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Abstract

We investigate the dynamic properties of systematic default risk conditions for firms in

different countries, industries and rating groups. We use a high-dimensional nonlinear

non-Gaussian state space model to estimate common components in corporate defaults

in a 41 country sample between 1980Q1–2014Q4, covering both the global financial

crisis and euro area sovereign debt crisis. We find that macro and default-specific

world factors are a primary source of default clustering across countries. Defaults

cluster more than what shared exposures to macro factors imply, indicating that other

factors also play a significant role. For all firms, deviations of systematic default risk

from macro fundamentals are correlated with net tightening bank lending standards,

suggesting that bank credit supply and systematic default risk are inversely related.

Keywords: systematic default risk; credit portfolio models; frailty-correlated defaults;

international default risk cycles; state-space methods.

JEL classification: G21, C33
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Non-technical summary

Many macro-financial phenomena are pictured best in a global perspective. In this paper,

we raise the question whether the same holds true for corporate default rates. In particular,

we ask whether there is a world default risk cycle? If so, what are its statistical properties?

To what extent is the world default risk cycle different from the world business cycle, which

also affects defaults? When can the default risk cycle and business cycle decouple? Is such

decoupling only specific to the U.S., or is it an international phenomenon? Finally, what

are the implications, if any, of world default risk factors for the risk bearing capacity of

internationally active financial intermediaries?

Compared to previous credit risk studies that focus on the U.S. perspective, our study

provides an international perspective on default clustering. We investigate the credit expe-

rience of more than 20,000 firms from a 41-country sample covering four economic regions in

the world over 35 years from 1980Q1 to 2014Q4. Unfortunately, data sparsity (in particular

for non-U.S. firms) as well as econometric challenges have so far limited attention to single

countries. These challenges include the combination of having non-Gaussian default data on

the left-hand side and unobserved risk factors on the right hand, as well as computational

challenges when jointly modeling different sets of macro and default risk data from a larger

number of countries.

Our econometric methodology relies on a combination of two earlier estimation frame-

works to model a large cross-section of observations from different families of distributions

that is subject to a substantial number of latent factors. Specifically, we explain how the

computational difficulties can be overcome through dimensionality reduction in a prelim-

inary first step, and a certain approach to the estimation of parameters and risk factors

afterwards.

We obtain two main empirical findings. First, our results indicate that there is a distinct

world default risk cycle that is related to, but different from world macro-financial cycles. We

find that between 18-26% of global default risk variation is systematic, while the remainder
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is idiosyncratic. The share of systematic default risk is higher (39-51%) if industry-specific

variation is counted as systematic. Shared exposure to global and regional macroeconomic

factors explains 2-4% of total (i.e. systematic plus idiosyncratic) default risk variation across

the economic regions and industry sectors considered in this study. The remainder of sys-

tematic global default risk variation is accounted for by global default-specific (frailty) risk

factors (7-18%) and regional frailty factors (1-11%). The latter is an important source of

default risk clustering in some regions, but not others. Finally, industry-specific variation

(17-31%) represents a significant additional source of default clustering. Industry dynamics

are most pronounced for the transportation and energy, consumer goods, and retail and

distribution industries.

Second, we show that the decoupling of systematic default risk from macro fundamentals

is strongly related to variation in bank lending standards in all four economic regions. This

finding supports economic models that have provided empirical evidence of the importance

of financial intermediary behavior as a determinant of economy-wide corporate default risk;

see Aoki and Nikolov (2015), Boissay, Collard, and Smets (2016), and Clerc et al. (2015). In

our sample, unusually low physical default risk conditions almost always coincide with net

falling bank lending standards. This finding is intuitive: when bad risks receive ample and

easy access to credit, they can avoid, or at least delay, default. Vice versa, net tightening

bank lending standards coincide with higher systematic default risk. This phenomenon is

also intuitive: when credit access is tight, even solvent firms have a higher risk of becoming

illiquid. This connection to the credit cycle make credit risk deviations from macro-implied

levels informative from a financial stability surveillance perspective. In addition, our global

frailty factor is consistent with bank lending standards that are strongly correlated across

borders, in line with correlated monetary policy cycles and ‘global liquidity’ conditions.
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1 Introduction

Recent studies provide evidence of many cross-country links and common global dynamics

in macroeconomic fluctuations and financial asset returns.1 Simultaneously, these common

movements in macroeconomic fluctuations and asset returns are known to influence the time

variation in corporate default rates; see, for example, Pesaran, Schuermann, Treutler, and

Weiner (2006), Koopman, Kräussl, Lucas, and Monteiro (2009), and Giesecke, Longstaff,

Schaefer, and Strebulaev (2011). Given that many macro-financial phenomena are pictured

best in a global perspective, we raise the question whether the same holds true for corporate

default rates. In particular, we ask ourselves whether there is a world default risk cycle?

And if so, what are its statistical properties? To what extent is the world default risk cycle

different from the world business cycle, which also affects defaults? When can the default

risk cycle and business cycle decouple? Is such decoupling only specific to the U.S., or is it an

international phenomenon? And finally, what are the implications, if any, of world default

risk factors for the risk bearing capacity of internationally active financial intermediaries?

The main objective of this study is to: quantify the share of systematic default risk

that can be attributed to world business cycle factors and default-specific factors, infer

their statistical properties, estimate their location over time, and assess to what extent the

world default risk cycles can decouple from world macroeconomic conditions. Compared

to previous credit risk studies that focus on the U.S. perspective, our study provides an

international perspective on default clustering. We investigate the credit experience of more

than 20,000 firms from a 41-country sample covering four economic regions in the world over

35 years from 1980Q1 to 2014Q4.

In addition to the literature investigating the extent of co-movements across global macro-

1For example, Kose, Otrok and Whiteman (2003, 2008), and Kose, Otrok, and Prasad (2012) document
the presence of a world business cycle in macroeconomic variables, and analyse its statistical properties as well
as its economic determinants. Ciccarelli and Mojon (2010) and Neely and Rapach (2011) find pronounced
global common dynamics in international inflation rates, with international factors explaining more than half
of the country variances on average. Yet other research points to global common movement in international
stock returns (see e.g. Bekaert, Hodrick, and Zhang (2009)), government bond yields (see e.g. Jotikasthira,
Le, and Lundblad (2015)), and term structure dynamics (see e.g. Diebold, Li, and Yue (2008)).

ECB Working Paper 1922, June 2016 4



economic and financial market variables as mentioned above, a second strand of literature

investigates why corporate defaults cluster so much over time within certain economies. For

example, quarterly default probabilities for U.S. industrial firms can be an order of magnitude

higher in a bust than they are in an economic boom; see Das, Duffie, Kapadia, and Saita

(2007) and Koopman, Lucas, and Schwaab (2011). In general, the accurate measurement of

point-in-time default hazard rates is a complicated task since not all processes that determine

corporate defaults can easily be observed. Recent research indicates that readily available

macro-financial variables and firm-level information may not be sufficient to capture the large

degree of default clustering present in corporate default data. This point is most compellingly

made by Das et al. (2007), who apply a multitude of statistical tests, and almost always

reject the joint hypothesis that their default intensities are well-specified in terms of (i) easily

observed firm-specific and macro-financial information and (ii) the doubly stochastic default

times assumption, also known as the conditional independence assumption. In particular,

there is substantial evidence for an additional dynamic unobserved ‘frailty’ risk factor and/or

contagion dynamics; see Koopman, Lucas, and Monteiro (2008), Duffie, Eckner, Horel, and

Saita (2009), and Creal, Schwaab, Koopman, and Lucas (2014).2

Understanding the sources of international default risk variation is crucial for developing

robust risk models at internationally active financial intermediaries as well as for effective

supervision by the appropriate authorities. In addition, studying a country (or region) in iso-

lation can lead one to erroneously believe that the observed co-movement is specific to that

country, say the U.S., when it is in fact common to a much larger group of countries. Unfor-

tunately, data sparsity (in particular for non-U.S. firms) as well as econometric challenges

have so far limited attention to single countries. These challenges include the combination

of having non-Gaussian default data on the left-hand side and unobserved risk factors on

the right hand, as well as computational challenges when jointly modeling different sets of

2Both ‘frailty’ and contagion risk can cause default dependence above and beyond what is implied by
observed covariates alone. The issue of excess default clustering is actively researched, see in addition McNeil
and Wendin (2007), Koopman and Lucas (2008), Lando and Nielsen (2010), Koopman, Lucas, and Schwaab
(2011, 2012), and Azizpour, Giesecke, and Schwenkler (2015).
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macro and default risk data from a larger number of countries.

Only a few studies provide an explicitly international perspective on portfolio credit risk

as well and its main determinants. Examples include Pesaran, Schuermann, Treutler, and

Weiner (2006) who study credit risk conditions in multiple countries in a unified (GVAR)

framework. Aretz and Pope (2013) decompose changes in default risk estimates based on

Merton (1974)’s classic model into global, country, and industry effects, and find that global

and industry factors dominate country effects. Finally, the RMI credit risk initiative is a

noteworthy attempt to build a world-wide credit risk map from the bottom up; see, for

instance, Duan and van Laere (2012).3 In their work they do not estimate multiple sets

of latent default risk drivers, such as world, country, and industry factors, and they do

not provide a variance decomposition of default data with respect to these factors. We

address these issues by employing a high-dimensional dynamic factor modeling framework

to disentangle the common components in both international macro-financial variables and

international default risk data. The interesting work of Aretz and Pope (2013) is based

on the decomposition into global, regional, and industry factors. However, our variance

decomposition results are different since we consider the shared variation in non-Gaussian

default counts and proprietary EDFs, and extract a more extensive set of latent global,

country, and industry-specific risk factors.

The econometric methodology relies on the estimation frameworks of Koopman, Lucas,

and Schwaab (2012) and Bräuning and Koopman (2014) to model a large cross-section of

mixed-measurement observations that is subject to a substantial number of latent factors.

Specifically, we explain how the computational difficulties can be overcome through dimen-

sionality reduction in a preliminary first step, as in Bräuning and Koopman (2014), and the

use of antithetic variables in Monte Carlo maximum likelihood evaluation for a parameter-

driven mixed-measurement dynamic factor model, as introduced in Koopman et al. (2012).

