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Abstract

We study optimal monetary policy design in a simple model that deviates from the

linear-quadratic paradigm and provides a rationale for the practice of inflation zone

targeting. We show that the presence of either zone-quadratic preferences or a zone-

linear relationship between inflation and economic activity provides strong incentives

to deviate from conventional linear policies. We calibrate the model based on param-

eters for the U.S. and the Euro area and employ a numerical dynamic programming

algorithm to derive the optimal policies. With this algorithm, we examine the role

of uncertainty, model structure and relative preference towards economic stability in

determining the width of the implied targeted inflation zone.

Keywords: Inflation targeting, price stability, optimal monetary policy.
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1 Introduction

Over the past decade, a number of central banks around the world have announced

inflation targets and have adopted an explicit inflation targeting framework for mon-

etary policy. Well-known examples of countries with inflation targeting central banks

are Canada, New Zealand, Sweden and the U.K.. An expanding literature has dis-

cussed the practical experience with inflation targeting and provided formal evalua-

tions (see, for example, Haldane (1995), Leiderman and Svensson (1995), Svensson

(1997, 1999a,b,c,d), Bernanke and Mishkin (1997) and Bernanke, Laubach, Mishkin

and Posen (1999)). Based on this experience and analysis, some authors have also ad-

vocated the adoption of such an inflation-targeting framework by the Federal Reserve

for the U.S. and by the European Central Bank for the Euro area.

For the most part, formal, quantitative evaluations of monetary policy in pursuit of

an inflation target have been based on linear models of the economy with a quadratic

objective function for the policymaker. Although appropriate in some cases, this ap-

proach does not fully capture the actual practice of inflation-targeting central banks.

Most of these central banks tend to emphasize containing inflation within a target

range rather than aiming for a point target. Fundamentally, a monetary policy that

focuses on containing inflation within a zone implies a different response to shocks

depending on whether inflation is within the zone or outside of it. This difference

in policy responsiveness at the margin is inconsistent with the conventional linear-

quadratic framework which implies that the optimal policy rule is linear. By contrast,

a target range invariably suggests a nonlinearity in the policy response function. Such

target ranges are often motivated by the existence of uncertainty in the process of

inflation. But optimal policies in the conventional linear-quadratic framework are

invariant to such uncertainty. Thus, it may be necessary to entertain alternatives to

the linear-quadratic framework in order to improve our understanding of the rationale

and actual practice of inflation targeting.

In this paper, we investigate motives that can accommodate the observed emphasis

on inflation zones rather than point targets and evaluate the performance of such a

policy under uncertainty. Our analysis is normative in nature, simply investigating

rationales as to why it may be sensible for central banks to pursue policies with

inflation zone targeting characteristics. Although we draw from actual inflation zone

targeting experience for motivation, we do not attempt to provide empirical evidence
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supporting the theory at this stage.

We consider two alternatives that depart from the conventional linear-quadratic

framework in order to motivate inflation zones. First, we allow for a zone-quadratic

objective on the part of the policymaker, that is a loss function which assigns quadratic

loss to inflation deviations outside an explicit target zone and implies a near zero loss

as long as inflation is contained within the zone. As a consequence, if the policy-

maker assigns at least some weight to output stabilization, the output objective will

dominate at times when inflation is within the zone but will recede in importance

when inflation is outside the zone. Such preferences would also be consistent with an

apparent tendency of central banks to “put out fires,” that is to react to inflation pri-

marily when it becomes a problem but concentrate on other objectives when inflation

is under control.1

Second, we consider the possibility of nonlinearities in the short-run inflation-output

tradeoff. More specifically, we allow for the possibility that inflation is essentially

stable for a range of output gaps and only increases or decreases materially when

the output gap is outside this range. Translated into unemployment Phillips curve

terms, this implies that instead of a well defined unique NAIRU there exists a range

of unemployment rates over which inflation remains essentially stable. Such a “thick”

NAIRU implies a concave-convex-shaped short-run inflation-output tradeoff. As we

explain, this shape may be motivated based on the recent debate in the empirical

literature over convexity versus concavity of the Phillips curve.2

After showing that these departures from the linear-quadratic framework induce an

optimal policy rule that exhibits a target zone for inflation, we proceed to investigate

the implications of uncertainty for inflation-zone targeting. It is well known that addi-

tive uncertainty, such as uncertainty due to unexpected demand and price shocks, has

no effect on the optimal policy rule in the conventional linear-quadratic framework.

This result is typically referred to as certainty-equivalence. Inflation targeting central

banks however often emphasize the role of uncertainty in relation to target ranges

1Bernanke and Mishkin (1992), for instance, suggest that policymakers appear to pursue multiple
objectives by shifting a large part of their attention to “the variable that is currently ‘in crisis’ ” (p.
186).

2See for example Eisner (1997), Laxton, Rose and Tambakis (1999), Turner (1995) and others
for estimates of alternative non-linear Phillips curves. Filardo (1998) has recently investigated the
concave-convex-shaped Phillips curve using U.S. data. For a discussion of theoretical motivations for
concave and convex Phillips curves see Stiglitz (1997) and Dupasquier and Ricketts (1998).
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for inflation and suggest that the choice of a target range over a point target is influ-

enced by the degree of uncertainty they face. In our framework with non-quadratic

preferences or a nonlinear inflation-output tradeoff we find that uncertainty due to

unexpected shocks has important effects on the width of the target zone and on the

relative size of the policy response inside and outside the zone. For example, under

uncertainty the optimal policy does not respond mechanically only when inflation

falls outside the zone. Instead, as we illustrate, it is optimal to respond to inflation

deviations already within the zone and more aggressively if inflation continues to drift

outside the zone. Furthermore, in the case of the zone-linear Phillips curve, the width

of the target zone actually increases with the variance of inflation shocks.

