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Abstract

We develop a high-dimensional and partly nonlinear non-Gaussian dynamic factor

model for the decomposition of systematic default risk conditions into a set of latent

components that correspond with macroeconomic/financial, default-specific (frailty),

and industry-specific effects. Discrete default counts together with macroeconomic

and financial variables are modeled simultaneously in this framework. In our empirical

study based on defaults of U.S. firms, we find that approximately 35 percent of default

rate variation is due to systematic and industry factors. Approximately one third of

systematic variation is captured by macroeconomic/financial factors. The remainder

is captured by frailty (about 40 percent) and industry (about 25 percent) effects. The

default-specific effects are particularly relevant before and during times of financial

turbulence. For example, we detect a build-up of systematic risk over the period pre-

ceding the 2008 credit crisis.

Keywords: financial crisis; default risk; credit portfolio models; frailty-correlated

defaults; state space methods.

JEL classification: C33, G21.

1



Non-technical summary

Which sources drive systematic corporate default risk over time? Systematic default rate

variation, also known as default clustering, constitutes one of the main risks in the lending

book of financial institutions. While it is well known that default rates depend on the pre-

vailing macroeconomic conditions, the common dependence of corporate credit quality on

macroeconomic conditions is not the only explanation provided in the literature for default

clustering. In particular, recent research indicates that conditioning on readily available

macroeconomic and firm-specific information, though important, is not sufficient to fully

explain the observed degree of default rate variation. From this finding, two important sepa-

rate strands of literature have emerged, focusing on frailty-correlated defaults and contagion

as explanations of excess default clustering. To the best of our knowledge, it is not yet

known to what extent the three different explanations (macro, frailty, and contagion) for

default clustering interconnect. In particular, it is not yet clear how to measure the relative

contribution of the different sources of systematic default risk to observed default clustering.

In this paper we decompose default risk of U.S. firms into its different systematic compo-

nents using a high-dimensional, partly nonlinear and non-Gaussian dynamic factor model.

Our estimation results indicate that defaults are more related to common factor dependence

than to contagious dynamics at the industry level: the common factors to all firms (macro

and frailty) account for approximately 75% of the default clustering. It leaves industry (and

thus possibly contagion) effects as a substantial secondary source of credit portfolio risk.

We further find that on average across industries and time, 66% of total default risk is id-

iosyncratic and therefore diversifiable. The remainder 34% is systematic. For subinvestment

grade firms, one third of systematic default risk can be attributed to common variation

with the business cycle and with financial markets data. For investment grade firms, this

percentage is as high as 60%. The remaining share of systematic credit risk is driven by a
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frailty factor and industry-specific factors, in approximately equal proportions. The frailty

component cannot be diversified in the cross-section, whereas the industry effects can only

be diversified to some extent.

Our reported risk shares vary considerably over industry sectors, rating groups and time.

For example, we find that the frailty component tends to explain a higher share of default

rate volatility before and during times of crisis. In particular, we find systematic credit risk

building up in the years 2002-2008, leading up to the financial crisis, when default activity

was much lower than suggested by macro-financial data. The framework may thus also

provide a tool to detect systemic risk build-up in the economy.

Finally, in this study we also seek to address the question which missing sources of default

rate volatility the frailty factor may be capturing. Interestingly, we find a positive correlation

between changes in our estimated frailty factor and proxies for tightening lending standards.

This, along with other pieces of evidence, suggests that the frailty component may be able

to capture changes in credit supply conditions and the ease of credit access.
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1 Introduction

We decompose default risk of U.S. firms into its different systematic components using a high-

dimensional and partly nonlinear non-Gaussian dynamic factor model. Systematic default

rate variation, also known as default clustering, constitutes one of the main risks in the

banking book of financial institutions. It is well known that corporate default clustering is

empirically relevant. For example, aggregate U.S. default rates during the 1991, 2001, and

2008 recession periods are up to five times higher than in intermediate expansion years. It is

also well known that default rates depend on the prevailing macroeconomic conditions, see,

for example, Pesaran, Schuermann, Treutler, and Weiner (2006), Duffie, Saita, and Wang

(2007), Figlewski, Frydman, and Liang (2008), and Koopman, Kräussl, Lucas, and Monteiro

(2009).

The common dependence of corporate credit quality on macroeconomic conditions is not

the only explanation provided in the literature for default clustering. Recent research in-

dicates that conditioning on readily available macroeconomic and firm-specific information,

though important, is not sufficient to fully explain the observed degree of default rate varia-

tion. Das, Duffie, Kapadia, and Saita (2007) reject the joint hypothesis of (i) well-specified

default intensities in terms of observed macroeconomic and firm-specific information, and

(ii) the doubly stochastic independence assumption which underlies many credit risk models

that are used in practice. From this finding, two important separate strands of literature

have emerged, focusing on frailty-correlated defaults and contagion.

In a frailty model, the additional variation in default intensities is captured by a latent

dynamic process, or an unobserved component, see Das et al. (2007), McNeil and Wendin

(2007), Koopman, Lucas, and Monteiro (2008), Koopman and Lucas (2008), and Duffie,

Eckner, Horel, and Saita (2009). This frailty factor captures default clustering above and

beyond what can be explained by macroeconomic variables and firm-specific information.
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The unobserved component can capture effects of omitted variables in the model as well as

other effects that are difficult to quantify, see Duffie et al. (2009). Contagion models, by

contrast, focus on the phenomenon that a defaulting firm weakens other firms with which it

has business links, see Giesecke (2004) and Giesecke and Azizpour (2008). Adverse contagion

effects may dominate potentially offsetting competitive effects at the intra-industry level, see

e.g. Lang and Stulz (1992) and Jorion and Zhang (2009). Lando and Nielsen (2009) screen

hundreds of default histories for evidence of direct default contagion. Their results suggest

that domino style contagion is a minor concern. Indirect spillover effects, through balance

sheet covariates or fire sales, may nevertheless still explain some default dependence at the

industry level beyond that induced by shared exposure to macroeconomic/financial (macro)

and default-specific (frailty) factors.

It is not known to what extent the three different explanations (macro, frailty, and

industry effects) for default clustering interconnect. In particular, it is not yet clear how

to measure the relative contribution of the different sources of systematic default risk to

observed default clustering. This question is fundamental to our understanding and modeling

of default risk. Lando and Nielsen (2009) discuss whether default clustering can be compared

with asthma or the flu. In the case of asthma, occurrences are not contagious but depend

on exogenous background processes such as air pollution. On the other hand, the flu is

directly contagious. Frailty models are, in a sense, more related to models for asthma, while

contagion models based on self-exciting processes are similar to models for flu. Whether

one effect dominates the other empirically is therefore highly relevant to the appropriate

modeling framework for portfolio credit risk.

