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Abstract

This paper aims to illustrate how weight matrices that are needed to construct

foreign variable vectors in Global Vector Autoregressive (GVAR) models can be

estimated jointly with the GVAR’s parameters. An application to real GDP and

consumption expenditure price inflation as well as a controlled Monte Carlo simu-

lation serve to highlight that 1) In the application at hand, the estimated weights

differ for some countries significantly from trade-based ones that are traditionally

employed in that context; 2) misspecified weights might bias the GVAR estimate

and therefore distort its dynamics; 3) using estimated GVAR weights instead of

trade-based ones (to the extent that they differ and the latter bias the global model

estimates) shall enhance the out-of-sample forecast performance of the GVAR. De-

vising a method for estimating GVAR weights is particularly useful for contexts in

which it is not obvious how weights could otherwise be constructed from data.

Keywords: Global macroeconometric modeling, models with panel data, forecast-

ing and simulation

JEL classification: C33, C53, C61, E17
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Non-technical summary

As of yet, for estimating the local models of a Global Vector Autoregressive (GVAR)

model, respectively for solving the global model, the tradition has been to construct

weights, which are needed to that end, based on external data sources. Applications

to broad macroeconomic aggregates such as GDP or inflation, for instance, used to

employ trade (exports and imports) based weight matrices. For financially oriented

applications, alternatives involving various types of financial asset exposures have been

suggested.

The present paper aims to illustrate how GVAR weights can be estimated directly

along with all other parameters of a GVAR. In an application to real GDP and per-

sonal consumption expenditure prices for a panel of 18 countries, estimated weights are

compared to trade-based ones. A controlled Monte Carlo simulation with calibrations

inherited from the empirical setting serves to assess the extent to which ill-suited weight

matrices can bias the global model estimates. The experiment confirms that distorted

weights can bias the global model and would therefore blur its simulated dynamics.

The same application is also used to simulate out-of-sample forecasts over a test

period of 18 quarters for horizons of 1-4 quarters to show that estimated weights can

improve the out-of-sample forecast precision significantly for the majority of countries,

with the gain in precision for both GDP and inflation ranging around 22% for specific

countries and approaching 10% on average across countries.

While the estimation of GVAR weights is likely to entail substantial uncertainty

in sample sizes that are typical for macroeconometric applications, it might be use-

ful for two reasons: first, to cross-check whether fix weight parameters from external

data sources are adequate (in principle, it remains advantageous to employ fix weights

because one would not introduce additional parameter uncertainty, with the objective

of reducing parameter uncertainty being the very rationale of the traditional GVAR

methodology). Second, a strategy for estimating weights can be useful for applications

in which it is not obvious how fix weights could otherwise be constructed from data.
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1 Introduction

As an econometric approach to modeling the increasing economic interdependencies

across countries, the Global Vector Autoregressive (GVAR) model methodology has

gained widespread interest in recent years [see e.g. [21], [22], and [7] for initial method-

ological and empirical contributions]. Interlinkages between countries can be modeled

by combining a set of country-specific VARs that contain weighted foreign variable vec-

tors. The approach allows modeling simultaneously a large number of countries, while

accommodating as well a broad set of economic variables in one model which would if

modeled in an otherwise unrestricted conventional VAR be unfeasible to estimate due

to a too high number of parameters. Empirical applications of GVARs are meanwhile

quite numerous.1

As to the question of what to base GVAR weights upon, which are needed to

construct the foreign variable vectors in the GVAR’s local sub-models, the tradition

has been to employ trade data when the application involved broad macroeconomic

aggregates such as GDPs, price inflation, monetary policy variables, and the like (see

e.g. [7]). An alternative has been suggested for financially oriented applications, e.g. by

[17] and [3] who construct weights by referring to financial asset exposures, including

elements such as portfolio equity, direct investment, portfolio debt, and others. A

discussion paper by [9] explores, for the context of its application, a range of different

strategies for weight matrix construction, including trade and different types of financial

exposure to then assess the model performance under different schemes.

Factor models (see e.g. [24]), in that context, can be seen as a related approach to

estimating weights. Principal component estimation is usually employed to estimate

factors; however, weights that would be proportional to them can become negative

or exceed one, thus are not necessarily bound on the zero-one interval and should

therefore not be referred to as weights (they are called factor loadings instead). The

same applies to Partial Least-Squares (PLS) methods applied in that context.2 The

main difference between factor methods and PLS is that only the latter explicitly takes

the relation between dependent variables and independent factors into account. In

1Recent applications are e.g. [10], [3], [4], [2], [1], and [11].
2PLS was first introduced in [26]. For applications see e.g. [13] and [8] who assess various factor

and shrinkage methods (in that paper not in conjunction with GVARs though) with respect to their

forecast performance of New Zealand’s GDP.
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that sense, the GVAR weight estimation scheme as proposed in the present paper is

more closely related to PLS since the estimation of weights will be targeted to the

explained variance of dependent variables, specifically to that of the GVAR’s global set

of endogenous model variables.