Our framework of analysis is a simple macroeconomic model of inflation, output and

interest rates with adaptive expectations. Such models have been widely used in the

above literature on monetary policy and inflation targeting, but typically the main

focus has been on linear versions with quadratic objectives. We parameterize this

model using alternatively data for the U.S. and for the Euro area. We compute the

dynamically optimal monetary policies using a dynamic programming algorithm that

can accommodate non-linearities in the economic structure, non-quadratic preferences

and uncertainty. Our analysis of inflation zone targeting also relates in some respects

to the literature on exchange rate target zones (see, e.g. Krugman 1991). Similar to

the investigation of the dynamic behavior of exchange rates when the central bank

attempts to maintain the exchange rate within an explicit zone in that literature,

our analysis provides information on the dynamic behavior of inflation with policy

that has zone characteristics. However, there are important differences. First, unlike

exchange rates the control of inflation is much less direct so strict control of inflation

within a fixed zone, even if it were desired, would not be feasible. And second,

our objective is to formally explore the rationale for adopting policies with zone

characteristics while the emphasis in the case of exchange rate zones is to investigate

the dynamics once a target zone is imposed on the economy.

The remainder of this paper proceeds as follows. Section 2 discusses the actual

practice of inflation-targeting central banks in a bit more detail. Section 3 presents

the linear-quadratic model that we use as a benchmark for comparison. In section 4

we depart from the linear-quadratic model by considering zone-quadratic preferences

as a motive for target zones. Section 5 motivates a target zone based on a nonlinear

Phillips curve. Parameter estimates of the basic model using U.S. and Euro area data
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are discussed in Section 6. Section 7 studies the impact of uncertainty and presents

a comparison of optimal policies in the nonlinear model based on U.S. and Euro area

parameter estimates. Section 8 concludes and the numerical dynamic programming

algorithm that is used for computing dynamically optimal policies is described in the

appendix.

2 Zone versus point targets: policy practice

In addition to announcing numerical inflation targets, the inflation-targeting central

banks have adopted a complete policy framework that provides a strategy for achiev-

ing their stated goals. This framework has been described in many publications of the

respective central banks and speeches of the policymakers. Very useful and detailed

reviews of the inflation-targeting frameworks of New Zealand, Canada, the U.K., Swe-

den and several other countries have been provided by Bernanke et al. (1999) and

Leiderman and Svensson (1995). Here we simply review one aspect of the respective

country’s inflation targeting framework—namely the choice of a target range versus

a point target for inflation and how this choice is motivated.

New Zealand: In 1990, New Zealand became the first country to adopt a formal

inflation targeting framework. The inflation target is typically stated as a range

rather than as a point target. The Minister of Finance and the Governor of the

Reserve Bank negotiate and publish a Policy Target Agreement (PTA) that defines

specific targets by which monetary policy performance during the Governor’s term can

be measured. The first PTA in March 1990 defined price stability as annual inflation

within a 0 to 2% range. Every 6 months the Reserve Bank publishes a Monetary Policy

Statement. Starting with a target range of 3 to 5% in 1990, subsequent Monetary

Policy Statements defined a path toward price stability by changing the target range

to 2.5 to 4.5% in December 1991, 1.5% to 3.5% in December 1992 and 0 to 2% in

December 1993. The 0 to 2% target of price stability was intended to be a true zone,

with a “hard” floor and ceiling but with no special emphasis on the mid-point (see

Nicholl and Archer, 1992). At the end of 1996 the target zone was widened from

0% to 2% to 0% to 3% to avoid excessively activist policy responses that would be

required to contain inflation in such a narrow band. In 1997 Governor Brash noted

“The tension is between, on the one hand, choosing a target range which effectively

anchors inflation expectations at a low level but which is so narrow that it provokes

excessive policy activism and risks loss of credibility by being frequently exceeded;

and on the other, a target range which does a less effective job of anchoring inflation
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expectations, but which requires less policy activism and protects credibility by being

rarely breached” (cited in Bernanke et al., 1999, p. 113).

Canada: The Bank of Canada became an inflation-targeter one year later in 1991. Its

target definition is similar to the definition of the Reserve Bank of New Zealand, in

that it is stated as a range rather than a point target. A target range of +/- 1 % was

set around a midpoint of 3% at the end of 1992, 2.5% by mid-1994 and 2% by the end

of 1995. Bernanke et al. (1999) note that while the objective to be targeted was the

mid-point of the range, in practice, the Bank of Canada never aggressively sought to

move inflation from the outer bands toward the midpoints, even when actual inflation

lingered at or below the target floor for an extended period. For example, in 1995 the

Bank’s Deputy Governor Charles Freedman, wrote “With inflation having fallen to the

bottom of the bands during the past couple of years and seeming likely to remain there

in the near future, the emphasis in the revised targets was put on the inflation bands,

thereby indicating that the Bank cannot control inflation all that closely” (Freedman,

1995, p. 24). Governor Thiessen also made clear that containing inflation within the

zone would involve some countercyclical policy by stating “When weakening demand

threatens to pull inflation below the target range, it will be countered by monetary

easing” (Thiessen, 1996, cited in Bernanke et al., 1999, p. 123.)

United Kingdom: The adoption of an inflation target in the U.K. was a reaction to

the exit from the European Monetary System in 1992. It was announced by the

Chancellor of the Exchequer, Norman Lamont, who three weeks later invited the

Governor of the Bank of England to publish a quarterly Inflation Report. In May

1997 the Bank of England obtained operational independence. Initially the U.K. set

a target range for inflation. Since May 1997 the target has been expressed as a point,

but with 1% thresholds on either side. Once inflation breaches a target threshold,

the Bank of England is required to provide a formal explanation to the government.

In a recent speech, the chief economist of the Bank, John Vickers, directly addressed

the question of how these thresholds may affect the policymakers’ loss function. He

argued that Monetary Policy Committee (MPC) members are no graphophobes, that

is, they have no fear of writing a letter to the Chancellor to explain why the inflation

target has been missed by more than 1% (see Vickers, 1998, p. 370).

Sweden: Like the U.K., Sweden adopted an inflation target after the 1992 EMS

crisis. As of 1993 the Riksbank defined the target of price stability as keeping the
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annual change in consumer prices at 2 %, with a tolerance interval of +/- 1 %.