We decompose the systematic variation in corporate defaults into different constituents

within a high-dimensional and partly nonlinear non-Gaussian dynamic factor model. Within

this modeling framework, we let default rate volatility at the rating and industry level be

attributed to the macro, frailty, and industry effects, simultaneously. The estimation of
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these dynamic factors and the other parameters in the model is carried out by Monte Carlo

maximum likelihood methods. The implementation details of the estimation methods are

presented. The attractive feature of our framework is threefold. First, it allows us to combine

typical Gaussian time series (such as macroeconomic variables, business cycle indicators,

financial market conditions, and interest rates) with discrete time series such as default

counts. Second, and in contrast to earlier models, we can include a substantive number of

macroeconomic/financial variables to account for the macroeconomic conditions. Third, our

new framework allows for an integrated view on the interaction between macro, frailty, and

industry factors by treating them simultaneously rather than in a typical two-step estimation

approach. This proves to be very convenient if the empirical model is also used for computing

adequate economic capital buffers and in a stress testing exercises.

Our estimation results indicate that defaults are more related to asthma than to flu:

the common factors to all firms (macro and frailty) account for approximately 75% of the

default clustering. It leaves industry (and thus possibly contagion) effects as a substantial

secondary source of credit portfolio risk. To quantify these contributions to systematic

default risk, we introduce a pseudo-R2 measure of fit based on reductions in Kullback-

Leibler (KL) divergence. The KL divergence is a standard statistical measure of ‘distance’

between distributions and reduces to the usual R2 in a linear regression model. Its use

is appropriate in a context where there are both discrete (default counts) and continuous

(macro variables) data. We find that on average across industries and time, 66% of total

default risk is idiosyncratic and therefore diversifiable. The remainder 34% is systematic. For

subinvestment grade firms, one third of systematic default risk can be attributed to common

variation with the business cycle and with financial markets data. For investment grade

firms, this percentage is as high as 60%. The remaining share of systematic credit risk is

driven by a frailty factor and industry-specific factors (in approximately equal proportions).

The frailty component cannot be diversified in the cross-section, whereas the industry effects
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can only be diversified to some extent.

Our reported risk shares vary considerably over industry sectors, rating groups and time.

For example, we find that the frailty component tends to explain a higher share of default

rate volatility before and during times of crisis. In particular, we find systematic credit risk

building up in the years 2002-2008, leading up to the financial crisis, when default activity

was much lower than suggested by macro-financial data. The framework may thus also

provide a tool to detect systemic risk build-up in the economy. Tools to assess the evolution

and composition of latent financial risks are urgently needed at macro-prudential policy

institutions, such as the Financial Services Oversight Council (FSOC) in the United States,

and the European Systemic Risk Board (ESRB) in the European Union.

In this study we also seek to address the question which missing sources of default rate

volatility the frailty factor may be capturing. Interestingly, we find a positive correlation

between changes in our estimated frailty factor and proxies for tightening lending standards.

This, along with other pieces of evidence, suggests that the frailty component may be able

to capture changes in credit supply conditions and the ease of credit access. Credit supply

and credit risk are clearly connected: it is hard to default if available credit is plentiful.

Conversely, even solvent firms can get into financial distress if credit is heavily rationed.

Changes in the ease of credit access are typically hard to quantify empirically as they may

depend on many developments which are also hard to measure, such as changing activity

in the securitization market or changes in banks’ business models. Still, when combined

all these factors may have a systematic and economically significant impact on the loss

experience of diversified credit portfolios.

In relation to the 2008 crisis period, the following findings from our empirical study

are relevant. First, significant frailty effects imply that default and business cycle do not

coincide. They have diverged significantly and persistently in the past, and most recently

during the run-up to the 2008 credit crisis. Such a decoupling may indicate a credit bubble, in
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particular if in addition credit quantity growth is unusually high and bank lending standards

are low. Second, stressing the usual macro-financial covariates may not be sufficient to assess

financial stability conditions in a stress test. Systematic default rate increases also depend

on additional latent systematic risk factors. These may need to be stressed just as the

observed systematic risk factors are stressed. An admittedly incomplete understanding of

latent credit risk sources does not change the fact that they matter empirically. Finally,

while there is a long tradition in central banks of analyzing credit quantities over time and

comparing them to fundamentals (such as tracking the private-credit to GDP ratio), the

tracking of credit risk conditions and its composition has received less to no attention at

all. The new econometric methodology developed in this study is a versatile framework for

making the latter operational.

The remainder of this paper is organized as follows. Section 2 introduces our general

methodological framework. Section 3 presents our core empirical results, in particular a

decomposition of total systematic default risk into its latent constituents. We comment on

implications for portfolio credit risk in Section 4. Section 5 concludes.

2 A joint model for default, macro, and industry risk

The key challenge in decomposing systematic credit risk is to define a factor model structure

that can simultaneously handle normally distributed (macro variables) and non-normally

distributed (default counts) data, as well as linear and non-linear factor dependence. The

factor model we introduce for this purpose is a Mixed Measurement Dynamic Factor Model,

or in short, MiMe DFM. In the development of our new model, we focus on the decomposition

of systematic default risk. However, the model may also find relevant applications in other

areas of finance. The model is applicable to any setting where different distributions have

to be mixed in a factor structure.
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In our analysis we consider the vector of observations given by

yt = (y1t, . . . , yJt, yJ+1,t, . . . , yJ+N,t)
′, (1)

with time index t = 1, . . . , T . The first J elements of yt are default counts. We count

defaults for different rating groups and industries. As a consequence, the first J elements

of yt contain discrete, non-negative values. The remaining N elements of yt contain macro

and financial variables which are typically taken as Gaussian variables. We assume that the

default counts and the macro and financial time series data are subject to a set of dynamic

factors. Some of these factors may be common to all variables in yt. Other factors may only

affect a subset of the elements in yt.

2.1 The mixed measurement dynamic factor model

We distinguish macro, frailty, and industry factors; these common factors are denoted as fm
t ,

fd
t , and f

i
t , respectively. The factors f

m
t capture shared business cycle dynamics in macroeco-

nomic variables and default counts. Therefore, factors fm
t are common to all variables in yt.

Common frailty factors fd
t are default-specific, i.e., common to default counts (y1t, . . . , yJt)

only and independent of observed macroeconomic and financial data by construction. By

not allowing the frailty factors to impact the macro series yjt for j = J + 1, . . . , J + N ,

we effectively restrict fd
t to capture default clustering above and beyond that is implied by

macroeconomic and financial factors fm
t . The third set of factors f i

t affects firms in the same

industry. Such factors may be particularly relevant in specific industries such as the financial

industry. In addition, our estimated industry frailty factors may partly capture contagion

driven default clustering in specific industries.

We gather all factors into the vector ft = (fm ′
t , fd ′

t , f
i ′
t )

′ which we model as a dynamic

latent (unobserved) vector variable. We adopt an autoregressive dynamic process for the
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latent factors,

ft = Φft−1 + ηt, t = 1, 2, . . . , T, (2)

where the coefficient matrix Φ is assumed a diagonal matrix and with the m×1 disturbance

vector ηt ∼ NID(0,Ση) which is serially uncorrelated. The standard stationarity conditions

apply to ft. To complete the specification of the factor process in (2), we specify the initial

factor by f1 ∼ N(0,Σf ) where Σf is the unconditional variance matrix of ft and the solution

of the matrix equation Σf = ΦΣfΦ
′ + Ση.