Though weight estimation as such has therefore been deemed relevant for develop-

ing large-scale econometric models, direct estimation of a GVAR along with its weights

has not been addressed yet. This paper aims to demonstrate that empirically esti-

mated weight matrices may well differ from weights based for instance on trade flows,

a finding that confirms also the conclusions from [8]. The purpose is then to assess the

extent to which ill-suited weight matrices can bias the GVAR’s dynamics as well as to

highlight that the forecast performance of a GVAR may suffer from distorted weights.3

A strategy for estimating GVAR weights might also be useful for applications in which

it is not obvious how weights could otherwise be constructed from data, as for instance

in cases when a GVAR is set up for banks, or mixed country and bank cross-sections

as illustrated in [14].

2 Model setting

2.1 Local models

The global model is assumed to comprise N cross-section items that are indexed by

i = 1, 2, ..., N .

A set of item-specific endogenous variables are collected in a ki×1 vector yit which

is related to a number of autoregressive lags up to P and a k∗i × 1 vector of foreign

variables y∗
it that enters the model time-contemporaneously and with a number of lags

up to Q, that is,

yit = ai0 + ai1t+
P∑

p=1

Φipyi,t−p +

Q∑
q=0

Λiqy
∗
i,t−q + Ψdt + εit (1)

3A toolbox for estimating and solving the GVAR model including the weights, as well as the scripts

and functions set up for conducting the simulation and forecast exercises presented in later chapters is

available from the author on request.
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where ai0, ai1, Φip, Λiq, and Ψ are coefficient matrices of size ki × 1, ki × 1,

ki×ki, ki×k∗i , and di×1 respectively. The vector dt contains global weakly exogenous

variables. It is assumed that εit is i.i.d. with zero mean and covariance matrix Σii.

2.2 Estimating weight matrices

Weights wijk are needed to construct the foreign variable vectors y∗
it in all local models.

For a reference item i, the weights assigned to all other items j = 1, ..., N that are used

for model variable k shall sum to unity.

N∑
j=1

wijk = 1∀i, k (2)

Moreover, the wiik for all i = 1, ..., N equal zero and the wijk’s should be non-

negative. The wijk can be collected in K matrices of size N ×N whose columns each

sum to one.

wk =


w00k w10k ... wN0k

w01k ...

...

w0Nk ... wNNk

 (3)

A hypothetical thought about two sets of weights, corresponding respectively to

the ’true’ and some distorted weights deviating from the truth, suggests that distorted

weights may have the potential to induce omitted variable bias, conditional on the

assumptions for it to occur holding true (the omitted variable would need to be a

determinant of a domestic, dependent variable and at the same time be correlated

with independent variables included in the model). A way of inducing such bias would

be to assign a too small (or a zero) weight to a foreign variable that should actually

be receiving a significant positive weight. The second of the conditions for omitted

variable bias to occur is then rather likely to hold in particular for GVAR applications,

in which an omitted variable from a first equation is explicitly allowed to correlate

with right-hand side variables from that same equation at another point in the GVAR

equation system.
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An alternative strategy for obtaining weights would be to estimate them along with

the other parameters of the GVAR which would be accomplished by minimizing the

sum of squared residuals from a local model subject to the constraints that its set of

weights are non-negative and sum to unity. That is,

min
Γi,wijk

T∑
t=1

ε2it (4)

subject to

wijk ≥ 0, j = 0, ..., N, k = 1, ...,K

and∑N
j=0wijk = 1, k = 1, ...,K

where Γi comprises all local model coefficients contained in ai0, ai1, Φip, Λiq, Ψ,

and dt. The minimization problem for item i would exclude wii and set that to zero.

For the weight parameters to be estimable, an identifying assumption is that a

significant relation between a local model’s endogenous variables and some foreign

variables must exist. In general, for K foreign variable vectors in K equations of a local

model, at least one significant relation shall exist for each foreign variable vector (with

respect to contemporaneous or some lagged vectors) for the weights to be estimable.

In the hypothetical case that, say, a country’s domestic variables do not relate at all

to foreign variables, the weights would become nuisance parameters because changing

them would leave the likelihood of that local model unaffected. The likelihood surface

of the objective function with respect to the weights would in that case be flat.

For minimizing the constrained objective, an iterative, numerical optimization has

been implemented, using a sequential quadratic programming method to solve the

constrained multivariate function. Useful entry points to the literature on sequential

quadratic programming are [15], [23] and [16]. The estimation is conducted item by

item in the cross-section (from the weight matrix perspective therefore column by

column) and at item level jointly for the system of local model equations if K > 1.