The principal reason for the tolerance interval is inflation uncertainty, which reflects

the imperfect control of monetary policy over the inflation rate. Furthermore, the

Riksbank has repeatedly emphasized that target breaches that are perceived to be

transitory would not require policy action. For example, in 1997 the Deputy Governor,

Lars Heikensten, stated, “It is because of temporary effects that the average level of

inflation in 1996 is outside the Riksbank’s target interval. As a rule, the interval

surrounding the target figure should suffice to absorb changes of this type in the

composition of inflation” (Heikensten, 1997, cited in Bernanke et al., 1999, p. 197).

In June 1998 the Riksbank’s Inflation Report noted “Various kinds of transitory

effects have been particularly marked in certain periods. ... The factors that exert

transitory effects on inflation and should therefore disregarded in the construction of

monetary policy are not self-evident and may also differ from case to case,” (Sveriges

Riksbank, 1998, p. 41).

This review of actual policy practice suggests that most inflation-targeting central

banks consider target ranges or tolerance intervals for inflation a useful policy tool

within their inflation targeting framework.3. Furthermore, some of these central banks

have explicitly stated that the upper and lower bands of such a target range play a

more important role in their strategy than the mid-point and have differentiated be-

tween policy responses inside and outside the target range. In all cases the target

range or tolerance interval is loosely motivated by the fact that inflation outcomes are

uncertain, that is, due to the possibility of unforeseen shocks the central bank cannot

control the inflation rate perfectly. Nevertheless, inflation targeting central banks

have made clear that they expect the long-run average of inflation to be about equal

to the mid-point of the target range or tolerance interval, which suggests that policy

responses above and below the range are expected to be symmetric. Finally, policy-

makers have typically emphasized that target ranges are not pursued in a mechanical

manner. For example, some have pointed out that even when inflation breaches one

of the bands, an activist policy response may not be required if the breach is expected

to be of a transitory nature.

Given the wide use of target ranges or zones among inflation-targeting central banks,

3Another interesting example is Australia. Rather than choosing a wider target range or a single
point target the Reserve Bank pursues a “thick” point target of “around 2-3% over the medium
term”, (Stevens and Debelle, 1995, p.82.)
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we believe that it is important to differentiate between strategies of inflation zone and

inflation point targeting. To understand the essence of an inflation zone targeting

strategy it is instructive to first abstract from uncertainty completely and simply

examine how a policymaker would pursue his long-run inflation objective, defined

as a numerical target π∗, when faced with an initial inflation level that differs from

this target in a deterministic setting. In its purest form, an inflation zone targeting

strategy differentiates the required policy stance depending on whether the inflation

rate deviates substantially from the target or is fairly close to it. When inflation

deviates substantially from its target, the policymaker takes action towards bringing

inflation back closer to its target. However, when inflation is fairly close to its target

the policymaker opts not to actively pursue further improvements. This strategy

implicitly defines an inaction zone for inflation. Letting z denote the width of this

zone, the strategy implies that as long as current inflation is within the range (π∗ −

z/2, π∗+z/2) policy will simply aim to maintain inflation at its current setting. And,

of course, as long as inflation is maintained in this range, the policymaker will attempt

to maintain a zero output gap and avoid an inflationary or disinflationary impetus

from aggregate demand.4

In light of the experience of inflation-targeting central banks and based on formal

analyses of inflation targeting strategies, a number of authors have advocated that

the Federal Reserve and the European Central Bank respectively adopt an inflation

targeting framework for monetary policy. As to the European Central Bank, the

announcement of a precise, quantitative definition of a medium-term price stability

objective is already a central feature of the ECB’s strategy. The ECB has defined

price stability in terms of “price increases of less than two percent”. This definition

excludes deflation and is symmetric.5 However, the ECB has also made clear that it

does not follow a strategy of direct inflation targeting such as the central banks of

New Zealand, Canada, Sweden and the U.K. nor a pure monetary targeting strategy.

Neither of these strategies was judged fully adequate in light of the uncertainty due

to potential structural changes in many economic relationships and the discontinuity

in statistical information following the start of European Monetary Union. For a

thorough discussion of the ECB’s strategy and comparisons to inflation and monetary

4As we explain later on, implementing an inflation zone targeting strategy is more complex in
practice, since uncertainty will have a crucial influence on the optimal policy response to inflation.

5Unlike the maximum, the minimum is not made explicit because of the absence of reliable evi-
dence on the measurement bias that may be associated with the new Harmonized Index of Consumer
Prices (HICP), (Angeloni et al. 1999).
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targeting the reader is referred to Angeloni, Gaspar and Tristani(1999).

While target ranges appear to be an important tool of inflation-targeting central

banks, formal evaluations of inflation targeting have typically been based on linear

or linearized models of the economy with a quadratic loss function for the central

bank, which do not provide a rationale for the use of target ranges. Optimal policy in

such a linear-quadratic framework responds linearly to output and inflation and other

relevant state variables. Furthermore, uncertainty by itself provides no motive for an

explicit zone, and uncertainty due to unforeseen additive shocks to inflation has no

effect at all on the optimal policy response. Thus, the conventional linear-quadratic

framework is at odds with the emphasis put on target ranges by inflation-targeting

central banks.6 In the following section we present an example of such a linear-

quadratic model, which we will use as a benchmark in our analysis of inflation zone

versus inflation point targeting.

3 The L-Q Theory of Inflation Point Targeting

We build a minimalist model of the economy following closely the structure of recent

studies examining alternative disinflation strategies and efficient monetary policy—

particularly the models in Ball (1999), Orphanides and Wilcox (1996), Orphanides

(1998) and Svensson (1997). The two key variables in the policy decision process are

inflation and output and the monetary policy instrument is the short-term nominal

interest rate. Inflation is determined by an accelerationist Phillips curve and output

follows a simple autoregressive process. For simplicity the dynamic structure of the

economy is collapsed to a single lag of inflation and output and it is therefore appro-

priate to interpret the length of a period in our model to be rather long, perhaps as

long as a year.

The model is chosen for its expositional simplicity and its usefulness for organizing

our results in terms of key concepts frequently encountered in monetary policy dis-

cussions. However, this comes at a cost that we wish to make explicit at the outset.

