC,1
−0.966
(0.015)

1
(−)

0
(−) RJ1

−1.075
(0.021)

1
(−)

0
(−)

RdPC,2
−0.896
(0.018)

0
(−)

1
(−) RJ2

−0.978
(0.039)

0
(−)

1
(−)

RdPC,3
0.957
(0.025)

0.925
(0.036)

0.857
(0.033)

RJ3
0.736
(0.098)

0.791
(0.106)

0.719
(0.097)

ElPC,1 0.815 -0.487 -0.315
ElPC,2 -0.088 -0.641 0.763
ElPC,3 0.574 0.593 0.565

RlPC,1
−1.035
(0.001)

1
(−)

0
(−)

RlPC,2
−0.984
(0.002)

0
(−)

1
(−)

RlPC,3
0.903
(0.030)

0.992
(0.031)

0.845
(0.029)

The Table reports the unrestricted (E) and restricted (R) eigenvectors of
the scaled spectral matrix (PC) and of the long-run matrix (J, Johansen
(1988) estimator). Ei, Ri i = 1, 2 refer to the cointegration space, E3,R3
refer to the factor loading matrix. Edi ,R

d
i i = 1, 2 refer to the cointegrating

vectors obtained from the series in differences, while Eli,R
l
i i = 1, 2 refer to

the cointegrating vectors obtained from the series in levels. Standard errors
for the spectral matrix eigenvectors have been computed using the

jack-knife.

52
ECB
Work ing Paper Ser ie s No . 321
March 2004



0 50 100 150

100

200

GE GEp(D)
GEp(L)

0 50 100 150

50

100

150

FR Fp(D)
Fp(L)

0 50 100 150

50

100

150

200
SP SPp(D)
SPp(L)

0 50 100 150

50

100

150

200
IT ITp(D)
ITP(L)

Figure 1: Actual realised variance series (Germany (GE), France (FR),
Spain (SP), Italy (IT)) and estimated persistent components (P). D and L
denote the decompositions obtained from the series in differences and levels.
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Figure 2: Actual and persistent components (GDP (Y, Yp), consumption
(C, Cp), investment (I, Ip)). D and L denote the decompositions obtained

from the series in differences and levels.
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