For a general treatment of regression problems that are subject to constraints (non-

linear ones in general and both of equality and inequality-type) I refer to [25] who
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discusses the underlying assumptions and investigates the asymptotic behavior of least-

squares estimators for such general constrained cases. Deriving a nonlinear, constrained

estimator’s asymptotic properties is complicated for two reasons: first, an optimal so-

lution to a nonlinear objective function does not in general have a closed-form solution

and can be derived only via some optimization algorithm4; Second, for a model involv-

ing inequality constraints, as for the weights in the present application, error bounds

cannot be computed via the usual t-statistics, i.e. as a ratio of a mean estimate and its

standard error (which one in principle could compute from the inverse Hessian matrix

that is involved at the quadratic programming stage) because one would not account

for the boundary constraints that were imposed. If some weight estimate was close to

or at zero (or one), an estimated standard error might suggest that the weight could

fall below zero (exceed one) and thereby violate the constraint.

Three approaches are conceivable to deal with such cases: First, confidence limits

can be computed by means of inversion techniques that involve either a Wald or a

likelihood ratio statistic. For the former see e.g. [19], for the latter e.g. [6]. Second,

Bayesian inference methods can be employed which would involve a weighted bootstrap

of the posterior distribution of the parameters (see e.g. [18]). Third, an unweighted

bootstrap (parametric or nonparametric) can be used to generate a large number of

pseudo-data samples from the model to then re-estimate the parameters to obtain their

distribution and selected moments thereof, respectively. That third approach is used to

obtain error bounds for the weights in this paper. The implemented bootstrap to draw

from the residuals is nonparametric, thus no distributional assumptions are imposed

on either the marginal distributions or the copula that together constitute the joint

distribution of the global model’s residuals.

2.3 Global solution

Solving for the global model follows now the standard procedure whereby local models

need to be properly reformatted and stacked, involving the weight matrices that are

either taken or estimated as outlined above. The description of how to solve the global

model will in the following be brief. For details that are omitted I refer to [21].

4A nonlinear model, objective function respectively, shall be defined as one whose partial derivatives

with respect to model parameters remain a nonlinear function of the model parameters. See e.g. [12].
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A country-specific (ki + k∗i )× 1 vector zit is defined as follows.

zit =

[
yit

y∗
it

]
(5)

The local models in equation (1) can then be reformulated.

A0izit = ai0 + ai1t+ A1izi,t−1 + ...+ APizi,t−P + εit (6)

where it is assumed for ease of notation in the following that P = Q and the global

exogenous variable vector dt be empty. The Aip coefficient matrices are all of size

ki × (ki + k∗i ) and have the following form.

Ai0 = (Iki ,−Λi0)

Ai1 = (Φi1,Λi1)

...

AiP = (ΦiP ,ΛiP )

(7)

The endogenous variables across items in the cross-section are stacked in one global

vector yt which is of size k × 1 where k =
∑N

i=1 ki. Here, we need to map the local

variable vectors zit to the global endogenous variable vector yt which is accomplished

via (ki × k∗i ) × k link matrices Wi. With zit = Wiyt we can rewrite the model once

more.

Ai0Wiyt = ai0 + ai1t+ Ai1Wiyt−1 + ...+ AiPWiyt−P + εit (8)

Now, we move from item-specific models to the global model by stacking the former

in one global system, that is,

G0yt = a0 + a1t+ G1yt−1 + ...+ GPyt−P + εt (9)

where the G0,...,P matrices are of size k × k and have the following form.
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(G0, ...,GP ) =


A01W1

A02W2

...

A0NWN

, ...,

AP1W1

AP2W2

...

APNWN

 (10)

A reduced form of the global model is finally obtained by pre-multiplying the system

with the inverse of G0. This representation is observationally equivalent to the model

in (1) and can now be used for forecasting and impulse response analysis.

yt = G−1
0 a0 + G−1

0 a1t+ G−1
0 G1yt−1 + ...+ G−1

0 GPyt−P + G−1
0 εt (11)

3 An application

3.1 Model and weight matrix estimates

The global model that is set up to exemplify the proposed weight matrix estimation

scheme comprises 18 countries and two variables: real GDP and personal consumption

expenditure prices (retrieved from OECD databases), thus has 36 equations. All vari-

ables are modeled in quarter-on-quarter (QoQ) logarithmic differences so as to render

them stationary. Table 1 summarizes the countries contained in the model as well as

basic summary statistics of the model variables.