More elaborate dynamic processes for ft can also be considered. The autoregressive

structure in (2) allows the components of ft to be sticky. The macroeconomic factors fm
t

evolve slowly over time and capture business cycle effects in both macro and default data.

The credit climate and industry default conditions are represented by persistent processes

for fd
t and f i

t which typically capture the clustering of defaults during high-default years.

Conditional on ft, the first J elements of yt are modeled as binomial densities with

parameters kjt and πjt, for j = 1, . . . , J , where kjt is the number of firms and πjt is the

probability of default in the industry and rating group j at time t. Exposures kjt are

counted at the beginning of each time period t, and are held fixed during this period. For

more details on the conditionally binomial model, see e.g. McNeil, Frey, and Embrechts

(2005, Chapter 9). Frey and McNeil (2002) show that almost all available industry credit

risk models, such as Creditmetrics, Moody’s KMV, and CreditRisk+ can be presented as

conditional binomial models. The last N elements of yt are, conditional on ft, distributed as

independently normal variables with mean µjt and fixed variance σ2
j for j = J+1, . . . , J+N .

The density specifications for the default counts and the macro variables can now be

given by

yjt|ft ∼ Bin(πjt, kjt), for j = 1, . . . , J,

yjt|ft ∼ N(µjt, σ
2
j ), for j = J + 1, . . . , J +N.

(3)

where Bin refers to the Binomial density and N to the normal density. The support of
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probability πjt is restricted between zero and one. We enforce this by considering the logit

transformation

πjt =
exp π∗

jt

1 + expπ∗
jt

, j = 1, . . . , J.

The auxiliary variable π∗
jt and the mean of the normal density µjt are linear functions of the

factor ft and given by

π∗
jt = λj + β′

jf
m
t + γ′jf

d
t + δ′jf

i
t , for j = 1, . . . , J, (4)

µjt = λj + β′
jf

m
t , for j = J + 1, . . . , J +N, (5)

where λj is a constant and βj, γj and δj are column vectors of loading coefficients with

appropriate dimensions. The number of firms kjt is known. The variance σ2
j is assumed

fixed.

In this particular specification of the MiMe DFM, we can measure the relative contribu-

tions of macro, frailty, and industry risk to general default risk. The factors in fm
t capture

general developments such as business cycle activity, lending conditions and developments

in financial markets. The auxiliary variable for default probability in (4) partly depends on

macro factors, but also depends on frailty risk fd
t and industry f i

t factors. The specifications

in (4) and (5) are key to our empirical analysis where we focus on studying whether macro

dynamics explain all systematic default rate variation, or whether and to what extent frailty

and industry factors are also important.

The estimation of the constants λj and the factor loadings βj, γj′ and δj′ , for j =

1, . . . J +N and j′ = 1, . . . , J , together with the diagonal elements of Φ in (2) is carried out

by the method of Monte Carlo maximum likelihood, see Section 2.2. For the identification

of the factor loadings, we require standardized factors ft. We therefore restrict the variance

matrix Σf = I and hence the variance matrix of the disturbance vector ηt in (2) becomes Ση =

I − ΦΦ′. The estimation of the variances σ2
j can be circumvented since we assume that our

macroeconomic variables are standardized. This is common practice in the macroeconomic
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forecasting literature, see e.g. Stock and Watson (2002). We then have Var(yjt) = β′
jΣfβj +

σ2
j = 1 and hence σ2

j = 1− β′
jβj since we have assumed that Σf = I.

2.2 Parameter estimation via importance sampling

An analytical expression for the the maximum likelihood (ML) estimate of parameter vector

ψ for the MiMe DFM is not available. A feasible approach to the ML estimation of ψ is the

maximization of the likelihood function that is evaluated via Monte Carlo methods such as

importance sampling. A short description of this approach is given below. A full treatment

is presented by Durbin and Koopman (2001, Part II).

The observation density function of y = (y′1, . . . , y
′
T )

′ can be expressed by the joint density

of y and f = (f ′
1, . . . , f

′
T )

′ where f is integrated out, that is

p(y;ψ) =

∫
p(y, f ;ψ)df =

∫
p(y|f ;ψ)p(f ;ψ)df, (6)

where p(y|f ;ψ) is the density of y conditional on f and p(f ;ψ) is the density of f . A Monte

Carlo estimator of p(y;ψ) can be obtained by

p̂(y;ψ) =M−1

M∑
k=1

p(y|f (k);ψ), f (k) ∼ p(f ;ψ),

for some large integer M . The estimator p̂(y;ψ) is however numerically inefficient since

most draws f (k) will not contribute substantially to p(y|f ;ψ) for any ψ and k = 1, . . . , K.

Importance sampling improves the Monte Carlo estimation of p(y;ψ) by sampling f from

the Gaussian importance density g(f |y;ψ). We can express the observation density function

p(y;ψ) by

p(y;ψ) =

∫
p(y, f ;ψ)

g(f |y;ψ)
g(f |y;ψ)df = g(y;ψ)

∫
p(y|f ;ψ)
g(y|f ;ψ)

g(f |y;ψ)df. (7)

Since f is from a Gaussian density, we have g(f ;ψ) = p(f ;ψ) and g(y;ψ) = g(y, f ;ψ) / g(f |y;ψ).

In case g(f |y;ψ) is close to p(f |y;ψ) and in case simulation from g(f |y;ψ) is feasible, the
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Monte Carlo estimator of the likelihood function is given by

p̃(y;ψ) = g(y;ψ)M−1

M∑
k=1

p(y|f (k);ψ)

g(y|f (k);ψ)
, f (k) ∼ g(f |y;ψ), (8)

is numerically much more efficient, see Kloek and van Dijk (1978), Geweke (1989) and Durbin

and Koopman (2001).

The importance density g(f |y;ψ) is based on an approximating, linear Gaussian state

space model based on an observation equation for each yjt in (1) and given by

yjt = cjt + θjt + εjt, εjt ∼ N(0, hjt), (9)

where cjt is a known mean, θjt is the unobserved signal and hjt is a known variance, for

j = 1, . . . , J + N . For the normal variables yjt, the signal θjt is equal to µjt of (5) and

the variables cjt = 0 and hjt = σ2
j are known with j = J + 1, . . . , J + N . For the default

counts yjt in the approximating model, we let the signal θjt be equal to π∗
jt of (4), with

j = 1, . . . , J . The variables cjt and hjt for the default counts are determined such that the

modes of p(f |y;ψ) and g(f |y;ψ) are equal, see Shephard and Pitt (1997) and Durbin and

Koopman (1997) for the details. The values for cjt and hjt are found iteratively and by

means of the Kalman filter and an associated smoothing method.