Specifically, our model is not directly based on microeconomic principles and opti-

mizing foundations and abstracts from a number of elements that may be important

6Of course, uncertainty still affects inflation outcomes. Thus, central banks may want to commu-
nicate the changing degree of uncertainty associated with inflation forecasts, but rather by changing
uncertainty bands as done by the Bank of England and Sveriges Riksbank rather than a fixed tar-
get range. Nevertheless, one could argue that a target zone may be a particularly simple way to
communicate an unconditional confidence interval for the long-run to the public.
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in practice.7 By abstracting from the explicit modeling of expectations, for instance,

we do not address the intricate interactions between policy design and expectations

formation. We also avoid questions regarding credibility and reputation issues con-

cerning the central bank and the commitment mechanism that might be required for

adopting time-consistent optimal plans. Indeed, with our simplifying assumptions,

the “commitment” and “no commitment” solutions to the policymaker’s problem are

identical and correspond to the dynamic programming solution. The main advan-

tage of these simplifying assumptions is that we can focus on the computation of

the dynamically optimal monetary policies using a dynamic programming algorithm

that can accommodate non-linearities in the economic structure, non-quadratic pref-

erences and uncertainty. Computation of such optimal policies in non-linear rational

expectations models, by contrast, is decidedly more complex.

In every period, the policymaker sets the nominal interest rate, R, with the objective

to maintain inflation, π, close to a desired target consistent with reasonable price

stability, π∗, and output close to the economy’s natural level—that is to keep the

output gap, y, close to zero.8 To describe the policymaker’s welfare loss during a

period t in terms of the economy’s inflation and output performance we specify a

per-period loss function, lt = l(πt, yt). In practice, since monetary policy operates

with a lag, a policymaker setting policy during period t can have relatively little

influence on aggregate demand and inflation during the same period. As a result, it

is more helpful to view the policy problem as one in which the policymaker sets the

short-term nominal interest rate during period t, Rt, with an aim to influence the

economy in period t+1 and in later periods. That is, the first per-period loss relevant

for the policymaker’s decision in period t is lt+1. With this in mind, and assuming

that the policymaker discounts the future with a fixed discount factor β, we can view

the policymaker’s objective in period t as to minimize the expected discounted sum

of future per-period losses from t+ 1 onward:

LAt = Et

{
∞∑
s=0

βslt+1+s

}
(1)

The policymaker solves this problem subject to the dynamic structure of the economy.

We will assume that the economy can be characterized recursively so that inflation and

7Clarida, Gertler and Gali (1999), Rotemberg and Woodford (1998) and Woodford (1999) offer
examples of models with detailed micro-foundations.

8The short nominal interest rate we have in mind as serving the role of a policy instrument
would correspond to the federal funds rate for the Federal Reserve, or the euro-overnight-index-
average (eonia) rate for the European Central Bank, which refers to the weighted average of overnight
(unsecured) rates reported by a panel of large banks in the Euro area.
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output in period t+ 1, (πt+1, yt+1) are determined by just three factors: the state of

the economy in the preceding period, that is, inflation and output, (πt, yt); the policy

choice in period t, Rt; and stochastic shocks to inflation and output, (et+1,ut+1), that

are drawn from zero-mean, independent normal distributions in every period. Then,

in period t, the policymaker’s problem is to set the policy instrument, Rt, responding

to current inflation and output developments, πt and yt, so as to minimize the loss

function (1).

In general this setup can accommodate a variety of alternative specifications of pref-

erences and economic structures. However, it is not always straightforward to solve

for the policymaker’s optimal choice of the policy instrument Rt. The conventional

model employs two additional assumptions regarding preferences and the structure of

the economy that render the problem tractable, namely the assumptions of quadratic

preferences and a linear economy. With these two convenient assumptions, analytical

results from linear–quadratic (L-Q) control theory become applicable and the solution

of the problem is greatly simplified.

Following the conventional setting, we endow the policymaker with symmetric prefer-

ences that are quadratic in both the deviation of inflation, π, from its desired target,

π∗, and the output deviation from the economy’s natural output level, y. The per-

period loss facing a policymaker in period t+ 1, lt+1, can therefore be expressed as a

weighted average of these two components:

lt+1 = ω(πt+1 − π
∗)2 + (1− ω)y2

t+1 (2)

This specification has two essential characteristics. First, the weight, ω, which is

assumed to be a fixed fraction between zero and one, reflects the relative weight a

policymaker places on the objective of stabilizing inflation relative to the objective of

stabilizing output. A weight approaching one would reflect a policymaker who places

no value on output stabilization, that is an “inflation nutter” in the terminology of

King (1997). A weight between zero and one is generally considered more consistent

with the mandate of many central banks to not only maintain price stability but also

facilitate economic growth and welfare over time. Second, the loss is minimized (and

is equal to zero) when inflation and the output gap are at their respective bliss levels

of π∗ and zero. This rules out a built-in inflationary bias in policymaker preferences

which although present in some theoretical models is considered not applicable for
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the formulation of monetary policy by policymakers themselves.9

In our baseline linear structure, two equations describe the evolution of the economy:

πt+1 = πt + αyt+1 + et+1 (3)

yt+1 = ρ yt − ξ (rt − r
∗) + ut+1 (4)

where α and ξ are positive, ρ ∈ [0, 1), r∗ is the natural real rate of interest and et+1

and ut+1 are the zero-mean normally distributed shocks. The real interest rate is

denoted by rt and defined as the short-term nominal interest rate Rt minus inflation:

rt ≡ Rt − πt (5)

The equation for the output gap reflects a tendency for output to revert to its nat-

ural level when monetary policy is “neutral,” and to respond otherwise linearly to

deviations of the real interest rate, rt, from its natural rate, r∗, with a lag of one pe-

riod. The equation for inflation represents a linear accelerationist Phillips curve. An

implicit assumption in our specification is that demand pressures influence inflation

changes contemporaneously.10 With this assumption, policy can have an effect on

both output and inflation with a one period lag—that is after one year. This struc-

ture also proves convenient for two other reasons. As will become evident shortly,

this timing allows a particularly simple analytical exposition because it permits a

decoupling of the determination of the influences of current aggregate demand and

current inflation conditions on the optimal setting of the policy instrument. In ad-

dition, with this structure, the solution to the static problem which applies to a

policymaker who is only concerned about the per-period loss lt+1 in the subsequent

period retains the salient characteristics of the solution to the more general infinite

horizon case. Finally, by concentrating on the short-term nominal interest rate as the

policy instrument, we do not need to introduce a monetary aggregate explicitly in the

model. An implicit money demand equation is present in the background, of course,

providing a relationship between income, prices and interest rates which determines