Three otherwise identically structured GVARs have been set up, having i) an esti-

mated common weight matrix, ii) two estimated weight matrices for GDP and inflation

separately, and iii) trade weights computed from the sum of bilateral nominal exports

and imports as of 2005 taken from the IMF direction-of-trade statistics.5

The lag structure of the local models has been set by means of a specification search

which considered all conceivable combinations of numbers for autoregressive lags (zero

to two) and foreign variable vectors (one to two and the contemporaneous vectors

5Robustness checks with trade weights from other years or averages of trade weights over the sample

period confirm that the results are not very sensitive to the choice of the benchmark trade matrix. Trade

weights generally do not change much over time.
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being forced) for each country model. The specification search was conducted for the

three model schemes separately, where for five of 18 countries (AT, BE, DE, FR, US)

the suggestion based on the benchmark GVAR with trade weights would have been

different compared to the two GVARs with estimated weights (for the latter two the

suggested lag structures were the same for 14 of 18 countries). The rule to decide for

a common lag structure was to adopt the maximum of the suggestion respectively for

the autoregressive and foreign variable vectors across the three model schemes per local

model.6

The three GVARs were estimated and solved based on the sample from 1996Q1-

2012Q2 (66 observations). Figure 1 summarizes the trade-based and the estimated

weights in bar graph format.7 They are further collected in tables: Table 3 reports

the trade weights; Tables 4-6 show mean, lower bounds (5%), and upper bounds (95%)

of the estimated common weight matrix; Tables 7-9 and 10-12 summarize mean and

bound estimates for the two variable-specific estimation schemes, for GDP and inflation

separately. Further, Table 13 reports the mean absolute deviations between any two

pairs of weight matrices, with corresponding ranks to help identify the countries for

which deviations are the largest / the smallest. Finally, Table 14 summarizes how

many of the trade-based weights fall into (respectively exceed upper or fall below lower

bounds of) the estimated weights under the two estimation schemes.

When comparing e.g. the GVAR common estimate with trade weights (Tables 3,

4, and 13), NL, FR, and DE (ranks 16-18) stand out as the countries for which the

common estimates come closest to their trade-implied weights. For NO, IE and DK

(ranks 1-3), deviations are most pronounced. E.g. DK’s weight on NL equals 7.6% and

15.7% based on trade and the GVAR common estimate, respectively. Another sharp

drop can be observed for instance for CA, where its trade-based weight for the US

would equal 87.4% and the common weight estimate approximately 58.9%. Overall,

56% of the trade-based weights fall into the estimated error bounds, thus 44% remain

outside (14% below lower and 30% above upper bounds, see Table 14).

6For the Monte Carlo simulation in Section 3.2, it was of avail to operate with identical lag structures

for the three model schemes.
7The identifying assumption discussed in the previous subsection has been found to hold for all

country models; in each local model and for either of the two estimation schemes, the coefficients on

either contemporaneous or lagged foreign variable vectors were found to be significant at least at a 10%

level.
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With regard to the variable-specific weight estimates (Tables 7 and 10), the results

suggest that estimates for GDP and price inflation separately differ in many cases

quite markedly. See for instance DK’s weights for SE. The weights for GDP and

inflation against SE would equal respectively 2.4% and 16.1%. A second example is IE’s

weight on ES, with weights for GDP and inflation equalling 39.1% and 0%, respectively.

Overall, the comparison of trade-based to variable-specific weights (Table 14), suggests

that 52% and 54% of the benchmark weights fall into the estimated bounds for GDP

and inflation, respectively.

3.2 Monte Carlo simulation

A first (of three) aspects that this sub-section aims to address is that employing weight

matrices which deviate from a true weight matrix can induce bias and there-

fore distort the global model dynamics. Two stochastic simulation exercises were

conducted to highlight this point:

1. Simulate 5,000 artificial pseudo-data samples each of size equal to the original

sample (66 observations) from the GVAR involving a weight matrix estimate that

is common for all model variables, which is considered the true Data Generating

Process (DGP). Based on all pseudo-data sets, re-estimate and solve the GVAR

once by estimating the GVAR parameters along with a common weight matrix

and once using the benchmark weight matrix based on trade flows.

2. Simulate 5,000 artificial pseudo-data samples each of size equal to the original

sample (66 observations) from the GVAR involving a weight matrix estimate that

is specific to the model variables, which is considered the true DGP. Based on all

pseudo-data sets, re-estimate and solve the GVAR once by estimating the GVAR

parameters along with variable-specific weight matrices, once by estimating along

with a common weight matrix, and once using the benchmark weight matrix based

on trade flows.