To simulate values from the resulting importance density g(f |y;ψ) based on the approx-

imating model (9), the simulation smoothing method of Durbin and Koopman (2002) can

be used. For a set of M draws f (1), . . . , f (M) from g(f |y;ψ), the evaluation of the likelihood

function (8) via importance sampling relies on the computation of p(y|f ;ψ), g(y|f ;ψ), with

f = f (k), and g(y;ψ) for k = 1, . . . ,M . Density p(y|f ;ψ) is based on the model specifications

in (3). Density g(y|f ;ψ) is based on the approximating, linear Gaussian model (9). Den-

sity g(y;ψ) is effectively the likelihood function of the approximating model (9) and can be

computed via the Kalman filter, see Durbin and Koopman (2001). Testing the assumptions

underlying the application of importance sampling can be carried out using the procedures

proposed by e.g. Koopman, Shephard, and Creal (2009).
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2.3 Estimation of latent factors

Inference on the latent factors can also be based on importance sampling. In particular, it

can be shown that

E(f |y;ψ) =
∫
f · p(f |y;ψ)df =

∫
f · w(y, f ;ψ)g(f |y;ψ)df∫
w(y, f ;ψ)g(f |y;ψ)df

,

where w(y, f ;ψ) = p(y|f ;ψ)/g(y|f ;ψ). The estimation of E(f |y;ψ) via importance sampling

can be achieved by

f̃ =
M∑
k=1

wk · f (k)

/
M∑
k=1

wk,

with wk = p(y|f (k);ψ)/g(y|f (k);ψ) and where f (k) ∼ g(f |y;ψ) is obtained by simulation

smoothing. The standard error of f̃i, the ith element of f̃ , is denoted by si and is computed

by

s2i =

(
M∑
k=1

wk · (f (k)
i )2

/
M∑
k=1

wk

)
− f̃ 2

i ,

where f
(k)
i is the ith element of f (k).

2.4 Decomposition of the default count variation

Given the estimated parameters and risk factors, we may wish to assess which share of

variation in default data is captured by the different risk factors. For this purpose we adopt

a pseudo-R2 measure that is discussed in Cameron and Windmeijer (1997). It is based on

the Kullback-Leibler divergence measure and is defined as

KL(θ1, θ2) = 2

∫
[log pθ1(y)− log pθ2(y)] pθ1(y)dy (10)

where pθi(y) is the density of the model with signal vector θ = θi for i = 1, 2. The signal

vector θ refers to all π∗
jt in (4) and µj′t in (5) for j = 1, . . . , J , j′ = J + 1, . . . , J + N and

t = 1, . . . , n. The vectors θ1 and θ2 refer to signals which are composed of different selections

of factors fm
t , fd

t and f i
t in (4) and (5). The KL(θ1, θ2) divergence in (10) measures the
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distance between the log-densities log pθ1 and log pθ2 with respect to the density of the model

with signal θ1. For example, if the densities in (10) are normal, KL(θ1, θ2) measures the

increase in the sum of squared residuals of model with θ2 in relation to model with θ1. In

our set of models, pθ(y) refers to both normal and binomial distributions.

The pseudo-R2 is defined as the proportional reduction in variation of default rates due

to the inclusion of additional factors, that is

R2(θ) = 1− KL(θmax, θ)

KL(θmax, θna)
, (11)

where KL() is defined in (10). The signal θna does not depend on any factor and consists

of the constants λj only, for j = 1, . . . , J + N . The model with signal θmax provides the

maximum possible fit as it contains a separate dummy variable for each observation. The

model contains as many parameters as observations. While this unrestricted model is not

useful for practical purposes, it does provide a benchmark for the maximum possible fit.

Figure 1 illustrates the KL measures from which we can compute the pseudo-R2 measures.

We distinguish several alternative model specifications indicated by their signals θna, θm,

θmd, and θmdi which contain an increasing collection of latent factors. The models with θm,

θmd, and θmdi cumulate the macro fm
t , frailty fd

t , and industry f i
t factors, respectively.

The value of R2(θ) is by construction between zero and one. The relative contribution

from each of our systematic credit risk factors is measured as the increase in the pseudo-R2

value when moving from θm via θmd to θmdi. The remainder increase from θmdi to θmax can

be qualified as idiosyncratic risk.

3 Empirical findings for U.S. default and macro data

We study the quarterly default and exposure counts obtained from the Moody’s corporate

default research database for the period 1971Q1 to 2009Q1. We distinguish seven industry

groups (financials and insurance; transportation; media, hotels, and leisure; utilities and
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Figure 1: Models and reductions in the Kullback-Leibler divergence
The graph shows how reductions in the estimated KL divergence are used to decompose the total variation
in non-Gaussian default counts into risk shares corresponding to models with increasing sets of latent factors
(Mna, Mm, Mmd, Mmdi and Mmax).
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energy; industrials; technology; and retail and consumer products) and four rating groups

(investment grade Aaa−Baa, and the speculative grade groups Ba, B, Caa−C). We have

pooled the investment grade firms because defaults are rare for this segment. It is assumed

that current issuer ratings summarize the available information about a firm’s financial

strength. This may be true only to a first approximation. However, rating agencies take

into account a vast number of accounting and management information, and provide an

assessment of firm-specific information which is comparable across industry sectors. While

we focus on issuer ratings as available to us from Moody’s, ratings could alternatively be

constructed from mapping EDF and CDS data into rating bins where available. In these

cases, however, limited sample sizes are typically an issue. Finally, other factors may help

in explaining firm specific default risks, such as distance-to-default measures, trailing stock

returns and accounting information (leverage). However, improving risk prediction for single-

name credit risks is not the aim of this study. Ratings are taken into account mainly

because macro, frailty, and industry effects (in terms of factor loadings) may be different for

financially healthy and financially weaker firms. Ratings are likely to be sufficiently accurate

for that purpose.

Figure 2 presents aggregate default fractions and disaggregated default data. We observe

a considerable time variation in aggregate default fractions. The disaggregated data reveals

that defaults cluster around recession periods for both investment grade and speculative

grade rated firms.

Macroeconomic and financial data are obtained from the St. Louis Fed online database

FRED, see Table 1 for a listing of macroeconomic and financial data. The panel data are

available on a monthly basis. We consider macro-financial covariates that are typically also

stressed in a macro stress test, as indicated in for example CEBS (2010) and Tarullo (2010).

These usually involve business cycle measurements (production and income), labor market

conditions (unemployment rate), short and long term interest rates (term structure) and
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Figure 2: Clustering in default data
The first three panels present time series of (i) the total number of defaults in the Moody’s database

∑
j yjt,

(ii) the total number of exposures
∑

j kjt, and (iii) the aggregate default rate for all Moody’s rated U.S.

firms,
∑

j yjt/
∑

j kjt. The bottom four graphs present the observed default fractions yjt/kjt over time. We
distinguish four broad rating groups: Aaa−Baa, Ba, B, and Caa−C. Each such panel plots disaggregated
time series of industry-specific default fractions (which are mostly zero). Shaded areas correspond to NBER
U.S. recession periods.
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credit spreads, as well as stock market returns and volatilities. The data enters the analysis

in the form of annual growth rates, see Figure 3 for time series plots.