9See the discussions by Blinder (1997,1998), King (1997) and Vickers (1999).
10This differs from the timing adopted by Ball (1999) and Svensson (1997) who assume that

aggregate demand influences inflation only with a one period lag. We chose the timing assumption
embedded in Orphanides and Wilcox (1996) and Orphanides (1998) because although as an empirical
matter we agree that aggregate prices do not appear to adjust instantaneously to changes in aggregate
demand, it may not be sensible to rule out any such adjustment for a longer period of time. Since
we interpret the length of a period to be fairly long we find the assumption of a contemporaneous
response more appealing.
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the necessary money supply that the central bank needs to supply in every period to

achieve the desired setting of the nominal interest rate.

The most direct way to solve this problem is by applying dynamic programming

techniques. Assuming that the policymaker observes the current level of inflation,

πt, and the current output gap, yt, without error during the period t, those two

variables completely describe the state of the economy. Thus, the solution to the

policymaker’s problem implies an optimal policy reaction function that describes how

the policymaker ought to set the policy instrument, Rt, in response to these two state

variables:

Rt = R(πt, yt)

However, this problem can be recast in a simpler form that allows us to restate the

policymaker’s strategy in terms of a single state variable, which is current inflation,

πt.

To see this, observe that according to equation (4), in period t the policymaker can

determine the output gap in the subsequent period, yt+1, by setting the nominal

interest rate, Rt, up to the stochastic shock, ut+1. Now let ŷt+1 denote the intended

output gap that the policymaker attempts to achieve in period t + 1. Equation (4)

indicates that the policymaker can pursue this intended output gap by setting:

Rt = r∗ + πt +
ρ

ξ
yt −

1

ξ
ŷt+1. (6)

The actual output gap can thus be written in terms of the policymaker’s intention

and the stochastic shock to the output equation as:

yt+1 = ŷt+1 + ut+1. (7)

As a result the policymaker’s choice in period t can be restated in terms of the desired

output gap for the subsequent period, ŷt+1. Since current period output, yt, does not

appear in either the inflation equation (3), or in the per-period loss, lt+1, only one

state variable remains, current inflation, πt. Surely, as is clear from (6), knowing both

state variables, πt and yt, remains necessary for setting the nominal interest rate Rt

in order to achieve the desired output gap in period t+ 1. The dynamic optimization

problem, however, can be solved in terms of a single state, πt.

To solve this optimization problem we proceed to write the Bellman equation:

V (πt) = min
ŷt+1

Et {lt+1 + βV (πt+1)} (8)

12



where the inflation equation (3) determines the transition of the state from πt to

πt+1, equation (2) is employed for the per-period loss, lt+1 and equation (7) is used

to express the actual output gap in period t+ 1 in terms of the policy intention, ŷt+1,

which we treat as the control variable. The expectation operator integrates over the

distribution of the stochastic shocks, et+1 and ut+1. As is well known, for our baseline

linear-quadratic case, the value function, V , is quadratic in the state variables itself.

With this information it is straightforward (though somewhat tedious) to obtain the

solution for the optimal policy in closed form. This is:

ŷt+1 = µ (πt − π
∗) (9)

where µ is a function of the parameters of the model. For the general case with a

discount factor β ∈ (0, 1) the solution is:

µ =
(1− w)(1− β) + α2w −

√
Ψ

2αβ(1− w)
(10)

where

Ψ = α2[4(1− w)w + (αw)2] + (1− w)(1− β)[(1 − w)(1− β)− 2α2w]

The two limiting cases of myopic preferences, β → 0, and no discounting, β → 1, are

of independent interest. The no discounting case, β → 1, is of interest because then

the policymaker’s problem becomes equivalent to the minimization of the weighted

asymptotic variances of inflation and output. This allows for discussions of policy in

terms of the inflation and output variability tradeoff.11 In that case the expression

for µ simplifies to:

µ(β→1) =
αw −

√
4(1− w)w + (αw)2

2(1 − w)

The myopic case, β → 0, provides a useful benchmark for comparisons if the policy-

maker in period t attempts to minimize just the period t+ 1 loss, lt+1. In that case,

the problem collapses to a static one, in which the value function coincides with the

per-period loss function. The resulting expression for µ is:

µ(β→0) =
−αw

α2w + (1− w)
(11)

As can be seen, the solution retains the salient characteristics of the general case with

discounting. Because of this, examination of the myopic case becomes particularly

11Since its introduction by Taylor (1979), the practice of discussing policy using such variability
tradeoffs has been adopted in a large number of both academic and policy studies. See for instance,
the contributions in Taylor (1999).
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useful for comparisons with models that deviate from the L-Q framework since in

such models an analytical solution may exist only for the myopic case and not for the

general one.

It is important to note that although we chose to express the policymaker’s problem

for period t in terms of the choice of the intended output gap in period t + 1, this

is merely a convenient analytical device and does not reflect on the relative weight

the policymaker places on inflation versus output stabilization. Rather it reflects the

constraint implicit in the Phillips curve. To see how, it is instructive to define π̂t+1

as the intended rate of inflation for period t + 1 consistent with the policymaker’s

intended output gap, ŷt+1, that is reflected in the optimal policy decision taken during

period t. Using the Phillips curve, it is immediate to see that:

π̂t+1 = πt + αŷt+1. (12)

Therefore, stating the policymaker’s strategy in terms of the intended output gap

and in terms of the intended inflation are equivalent. Stated in terms of intended

inflation, the optimal policy (9) can be written as:

π̂t+1 = (1 + αµ)πt − αµπ
∗. (13)

This also illustrates that, in general, the policymaker’s strategy will reflect a gradual

attainment of the inflation target, π∗. Although the policymaker can attain this

target within one period, in expectation, only an “inflation nutter” would choose to

do so. In that case, i.e. when ω = 1, the optimal policy yields µ = −1/α and,

therefore, π̂t+1 = π∗, regardless of the level of current inflation.