Despite being artificial, the simulation is therefore designed to assess the extent to

which misspecified weights may have biased the global model estimate in a concrete

application, by aligning the DGP with empirical sample size and estimates. Moreover,
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the simulation is designed so as to take proper account of the uncertainty that surrounds

the estimated weights (by re-estimating the GVAR weights, either common or variable-

specific) on all pseudo-data samples.8

Upon re-estimation of the GVARs on all pseudo-data sets, the resulting sets of

distributions for each global model coefficient, from a pair of models one of which was

the correct (corresponding to the true DGP) and one the model employing an ill-suited

weight matrix, were opposed. Two tests were conducted to assess the deviation of

any two parameter distributions: a two-tailed F -test for the hypothesis that any two

distributions had equal variances as well as a two-tailed t-test of the Null that any two

distributions had equal means.

Results from the assessment of model parameter distributions are summarized in

Figures 2 and 3. Table 15 shows the average number of coefficients from the global

models that were judged to be deviating with respect to mean and variance conditional

on a 1%, 5%, and 10% significance level. A distinction is made between the overall

parameter space and a reduced one excluding all intercepts, since the latter play no

role for the dynamic properties of the global model.9

The fraction of coefficients for which their mean was different at the 1% level equals

an approximate 70.4% under the first simulation scheme. Excluding intercepts hardly

changes that ratio (to 70.0%) because the number of intercepts (36) is small compared

to the overall number of global model coefficients (2,664).

When considering the variable-specific weighting scheme the true DGP, trade-based

weights would induce significant bias for about 78.3% of the model coefficients. Despite

a common estimate reducing that ratio, it would still distort a considerable portion of

means of around 59.3% of the model coefficients. Overall, the simulation results suggest

that a significant portion of the GVAR’s parameter space is distorted when employing

8A high performance computing network has been employed to parallelize the simulation rounds on

64 cores (using Matlab’s parallel computing toolbox). The runtime for 5,000 rounds including steps 1.

and 2. amounted to about 1 day and 2.5 hours, thus would have been lasting ca 66 days on a local

PC’s Matlab referring to one core. The runtime for obtaining one estimate of the global model (36

equations) under the common and variable-specific weights modus equal about four and seven minutes,

respectively.
9Intercepts (together with all other coefficients in the model) do influence the model fit and residuals

and thereby affect for instance a generalized impulse shock and response profile at the outset of a shock

simulation horizon.
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misspecified weight matrices.

A second aspect, related to the first, concerns the implications for dynamic

impulse responses. Coefficient estimates, in conjunction with weights, have a bearing

on two features of dynamic impulse responses that one would simulate from the global

model: i) since they determine the residuals of the model and thereby their covariance

structure, coefficients influence the characteristics of a shock profile on impact, i.e. the

magnitude of an assumed shock (if aligned with, say, one standard deviation of the

shock variable’s residuals) as well as the magnitude and signs of shock responses10; ii)

the shape of the dynamic responses and thereby the magnitude and sign of cumulative

responses in the long-run.

If the global model’s coefficients, weights respectively, were biased, then the model’s

dynamic shock responses might get distorted in these two respects. To assess how ma-

terial such distortions might be for the empirical application at hand, a systematic

generalized impulse response simulation was conducted for each of the three model

schemes (the common weight matrix, variable-specific weight matrices, and the bench-

mark trade weights), to let each of the N ×K variables once be the shock origin and

record all N ×K variables’ responses.11

Upon simulation of all dynamic responses, three pairs of models were compared:

i) the GVAR based on common weights versus trade weights, ii) the model based on

variable-specific weights versus trade weights, and iii) the GVAR based on specific

weights versus common weights. Four indicators were then computed for each pair:

1) The portion of identically signed generalized impulses on impact (excluding the

number N ×K of assumed shocks, because they got the same sign by assumption);

2) The portion of identically signed cumulative impulse responses in the long-run;

3) The root mean square deviation based on the generalized impulses on impact

(excluding the number N ×K of assumed shocks, because they got the same size by

assumption);

10Unless one was to operate with non-factorized impulse responses, in which case a shock to one

variable would be assumed not to induce responses for other variables on impact.
11See [20] for details about the generalized impulse response concept.
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4) The root mean square deviation based on cumulative impulse responses in the

long-run.

Table 16 reports the results for 1) and 2). For shock responses on impact and for

cumulative ones in the long-run, the portion of identical signs ranges between 82.9%

and 87.8%, suggesting for about 12.2% to 17.1% of the responses for a pair of models

to have opposite signs.12

While from the evaluation presented in Table 16 one might conclude that the portion

of incorrectly signed responses for pairs of models is limited, the root mean square

deviations in Table 17 appear to be sizable. Particularly pronounced are the deviations

for the long-run responses from the specific weights based model and the trade-based

one: For GDP, the error estimate amounts to 65.7%, which is 76 times the standard

deviation of QoQ GDP growth rates across countries. For inflation, too, a sizable

deviation of 40.8% is reported, amounting to 84 times the historical cross-country

average. For the responses at T = 0, deviations are smaller, though still sizable, with

multiples relative to the historical standard deviations ranging between 16 and 24.