The panel information criteria based on Bai and Ng (2002) are standard measures to

determine the number of factors in large factor models. These criteria have been adapted

by Alessi, Barigozzi, and Capasso (2008) to improve robustness for panels of smaller cross

sectional dimensions. According to these information criteria, two to four macro factors are

appropriate to summarize the information in the macro panel. We therefore include four

macro factors in our final specification. Allowing for one frailty factor is standard in the

literature, see McNeil and Wendin (2007), Duffie et al. (2009) and Azizpour et al. (2010),

and appears sufficient to capture deviations of credit from macro conditions when modeling

defaults. Finally, we allow for six industry-specific factors driving defaults for firms in certain

broad industry groups.
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Table 1: Macroeconomic Time Series Data
The table gives a full listing of included macroeconomic time series data xt and binary indicators bt. All
time series are obtained from the St. Louis Fed online database, http://research.stlouisfed.org/fred2/.

Category Summary of time series in category Shortname Total no

(a) Macro indicators, and

business cycle conditions

Industrial production index

Disposable personal income

ISM Manufacturing index

Uni Michigan consumer sentiment

New housing permits

indpro

dspi

napm

umich

permit

5

(b) Labour market

conditions

Civilian unemployment rate

Median duration of unemployment

Average weekly hours index

Total non-farm payrolls

unrate

uempmed

AWHI

payems

4

(c) Monetary policy

and financing conditions

Government bond term structure spread

Federal funds rate

Moody’s seasoned Baa corporate bond yield

Mortgage rates, 30 year

10 year treasury rate, constant maturity

Credit spread corporates over treasuries

gs10

fedfunds

baa

mortg

tssprd

credtsprd

6

(d) Bank lending Total Consumer Credit Outstanding

Total Real Estate Loans, all banks

totalsl

realln 2

(e) Cost of resources PPI Fuels and related Energy

PPI Finished Goods

Trade-weighted U.S. dollar exchange rate

ppieng

ppifgs

twexbmth
3

(f) Stock market returns S&P 500 yearly returns

S&P 500 return volatility

s p500

vola 2
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3.1 Parameter and risk factor estimates

Parameter estimates associated with the default counts are presented in Table 2. Estimated

coefficients refer to a model specification with macroeconomic, frailty, and industry-specific

factors. Parameter estimates in the first column combine to fixed effects for each cross-

section j, according to λj = λ0 + λ1,rj + λ2,sj , where the common intercept λ0 is adjusted

by specific coefficients indicating industry sector (sj) and rating group (rj), respectively,

for j = 1, . . . , J with J as the total number of unique groups. The second column reports

the factor loadings β associated with four common macro factors fm
t . Loading coefficients

differ across rating groups. The loadings tend to be larger for investment grade firms; in

particular, their loadings associated with macro factors 1, 3, and 4 are relatively large. This

finding confirms that financially healthy firms tend to be more sensitive to business cycle

risk, see e.g. Basel Committee on Banking Supervision (2004).

Factor loadings γ and δ are given in the last two columns of Table 2. The loadings in

γ are associated with a single common frailty factor fd
t while the loadings in δ are for the

six orthogonal industry factors f i
t . The frailty risk factor fd

t is, by construction, common

to all firms, but unrelated to the macroeconomic data. Frailty risk is relatively large for all

firms, but particularly pronounced for speculative grade firms. Industry sector loadings are

highest for the financial, transportation, and energy and utilities sector.

The top panel of Figure 4 presents the estimated risk factors fm
t as defined in (4) and (5).

We plot the estimated conditional mean of the factors, along with approximate standard

error bands at a 95% confidence level. For estimation details, we refer to the Appendix.

The factors are ordered row-wise from top-left to bottom-right according to their share of

explained variation for the macro and financial data listed in Table 1.

The bottom panel of Figure 4 presents the shares of variation in each macroeconomic

time series that can be attributed to the common macroeconomic factors. The first two
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Table 2: Parameter estimates (for the binomial series)
We report parameter estimates associated with the binomial part of our model. The coefficients in the first
column combine to fixed effects according to λj = λ0 + λ1,rj + λ2,sj , the common intercept λ0 is adjusted
to take into account a fixed effect for the rating group and industry sector. The middle column reports
autoregressive coefficients ϕk (the kth diagonal element of Φ in (2) for k = 1, 2, 3, 4) and loading coefficients
in βj on four common macro factors fm

t . The last column reports the loading coefficients γj on the frailty
factor fd

t and loadings δj on industry-specific risk factors f i
t . The estimation sample is from 1971Q1 to

2009Q1.

Intercepts λj Loadings fm
t Loadings fd

t

par val t-val
λ0 -2.52 7.61

λfin -0.21 0.82
λtra -0.02 0.07
λlei -0.17 0.75
λutl -0.76 2.02
λtec -0.09 0.64
λret -0.32 1.68

λIG -6.95 15.30
λBB -3.92 14.11
λB -2.22 11.21

par val t-val
ϕ1 0.89 2.61
β1,IG 0.57 1.05
β1,Ba 0.30 0.55
β1,B 0.26 0.72
β1,C 0.17 0.57

ϕ2 0.91 2.21
β2,IG -0.01 -0.06
β2,Ba 0.05 0.10
β2,B 0.12 0.39
β2,C 0.24 0.97

ϕ3 0.77 1.64
β3,IG 0.70 1.86
β3,Ba 0.34 0.86
β3,B 0.24 1.08
β3,C 0.18 1.45

ϕ4 0.94 2.99
β4,IG 0.53 0.80
β4,Ba 0.41 0.65
β4,B -0.08 -0.43
β4,C 0.14 0.37

par val t-val
γIG 0.16 0.75
γBa 0.52 2.15
γB 0.72 4.80
γC 0.43 5.92

Loadings f i
t

δfin 0.73 2.96
δtra 0.61 1.85
δlei 0.41 2.62
δutl 0.98 3.87
δtec 0.41 2.56
δret 0.40 2.71
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Figure 4: Macroeconomic risk factor estimates
The first four panels present the estimated risk factors fm

t as defined in (4) and (5). We present the estimated
conditional mean of the factors, along with approximate standard error bands at a 95% confidence level. We
refer to the Appendix for the estimation and signal extraction methodology. The bottom panel indicates
which share of the variation in each time series listed in Table 1 can be attributed to each factor fm. Factors
fm are common to the (continuous) macro and financial as well as the (discrete) default count data.
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macroeconomic factors load mostly on labor market, production, and interest rate data. The

last two factors displayed in the top panel of Figure 4 load mostly on survey sentiment data

and changes in price level indicators. The macroeconomic factors capture 27.2%, 21.3%,

11.7%, and 8.3% of the total variation in the macro data panel, respectively (68.6% in

total). All four common factors fm
t tend to load more on default probabilities of firms rated

investment grade rather than speculative grade, see Table 2.

Figure 5 presents conditional mean estimates of the frailty and industry-specific factors.

The frailty factor is high before and during the recession years 1991 and 2001. As a result,

the frailty factor implies additional default clustering in these times of stress. On the other

hand, the large negative values before the 2007-2009 credit crisis imply defaults that are

systematically ‘too low’ compared to what is implied by macroeconomic and financial data.

The frailty factor reverts to its mean level during the 2007-09 credit crisis. Apparently, the

extreme realizations in macroeconomic and financial variables during 2008-09 are sufficient

to account for the levels of observed defaults.