Once the optimal choice of the intended output gap for t+ 1 is determined, equation

(6) provides the optimal interest rate rule in terms of the two state variables, πt and

yt. In our baseline model this takes the form of the Taylor rule with a positive nominal

interest rate response to the output gap and a response to inflation that exceeds one

(note that µ < 0).

Rt = r∗ + πt +
ρ

ξ
yt −

µ

ξ
(πt − π

∗) (14)

A pertinent characteristic of this strategy is that the optimal policy sets the interest

rate, and thus the intended output gap, proportionally to the inflation gap, i.e. the

inflation deviation from its desired target, π∗. In this sense, the optimal policy
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in the L-Q model requires the policymaker to pursue the price stability objective

gradually but persistently. However large or small the inflation gap may be, this

policy suggests that the policymaker should actively pursue policies towards closing

it. And the intensity with which this objective is pursued is always proportional to

the gap that is to be closed. Exactly because of this property, the L-Q framework

appears unsuitable for investigating the rationale for inflation zone targeting policies.

In the next two sections we investigate instead deviations from the L-Q framework

that can help us understand the rationale for target zones.

A final important observation is that the optimal policy in the L-Q model is indepen-

dent of the variance of the shocks to the output and inflation equations. Of course,

this simply reflects the validity of the certainty equivalence principle in this setting.

By contrast, as we shall see later on, the influence of uncertainty plays an impor-

tant role in determining optimal policy once we deviate from the conventional L-Q

framework.

Surely, the presence of uncertainty does affect the resulting inflation and output vari-

ability. With greater uncertainty, inflation will deviate more frequently and more

substantially from its target, π∗. It is sometimes suggested that one potential role for

an inflation range is as a communication device that can be employed by policymakers

to acknowledge the imperfect control of inflation from period to period and provide

an indication of the magnitude of this uncertainty. For instance, a range could be

specified so as to reflect a one standard deviation band from the policymaker’s in-

tended inflation, π̂t+1. However, to serve this purpose, an inflation range would need

to be adjusted period by period to reflect both changes in this uncertainty as well as

changes in the policymaker’s intended inflation rate, π̂t+1, which, from (13), changes

period by period with actual inflation, πt. But a more straightforward and transpar-

ent way to communicate such uncertainty would be by providing explicit information

regarding the probability distribution of the policymaker’s intended inflation rate,

π̂t+1.12 The potential for providing information regarding uncertainty within the

12The probability distribution presented in the form of a fan chart in the Bank of England’s
Inflation Report provides a nice example of this more straightforward and transparent way to com-
municate inflation forecast uncertainty. More recently, Sweden’s Riksbank has also started publishing
uncertainty bands that reflect the uncertainty about shocks that will affect the economy as well as
uncertainty about both the qualitative and quantitative nature of the transmission mechanism (see
Blix and Sellin (1998)). Of course, these uncertainty bands change over time and differ from the +/-1
percentage point tolerance band around the Riksbank’s 2% target. However, because the inflation
forecasts presented by the Bank of England and the Riksbank are conditioned on the assumption
that the short-term nominal interest rate will remain unchanged, they do not exactly correspond to
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L-Q framework does not provide a very useful rationale for an inflation target range.

4 Non-quadratic preferences and inflation zone targeting

The first deviation from the linear-quadratic paradigm that we examine involves the

policymaker’s preferences. Specifically, we relax the assumption that the per-period

loss faced by the policymaker is quadratic and instead examine an alternative that

can provide a partial rationale for inflation zone targeting.

To be sure, a quadratic loss function may approximate the policymaker’s preferences

reasonably well around the point where the approximation is taken. But it does not

follow that the same quadratic function can provide a reasonable approximation over

the wide range of actual inflation experiences policymakers face over time. This is not

meant to suggest that we can accurately uncover the correct functional form of the

policymaker’s preferences. We most certainly recognize the complexities involved in

such a task. Rather, we want to illustrate how plausible alternatives to the quadratic

preference paradigm may have rather different implications for the optimal policy

response to small and large deviations of inflation from a point inflation target. In a

sense, we wish to explore the possibility of a preference for inflation-zone targeting.

The intuition behind these alternatives is based on comparing the order of the cost

of small departures of output from its bliss level and that of small departures of

inflation from its target. If the former is larger than the latter, it may be sensible

for the policymaker to ignore small deviations of inflation from its target rather than

incur the higher order costs required to bring inflation back to its target. With a

loss function that is quadratic in inflation and output, the order of costs for small

deviations from target are equal (quadratic) for both inflation and output. But there

are reasons to suspect that this may not be entirely realistic.

One reason is the indivisibility of labor employment decisions. For much of the

workforce, employment is an all-or-nothing proposition. An individual may be either

employed full-time or unemployed. Orphanides and Wilcox (1996) have argued that

as a consequence of this indivisibility, even small deviations from full employment

impose first order costs on a policymaker who aggregates over individual welfare. As

a consequence, even if the loss function is quadratic in inflation deviations from its

our concept of the policymaker’s intended inflation, π̂t+1, which also reflects the intended movements
of the interest rate.
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desired target, the optimal policy exhibits inflation zone targeting characteristics.13

A second reason arises from the very rationale for valuing price stability. Typically,

policymakers value maintaining inflation at a low and stable target such as zero,

one or two percent, not because low inflation raises welfare in itself but because a

low and stable inflation environment indirectly enhances welfare by promoting stable

economic growth, and by reducing resource allocation distortions and inefficiencies.

Consequently, these indirect costs of inflation must be understood and evaluated

before forming a judgment regarding the functional form that best approximates the

policymaker’s loss with respect to inflation.

While there is wide-spread agreement on the deleterious effects of high inflation and

rapid deflation, the effects of a marginal change in inflation near price stability are

not as clear.14 As a result, it seems plausible to specify a per-period loss of inflation

which allows for a range—instead of just a single point—over which the policymaker’s

loss is not materially influenced by marginal changes in inflation. For instance, we

could entertain the possibility that the per-period losses at zero, one or two percent

inflation are essentially equal to each other with the per-period costs rising only as

inflation veers outside this range. It is important to clarify that this comparison

applies only to the per-period loss from inflation, not the infinite discounted sum of

per-period losses that the policymaker aims to minimize. Even if zero, one and two

percent inflation are equally costly in any given period, a policymaker might still

exhibit a preference for one percent over zero if that reduces the risk of veering into

costly deflation in subsequent periods, and might still prefer one percent over two

if that reduces the risk of veering into the higher levels of inflation that are clearly

detrimental to the economy. Indeed, this distinction is critical for understanding the

implications of this type of preferences for the practice of inflation zone targeting.