As an additional contribution, we show that a one-to-one correspondence exists between

our empirical mixed-measurement dynamic factor model and a CreditMetrics (2007)-type

3RMI is the Risk Management Institute of National University of Singapore, http://www.rmicri.org.
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multi-factor credit risk model of default dependence. This is convenient, as it allows us to

establish an economic interpretation of the empirical model parameters, and to define the

shares of systematic default risk variation. In our econometric framework, non-Gaussian

(integer) default counts are modelled jointly with (continuous, Gaussian) macro-financial

covariates and expected default frequencies (EDF) data. Considering risk data based on

EDFs in addition to actual defaults is crucial, since defaults are rare for most economic

regions outside the U.S. in Moody’s default and recovery database. EDF data are standard

default risk measurements that are routinely used in the financial industry and credit risk

literature; see for example Lando (2003), Duffie et al. (2007) and Duffie et al. (2009).

We obtain the following four main empirical findings. First, our results indicate that

there is a distinct world default risk cycle that is related to, but different from world macro-

financial cycles. We find that between 18-26% of global default risk variation is systematic,

while the remainder is idiosyncratic. The share of systematic default risk is higher (39-51%) if

industry-specific variation is counted as systematic. Shared exposure to global and regional

macroeconomic factors explains 2-4% of total (i.e. systematic plus idiosyncratic) default

risk variation across the economic regions and industry sectors considered in this study. The

remainder of systematic global default risk variation is accounted for by global default-specific

(frailty) risk factors (7-18%) and regional frailty factors (1-11%). The latter is an important

source of default risk clustering in some regions, but not others. Finally, industry-specific

variation (17-31%) represents a significant additional source of default clustering. Industry

dynamics are most pronounced for the transportation and energy, consumer goods, and retail

and distribution industries.

Second, all risk factors tend to be highly persistent, with most autoregressive parame-

ters well above 0.8 at the quarterly frequency. The frailty and industry-specific factors are

particularly persistent, with autoregressive coefficients of up to 0.98. Such values imply a

half-life of a shock to default risk of approximately 5 to 25 quarters. As a result, default risk

conditions can decouple substantially and for an extended period of time compared to what

macroeconomic and financial markets data imply, before eventually returning to their long
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run means.

Third, we show that the decoupling of systematic default risk from macro fundamentals

is strongly related to variation in bank lending standards in all four regions. This supports

economic models that have provided empirical evidence of the importance of financial in-

termediary behavior as a determinant of economy-wide corporate default risk; see Aoki and

Nikolov (2015), Boissay, Collard, and Smets (2016), and Clerc et al. (2015). In our sample,

unusually low physical default risk conditions almost always coincide with net falling bank

lending standards. This finding is intuitive: when bad risks receive ample and easy access

to credit, they can avoid, or at least delay, default. Vice versa, net tightening bank lending

standards coincide with higher systematic default risk. This phenomenon is also intuitive:

when credit access is tight, even solvent firms have a higher risk of becoming illiquid; com-

pare Acharya, Davydenko, and Strebulaev (2012) and He and Xiong (2012). Our global

frailty factor is consistent with bank lending standards that are strongly correlated across

borders, in line with correlated monetary policy cycles and ‘global liquidity’ conditions; see

Bruno and Shin (2015) and Hoffmann, Eickmeier, and Gambacorta (2014).

Finally, given the key importance of global factors, we point out that – perhaps counter-

intuitively – more risk diversification across borders does not necessarily decrease portfolio

default risk through a reduced dependence across firms. Two effects work in opposite direc-

tions. On the one hand, expanding the portfolio across borders decreases risk dependence

if regional macro and regional default-specific factors are imperfectly correlated. On the

other hand, portfolio diversification across borders can increase risk dependence if it in-

volves new credit to firms that load more heavily on the world factors. Our empirical results

demonstrate that this trade-off can be a relevant concern.

Section 2 introduces our global data and provides preliminary evidence for default cluster-

ing across borders. Section 3 formulates a financial framework in which default dependence

is driven by multiple global, regional, and industry-specific risk factors. It also introduces

our estimation methodology. Section 4 presents our key empirical results. Section 5 con-

cludes. A supplementary Web Appendix presents data plots, additional analysis, technical
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details concerning estimation, and a small number of robustness checks.

2 Risk data and international default clustering

This section describes our global data and provides preliminary evidence of pronounced

default clustering across borders. We consider data from three sources. First, we construct

default and ‘firms at risk’ count data for firms from 41 countries. Second, we briefly discuss

EDF-based risk indices at the regional/country level. Finally, we select macroeconomic and

financial time series data with the aim to capture business cycle conditions. All data are

collected at a quarterly frequency.4

2.1 International default data

As a first panel data set, we consider default and firms-at-risk count data from Moody’s

extensive default and recovery database (DRD). The database contains all rating transitions

and default dates for all Moody’s-rated firms worldwide.

We focus on 35 years of quarterly data from 1980Q1 to 2014Q4. We take into account data

from 16,360 rated firms in the U.S., 903 firms in the U.K., 2087 firms in euro area countries,

and 1517 firms in the Asia-Pacific region. In total, we consider 20,867 firms worldwide. Most

of these firms are only active during part of the sample period. The corresponding number

of defaults are 1660, 64, 106, and 72, respectively, totaling 1902 default events.

We use Moody’s broad industry classification to allocate firms to six broad industry sec-

tors: banks & other financial institutions (fin); transportation, utilities, energy & environ-

ment (tre); capital goods & manufacturing (ind); technology firms (tec); retail & distribution

(ret); and, finally, consumer goods (con). When counting firms at risk and the correspond-

ing defaults, we ensure that a firm’s rating withdrawal is ignored if it is later followed by

4The quarterly frequency strikes a compromise between a monthly and a yearly grid. Moving to a monthly
grid would increase the number of zero values and missing values, implying that the count data becomes even
more sparse. Moving to a yearly frequency would substantially shorten the sample, implying that risk factor
dynamics would not be estimated precisely. Creal, Schwaab, Koopman, and Lucas (2014) model default and
rating transition data on a monthly grid; parameter and risk factor inference does not seem to be overly
sensitive to the chosen frequency.
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a default event. In this way, we limit the impact of strategic rating withdrawals preceding

a default. We apply other standard filters; for example, we consider only the first default

event when there are multiple defaults for the same firm.

We refer to Web Appendix A for additional details and default data plots. Web Appendix

B uses our historical default and firm count data to take a preliminary look at the benefits

and limits of credit risk diversification across industry sectors and national borders. For our

global default data, high default losses in one region tend to coincide with high default losses

in any of the other regions. In addition to the pronounced cross-country correlation, defaults

also strongly cluster in the time dimension.

2.2 EDF risk indices

As a second set of data we consider expected default frequencies from Moody’s Analytics

(formerly Moody’s KMV). EDFs are proprietary point-in-time forecasts of default rates, and

are based on a proprietary firm value model that takes firm equity values and balance sheet

information as inputs; see Crosbie and Bohn (2003) for additional details. We use one-year

ahead EDF-based risk indices to augment our sparse data on actual defaults. This is crucial,

as our worldwide credit risk analysis would be much harder to do without the additional

information from the EDF measures, particularly when considering the systematic default

rate variation for firms outside the U.S.

Figure 1 plots the EDF-based risk indices that are used in our empirical analysis below.

The figure distinguishes risk data for financial (left panel) and non-financial firms (right

panel) located in the U.S., U.K., euro area, and Japan. For non-financial firms, we use risk

indices that are constructed as weighted averages across a large number of firms, with a firm’s

total assets used as weights. For financial firms, we use a risk index based on median EDF

values instead, due to the particularly high concentration of total assets in that industry.

While the Moody’s default and recovery (DRD) database contains data on both listed and

non-listed firms, our EDF data only cover listed firms.5 Finally, we use EDF-based risk

5This implies that the EDF indexes are constructed based on a slightly different set of firms than the set
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Figure 1: EDF data for financial and non-financial firms
EDF-based risk indices for financial (left) and non-financial firms (right). The aggregate risk measures cover

firms from the U.S., the U.K., the euro area, and Japan. The sample is from 1992Q1 to 2014Q4.
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Japan 

indices for Japan to approximate default risk conditions for the Asia-Pacific region as a

whole because data for the rest of the region is not available to us.

The EDFs in Figure 1 reveal a striking extent of shared variation across countries, indus-

tries, and time. This is similar to the pattern in actual default counts; see Web Appendix

A. Expected default frequencies for financial firms are high between 2001–2003, and in par-

ticular during the global financial crisis between 2007–2010. Financial EDFs continue to be

elevated in the euro area between 2010–2013 during the euro area sovereign debt crisis. Ex-

pected default rates for non-financial corporates are peaking, in all regions, in 1992, between

2002–2004, and from 2008–2010.

2.3 Macro-financial data

Finally, we consider macro-financial time series data that are commonly considered in the em-

pirical credit risk literature. All macroeconomic and financial time series data are taken from

Thomson Reuters/Datastream. Macroeconomic time series data are routinely used as con-

ditioning variables in supervisory stress tests; see for example McNeil, Frey, and Embrechts

of firms for which we constructed default and exposure counts. We accommodate this difference by allowing
the intercept parameters of the non-Gaussian (Binomial) and Gaussian (EDF) model parts to be different.
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(2005). Important macroeconomic covariates are real GDP growth, industrial production

growth, and the unemployment rate. Key financial market variables are residential property

prices, broad equity indices, and bond yields.

For the modeling of the macro data, we distinguish leading, lagging, and coincident in-

dicators of the business cycle. We collect nine macro-financial covariates for each region.

Two macro variables tend to lead the business cycle: the term structure spread (-5Q) and

the change in a broad equity market index (-1Q).6 Four coincident business cycle indica-

tors include the real GDP growth rate, industrial production growth, the ISM7 purchasing

managers index (and a similar alternative for non-U.S. data), and the yearly change in the

unemployment rate. Three lagging indicators include the change in 10 year government bond

yields (+1Q), the change in residential property prices (+2Q), and the unemployment rate

(+5Q). Stacking these macro-financial time series for each region yields a total of 9× 4 = 36

macro-financial time series.

The macroeconomic variables tend to be highly correlated across countries as is well

documented in the large literature on global business cycles; see, e.g., Kose, Otrok, and

Whiteman (2003). A principal components analysis suggest that the first six principal com-

ponents (global macro factors) account for 26%, 11%, 9.0%, 8%, 7%, and 5% of the total

macro data variance, and therefore collectively explain 66% of the total variation in the

macro panel.