Both Das et al. (2007) and Duffie, Eckner, Horel, and Saita (2009) ask what effects are

captured by the frailty factor. Our estimate in Figure 5 suggests that the frailty factor may

partly capture the outward shift in credit supply due to a high level of asset securitization

activity and a lowering of lending standards during 2005-2007. Conversely, in 2001 and 2002,

the frailty factor may capture adverse shocks to credit supply due to the disappearance of

trust in accounting information in response to the Enron and Worldcom scandals. These

credit supply effects are likely to be important for defaults, but also difficult to measure

because only the intersection of credit supply and demand is observed.

We now present two additional pieces of evidence for the claim that our estimated frailty

effects in part capture changes in the ease of credit access for credit constrained firms. First,

Figure 6 presents the estimated composite default signals θjt for investment grade industrial

firms (Aaa-Baa) and respective speculative grade firms (Ba-C). For investment grade firms,
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Figure 5: Frailty risk factor and industry-group dynamics
The first panel presents the estimated conditional mean of the frailty risk factor. This risk factor is common
to all default counts. The final six panels present six industry-specific risk factors along with asymptotic
standard error bands at a 95% confidence level. High risk factor values imply higher expected default rates.
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Figure 6: Estimated default signals
The left and right panels plot the time variation in default signals θjt for firms rated investment grade and
speculative grade, respectively. In each panel, the share of variation implied by the macro factors fm

t is
indicated.
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the default clustering implied by the ‘observed’ macro-financial risk factors is sufficient.

For the speculative grade group, however, frailty effects imply additional default clustering

during the late 1980s (savings and loan crisis), and help capture the very low default rates

for bad risks in the years leading up to the financial crisis. This demonstrates that frailty

effects are more important for financially weaker, and thus more credit constrained firms.

Investment grade firms load on frailty to a relatively low extent, see also the parameter

estimates in Table 2.

Second, Figure 7 relates changes in frailty effects to changes in bank lending stan-

dards (BLS) from the U.S. Senior Loan Officers (SLO) survey on lending practises, see

(www.federalreserve.gov/boarddocs/snloansurvey). We consider the net percentage of

banks that reported a tightening of credit standards for new commercial and industrial loans

to large and medium sized enterprises. Lending standards are considered an imperfect but

mainly accurate measure of credit supply, as demand conditions may also play a role, see

e.g. Lown and Morgan (2006) and Maddaloni and Peydro (2011). Figure 7 shows a positive

correlation between past net changes in lending standards on new loans and changes in esti-

mated frailty effects. The intuition is that providing credit to increasingly worse borrowers
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Figure 7: Frailty and bank lending standards
The left panel compares changes in the frailty factor with the net percentage of U.S. financial firms that
have reported a tightening of lending standards in the Senior Loan Officer’s survey. The right panel reports
the corresponding scatterplot. The respective correlation coefficient is ρ = 0.32; the slope of the regression
line is statistically significant at a 1% significance level.
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pushes default activity beyond what is implied by macro-financial covariates that are usually

employed in credit risk modeling. The correlation is consistent with the notion frailty effects

may capture specific omitted variables related to changes in credit supply, which are hard to

measure empirically. Finally, frailty may also capture contagion effects across industry sec-

tors. We refer to Azizpour et al. (2010) who develop a framework to disentangle contagion

dependence from frailty.

Industry factors f i
t capture deviations of industry-specific conditions from what is im-

plied by purely common variation. Two alternative explanations come to mind. First,

industry-specific dynamics may capture the industry-specific response of firms to common

shocks. Second, intra-industry contagion through for example supply chain links may be

an important source of dependence even after conditioning on common factors. Lando and

Nielsen (2009) state that it is very difficult to find evidence for direct default contagion in

the Moody’s database. They base their conclusion on studying the qualitative summaries of

individual firms’ default histories. Further data analysis suggests that direct contagion plays

no role, while some weaker evidence for indirect contagion through balance sheet covariates
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Figure 8: Model fit to observed aggregate default rate
Each panel plots the observed quarterly default rate for all rated firms against the default rate implied by
different model specifications. The models feature either (a) no factors, (b) only macro factors fm, (c) macro
factors and a frailty component fm, fd, and (d) all factors fm, fd, f i, respectively.
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exists. We come to a similar conclusion. For example, the default stress for technology firms

in 2001-02 is clearly visible in the estimated industry-specific risk factor, but is most likely

not due to contagion, but to the burst of the earlier asset bubble. Similarly, the 9/11 shock

to the airline industry is visible as a brief spike in the transportation sector at the time,

and difficult to interpret as contagion. As a result, the statistical and economic significance

of factors f i
t is more likely due to industry-specific heterogeneity rather than domino-style

contagion dynamics. We accept, however, that no more rigorous distinction can be made

based on the available data. We again refer to Azizpour, Giesecke, and Schwenkler (2010)

for a first step to empirically distinguish common factors from contagious spillovers.

Figure 8 presents the model-implied economy-wide default rate against the aggregate
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observed rates. We distinguish four specifications with (a) no factors, (b) fm
t only, (c) fm

t , f
d
t ,

and (d) all factors fm
t , f

d
t , f

i
t . Based on these specifications, we assess the goodness of fit

achieved at the aggregate level when adding latent factors. The static model fails to capture

the observed default clustering around recession periods. The changes in the default rate

for the static model are due to changes in the composition and quality of the rated universe.

Such changes are captured by the rating and industry specific intercepts in the model. The

upper-right panel indicates that the inclusion of macro variables helps to explain default

rate variation. The latent frailty dynamics given by fd
t , however, are clearly required for a

good model fit. This holds both in low default periods such as 2002-2007, as well as in high

default periods such as 1991. The bottom graphs of Figure 8 indicate that industry-specific

developments cancel out in the cross-section to some extent and can thus be diversified. As

a result, they may matter less from a (fully diversified) portfolio perspective.

3.2 Total default risk: a decomposition

We use the pseudo-R2 measure as explained in Section 2.4 to assess which share of default

rate volatility is captured by an increasing set of systematic risk factors. We are the first to

do so in detail and detail the changing composition of systematic default risk over time.

Table 3 reports the estimated risk shares. By pooling over rating and industry groups, and

by taking into account default and macroeconomic data for more than 35 years, we find that

approximately 66% of a firm’s total default risk is idiosyncratic, and 8.6% is industry related.

The idiosyncratic risk (and to some extent the industry risk as well) can be eliminated in

a large credit portfolio through diversification. The remaining share of risk, approximately

25%, does not average out in the cross section and is referred to as systematic risk. We find

that for financially healthy firms (high ratings) the largest share of systematic default risk is

due to the common exposure to macroeconomic and financial time series data. This common

exposure can be regarded as the business cycle component. It constitutes approximately 58%
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of systematic risk for firms rated investment grade, and 30–37% for firms rated speculative

grade. The business cycle variation is not sufficient to account for all default rate variability

in the data. Specifically, our results indicate that approximately 14% of total default risk,

which is 41% of systematic risk, is due to an unobserved frailty factor. Frailty risk is low for

investment grade firms (6%), but substantially larger for financially weaker firms (for 26%

for Caa to 53% for B rated firms). Finally, approximately 9% of total default risk, or 25%

of systematic risk, can be attributed to industry-specific developments.