One way to model such a non-quadratic loss while simultaneously nesting the quadratic

specification, (2), as a special case, is with the per-period loss:

lt+1 = ωZ(πt+1 − π
∗, ζ)2 + (1− ω)y2

t+1 (15)

13Clarida, Gertler and Gali (1999) and Orphanides, Small, Wieland and Wilcox (1997) have inves-
tigated this mechanism further.

14Fischer and Modigliani (1978), and Fischer (1981) provide taxonomies of the costs of inflation.
Orphanides and Solow (1990) document that theoretical arguments regarding the costs and benefits
of inflation in the monetary growth literature are inconclusive. Empirical research by Clark (1997),
Judson and Orphanides (1999), and Sarel (1996), suggests that moderate and high inflation have a
negative effect on growth but finds no evidence of a clear relationship at very low levels of inflation.
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where Z(.; ζ) is a zone-generating function that is approximately zero within a range

of width ζ and linear outside this range. The following specification for Z, based on

the sum of two hyperbolas, is a convenient tool for making this transformation:

Z(x; ζ; c) = x−
1

2

√
c+

(
x+

ζ

2

)2

+
1

2

√
c+

(
−x+

ζ

2

)2

(16)

Here, ζ is a parameter controlling the width of the zone generated by the function

and c is a smoothness parameter we set equal to a small positive number.15 In the

limit, as c→ 0, Z collapses to the piecewise linear function:

Z(x; ζ; 0) =


x+ ζ/2 if x ≤ −ζ/2
0 if −ζ/2 ≤ x ≤ ζ/2
x− ζ/2 if ζ/2 ≤ x

This limit also clarifies that the zone disappears as ζ → 0, Z(x; 0; c) = x, and the loss

function (15) collapses to the quadratic case.

Given this relationship to the quadratic per-period loss, we refer to the loss function

in (15) as zone-quadratic. Figure 1 compares the per-period loss due to inflation

for the quadratic and zone-quadratic specification. As shown, the zone quadratic

form exhibits a width equal to two percent. Thus, if the point inflation target in the

quadratic loss is one percent, the zone quadratic loss implies that per-period losses

due to inflation are essentially the same within the zero to two percent range we

mentioned earlier in our example and only rise materially when the inflation rate is

above 2% or below 0%.

To examine the implications of such preferences for the optimal policy response to

inflation, we solve the policymaker’s optimization problem described in section (3)

substituting the quadratic loss function (2) with the zone-quadratic specification (15)

while maintaining the assumption of a linear structure of the economy. Figure 2 pro-

vides a first comparison of the solutions to the linear-quadratic (L-Q) and linear-zone-

quadratic (L-ZQ) models for a specific but representative set of parameters values.

Importantly, this comparison rests on the assumption that the policymaker is faced

with a deterministic problem, that is we assume that the variances of the shocks in

the inflation and output equations, e and u, are equal to zero. While this assumption

is immaterial for the optimal policy in the L-Q model, the presence of uncertainty

does influence the characteristics of the optimal policy once we deviate from the L-Q

15When we compute optimal policies numerically we use c = 0.1, throughout.
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model. Thus, we proceed in two steps; first abstracting from the effects of uncertainty

and then incorporating them later on.

The four panels in Figure 2 show the optimal policy response to inflation deviations

from the target, π∗, for alternative values of the discount factor, β, and the relative

weight on inflation stabilization, ω, in the policymaker’s preferences. In the top row

we show the myopic case, β = 0, while in the bottom row we employ a discount factor

β = 0.9. The right column shows optimal policy for inflation nutters, ω = 1, while the

left column corresponds to the more balanced case with ω = 0.5. In each panel, the

thin-solid lines show the optimal policy for the L-Q model and the thick-dotted line

the corresponding policy for the L-ZQ model. The latter policies are approximated

numerically using the dynamic programming algorithm described in the appendix.

Each dot corresponds to a grid point in the approximation. The zone parameter ζ is

set to two percent (as in Figure 1).

As one would expect, the relative curvature of the output and inflation loss in the

policymaker’s preferences does not matter for the optimal policy when the policy-

maker is only concerned with inflation deviations from target. As the two panels in

the right column indicate, when ω = 1 the optimal policy is the same in the L-Q and

L-ZQ models and is also independent of the policymaker’s discounting factor.16 An

important implication is that the optimal policy only exhibits inflation zone targeting

characteristics if the policymaker also values output stabilization. This becomes evi-

dent once we move away from this extreme case and allow for some weight on output

stabilization. As shown in the two panels in the left column when ω = 0.5, the L-ZQ

model exhibits clear inflation zone targeting behavior.

Another relevant observation is that regardless of the discount factor, the width of

the zone remains the same. This width is determined by the parameter ζ in the zone-

quadratic loss function. The role of discounting, on the other hand, becomes clear if

inflation is outside this zone of inaction. In that situation, policymakers who place

more weight on future performance take more aggressive action to bring inflation

back within the tolerable bounds implied by the inflation zone.

Of course, compared to the actual practice of inflation targeting central banks which

16This holds for any positive value of the smoothness parameter, c, however small. In the extreme
case c = 0, however, the optimal policy is ill defined when ω = 1. This, in turn, is a special result
that vanishes once uncertainty is introduced in the model.
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make use of target ranges of inflation, the optimal policy in the L-ZQ model discussed

above implements the target range rather mechanically. However, this is only because

so far we have abstracted from uncertainty. Later on, we also report more realistic,

less mechanical cases of inflation zone targeting that also account for uncertainty

in the inflation and output equations. Before doing so, however, we examine yet

another deviation from the L-Q paradigm that suggests a reason why optimal policy

may exhibit inflation zone targeting characteristics.