3 The modeling framework

3.1 A multi-factor model of default risk dependence

This section presents a multi-factor financial framework for dependent defaults. Our frame-

work is simple but sufficiently flexible to allow us to disentangle, quantify, and test which

share of cross-country default dependence is due to world, regional, and industry-specific risk

6The lead and lag relationships are based on the respective cross-correlation coefficients viz-a-viz the real
GDP growth rate and are approximately in line with those reported in Stock and Watson (1989).

7ISM is the Institute for Supply Management in the U.S.
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factors. Our framework is similar to the well-known CreditMetrics (2007) model, which is

a standard in the financial industry. Importantly, the financial framework presented here is

closely related to a latent dynamic factor model, which we fit to the data in Section 4. The

close relationship between the two models allows us to establish an economic interpretation

of the model parameters and systemic default risk shares by mapping the parameters of the

econometric model back to those of the financial model.

Our multivariate dynamic model extends the standard static one-factor credit risk model

for dependent defaults, see e.g. Lando (2003) to include a multi-factor version for the asset

value Vit of firm i = 1, . . . , K at time t. The process for the asset value is given by

Vit = a′if
gm
t + b′if

rm
t + c′if

gd
t + d′if

rd
t + e′if

id
t +

√
1− a′iai − b′ibi − c′ici − d′idi − e′iei ϵit

= w′
ift +

√
1− w′

iwi ϵit, t = 1, . . . , T, i = 1, . . . , K, (1)

where global macro factors f gm
t , region-specific macro factors f rm

t , a global default (i.e.,

common frailty) factor f gd
t , region-specific default factors f rd

t , as well as industry-specific

default factors f id
t are stacked in ft = (f gm ′

t , f rm ′
t , f gd ′

t , f rd ′
t , f id ′

t )′. The stacked vector of

loading parameters wi = (a′i, b
′
i, c

′
i, d

′
i, e

′
i)
′ satisfies the condition w′

iwi ≤ 1. The idiosyncratic

disturbance ϵit has mean zero, unit variance, and is serially uncorrelated for t = 1, . . . , T .

Macroeconomic risk factors are either global factors and common to all countries (f gm
t ),

or region-specific (f rm
t ) and thus common only to firms in a particular region. Analogously,

the default specific frailty factors are either global factors and common to all firms (f gd
t ), or

region-specific (f rd
t ) or industry-specific (f id). Taken together, the frailty factors represent

credit cycle conditions after controlling for macroeconomic developments. In other words,

frailty factors capture deviations of the default risk cycle from systematic macro-financial

conditions.

Without loss of generality we assume that all risk factors have zero mean and unit

unconditional variance. Furthermore, we assume that the risk factors in ft are uncorrelated at

all times. These assumptions imply that E[Vit] = 0 and Var[Vit] = 1 for many distributional
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assumptions with respect to the idiosyncratic noise component ϵit for i = 1, . . . , K, such as

the Gaussian or Logistic distribution.

In a firm value model, firm i defaults at time t if its asset value Vit drops below some

exogenous default threshold τi, see Merton (1974) and Longstaff and Schwartz (1995). In-

tuitively, if the total value of the firm’s assets is below the value of its debt, debt holders

have an incentive to declare bankruptcy. In our framework, Vit in (1) is driven by multiple

systematic risk factors, while idiosyncratic (firm-specific) risk is captured by ϵit. The default

threshold τi may depend on the firm’s current rating, headquarter location, and industry

sector. For firms that have not defaulted yet, a default occurs when Vit < τi or, as implied

by (1), when

ϵit <
τi − w′

ift√
1− w′

iwi

.

The conditional default probability is given by

πit = Pr

(
ϵit <

τi − w′
ift√

1− w′
iwi

)
. (2)

Favorable credit cycle conditions are associated with a high value of w′
ift and therefore with

a low default probability πit for firm i. Since only firms are considered at time t that have

not defaulted yet, πit can also be referred to as a discrete time default hazard rate, or default

intensity under the historical probability measure, see Lando (2003, Chapter3).

Our empirical analysis considers a setting where the firms (i = 1, . . . , K) are pooled

into groups (j = 1, . . . , J) according to headquarter location, industry sector, and current

rating. We assume that the firms in each group are sufficiently similar (homogenous) such

that the same risk factors and risk factor loadings apply. In this case, (1) and (2) imply

that, conditional on ft, the counts yjt are generated as sums over independent 0-1 binary

trials (no default – default). In addition, the default counts can be modeled as a binomial

sequence, where yjt is the total number of default ‘successes’ from kjt independent bernoulli

trials with time-varying default probability πjt. In our case, kjt denotes the number of firms
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in cell j that are active at the beginning of period t. Our final model reads

yjt | ft ∼ Binomial(kjt, πjt), (3)

πjt = [1 + exp(−θjt)]−1, (4)

θjt = λj + α′
jf

gm
t + β′

jf
rm
t + γ′jf

gd
t + δ′jf

rd
t + ε′jf

id
t , (5)

where λj and ϑj =
(
α′
j, β

′
j, γ

′
j, δ

′
j, ε

′
j

)′
are loading parameters to be estimated, and θjt is the

log-odds ratio of the default probability πjt. For more details on binomial mixture models,

see Lando (2003, Chapter 9), McNeil, Frey, and Embrechts (2005, Chapter 8), and Koopman,

Lucas, and Schwaab (2011, 2012).

3.2 Quantifying firms’ systematic default risk

The firm value model specification (1) allows us to rank the systematic default risk of firms

from different industry sectors and economic regions, while controlling for other information

such as the firm’s current rating group.

Interestingly, and useful for our purposes, there is a one-to-one correspondence between

the model parameters in (1) and the reduced form coefficients in (5). If ϵit is logistically

distributed, then the log-odds ratio θjt = log(πjt) − log(1 − πjt) from (5) also denotes the

canonical parameter of the binomial distribution. It can be easily verified that for any firm i

that belongs to group j, we have

τi = λj
√

1− κj, ai = −αj

√
1− κj,

bi = −βj
√

1− κj, ci = −γj
√

1− κj,

di = −δj
√

1− κj, ei = −εj
√

1− κj,

where κj = ω̃j/(1 + ω̃j), and ω̃j = α′
jαj + β′

jβj + γ′jγj + δ′jδj + ε′jεj. A related simpler

expression is derived in Koopman and Lucas (2008) in the context of a univariate risk

factor. By contrast, the current formulation allows for multiple groups of vector-valued risk
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factors. The restriction w′
iwi ≤ 1 from the firm value model (1) is always satisfied (see the

expression for κj) and does not need to be imposed during the estimation stage.

We use the above correspondence between the firm-value model and statistical model

parameters when assessing the systematic default risk of firms from different regions and

industry sectors. Specifically, we define the systematic risk of firm i as the variance of its

systematic risk component,

Var[Vit | ϵit] = w′
iwi, (6)

where wi = (a′i, b
′
i, c

′
i, d

′
i, e

′
i)
′ is introduced and discussed in and below equation (1). Since

Var[Vit] = 1, (6) also denotes the share of total default risk that is systematic, or non-

diversifiable. In our empirical study below, we also report

Var[Vit | ϵit, f id
t ] = a′iai + . . .+ d′idi, (7)

which treats industry-specific variations as idiosyncratic effects that can be diversified.

3.3 Data structure and combination

This section explains how our high-dimensional data are combined in a mixed-measurement

dynamic factor model. Our initial high-dimensional mixed-measurement data vector (x′t, y
′
t, z

′
t)

′

has three parts

xt = (x1,1,t, . . . , x1,N,t, . . . , xR,1,t, . . . , xR,N,t)
′ , (8)

yt = (y1,1,t, . . . , y1,J,t, . . . , yR,1,t, . . . , yR,J,t)
′ , (9)

zt = (z1,t, . . . , zS,t)
′ , (10)

where xi,n,t represents the nth, n = 1, . . . , 9, macroeconomic or financial markets variable

for region i = 1, . . . , 4; yi,j,t is the number of defaults between times t and t+1 for economic

region i and cross-sectional group j = 1, . . . , J ; and zs,t is the expected default frequency

(EDF) at a one-year ahead horizon for firms s = 1, . . . , S, all measured at time t = 1, . . . , T .
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The sets of firms 1, . . . , S are constructed on a somewhat ad-hoc basis depending on the

availability of the EDF data as discussed in Section 2.2. The sector and region can be

identified from each EDF. In other words, the cross-sectional group index j = j(s) can be

uniquely determined from the firm index s. The same holds for the regional index.

As a result, the model includes various ‘standard’ macro and EDF variables that we will

consider to be conditionally normally distributed. However, the model also includes (integer)

default count variables in vector yt. The data panel consisting of (xt, yt, zt), for t = 1, . . . , T ,

is typically unbalanced. It implies that variables may not be observed for all time indices t.

For example, the EDF data zt starts to become available only from 1992Q1 onwards.

The cross-sectional dimension of the data vector implied by (8) to (10) is prohibitively

large for any worldwide credit risk model. For example, 36 macro data series and 5 common

macro factors would already imply 180 coefficients that need to be estimated numerically by

the method of maximum likelihood. For this practical reason, we first collapse our macro

panel data to smaller dimensions, and consider EDF-based risk indices at the regional level

instead of firm-specific input data.

We proceed in three steps. First, we assume that the standard approximate factor anal-

ysis as used in Stock and Watson (2002) can also be adopted for our macro data as well.

The static factor analysis can be based on the multivariate model representation

xt = LgmF gm
t + ut, t = 1, . . . , T,

where F gm
t are global macro factors, Lgm are the respective factor loadings, and ut are

residual terms. The dimension of the vector F gm
t equals the number of global factors r.

From the results in, for example, Lawley and Maxwell (1971), the estimated factors can be

computed as

F̂ gm
t = (L̂gm)′xt, and ût = xt − L̂gmF̂ gm

t , (11)

where F̂ gm
t are the first r principal components of all macro panel data xt. The columns of

the “estimated” loading matrix L̂gm consist of the first r eigenvectors that correspond to the
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r largest ordered eigenvalues of X ′X, where X ′ = (x1, . . . , xT ).

Second, we obtain estimates of regional macro factors from the residual variation in ût.