Table 3 indicates how the estimated risk shares vary across rating and industry groups.

The question whether firms rated investment grade have higher systematic risk than firms

rated speculative grade is raised for instance by the Basel committee, see Basel Committee

on Banking Supervision (2004). The Basel II framework imposes lower asset correlations

for financially weaker firms, indicating lower systematic risk. Empirical studies employing a

single latent factor tend to confirm this finding, see McNeil andWendin (2007), and Koopman

and Lucas (2008). In contrast to earlier studies, the last column of Table 3 indicates that

speculative grade firms do not have less systematic risk than investment grade firms. This

finding can be traced back to two sources. First, the frailty factor loads more heavily on

speculative grade firms than investment grade firms. Second, some macro risk factors load

on low rating groups also, see Table 2.

Figure 9 presents time series of estimated risk shares over a rolling window of eight

quarters. These estimated risk shares vary considerably over time. While common variation

with the business cycle explains approximately 11% of total variation on average, this share

may be as high as 40%, for example in the years leading up to 2007. Similarly, the frailty

factor captures a higher share of systematic default risk before and during times of crisis such

as 1990-1991 and 2006-2007. In the former case, positive values of the frailty factor imply

higher default rates that go beyond those implied by macroeconomic data. In the latter case,

the significantly negative values of the frailty factor during 2006-2007 imply lower default
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Table 3: A decomposition of total default risk
This table decomposes total (systematic and idiosyncratic) default risk into four unobserved constituents.
We distinguish (i) common variation in defaults with observed macroeconomic and financial data, (ii) latent
default-specific (frailty) risk, (iii) latent industry-sector dynamics, and (iv) non-systematic, and therefore
diversifiable risk. The decomposition is based on our parameter estimates using data from 1971Q1 to 2009Q1.

Data Business cycle Frailty risk Industry-level Idiosyncratic
fc
t fd

t f i
t distr.

Pooled 11.4% 13.9% 8.6% 66.1%
(33.6%) (40.9%) (25.4%)

Rating groups:
Aaa-Baa 10.4% 1.1% 6.4% 82.1%

(58.0%) (6.3%) (35.7%)
Ba 7.1% 7.5% 6.2% 79.2%

(34.0%) (36.0%) (30.0%)
B 12.5% 22.3% 7.0% 58.2%

(30.0%) (53.2%) (16.8%)
Caa-C 12.3% 8.9% 12.3% 66.5%

(36.7%) (26.5%) (36.8%)

Industry sectors:
Bank 5.4% 11.9% 18.8% 63.8%
Financial non-Bank 5.0% 5.3% 9.2% 80.5%
Transportation 7.4% 13.7% 18.8% 60.1%
Media 10.6% 19.9% 8.8% 60.8%
Leisure 15.7% 11.1% 2.6% 70.7%
Utilities 1.1% 4.9% 10.7% 83.3%
Energy 24.0% 8.7% 18.0% 49.3%
Industrial 16.3% 23.1% - 60.7%
Technology 17.2% 11.0% 12.5% 59.3%
Retail 6.7% 9.6% 10.4% 73.2%
Consumer Goods 4.6% 18.4% 1.3% 75.7%
Misc 4.5% 13.2% 1.4% 80.9%
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Figure 9: Time variation in risk shares
We present risk shares estimated over a rolling window of eight quarters from 1971Q1 to 2009Q1. Shaded
areas correspond to recession periods as dated by the NBER.
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rates than expected from macroeconomic data only. High absolute values of the frailty

factor imply times when systematic default risk diverges from business cycle developments

as represented by the common factors. Industry specific effects have been important mostly

during the late 1980s and 2001-02. These are periods when banking specific risk and the

burst of the technology bubble are captured through industry-specific factors, respectively.

The bottom right graph of Figure 9 presents the share of idiosyncratic risk over time. We

observe a gradual decrease in idiosyncratic risk building up to the 2007-2009 crisis. Defaults

become more systematic between 2001 and 2007 due to both macro and frailty effects.

Negative values of the frailty risk factor during these years indicate that default rates were

‘systematically lower’ than what would be expected from macroeconomic developments.

The eight-quarter rolling R2 for the macro factors decreases by a factor 2 from 40% to 20%

over 2005Q1-2007Q4, further suggesting that the default cycle has decoupled from macro

developments in the years leading up to the crisis. Given the rolling window approach,

the instantaneous effect may be even higher. The correction of this phenomenon over the

financial crisis is also visible in the graphs. Again, this underlines the need for default risk

models that include other risk factors above and beyond standard observed macroeconomic

and financial time series. Such factors pick up rapid changes in the credit climate that might

not be captured sufficiently well by observed risk factors. We address the economic impact

of frailty and industry factors in Section 4.

4 Implications for risk management

Many default risk models that are employed in day-to-day risk management rely on the

assumption of conditionally independent defaults, or doubly stochastic default times, see Das

et al. (2007). At the same time, most models do not allow for unobserved risk factors and

intra-industry dynamics to capture excess default clustering. We have reported in Section 3.2
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that frailty and industry factors often account for more than half of systematic default risk.

In this section we explore the consequences for portfolio credit risk when frailty and industry

factors are not accounted for in explaining default variation. This is of key importance for

internal risk assessment as well as external (macro-prudential) supervision: If shared effects

are missing, standard portfolio credit risk models may tend to be wrong all at the same time.

4.1 The frailty factor

The frailty factor captures a substantial share of the common variation in disaggregated

default rates at the industry and rating level, see Table 3. The presence of a frailty factor

may increase default rate volatility compared to a model without latent risk dynamics. As

a result it may shift probability mass of the portfolio credit loss distribution towards more

extreme values. This would increase the capital buffers prescribed by the model. To explore

this issue we conduct the following stylized credit risk experiment.

We consider a portfolio of short-term (rolling) loans to all Moody’s rated U.S. firms.

Loans are extended at the beginning of each quarter during 1981Q1 and 2008Q4 at no

interest. A non-defaulting loan is re-extended after three months. The loan exposure to

each firm at time t is given by the inverse of the total number of firms at that time, that is

(
∑

j kjt)
−1. This implies that the total credit portfolio value is 1$ at all times. For simplicity,

we assume a stressed loss-given-default of 80%.

This example portfolio is stylized in many regards. Nevertheless, it allows us to investi-

gate the importance of macroeconomic, frailty, and industry-specific dynamics for the risk

measurement of a diversified loan or bond portfolio.