A third aspect to be addressed concerns the additional coefficient uncertainty

that the weight estimation scheme entails. An additional stochastic simulation

serves to highlight the point:

1. Simulate 5,000 artificial pseudo-data samples each of size equal to the original

sample (66 observations) from the GVAR based on the benchmark trade weights,

which is considered the true DGP.

2. Based on all pseudo-data sets, re-estimate and solve the GVAR once by estimating

the GVAR parameters along with a common weight matrix, once along with

variable-specific weights, and once using the benchmark weight matrix based on

trade flows.

When estimating the GVAR including its weights in the second step, the resulting

weight estimates do not differ significantly from the trade weights (nor do the esti-

mates for the implied parameters of the global model), which proofs that the weight

12A full catalogue of all simulated generalized impulse responses underlying these summary measures

is available on request.
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estimation routine has been properly implemented. The point is instead to focus on

the variances (the uncertainty) of the estimates for the implied global parameters when

either considering the weights free or not free of uncertainty. Table 18 reports for how

many of the coefficients’ variances we measure a significant deviation when using the

common weight or specific weight estimation scheme on the trade-based pseudo data.

At a 10% confidence level, 90.1% of the variances are significantly different when em-

ploying the common weight estimation method. For the subset of the coefficient space

at that critical significance level, the variances were on average about twice as large

under the common weight estimation scheme. When instead using the variable-specific

weight estimation method, 97.3% of the coefficients variances would be significantly

different, with the corresponding variance factor estimated at 3.17. The results con-

firm that estimating the GVAR weight matrices comes at the cost of increased variance

of the overall parameter space.

3.3 Out-of-sample forecasting

For assessing the potential of estimated versus external weights to influence the forecast

performance of a GVAR, a pseudo-out-of-sample forecast exercise was conducted.

The three GVARs were estimated on a reduced sample from 1996Q1-2007Q1 and

estimates then held fix and used to produce a set of 1- to 4-quarter ahead forecasts

for the period from 2008Q1-2012Q2.13 The first three intermediate forecasts for within

2007 (Q2-Q4) were neglected to let the evaluation be based on a common test-sample,

with the same underlying number of 1- to 4-quarter ahead predictions (18 observations

per horizon).

The evaluation of the simulated forecasts is based on Root Mean Square Errors

(RMSE), which for the two GVARs involving estimated weights will be expressed as

ratios to the benchmark GVAR’s RMSE with trade-based weights. The ratios are

accompanied by a Clark-West test statistic ([5]) that indicates whether a gain in per-

formance was significant from a statistical viewpoint. RMSE ratios are also provided

for the GVAR using estimated variable-specific weights relative to the one with the

13Weight estimates based on the reduced sample are not reported but have been compared to the

full-sample based ones presented. Deviations are rather small. Detailed results are available upon

request.
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common weight matrix estimate.

For the evaluation of simulated forecasts beyond the 1-quarter horizon, the QoQ

forecasts as well as respective reference data were cumulated. It is not meaningful

otherwise to evaluate some predicted QoQ change farther out along the forecast horizon.

Figures 4 and 5 show the absolute RMSEs across variables and horizons. Figures

6-11 present the corresponding RMSE ratios in bar graph format, where the colors of

the bars reflect the outcome of the test for equal predictive accuracy. Table 19 reports

the averages of RMSE ratios across countries for respective models and variables.

Looking at the performance for GDP with common estimates versus trade weights

(Figure 6), RMSE ratios for all horizons are less than one, except for NO up to the

3-quarter horizon, indicating that the involvement of estimated weights improved GDP

forecast performance for a considerable portion of countries. At the intermediate hori-

zons of 1 and 2 quarters, ratios approach 0.78 (for DK), thus imply approx. 22%

improvement compared to the benchmark. On average across countries and the four

horizons, the gain in performance amounts to about 10%. Between 13 to 15 of the

improvements were measured to be significant at least at the 10% level.

For price inflation (Figure 7), gains are comparable to those of GDP. For 1-step

ahead forecasts, the ratios for FR and BE equal 0.79 and 0.85, with between seven to

eleven of the improvements being statistically significant and the average ratio across

horizons equalling 0.9.

While the performance of the variable-specific weight GVAR relative to the bench-

mark GVAR (Figures 8 and 9) appear to be performing rather similarly to the com-

mon weights scheme, the results in Figures 10 and 11, opposing the variable-specific to

the common weight matrix GVAR, reveal that gains from estimating variable-specific

weights are rather limited. RMSE ratios across horizons equal 1.11 and 1.10 for GDP

and inflation, respectively, indicating a deterioration in forecast performance of about

10% on average.
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4 Conclusions

The aim of the paper was to illustrate how a GVAR can be estimated jointly with its

weight matrices and to highlight that misspecified weights can bias the global model

and impinge on its forecast performance.