We use the same method based on principal components as described above. We extract

four regional macro factors, one for each region, from the four subsets of residuals ût =

(û′1,t, . . . , û
′
4,t)

′, that is

ûi,t = L̂rm
i F̂ rm

i,t + vi,t, i = 1, . . . , 4, (12)

where F rm
i,t is then interpreted as the region-specific macro factor. The principal components

from this analysis are given by F̂ rm
i,t = (L̂rm

i )′ ûi,t for i = 1, . . . , 4. The four regional factors are

stacked into F̂ rm
t = (F̂ rm

1,t , . . . , F̂
rm
4,t )

′. This method of estimating regional macro factors may

suffer from the problem that we attribute some of the regional macro variation to the global

macro factors; see Moench, Ng, and Potter (2013). For this reason we do not distinguish

between world and regional macro variation when reporting the systematic default risk shares

further below.

Finally, we obtain one-quarter ahead expected default probabilities from annual EDF

data as ẑs,t = 1− (1− zs,t)
1/4. Quarterly log-odds ratios are calculated as θ̂EDF

s,t = log(ẑs,t)−

log(1− ẑs,t) and are collected as θ̂EDF
t =

(
θ̂EDF
1,t , . . . , θ̂EDF

S,t

)
.

The transformed and collapsed data vector is given by

Yt =
(
F̂ gm ′
t , F̂ rm ′

t , y′t , θ̂
EDF
t

)′
, t = 1, . . . , T. (13)

While the cross-sectional dimension of the original data (8)–(10) is prohibitively large, the

cross-sectional dimension of collapsed data (13) is tractable.
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The new measurement equation for our lower dimensional model is given by

F̂ gm
t = f gm

t + egmt , egmt ∼ N(0,Σgm),

F̂ rm
t = f rm

t + ermt , ermt ∼ N(0,Σrm),

p(yj,t | ft) ∼ Bin(θj,t, kj,t), (14)

θ̂EDF
s,t = µs + θj(s),t + ezs,t, ezs,t ∼ N(0,Σz),

where the index j(s) in the last model equation can be uniquely determined from the index

s. The log-odds ratio θj,t = log(πj,t) − log(1 − πj,t) is also the canonical parameter of the

Binomial distribution (see McCullagh and Nelder (1989)), kj,t is the number of firms at risk

at the beginning of period t, and µs is the vector of unconditional means of the respective

quarterly log-odds of default from EDF measures. Parameters µs in (14) and λj in (5) are

different, reflecting the fact that EDF data does not cover exactly the same set of firms

for which default and exposure count data is available; see Section 2.2. We collect the risk

factors, including f gm
t , f rm

t and θj,t, into the m× 1 vector ft and assume it is subject to the

stationary vector autoregressive process

ft+1 = Φft + ηt, ηt ∼ N(0,Ση), t = 1, . . . , T, (15)

with the initial condition f1 ∼ N(0,Σf ). The coefficient matrix Φ and the variance matrix

Ση are assumed fixed and unknown. The disturbance vectors ηt are serially uncorrelated.

Stationarity implies that the roots of the equation |I − Φz| = 0 are outside the unit circle.

Furthermore, the unconditional variance matrix Σf is implied by the dynamic process and

is a function of Φ and Ση.

We stress that the measurement equation (14) treats the macro factors from (11) and

(12) and the EDF forecasts as noisy estimates from a preliminary first step. As a result, both

macro factors and EDFs are subject to measurement error; see also Bräuning and Koopman

(2014). The parameters of the diagonal measurement error variance matrices Σgm, Σrm, Σz
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are estimated simultaneously with all other parameters. This feature is novel with respect

to the modeling frameworks presented in Koopman, Lucas, and Schwaab (2011, 2012) and

Creal et al. (2014). In our present analysis, the information sets from continuous EDF

data via θ̂EDF
t and from integer default counts via the Binomial specification contribute to

empirically identifying the time variation in the log-odds θj,t and in the default probabilities

πjt. These two data sets are relevant for our empirical analysis for which the results are

reported in Section 4; the Web Appendix E provides more details.

3.4 Parameter and risk factor estimation

The joint modeling of (discrete) default count data on the one hand and (continuous)

macro-financial and EDF data on the other hand implies that a parameter-driven mixed-

measurement dynamic factor model (MM-DFM) is appropriate. All estimation details are

relegated to Web Appendix C.

For each evaluation of the log-likelihood, we need to integrate out many latent factors

from their joint density with the mixed-measurement observations. The estimation approach

put forward in Koopman, Lucas, and Schwaab (2011, 2012) is challenging within this high-

dimensional setting. For example, the importance sampling weights may not have a finite

variance in our empirical application, which is a necessary condition for the methodology

to work and to obtain consistent and asymptotically normal parameter estimates. However,

this challenge can be partly overcome by including more antithetic variables to balance the

simulations for location and scale as suggested by Durbin and Koopman (2000) and further

explored in detail by Durbin and Koopman (2012, p. 265-266). This solution has made our

procedure feasible, even in this high-dimensional setting.

4 Main empirical results

In our empirical study, we analyze the credit exposures of more than 20,000 firms from

41 countries in four economic regions of the world during a time period of 35 years, from
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1980Q1 to 2014Q4. The headquarter location of the company determines the region of the

firm which is further identified by its current rating category and its industry sector. The

main objective is to quantify the share of systematic default risk that can be attributed to

world business cycle factors and default-specific factors. The analysis may assess to what

extent the world default risk cycles can be decoupled from world macroeconomic conditions.

4.1 Model specification

For the selection of the number of factors we rely on likelihood-based information criteria

(IC). The panel information criteria of Bai and Ng (2002) suggest two or three common

factors for the global macro data. We select five global macro-financial factors f gm
t to be

conservative and not to bias our results towards attributing too much variation to default-

specific (frailty) factors when in fact they are due to macro factors. We also include four

additional region-specific macro factors, one for each region, to ensure that we do not miss

regional macroeconomic variation that may matter for the respective regional default rates.

Allowing for one default-specific frailty factor f gd
t is standard in the literature, see for

example Duffie et al. (2009) and Azizpour et al. (2015). We further include four region-

specific frailty factors f rd
t , one for each region. Finally, we select six additional industry-

specific factors f id
t that affect firms from the same industry sector. Such industry factors

capture (global) industry-specific developments as well as possible contagion through up- and

downstream business links, see Lang and Stulz (1992) and Acharya, Bharath, and Srinivasan

(2007), and have been included in earlier models; see for example Koopman et al. (2012).

Regarding risk factor loadings, all firms load on global factors f gm
t and f gd

t with region-

specific factor loadings. This means that all firms are subject to these risk factors, but

to different extents. Ratings affect the baseline (unconditional) default hazard rates but

not the factor loadings. While somewhat restrictive, this specification is parsimonious and

remains sufficiently flexible to accommodate most of the heterogeneity observed in the cross

section. In particular, it allows us to focus on the commonalities and differences in the share

of systematic default risk that is explained by world, regional and industry factors.

ECB Working Paper 1922, June 2016 21



4.2 Parameter and risk factor estimates

Table 1 reports model parameter estimates. All sets of risk factors – macro, frailty, as well

as industry-specific – contribute towards explaining corporate default clustering within and

across countries. Importantly, defaults from all regions load on macro factors (in particular

the first one). The region-specific macro factors are overall relatively less important. This is

intuitive, since much of the regional macro variation is already accounted for by the global

macro factors. In addition, this finding may suggest some sample selection, in that non-U.S.

firms that request to be rated by Moody’s also tend to be internationally active, and more

so than their U.S. counterparts. Non-U.S. firms from the euro area and APAC region also

differ from U.S. firms in their unconditional hazard rates λr,j, see the left column in Table 1.

Again, this may reflect some sample selection, in that these non-U.S. firms are sufficiently

large and of a high credit quality to access capital markets rather than being forced to

refinance themselves via financial intermediaries.

While the common variation in defaults implied by shared exposures to macro factors

is significant and important, it is not sufficient. The global frailty factor is found to be an

additional significant determinant of default rates in all regions. It tends to load slightly more

strongly on non-U.S. data than on U.S. data (although the statistical evidence is weak). All

loadings on industry-specific risk factors are significant. Industry-specific variation is most

important for firms from the transportation & energy (tre) sector, probably reflecting their

shared exposure to oil price developments.

Our finding of significant frailty effects, while in line with most credit risk literature,

is somewhat at odds with studies that attribute less importance to such factors, see for

example Lando and Nielsen (2010), and Duan, Sun, and Wang (2012). We stress that the

importance of frailty factors depends on right hand side conditioning variables, in particular

firm specific information. Firm-specific covariates such as equity returns, volatility, and

leverage are often found to be important predictors of default, see Vassalou and Xing (2004),

Duffie et al. (2007), and Duffie et al. (2009). We acknowledge that ratings alone may not
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Table 1: Parameter estimates
We report the maximum likelihood estimates of selected coefficients in the specification of the log-odds ratio

(5). We use an additive parametrization for λr,j and αr,j . Coefficients λr,j determine baseline default rates.

Factor loadings refer to global macro factors fgm
t , region-specific macro factors frm

t , one global frailty factor

that is common to all firms fgd
t , region-specific default-specific (frailty) factors frd

t , and six industry-specific

factors f id
t . The global macro factors are common to all macro and default data and across all four regions.

The global and regional frailty factors do not load on macro data. Industry mnemonics are financials (fin),

transportation & energy (tre), industrials (ind), technology (tec), retail & distribution (red), and consumer

goods (con). Estimation sample is 1980Q1 to 2014Q4.