It is straightforward to simulate the portfolio credit loss distribution and associated risk

measures for arbitrary credit portfolios in our setting. First, the exposures kjt are chosen

to correspond to the portfolio exposures. Second, one uses the methods introduced in the

Appendix to simulate the current position of the latent systematic risk factors. Third, one
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Figure 10: Real vs. model-implied credit portfolio loss distribution
We present distribution plots for a credit portfolio with uniform loan exposures to Moody’s rated firms. The
left panel presents the unconditional loss distribution as implied by historical quarterly defaults and firm
counts in the database. The horizontal axis measures quarterly loan losses as a fraction of portfolio value.
The left panel also presents the unconditional loss densities as implied by models with macro factors fm

t ,
macro factors and a frailty component fm

t , fd
t , and all factors fm

t , fd
t , f

i
t , respectively. Positive probabilities

of a negative portfolio loss are due to the (Gaussian Kernel) smoothing of the histogram. The right panel
presents three simulated predictive portfolio loss densities for the year 2009, conditional on macro and default
data until end of 2008, for different risk factor specifications. The horizontal axis measures annual losses as
fractions of portfolio value.
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can use (2) directly to simulate future risk factor realizations. Finally, conditional on the

risk factor path, the defaults can be simulated by combining (3) and (4). Term structures

of default rates can easily be obtained by combining model-implied quarterly probabilities

over time. Out of sample forecasting exercises lie outside the scope of this paper. However,

Azizpour et al. (2010) and Koopman et al. (2011) argue that credit risk models with both

observed and unobserved risk factors forecast well.

The left panel in Figure 10 contains the credit portfolio loss distribution implied by actual

historical default data. Since loss-given-default is held constant at 80%, this loss density is a

horizontally scaled version of historically observed losses based on the default of then active

firms. This distribution can be compared with the (unconditional) loss distribution implied

by three different specifications of our model from Section 2. Portfolio loss densities for

actual loan portfolios are known to be skewed to the right and leptokurtic, see e.g. McNeil,

Frey, and Embrechts (2005, Chapter 8). Flat segments or bi-modality may arise due to

the discontinuity in recovered principals in case of default. These qualitative features are
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confirmed in the top panel of Figure 10.

By comparing the unconditional loss distributions in the left panel of Figure 10, we find

that the common variation obtained from macroeconomic data is in general not sufficient to

reproduce the thick right-hand tail implied by actual default data. In particular the shape

of the upper tail of the empirical distribution is not well reproduced if only macro factors are

used. The additional frailty and industry factors shift some of the probability mass into the

right tail. The loss distributions implied by these models are closer to the actual distribution.

The full model is able to reproduce the distributional characteristics of default rates, such

as the positive skewness, excess kurtosis, and an irregular shape in the upper tail.

The right-hand panel of Figure 9 plots the simulated predictive credit portfolio loss densi-

ties for the year 2009, conditional on data until the end of 2008, as implied by different model

specifications. Similarly to the unconditional case, the frailty factor shifts probability mass

from the center of the distribution into the upper tail. Simulated risk measures are higher

as a result. For the plotted densities, the simulated 99th percentile shifts out from about

6.24% to 8.34% of total portfolio value, which is an increase by more than 33%. Predicted

annual mean losses are comparable at 2.96% and 2.71%, respectively. This demonstrates

that frailty effects are economically important in addition to being statistically significant.

4.2 Industry specific risk dynamics

Section 3.2 shows that industry-specific variation accounts for about 25% of systematic

default rate variation at the rating and industry level. Industry-specific risk factors capture

the differential impact of macroeconomic developments on a given sector.

A specific case illustrates how macro, frailty, and industry-specific dynamics combine to

capture industry-level variation in default rates. Figure 11 presents the observed quarterly

default rate for the financial sector subsample of the entire Moody’s data base. The rate is

computed as the percentage of financial sector defaults over the total number of firms rated
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Figure 11: Quarterly time-varying default intensities for financial firms
We present smoothed estimates of quarterly time-varying default rates for the financial sector. We distinguish
a model with (i) common variation with macro data only, (ii) macro factors and a frailty component, and (iii)
macro factors, frailty component, and industry-specific factors, respectively. The model-implied quarterly
rates are plotted against the observed default fractions for financial firms.
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in the financial industry. We distinguish three model specifications for the common variation,

with macroeconomic factors only, with macro and frailty factors, and with macro, frailty,

and industry-specific factors. Clearly, government intervention and bailouts have an effect

on financial sector defaults, in particular at the end of our sample. Also, the objectives of a

policy marker may be different from those of an investor in corporate bonds, which means

that alternative definitions of default may be appropriate depending on the aim of the study.

We proceed with Moody’s definition of default, and focus on the relative importance of each

set of factors over the last 30 years.

Figure 11 demonstrates that systematic variation of defaults due to shared exposure to

common macro-financial covariates captures a substantial share of the overall time-variation

in financial sector default rates. Also, the frailty factor is of key importance: It captures

the overall default activity that is higher before and during the 1991 and 2001 recessions,

and substantially lower in the years 2005-2007, see Figure 5. Finally, the industry-specific

factor for financials, as plotted in the second panel of Figure 5, captures the additional

sector-specific stress during the banking crisis periods of 1986-1990 and to some degree in

2008. It also adjusts the default rate (downwards) to the observed lower rates during the
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2001 recession.

We conclude that industry factors are an important source of variation for defaults at

the industry level. The bottom graphs of Figure 10 indicate that industry-specific develop-

ments may cancel to some extent, at least in a large loan portfolio that is also diversified

across industries. If a portfolio is less well diversified, however, and exhibits clear indus-

try concentrations, industry-specific effects may be a dominant cause for additional default

clustering.

5 Conclusion

We have presented a new decomposition framework for systematic default risk. By means of

a dynamic factor analysis, we can measure the contribution of macro, frailty, and industry-

specific risk factors to overall default rate volatility. In our study of defaults for U.S. firms, we

found that approximately one third of default rate volatility at the industry and rating level

is systematic. The systematic default rate volatility can be further decomposed into macro

and frailty driven. The part due to dependence on common macroeconomic conditions and

financial activity ranges from about 30% for subinvestment up to 60% for investment grade

companies. The remaining share of systematic credit risk is captured by frailty and industry

risk. These findings suggest that credit risk management at the portfolio level should account

for observed macro drivers of credit risk as well as for unobserved risk factors. In particular,

standard portfolio credit risk models that account for macroeconomic dependence only leave

out a substantial part of systematic credit risk.

We have given further empirical evidence that the composition of systematic risk varies

over time. In particular, we observe a gradual build-up of systematic risk over the period

2002-2007. Such patterns can be used as early warning signals for financial institutions and

supervising agencies. If the degree of systematic comovement between credits exposures
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increases through time, the fragility of the financial system may increase and prompt for an

adequate (re)action. Interestingly, the frailty component appears more important for lower

grade companies in periods of stress, which is precisely the time when such companies might

be expected to experience more difficulties in rolling over debt. In addition, changes in our

estimated frailty factor appear positively correlated with tightening lending standards. This

suggests that frailty factors may capture changes in economic conditions which are hard to

quantify, but impact the quality and default experience of bank portfolios in an economically

significant way.

Our results have a clear bearing for risk management at financial institutions. When

conducting risk analysis at the portfolio level, the frailty and industry components cannot

be discarded. This is confirmed in a risk management experiment using a stylized loan

portfolio. The extreme tail clustering in defaults cannot be captured using macro variables

alone. Additional sources of default volatility such as frailty and contagion need to be

identified in order to capture the patterns in default data over time.
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