Results from a controlled Monte Carlo simulation, with true and alternative model

specifications inherited from empirical estimates based on a panel of 18 countries for

GDP and personal expenditure price inflation, suggest that estimated weights differ

from trade-based ones in most countries to an extent that would let the trade weights

bias the global model significantly. While the results of the stochastic simulations

of the type presented in Section 3.2 shall be seen as specific to the empirical setting

chosen in this paper, they can be conducted more generally in other empirical settings to

assess how material the deviations between a set of benchmark as opposed to estimated

weights are.

The evaluation of simulated out-of-sample forecasts further highlights the role that

GVAR weights play in influencing the GVAR’s performance: common and variable-

specific weight estimates improve predictive accuracy compared to a trade-based model

for the majority of countries significantly (up to 22% for specific countries and about

10% on average across countries and horizons). For the application to GDP and in-

flation, the GVAR with variable-specific weight estimates did not improve forecast

precision relative to the one involving the common weight matrix estimate.

While it shall remain advantageous, in principle, to operate a GVAR with fix weights

from the viewpoint of compressing parameter uncertainty, a strategy for estimating

GVAR weights can therefore be seen as a supplementary step for assessing the adequacy

of external data based weights. Besides mitigating biases, a strategy for estimating

GVAR weights can be useful for applications in which it is not obvious how weights

could otherwise be constructed from data, as for instance in cases when a GVAR is set

up for banks, or mixed country and bank cross-sections as illustrated in [14].
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Table 1: Overview model variables, countries and basic summary statistics

Real GDP QoQ [YER] Expenditure prices QoQ [CED]

Mean STD Min Max Mean STD Min Max

AT Austria 0.50 0.64 -1.88 1.51 0.45 0.28 -0.21 1.11

AU Australia 0.80 0.58 -0.73 2.70 0.55 0.36 -0.20 2.40

BE Belgium 0.44 0.62 -2.12 1.55 0.49 0.49 -0.90 1.35

CA Canada 0.64 0.64 -2.02 1.65 0.39 0.31 -0.68 1.13

CH Switzerland 0.45 0.61 -2.25 1.90 0.17 0.36 -0.87 1.17

DE Germany 0.34 0.88 -4.16 2.19 0.30 0.32 -0.82 1.11

DK Denmark 0.30 1.23 -2.45 3.82 0.48 0.40 -0.42 1.54

ES Spain 0.59 0.65 -1.57 1.55 0.61 0.51 -1.09 1.61

FI Finland 0.64 1.36 -6.81 3.29 0.49 0.78 -1.15 2.69

FR France 0.39 0.53 -1.72 1.22 0.37 0.34 -0.55 1.18

IE Ireland 1.02 2.03 -3.72 7.08 0.47 1.15 -5.92 1.95

IT Italy 0.16 0.76 -3.65 1.39 0.58 0.30 -0.63 1.05

NL Netherlands 0.50 0.71 -2.25 2.00 0.51 0.43 -0.83 1.92

NO Norway 0.56 1.11 -1.98 3.32 0.48 0.82 -1.32 2.68

PT Portugal 0.33 0.91 -2.33 2.21 0.62 0.51 -1.29 1.74

SE Sweden 0.64 1.00 -3.82 2.42 0.35 0.48 -0.73 1.48

UK United Kingdom 0.52 0.71 -2.11 1.72 0.54 0.50 -0.63 2.24

US United States 0.59 0.69 -2.33 1.93 0.51 0.39 -1.43 1.12

Note: All statistics are based on logarithmic quarter-on-quarter differences times 100 based on the

sample period 1996Q1-2012Q2.
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Table 14: Weight matrix comparison

Common Specific for YER Specific for CED

Abs. Rel. Abs. Rel. Abs. Rel.

Benchmark below lower bound 42 14% 32 10% 34 11%

Benchmark above upper bound 92 30% 116 38% 106 35%

Benchmark within bounds 172 56% 158 52% 166 54%

Note: The underlying weight estimates can be found in Tables 3-12.

Table 15: Portion of distorted coefficient means/variances when misspecifying GVAR

weight matrices

Mean Variance

Significance level 1% 5% 10% 1% 5% 10%

Including intercepts

Common WM vs benchmark 0.704 0.758 0.794 0.781 0.829 0.855

Specific WMs vs benchmark 0.783 0.834 0.857 0.815 0.865 0.893

Specific WMs vs common WM 0.593 0.690 0.745 0.380 0.453 0.502

Excluding intercepts

Common WM vs benchmark 0.700 0.755 0.791 0.778 0.827 0.853

Specific WMs vs benchmark 0.780 0.832 0.855 0.812 0.863 0.891

Specific WMs vs common WM 0.587 0.686 0.741 0.372 0.445 0.495

Note: The table reports the shares of model coefficients that are biased with respect to mean or

variance at respective significance levels. Overall, each global model contains 2,664 coefficients. The

number of intercepts that is excluded in the lower part of the table equals 36.