Baseline hazard terms
λr,j= λ̄0+λ̄1,j+λ̄2,s+λ̄3,r

par val p-val
λ̄0 -4.82 0.00

λ̄1,fin 0.07 0.73
λ̄1,tre 0.07 0.80
λ̄1,tec -0.23 0.39
λ̄1,ret 0.14 0.67
λ̄1,con -0.13 0.72

λ̄2,IG -3.70 0.00

λ̄3,UK 0.30 0.02
λ̄3,EA -0.21 0.05
λ̄3,AP -0.41 0.00

Global macro fgm
t (ctd)

αk,r,j= ᾱk,0+ᾱk,1,r

par val p-val
ϕg
4 0.83 0.00

ᾱ4,0 0.00 0.93
ᾱ4,1,UK 0.03 0.37
ᾱ4,1,EA 0.07 0.04
ᾱ4,1,AP 0.04 0.52

ϕg
5 0.84 0.00

ᾱ5,0 0.03 0.37
ᾱ5,1,UK -0.00 0.99
ᾱ5,1,EA 0.04 0.32
ᾱ5,1,AP 0.06 0.29

Global frailty fgd
t

par val p-val
ϕc 0.95 0.00
γ̄0 0.43 0.00
γ̄1,UK 0.08 0.19
γ̄1,EA 0.12 0.08
γ̄1,AP -0.05 0.58

Regional frailty frd
t

ϕd
US 0.96 0.00

δ̄0,US 0.43 0.01

ϕd
UK 0.96 0.00

δ̄0,UK 0.17 0.21

ϕd
EA 0.97 0.00

δ̄0,EA 0.21 0.13

ϕd
AP 0.87 0.00

δ̄0,AP 0.41 0.00

Global macro fgm
t

αk,r,j= ᾱk,0+ᾱk,1,r

par val p-val
ϕg
1 0.90 0.00

ᾱ1,0 0.25 0.00
ᾱ1,1,UK -0.00 0.90
ᾱ1,1,EA -0.10 0.03
ᾱ1,1,AP -0.06 0.43

ϕg
2 0.84 0.00

ᾱ2,0 -0.02 0.65
ᾱ2,1,UK -0.03 0.47
ᾱ2,1,EA -0.06 0.08
ᾱ2,1,AP -0.05 0.41

ϕg
3 0.84 0.00

ᾱ3,0 -0.07 0.14
ᾱ3,1,UK 0.08 0.09
ᾱ3,1,EA 0.08 0.08
ᾱ3,1,AP 0.10 0.20

Regional macros frm
t

par val p-val
ϕm
US 0.41 0.00

β̄0,US 0.04 0.01

ϕm
UK 0.79 0.00

β̄0,UK -0.05 0.18

ϕm
EA 0.82 0.00

β̄0,EA 0.01 0.52

ϕm
AP 0.87 0.00

β̄0,AP -0.12 0.13

Industry factors f id
t

par val p-val
ϕi
fin 0.97 0.00

ϵ̄fin 0.53 0.00

ϕi
tre 0.83 0.00

ϵ̄tre 0.78 0.00

ϕi
ind 0.84 0.00

ϵ̄ind 0.58 0.00

ϕi
tec 0.90 0.00

ϵ̄tec 0.55 0.00

ϕi
ret 0.93 0.00

ϵ̄ret 0.61 0.00

ϕi
con 0.92 0.00

ϵ̄con 0.76 0.00
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provide sufficient statistics for future default, and that our frailty factors may in part reflect

this fact.8 We argue in Section 4.4, however, that missing firm-specific effects are unlikely

to provide a complete explanation.

All default risk factors tend to be highly persistent. Most autoregressive parameters

are well above 0.8 at the quarterly frequency. The frailty and industry-specific factors are

particularly persistent, with autoregressive coefficients of up to 0.98. Such values imply a

half-life of a shock to default risk of approximately 5-25 quarters.

Figure 2 plots the conditional mean estimates of the global and regional frailty factors

in the top panel, as well as six industry-specific factors in the bottom panel. The evolution

of the world frailty risk factor (top panel) suggests that worldwide excess default clustering

was most pronounced during the early 1990s, as well as between 2002-03. Before the global

financial crisis, default risk conditions were significantly below what was implied by macro

fundamentals during 2006–2007. This pattern already suggests that the frailty factor may

be related to the behaviour of financial intermediaries: non-financial firms experience higher

default stress as credit access dried up following the 1991 and 2001 economic contractions.

At the same time, non-financial firms appeared to have easy access to credit in the years

leading up to the global financial crisis.

The world frailty risk factor (top panel) is quite different from the U.S. frailty factor

reported in Duffie, Eckner, Horel, and Saita (2009) and Koopman, Lucas, and Schwaab

(2012). Indeed, U.S. firms load significantly on their own regional frailty factor (second

panel in Figure 2). World and U.S. systematic default risk are related but do not coincide.

Some evidence of additional default clustering due to regional default-specific factors is

also found for firms located in the Asia-Pacific region and in Europe following thte sovereign

debt crisis of 2010–2013. The loading parameters on regional frailty factors are small and

insignificant for firms from the U.K. and the euro area. Instead, these firms load more heavily

8Our modeling framework considers groups of homogenous firms rather than individual firms, and con-
siders data of many firms, worldwide. As a result it is hard, if not impossible, to include firm-specific
information beyond rating classes, geography, and industry sectors. In this regard we, again, refer to the
RMI credit risk initiative as a noteworthy attempt to build a world-wide credit risk map from the bottom
up, see http://www.rmicri.org.
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Figure 2: Global frailty and industry factors
The top panel reports the conditional mean estimates of the global frailty and region-specific frailty factors.

The bottom panel plots the conditional mean estimates of the six industry-specific factors.
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Figure 3: Global default hazard rates at the industry level
Each panel plots the model-implied time-varying default rate (one quarter ahead default probability in

percent) for a specific industry sector. The panels refer to financial firms (top left), transportation &

energy (top right), industrial (middle left), technology (middle right), retail & distribution (bottom left),

and consumer goods (bottom right). Each panel distinguishes firms from the U.S., U.K., euro area, and

Asia-Pacific region. The reported hazard rates are computed from full-sample estimates of risk factors and

sensitivity parameters.
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on the global frailty factor.

Shared exposure to volatile macroeconomic and default-specific factors implies that de-

fault hazard rates can vary substantially over time. Figure 3 plots the respective estimates

of time-varying quarterly default rates for six industry sectors and four regions. Default

probabilities are particularly volatile for industrial firms. U.S. financial defaults cluster in

particular during the savings and loans crisis between 1986–1990 (in the U.S.), after the

burst of the dot-com bubble between 2001–2002, and during the financial crisis up to the

federal spending crisis between 2008–2013. In addition, financial sector firms located in the

euro area suffered particularly during the euro area sovereign debt crisis between 2010-12,
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when default hazard rates were substantially above their historical average. Default risk for

industrial sector firms is particularly high between 1990–1991, 2001–2002, and 2008-09, in

line with the business cycle contractions during these periods. Not surprisingly, the burst of

the dot-com bubble is particularly visible for the implied default rates of technology sector

firms between 2001–2002.

4.3 Variance decomposition

This section attributes the time series variation in the systematic default risk of firms from

different industries and countries to different sets of systematic and idiosyncratic risk drivers,

using the firm-value framework from Section 3. Table 2 presents the estimated risk shares.

We focus on three main empirical findings.

First, we find that between 18-26% of global default risk variation is systematic, while

the remainder is idiosyncratic. The share of systematic default risk is higher (39-51%) if

we count industry-specific variation as systematic. Rated firms from different countries

tend to default together to some extent simply because of their shared exposure to the

international business cycle and related macroeconomic conditions. An important role for

global and industry factors is in line with earlier credit risk studies; see, for example, Pesaran,

Schuermann, Treutler, and Weiner (2006) and Aretz and Pope (2013).

Second, the shared exposure to global and regional macroeconomic factors explains ap-

proximately 10 – 20% of systematic default risk, or 2 – 4% of total (i.e., systematic plus

idiosyncratic) default risk variation. Exposure to the global frailty risk factor f gd
t accounts

for 7-18% of total default risk. Regional frailty factors (1-11%) are an important addi-

tional source of default risk clustering in some regions, particularly the U.S. and Asia-Pacific

regions. As a result, the global and regional frailty factors, taken together, explain a con-

siderably larger share of international default risk variation, by a factor of approximately

five.

We conjecture that at least three effects may play a role in explaining the low macro

factor shares in default risk. First, default contagion may matter at the industry, country,
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Table 2: Systematic risk and risk decomposition
We report systematic risk variation estimates for six industry sectors across four economic regions. System-

atic default risk is further decomposed into variation due to subsets of systematic risk drivers. For factor

mnemonics see Table 1. Risk shares refer to global and region-specific macro factors fgm
t and frm

t , one

global frailty factor that is common to all firms fgd
t , region and default-specific (frailty) factors frd

t , and six

industry-specific factors f id
t . Industry sectors are financials (fin), transportation and energy (tre), industrial

firms (ind), technology (tec), retail and distribution (red), and consumer goods (con). We refer to the fi-

nancial framework in Section 3 for a discussion of firm’s systematic versus idiosyncratic risk components.

Estimation sample is 1980Q1 to 2014Q4.

fgm
t , frm

t fgd
t frd

t f id
t Var[Vit | εit, f id

t ] Var[Vit | εit]
Reg. Ind. [a′iai] [c′ici] [d′idi] [e′iei] a′iai + . . .+ d′idi = w′

iwi

US fin 4.1% 10.8% 10.7% 16.5% 25.6% 42.2%
US tre 3.5% 9.1% 9.0% 29.8% 21.6% 51.3%
US ind 4.0% 10.5% 10.4% 18.9% 24.9% 43.8%
US tec 4.1% 10.7% 10.6% 17.3% 25.4% 42.7%
US red 3.9% 10.3% 10.2% 20.3% 24.5% 44.8%
US con 3.5% 9.3% 9.1% 28.7% 21.9% 50.6%

UK fin 4.3% 16.0% 1.7% 17.3% 22.0% 39.3%
UK tre 3.6% 13.4% 1.4% 31.0% 18.4% 49.4%
UK ind 4.1% 15.6% 1.7% 19.8% 21.4% 41.1%
UK tec 4.2% 15.9% 1.7% 18.1% 21.8% 39.9%
UK red 4.1% 15.3% 1.6% 21.2% 21.0% 42.2%
UK con 3.6% 13.6% 1.4% 29.9% 18.7% 48.6%

EA fin 2.3% 18.1% 2.6% 17.1% 23.1% 40.2%
EA tre 1.9% 15.2% 2.2% 30.6% 19.3% 49.9%
EA ind 2.2% 17.6% 2.6% 19.5% 22.4% 41.9%
EA tec 2.3% 18.0% 2.6% 17.8% 22.8% 40.7%
EA red 2.2% 17.3% 2.5% 20.9% 22.0% 42.9%
EA con 2.0% 15.4% 2.2% 29.6% 19.6% 49.2%

AP fin 4.1% 8.7% 10.2% 17.1% 22.9% 40.1%
AP tre 3.4% 7.3% 8.5% 30.7% 19.2% 49.9%
AP ind 3.9% 8.5% 9.9% 19.5% 22.3% 41.8%
AP tec 4.0% 8.6% 10.1% 17.9% 22.7% 40.6%
AP red 3.9% 8.3% 9.7% 21.0% 21.9% 42.8%
AP con 3.4% 7.4% 8.6% 29.6% 19.5% 49.1%
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and global level; see Azizpour et al. (2015). The contagion effects are likely to be captured

by default-specific latent factors in our model specification.9 Second, non-linearities may

be present, such as, for example, regime-dependence in macro factor loadings. Again, such

effects would be attributed to default-specific factors in our specification. Third, the default-

specific latent factors stand in for missing covariates such as, for example, the common

movement in firm-specific accounting variables; see Lando and Nielsen (2010).10

The pronounced role of default-specific factors implies that default risk conditions can

decouple substantially and for an extended period of time from what is implied by macroe-

conomic data, before eventually returning to their long run means. There is a distinct world

default risk cycle that is related to but different from world macro-financial cycles. It is

important to acknowledge the existence of such a cycle when designing a macro-prudential

policy framework for the financial cycle.

Finally, industry-specific variation is a significant additional source of default clustering.

Industry-specific factors explain between 17-31% of total default risk variation. Industry

factors are most pronounced for the transportation & energy, consumer goods, and retail &

distribution industries. Arguably, industry effects may be classified as non-systematic and

diversifiable in a large portfolio that is sufficiently spread across industries.

The current model with frailty components can also readily be applied to study risk

diversification. In line with our data analysis in Web Appendix B, global diversification of

the loan portfolio may not always reduce risk. On the one hand, risk is reduced by new taking

new exposures to imperfectly correlated industry or region-specific frailty factors. On the

9The simulation results reported in Koopman, Lucas, and Schwaab (2011) apply to our setup as well.
These demonstrate that our estimation method is able to differentiate fairly precisely between macro-implied
default risk variation on the one hand and other effects such as contagion dynamics on the other hand. We
refer to Azizpour et al. (2015) who attempt to disentangle these competing effects for a smaller set of U.S.
firms.

10The macro shares increase to 3–7% of total variation when the first 10 principal components from the
macro data are used as global macro factors in the empirical modeling (instead of the first five). The macro
factor share remains well below the share explained by frailty factors even in this case. The first 10 principal
components account for approximately 82% of the total variation in the macro panel. Merely applying a
different estimation sample from 2000Q1 to 2014Q4 leaves the risk shares approximately unchanged, see
Web Appendix D. We do not use vintage macro data in our study. Revised macro data is the most accurate,
but can be subject to substantial revisions after initial publication. Revised data appears to be most in line
with the in-sample nature of the variance decomposition.
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Figure 4: Credit risk deviations from fundamentals
Deviations of systematic default risk from macro-financial fundamentals for financial (left) and industrial

(right) firms. The risk deviations are obtained according to (16). Shaded areas are NBER recession dates

for the U.S.
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other hand, however, these diversification effects may be partly off-set by a larger loading of

the new exposures on the common global frailty and macro factors. Such effects are harder,

if not impossible to study without the current model set-up and factor decomposition.

4.4 Global credit risk decoupling from macro fundamentals

We documented that global and regional frailty factors explain a large share of systematic

default risk variation. This section demonstrates that deviations of systematic default risk

from what is implied by the macro fundamentals can, to a substantial extent, be traced back

to variations in international bank lending standards.

Figure 4 plots systematic default risk deviations from fundamentals. These are measured

as the sum of the global, regional, and industry frailty factors times their respective load-

ings, while ignoring the risk contribution of global and regional macro factors. The sum is

standardized by the square root of its unconditional variance,

CRDr,j =
γ′jf

gd
t + δ′jf

rd
t + ϵ′jf

id
t√

γ′jγj + δ′jδj + ϵ′jϵj
, (16)
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Figure 5: Credit risk deviations vs. bank lending standards
Changes (year-on-year) in the credit risk deviations from fundamentals for industrial firms (see Figure 4) are

associated with the net tightening of lending standards as reported in central bank surveys. Bank lending

standards are from surveys by Federal Reserve for the U.S. (top left), Bank of England for the U.K. (top

right), European Central Bank for the euro area (bottom left), and Bank of Japan for Japan (bottom right).

Shaded areas pertain to NBER recession dates. Credit risk deviations (dashed lines) are matched in terms

of means and variances to the net tightening of bank lending standards (solid lines).
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and is unconditionally standard normally distributed as a result. Note that the numerator

of (16) is a special case of (5) with λj = αj = βj = 0. Figure 4 focuses on financial

(left) and industrial firms (right) in each region. Risk conditions can decouple significantly

and persistently from the risk levels implied only by shared exposure to macro-financial

fundamentals. Interestingly, there is a particularly large and persistent deviation of risk

from fundamentals preceding the global financial crisis of 2007–2009 in the U.K., euro area,

and Asia-Pacific regions. Risk conditions were then significantly and persistently below what

had been suggested by fundamentals.

Figure 5 plots risk deviation estimates and the net tightening of bank lending standards
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for the four economic regions. The bank lending standards refer to commercial and invest-

ment loans to medium to large enterprises, and are taken from respective surveys conducted

by the Federal Reserve, Bank of England, European Central Bank, and Bank of Japan.11

We draw two main conclusions. First, physical credit risks and bank lending (credit)

quantities are strongly related. In a credit boom, even bad risks have ample access to credit,

and can thus postpone default. Therefore, in such a credit boom, bad risks default less

frequently than what could be expected conditional on the state of the business cycle. The

(too) low default rate is then not a sign of economic strength, but rather an indication of a

financial boom and thus a warning signal for financial fragility and its subsequent potential

unraveling. The reverse holds in a credit crunch. In a credit crunch, even financially sound

firms find it hard to roll over debt, which raises their default risk due to illiquidity concerns.

As a result, they default more often than what is expected conditional on the macroeconomic

environment. Our results are in line with a literature on portfolio credit risk that concludes

that easily observed macro-financial covariates and firm-specific information, while helpful,

are not sufficient to fully explain time-varying systematic credit risk conditions, see for

example Das et al. (2007), Koopman, Lucas, and Monteiro (2008), Duffie et al. (2009),

Koopman, Kräussl, Lucas, and Monteiro (2009), Azizpour, Giesecke, and Schwenkler (2015),

and Koopman, Lucas, and Schwaab (2011).12

Second, the observed co-movement between bank lending standards and (excess) default

risks suggest that two-way feedback effects between the health of the financial sector and

the macro-economy are important. This is potentially important for predictive models that

11To the best of our knowledge, the connection between ease of credit access and systematic credit risk
conditions (under the historical measure) was first argued informally in Das, Duffie, Kapadia, and Saita
(2007) and Duffie, Eckner, Horel, and Saita (2009). The link is explored more formally in a firm value model
by He and Xiong (2012), while Koopman, Lucas, and Schwaab (2012) are, to our knowledge, the first to
empirically tie unobserved credit risk deviations to the variation in (U.S.) bank lending standards.

12The close association of bank lending standards with frailty factor dynamics observed in Figure 5 would
suggest default risk model specifications which include bank lending standards directly as a separate observ-
able factor, possibly even distinguishing its global (average) and local (region-specific deviations from that
average) components. We do not do this in our current analysis for the main reason that our estimation
sample is from 1980Q1 to 2014Q4, while bank lending standards are only available for a fraction of that
time (from 2003Q2 onwards in the euro area, and from 2007Q3 onwards in the U.K., for example). We
would expect that the need for unobserved residual factors in default risk models reduces significantly once
survey-based information on bank lending practices are included as a conditioning variable. For a commercial
application that proceeds in this way; see Benzschawel and Su (2014).
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forecast default risk parameters conditional on a macro-financial stress scenario. While

macro-financial stress is naturally mapped into higher default probabilities (and therefore

higher bank losses and lower capital ratios), the subsequent financial tightening of bank

lending standards could raise credit risk parameters even further. The tight correlation

between physical default risk and financial intermediation implied by Figure 5 suggests that

such second round feedback effects are substantial. It might thus be worthwhile to include

bank lending standards as an additional conditioning variable in macro-prudential stress

tests.

5 Conclusion

We investigated the common dynamic properties of systematic default risk conditions across

countries, regions, and the world. For this purpose we developed a high-dimensional, partly

non-linear non-Gaussian state space model to estimate common components in firm defaults

in a 41-country sample, covering six broad industry groups and four economic regions in the

world. The results indicate that common world factors are a first order source of default

risk variation and of observed default clustering, thus providing evidence for a world credit

risk cycle on top of world business cycle conditions. The presence of such global macro

and frailty dynamics can limit the scope for cross-border credit risk diversification in the

financial industry. We also found that default clustering above business cycle variation can

be linked to credit supply conditions, in particular to bank lending standards, across all

global regions considered in this study. This raises an important question regarding current

stress testing practices that mainly focus on stressed macro scenarios only. Accounting for

subsequent credit supply effects via additional stressed default factors using the model of

this study may result in more realistic stressed capital levels given the variation in bank

lending standards over time.
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Appendix A: International default data

Figure A.1 visualizes and tabulates the main regions and countries we distinguish in the

main paper. We take into account data from 16,360 rated firms in the U.S., 903 firms in the

U.K., 2087 firms in euro area countries, and 1517 firms in the Asia-Pacific region. In total,

we consider 20,867 firms, worldwide. The corresponding number of defaults are 1660, 64,

106, and 72, respectively, totaling 1902 default events. We focus on 35 years of quarterly

data from 1980Q1 to 2014Q4.

We apply several standard filters when counting default events and firms at risk: We

consider only the first default event when there are multiple defaults for the same firm. We

exclude firms that are in the database for less than 100 days. We also exclude firms that

enter the database with a default as a first event. If a firm defaults, we ignore a previous

rating withdrawal.

Our country selection and grouping in Figure A.1 is in part motivated by the availabil-

ity of EDF data to augment the count data from Moody’s extensive default and recovery

database (DRD). Other groupings are possible as well.1

Figure A.2 plots the international default data in two ways. The top panel reports

the total number of defaults, the total number of firms at risk, and the respective default

fractions. The bottom four panels present aggregate default and firm counts, as well as

observed default fractions over time for each economic region. Most defaults are centered

around a few global recession periods in each region. The highest default fractions are

observed approximately around (U.S.) recession years such as 1990-1991, 2001-2002, and

2007-2009. Exceptions exist: there are a substantial number of defaults in the euro area

during the most acute phase of the sovereign debt crisis from 2010-2013.