Table 16: Sign equivalence of impulse responses from GVAR models under different

weight matrix schemes

Model 1 Model 2 On impact Long-run

Abs. Rel. Abs. Rel.

Common WM Benchmark WM 1098 87.1% 1121 86.5%

Specific WM Benchmark WM 1056 83.8% 1074 82.9%

Specific WM Common WM 1106 87.8% 1137 87.7%

Note: The table reports the absolute and relative number of sign equivalences of generalized

shock/response profiles on impact (for 1,290 cells of any pair of two residuals covariance matri-

ces, excluding variances) as well as for long-run cumulative responses (for 1,296 shock/response

constellations of N ×K model variables).
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Table 17: Root mean square errors of impulse responses from GVAR models under

different weight matrix schemes

Common WM Model 2 GDP INF

STD T=0 T=Inf STD T=0 T=Inf

Common WM Benchmark WM 0.009 0.138 0.487 0.005 0.075 0.238

Specific WM Benchmark WM 0.009 0.212 0.657 0.005 0.100 0.408

Specific WM Common WM 0.009 0.158 0.447 0.005 0.095 0.289

Note: The table reports root mean square errors based on generalized shock/response profiles on

impact (T=0), in the long-run (T=Inf), as well as historical standard deviations of the two model

variables, all on average across the 18 countries.

Table 18: Coefficient uncertainty under different weight estimation schemes

Variance Variance ratio

Significance level 1% 5% 10% 1% 5% 10%

Including intercepts

Common WM vs benchmark 0.840 0.883 0.901 2.099 2.036 2.012

Specific WM vs benchmark 0.951 0.965 0.973 3.226 3.191 3.169

Excluding intercepts

Common WM vs benchmark 0.841 0.883 0.900 2.115 2.052 2.028

Specific WM vs benchmark 0.951 0.964 0.973 3.254 3.219 3.197

Note: The table reports the shares of model coefficients whose variance at respective confidence

levels differ significantly. The variance ratios reported in the right part of the table are computed on

the subset of global model coefficients that was found to differ significantly at respective confidence

levels. Overall, the global model contains 2,664 coefficients. The number of intercepts that is

excluded in the lower part of the table equals 36. See Section 3.2 for details.
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Table 19: RMSE ratios on average across countries

Common to benchmark

Horizon 1 2 3 4 Average

YER 0.91 0.88 0.89 0.90 0.90

CED 0.92 0.89 0.89 0.91 0.90

Specific to benchmark

1 2 3 4 Average

YER 1.01 0.95 1.01 1.02 1.00

CED 0.98 0.96 1.00 1.03 0.99

Specific to common

1 2 3 4 Average

YER 1.11 1.08 1.14 1.13 1.11

CED 1.07 1.07 1.12 1.14 1.10

Note: The table reports average RMSE ratios for across countries for the out-of-sample test pe-

riod from 2008Q1-2012Q2 (18 quarters). The underlying RMSE ratios for individual countries are

presented in Figures 6-11.
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Figure 1: Trade-based versus estimated GVAR weights

Note: See Tables 3, 4, 7, and 10 for the underlying data in tabular format.
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Figure 2: Assessing bias in parameter distributions - GVAR w/ correct vs GVAR

benchmark w/ ill-suited weight matrix

Note: A GVAR with a common weight matrix was the true DGP under which pseudo-data samples

were generated. A benchmark GVAR with a knowingly ill-suited weight matrix was estimated on

the pseudo data samples. The resulting global parameter distributions were tested for equal mean

and variance; the resulting p-values are plotted here (sorted ascending). P -values close to zero

indicate strong evidence against the Null of either equal means or equal variances, i.e. bias in that

sense. Overall, the global model contains 2,664 coefficients (excluding residual covariance matrix).

See text for details.
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Figure 3: Assessing bias in parameter distributions - GVAR w/ correct specific weight

matrices versus GVAR benchmark and GVAR w/ common ill-suited weight matrix

Note: A GVAR with variable-specific weight matrices for the two model variables was the true

DGP under which pseudo-data samples were generated. A benchmark GVAR and a GVAR with a

common weight matrix estimate were estimated on the pseudo data samples. The resulting global

parameter distributions were tested for equal mean and variance; the resulting p-values are plotted

here (sorted ascending). P -values close to zero indicate strong evidence against the Null of either

equal means or equal variances, i.e. bias in that sense. Overall, the global model contains 2,664

coefficients (excluding residual covariance matrix). See text for details.
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