1For example, it would in principle be possible to group Canada with the U.S. into a “North America”
region. We do not do so because we don’t have EDF data on Canadian firms. We do not consider countries
from, say, Latin America for the same reason.
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Figure A.1: Country sample and grouping
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UK
Euro area
APAC

Region 1: U.S. Region 3: Euro area Region 4: Asia-Pacific
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U.S. Territories Belgium Lithuania Cambodia New Zealand
Cyprus Luxembourg China Papua New Guinea
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Region 2: U.K. France Portugal Indonesia South Korea
United Kingdom Germany Slovakia Japan Sri Lanka

British Virgin Islands Greece Slovenia Laos Taiwan
Isle of Man Ireland Spain Macau Thailand

Italy Malaysia Vietnam
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Figure A.2: Historical default and firm counts
The first panel plots time series data of the total default counts

∑
j yr,j,t aggregated to a univariate series

(top), the total number of firms at risk
∑

j kr,j,t (middle), as well as the aggregate default fractions
∑

j yr,j,t

/
∑

j kr,j,t over time (bottom). The second panel plots observed default fractions at the industry level for

four different economic regions, distinguishing firms from the U.S., the United Kingdom, the euro area, and

the Asia-Pacific region. Light-shaded areas are NBER recession times for the U.S. for reference purposes

only.
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Appendix B: Observed default clustering in international

credit portfolios

This section motivates our study of global default risk factors by exploring the benefits and

limits of credit risk diversification across national borders. Figures A.2 and the EDF data

suggest that world factors are an important determinant of national default rates. Hence

we expect that this feature is also reflected by the historical default experience of diversified

credit portfolios. We explore whether this is the case by studying the risk of successively

more diversified portfolios while holding marginal risks (ratings) constant.

We focus on four credit portfolios. For simplicity, each portfolio is of equal size (1000$),

and all loans have a maturity of one quarter. Loans are extended to firms that are active

at the beginning of each quarter during our sample. At all times, loans are split equally

between investment and speculative grade firms. The rating profiles of firms, as approximate

measures of firm-specific default risk, are constant and the same across portfolios. As a result,

differences in portfolio risk are only due to changes in the default dependence, or systematic

default risk, across firms. Portfolio a) is an industry and region concentrated loan portfolio,

containing 1000 loans of 1$ each to 1000 U.S. industrial firms. Portfolio b) is region-specific,

but diversified over industries and contains 1000 loans of 1$ each to U.S. firms from five non-

financial industries (transportation, industrials, technology, retail & distribution, consumer

goods). Each industry has an exposure of 200 loans. Portfolio c) is industry-specific, but

diversified over regions and contains 1000 loans of 1$ each to industrial firms located in each

of the four regions (U.S., U.K., the euro area, and Asia-Pacific). Each region has an exposure

of 250 firms. Finally, portfolio d) is diversified both across industries and regions. It contains

50 loans of 1$ each for each combination of the four regions and five non-financial industries

in our sample.

Figure B.1 plots the quarterly historical loss rates for portfolios a) to d). An estimate of

the 95% expected shortfall (ES) is indicated in each panel of Figure B.1 as a vertical line.

Table B.1 reports the respective portfolio risk measures for the four loan portfolios. Overall,

more credit risk diversification across national borders does not necessarily decrease portfolio
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Figure B.1: Unconditional portfolio loss densities a) to d)
The figure plots the histogram of quarterly default losses for portfolios a) to d) as discussed in the main text.
The red line is a (Epanechnikov) kernel density estimator of the loss rate distribution. The blue dashed line
indicates the unconditional loss distribution as implied by the full model estimated in the main paper. The
95% expected shortfall is indicated in each panel as a vertical line.
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risk.

Based on the 95% ES, successively reducing portfolio concentration moves the quarterly

portfolio risk from 2.47% to 1.75% to 1.73%, and then to 2.00%. The pattern is analogous

when portfolio risk is alternatively measured as the 95% Value-at-Risk (VaR) or as the

mean portfolio loss. The raw data therefore suggests that, in the presence of global factors,

cross-border risk diversification is not necessarily beneficial if the initial portfolio is already

somewhat diversified across industries.2

When global factors are the main source of international default clustering, two effects

2As a caveat, portfolio risk measures such as ES and VaR are subject to substantial estimation uncertainty,
see (McNeil, Frey, and Embrechts 2005), and the risk measures in Table B.1 are not necessarily statistically
different from each other. In addition, the historical default experience may be different for different areas,
even conditional on rating groups.

ECB Working Paper 1922, June 2016 43



Table B.1: Credit portfolio risk measures
The table reports portfolio risk measures for losses from four portfolios a) to d) as discussed in the main

text. The risk measures refer to quarterly credit losses due to default, assuming a loss-given-default of 100%.

The Value-at-Risk at 95% is the 95% quantile of the quarterly observed losses from 1980Q1 to 2014Q4 (140

quarters). The expected shortfall at 95% is approximated as the unweighted average over the 95% to 99%

empirical quantiles of the observed quarterly losses.

Observed losses mean loss Var 95% ES 95%

PF1 [most 0.58% 1.74% 2.47%
concentrated]

PF2 [country 0.57% 1.45% 1.75%
concentration]

PF3 [industry 0.27% 0.97% 1.73%
concentration]

PF4 [fully 0.39% 1.51% 2.00%
diversified]

can work in opposite directions. First, if country-specific (regional) macro-financial and

other factors are imperfectly correlated, then expanding the credit portfolio across borders

decreases dependence across firms, and therefore decreases portfolio credit risk. Conversely,

portfolio diversification across borders can increase dependence if it leads to risk exposures

that load relatively more heavily on the global factors, such as, for example, global macro and

global default-specific factors. Figure B.1 suggests that the first effect appears to dominate

when moving from portfolio a) to portfolios b), c), and d). The second effect appears to

dominate when moving from portfolios b) and c) to portfolio d). The modeling framework

in the main paper is an appropriate tool to quantify the portfolio risk of different collections

of loans, and to determine the incremental (systematic) risk contribution of additional loan

exposures.
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Appendix C: Simulated maximum likelihood estimation

We consider available data as in (13),

Yt =
(
F̂ ′
g,t, F̂

′
m,t, y

′
t, θ̂

EDF
t

)′
, t = 1, . . . , T,

where each row Yk = (Yk1, . . . ,YkT ), k = 1, . . . , K, relates to time series data from a

potentially different family of parametric distributions. All observations depend on a set

of m dynamic factors which we collect into the m × 1 vector ft and assume a stationary

vector autoregressive process, ft+1 = Φft+ηt with ηt ∼ N(0,Ση), for t = 1, . . . , T , and initial

condition f1 ∼ N(0,Σf ).

Conditional on a factor path Ft = { f1, f2, . . . , ft}, the observation Yk,t of the kth variable

at time t is assumed to come from a certain density given by

Yk,t | Ft ∼ pk
(
Yk,t; θk,t, ψ

)
, k = 1, . . . , K, (C.1)

with a time-varying parameter defined by θk,t = λk+ϑ
′
kft, where λk is an unknown constant

and ϑk is a loading vector with unknown coefficients. The conditional (on Ft) independence of

all observations implies that the density of the K×1 observation vector Yt = (Y1,t, . . . ,YK,t)
′

is given by

p(Yt | Ft, ψ) =
K∏
k=1

pk
(
Yk,t | Ft, ψ

)
.

The parameter vector ψ contains all unknown coefficients in the model specification including

those in Φ, λk and ϑk for k = 1, . . . , K. To enable the identification of all entries in ψ, we

assume standardized factors which we enforce by the restriction Σf = I in the expression for

the unconditional covariance matrix Σf = ΦΣfΦ
′ + Ση, implying that Ση = I− ΦΦ′.

The estimation of the parameter vector ψ and risk factors ft via maximum likelihood is

non-standard because an analytical expression for the maximum likelihood (ML) estimate

of parameter vector ψ for the MM-DFM is not available. Let Y = (Y ′
1, . . . ,Y ′

T )
′ and f =

(f ′
1, . . . , f

′
T )

′ denote the vector of all the observations and factors, respectively. Let p(Y | f ;ψ)
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be the density of Y conditional on f and let p(f ;ψ) be the density of f . The log-likelihood

function is only available in the form of an integral

p(Y ;ψ) =

∫
p(Y , f ;ψ) df =

∫
p(Y | f ;ψ)p(f ;ψ) df, (C.2)

where f is integrated out. A feasible approach to computing this integral is provided by

importance sampling; see, e.g. (Kloek and van Dijk 1978), (Geweke 1989) and (Durbin and

Koopman 2012). Upon computing the integral, the maximum likelihood estimator of ψ is

obtained by direct maximization of the likelihood function using Newton-Raphson methods.

Inference on the latent factors can also be based on importance sampling. In particular,

it can be shown that

E(f |Y ;ψ) =

∫
f · p(f |Y ;ψ)df =

∫
f · w(Y , f ;ψ)g(f |Y ;ψ)df∫
w(Y , f ;ψ)g(f |Y ;ψ)df

,

where w(Y , f ;ψ) = p(Y|f ;ψ)/g(Y|f ;ψ) is the importance sampling weight. The estimation

of E(f |Y ;ψ) via importance sampling can be achieved by

f̃ =
M∑
k=1

wk · f (k)

/
M∑
k=1

wk,

with wk = p(Y|f (k);ψ)/g(Y|f (k);ψ) and where f (k) ∼ g(f |Y ;ψ) is obtained by simulation

smoothing. The standard error of f̃i, the ith element of f̃ , is denoted by si and is computed

by

s2i =

(
M∑
k=1

wk · (f (k)
i )2

/
M∑
k=1

wk

)
− f̃ 2

i ,

where f
(k)
i is the ith element of f (k).
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Appendix D: Subsample analysis 2000Q1 – 2014Q4

This section reports parameter estimates and risk decomposition results when quarterly

mixed-measurement data (13) between 2000Q1 – 2014Q4 is used for parameter and risk

factor estimation. Considering this shorter sample addresses a concern that, in particular

for the non-U.S. part of our data, Moody’s may initially only collect information on large

and healthy firms, and may only gradually include smaller and less healthy firms. If such a

sample selection effect were important, the corresponding latent distress risk factors could

initially appear to be less important and volatile than they actually are.

We find that our main empirical results are fairly robust to restricting our estimation

sample to data between 2000Q1 – 2014Q4. Table D.1 reports the new model parameter

estimates. The new parameter estimates are similar to the full sample estimates in the main

paper, based on data between 1980Q1 – 2014Q4. All sets of risk factors – macro, frailty,

as well as industry-specific – continue to contribute towards explaining corporate default

clustering within and across countries.

The main differences with respect to the full sample estimates are that (i) the industry-

specific factors become hard to estimate; loading parameters are more uncertain. Defaults

for firms in the energy & transportation sector are particularly rare in the reduced sample.

(ii) There is even less evidence for a regional frailty factor for the U.K. Instead, U.K. firms

load on the global (U.S.) frailty factor. (iii) Then statistical significance of most parameter

estimates decreases, leading to higher p-values.

Table D.2 presents the new estimated risk shares. The risk shares from the reduced

sample are approximately similar to the full sample estimates in the main paper, except

that the industry-specific variation in the energy & transportation sector appears to become

less important for the 2000Q1 – 2014Q4 sample. Conversely, the industry-specific variation

for financial sector firms becomes slightly more pronounced.
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Table D.1: Parameter estimates
We report the maximum likelihood estimates of selected coefficients in the specification of the log-odds ratio

θjt in (5). We use an additive parametrization for λr,j and αr,j . Coefficients λr,j determine baseline default

rates. Factor loadings refer to global macro factors fgm
t , region-specific macro factors frm

t , one global frailty

factor that is common to all firms fgd
t , country/region-specific default-specific (frailty) factors frd

t , and six

industry-specific factors f id
t . The global macro factors are common to all macro and default data and across

all four regions. The global and regional frailty factors do not load on macro data. Industry mnemonics are

financials (fin), transportation & energy (tre), industrials (ind), technology (tec), retail & distribution (red),

and consumer goods (con). Estimation sample is 2000Q1 to 2014Q4.

Baseline hazard terms
λr,j= λ̄0+λ̄1,j+λ̄2,s+λ̄3,r

par val p-val
λ̄0 -4.69 0.00

λ̄1,fin 0.11 0.74
λ̄1,tre -0.32 0.39
λ̄1,tec -0.29 0.56
λ̄1,ret 0.09 0.83
λ̄1,con -0.13 0.80

λ̄2,IG -3.30 0.00

λ̄3,UK 0.14 0.36
λ̄3,EA -0.27 0.02
λ̄3,AP -0.39 0.01

Global macro fgm
t (ctd)

αk,r,j= ᾱk,0+ᾱk,1,r

par val p-val
ϕg
4 0.76 0.00

ᾱ4,0 0.08 0.05
ᾱ4,1,UK -0.08 0.02
ᾱ4,1,EA -0.03 0.35
ᾱ4,1,AP -0.03 0.60

ϕg
5 0.81 0.00

ᾱ5,0 -0.07 0.16
ᾱ5,1,UK 0.11 0.01
ᾱ5,1,EA 0.08 0.06
ᾱ5,1,AP 0.05 0.44

Global frailty fgd
t

par val p-val
ϕc 0.95 0.00
γ̄0 0.47 0.01
γ̄1,UK 0.05 0.47
γ̄1,EA 0.11 0.16
γ̄1,AP -0.17 0.13

Regional frailty frd
t

ϕd
US 0.94 0.00

δ̄0,US 0.34 0.01

ϕd
UK 0.96 0.64

δ̄0,UK 0.00 0.98

ϕd
EA 0.98 0.00

δ̄0,EA 0.38 0.10

ϕd
AP 0.90 0.00

δ̄0,AP 0.34 0.00

Global macro fgm
t

αk,r,j= ᾱk,0+ᾱk,1,r

par val p-val
ϕg
1 0.90 0.00

ᾱ1,0 0.25 0.00
ᾱ1,1,UK 0.06 0.21
ᾱ1,1,EA -0.01 0.87
ᾱ1,1,AP 0.04 0.54

ϕg
2 0.86 0.00

ᾱ2,0 -0.10 0.08
ᾱ2,1,UK -0.06 0.22
ᾱ2,1,EA -0.09 0.07
ᾱ2,1,AP 0.02 0.79

ϕg
3 0.84 0.00

ᾱ3,0 -0.04 0.53
ᾱ3,1,UK 0.12 0.01
ᾱ3,1,EA 0.09 0.07
ᾱ3,1,AP 0.09 0.17

Regional macros frm
t

par val p-val
ϕm
US 0.65 0.00

β̄0,US -0.02 0.41

ϕm
UK 0.82 0.00

β̄0,UK -0.05 0.23

ϕm
EA 0.66 0.00

β̄0,EA 0.04 0.11

ϕm
AP 0.78 0.00

β̄0,AP -0.08 0.11

Industry factors f id
t

par val p-val
ϕi
fin 0.97 0.00

ϵ̄fin 0.58 0.01

ϕi
tre 0.60 0.00

ϵ̄tre 0.57 0.61

ϕi
ind 0.91 0.00

ϵ̄ind 0.77 0.01

ϕi
tec 0.92 0.00

ϵ̄tec 0.80 0.18

ϕi
ret 0.88 0.00

ϵ̄ret 0.54 0.05

ϕi
con 0.89 0.00

ϵ̄con 0.85 0.10
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Table D.2: Systematic risk and risk decomposition
We report systematic risk variation estimates for six industry sectors across four economic regions. System-

atic default risk is further decomposed into variation due to subsets of systematic risk drivers. For factor

mnemonics see Table D.1. Risk shares refer to global and region-specific macro factors fg
t and fm

t , one global

frailty factor that is common to all firms f c
t , country/region-specific default-specific (frailty) factors fd

t , and

six industry-specific factors f i
t . Industry sectors are financials (fin), transportation and energy (tre), indus-

trial firms (ind), technology (tec), retail and distribution (red), and consumer goods (con). We refer to the

financial framework in Section 3 of the main paper for a discussion of firm’s systematic versus idiosyncratic

risk components. Estimation sample is 2000Q1 to 2014Q4.

fgm
t , frm

t fgd
t frd

t f id
t Var[Vit|εit, f id

t ] Var[Vit|εit]
Reg. Ind. [a′iai] [c′ici] [d′idi] [e′iei] a′iai + . . .+ d′idi = w′

iwi

US fin 4.9% 12.7% 6.7% 18.9% 24.2% 43.1%
US tre 4.9% 12.7% 6.7% 18.7% 24.3% 43.0%
US ind 4.3% 11.1% 5.9% 29.2% 21.2% 50.3%
US tec 4.1% 10.7% 5.7% 31.2% 20.6% 51.8%
US red 5.0% 13.0% 6.9% 16.8% 24.9% 41.6%
US con 4.0% 10.3% 5.5% 33.7% 19.8% 53.5%

UK fin 7.5% 15.8% 0.0% 19.1% 23.3% 42.4%
UK tre 7.6% 15.8% 0.0% 18.9% 23.4% 42.3%
UK ind 6.6% 13.8% 0.0% 29.5% 20.3% 49.8%
UK tec 6.4% 13.4% 0.0% 31.5% 19.8% 51.3%
UK red 7.7% 16.2% 0.0% 17.0% 24.0% 40.9%
UK con 6.1% 12.9% 0.0% 34.0% 19.0% 53.0%

EA fin 5.3% 17.6% 7.4% 17.4% 30.3% 47.7%
EA tre 5.3% 17.7% 7.4% 17.2% 30.4% 47.6%
EA ind 4.6% 15.5% 6.5% 27.1% 26.7% 53.8%
EA tec 4.5% 15.1% 6.4% 29.1% 26.0% 55.1%
EA red 5.4% 18.0% 7.6% 15.4% 31.0% 46.4%
EA con 4.4% 14.6% 6.2% 31.5% 25.1% 56.6%

AP fin 6.5% 5.6% 7.1% 20.1% 19.2% 39.3%
AP tre 6.5% 5.7% 7.1% 20.0% 19.2% 39.2%
AP ind 5.6% 4.9% 6.1% 30.9% 16.6% 47.5%
AP tec 5.4% 4.7% 5.9% 33.0% 16.1% 49.1%
AP red 6.6% 5.8% 7.3% 17.9% 19.7% 37.6%
AP con 5.2% 4.6% 5.7% 35.5% 15.5% 51.0%
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Appendix E: Sensitivity analysis

In our parameter-driven dynamic factor model, both the information content from continuous

EDF data (via θ̂EDF
t ), as well as the integer default counts (via the Binomial specification),

contribute to empirically identifying the time variation in the log-odds θj,t and in the default

probabilities πjt. This section studies to what extent our estimates are sensitive to the

information content in either set of input data. Does the EDF data dominate the risk factor

estimates, or are these determined more by the Binomial part of the model?

To investigate this issue we vary the amount of information available in the default count

data. EDF and macro data remain unchanged. In a first experiment, we multiply our default

and exposure counts (yjt, kjt) with draws from a uniform distribution ujt ∼ iid U[0, 0.5], and

then round to the nearest integer. In expectation, this cuts the count data available for

estimation by 75%, while keeping the observed default fractions (yjt/kjt) at the same value

as in the original data. In a second experiment, we multiply the same ujt’s by 400. As a

result, the default and exposure counts in the second dataset are much more informative

about the prevailing point-in-time default risks.

Figure E.1 plots the conditional mean estimate of the global frailty factor, four region-

specific frailty factors, and six industry-specific factors. The figure suggests that the EDF

data help mainly to “smooth out” the risk factor dynamics, and to inform the factor dynamics

in case few count data are available.

Importantly, varying the information content in the Binomial data does not systemati-

cally pull the factor estimates in one or the other direction. This is intuitive. There should

be little conflict between Moody’s EDF-implied default risk conditions and the default frac-

tions obtained from Moody’s default and recovery database, as the former are calibrated

non-parametrically to the latter, see (Crosbie and Bohn 2003). If the Binomial data are

given little weight, the EDF data dominates the risk factor estimates, and risk factor esti-

mates change to some extent. Conversely, if the Binomial data are given a lot of weight, the

factor dynamics become quite erratic. They nevertheless remain centered around the full

sample estimates, and mostly inside the respective 95% standard error bands.
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Finally, the outcomes are in line with the intuition that the more actual default and

exposure data is available for a given region and industry sector, the less does the EDF data

contribute to risk factor inference. For example, the differences between the full-sample

estimates of the regional frailty factors (black solid line) and the respective estimates from

the first artificial dataset (red dashed line) appear to be more pronounced for U.S. firms

than non-U.S. firms, and more pronounced in the pre-1990s.
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Figure E.1: Sensitivity analysis
The top panel reports the conditional mean estimates of the global frailty factor and four region-specific
frailty factors. The bottom panels plot the conditional mean estimates of the six industry-specific factors.
Each panel plots the full sample estimate, as well as the conditional mean estimate obtained by scaling up
and down the contribution of the Binomial part.
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