5 Non-linear economy and inflation zone targeting

The second deviation from the linear-quadratic paradigm that we examine involves

the structure of the economy. Specifically, we relax the assumption that the inflation

process is accurately described by a linear accelerationist Phillips curve. Instead

we investigate an alternative specification that can provide a partial rationale for

inflation zone targeting even under the hypothesis that policymaker preferences can

be reasonably approximated with a quadratic loss function.

Our purpose is not to dispute the usefulness of the powerful presumption of linearity

in modeling economic structures. Econometric estimation of macroeconomic models

with the limitations of the available time series data is a daunting task even maintain-

ing linearity. Consequently, when it is sufficient to work with a linear approximation,

the presumption of linearity may be well advised—even when the underlying struc-

ture of the economy is non-linear. However, the potential of non-linearities should not

be ignored in investigating optimal strategies for monetary policy when the presence

of non-linearities may drastically alter the optimal policy response to inflation. Of

course, we do not wish to suggest confidence in the presence of non-linearities in the

Phillips curve. Our purpose is merely to investigate the consequences of deviating

from the presumption of linearity for the design of optimal policy.

In the case of a Phillips curve such as the one we specified in equation (3) this issue

is particularly important because it is the source of a fundamental short-run tradeoff

facing policymakers. The slope of the Phillips curve in the linear specification, α,

determines the “sacrifice ratio”, that is, the average cost that a policymaker faces for

closing a gap between inflation and its desired target measured in terms of output

deviations from the economy’s potential. The presumption of linearity implies that

the sacrifice ratio is independent of the size of an intended change in inflation in any

given period. Equivalently in a dynamic setting, the sacrifice ratio is independent of
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the speed at which a policymaker opts to close an inflation gap of given size.

By contrast, if the Phillips curve is non-linear, the sacrifice ratio varies with the size of

the intended change in inflation during a period and thus with the speed of bringing

inflation back to its target. This introduces another margin in the policymaker’s con-

siderations for designing optimal policy. Specifically, if the sacrifice ratio associated

with larger per-period changes in inflation is smaller than the corresponding sacrifice

ratio associated with smaller per-period changes, a policymaker can economize on

the total cost of disinflation by avoiding a slow and protracted strategy that closes

an inflation gap in small steps and instead pursuing bigger per-period improvements.

And, for the same reason, if the costs of smaller intended changes in inflation imply

increasingly larger sacrifice ratios, a policymaker may opt against incurring the rel-

atively large average output loss that would be required for closing small inflation

gaps altogether. This suggests that the optimal policy will deviate from linearity in

this case.

Since the slope of the Phillips curve is inversely related to the sacrifice ratio, this

argument suggests that the design of optimal policy may exhibit inflation zone tar-

geting characteristics if the Phillips curve is flatter in the case of a small output gap

than in the case of a large output gap. A number of reasons suggest that this devi-

ation from linearity may be a reasonable one. When output exceeds the economy’s

potential, the inflationary tendencies of capacity constraints on prices suggest that

the Phillips curve is considerably steeper when production far exceeds potential com-

pared to when excess demand pressures are more benign. This argument implies that

the Phillips curve may be convex—especially when the output gap is positive.17

On the other hand, as Stiglitz (1997) has pointed out, in monopolistically competitive

markets producers may exhibit increasingly greater willingness to adjust prices down-

wards under conditions of weak demand to avoid being undercut by rival firms. This

suggests that the Phillips curve may be concave—especially when output falls below

its potential.18 Ball’s (1994) investigation of the output cost of disinflations based

17Starting with Baily (1978) a number of authors have studied the policy implications of such
a convexity in accelerationist Phillips curves. Laxton, Rose and Tetlow (1993) specifically caution
against formulating policy based on the presumption of linearity when the Phillips curve may be
convex. Turner (1995), Laxton, Rose and Tambakis (1999) and others have presented evidence
suggesting a convex shape for several European countries and the U.S.. Finally, Phillips’ (1958)
original formulation also exhibited a convex shape.

18Eisner (1997) presents empirical evidence for such a concave Phillips curve specification for the
U.S..
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on data for OECD countries, provides additional support for this view as his results

indicate that the sacrifice ratio associated with quick disinflations is substantially

smaller than the sacrifice ratio associated with more gradual disinflations.

Although these alternatives suggesting convex and concave Phillips curves may ap-

pear conflicting at first, in fact they could be consistent with a Phillips curve that is

concave when the output gap is negative and convex when the output gap is positive.

Filardo (1998) has recently presented evidence for this possibility in the U.S.19 Such a

concave-convex relationship between economic activity and inflation is also consistent

with discussions regarding the relation of wages and employment pre-dating Phillips’

(1958) formulation of the Phillips curve. As documented in Humphrey (1986), Sul-

tan (1957) presented a concave-convex relationship between unemployment and wage

inflation suggesting a range of unemployment consistent with near-price stability.

Earlier, Tobin’s (1955) model of business cycle dynamics defined a floor and a ceiling

on the level of employment with the property that while prices remained fairly stable

within these bounds, veering outside those bounds resulted in deflation or inflation.

Again, we do not wish to suggest that one could confidently presume that the Phillips

curve exhibits such non-linearities. Gordon (1997), for instance, maintains that in the

U.S. the Phillips curve is “resolutely linear” (p. 26). However, if the Phillips curve

does exhibit a concave-convex shape, then its slope will be smaller when the economy

is near its potential than when the economy is far away from that level—exactly the

deviation from linearity which introduces inflation zone targeting characteristics in

optimal monetary policy.

To illustrate the consequences of a concave-convex shaped Phillips curve for optimal

policy, we examine a particularly simple deviation from linearity that nests the lin-

ear specification as a special case. Using the zone-generating function Z defined in

equation (16), we consider:

πt+1 = πt + αZ(yt+1; ζ) + et+1 (17)

This specification implies that inflation remains essentially stable for a whole range of

output gap values with width ζ, instead of only when the output gap is exactly zero—

as is the case in the linear model. Outside this range the Phillips curve maintains its

19Filardo also observed that some of the apparently conflicting results on the shape of the Phillips
curve may be due to the fact that many authors impose non-linear specifications for the Phillips
curve that rule out the possibility of the concave-convex shape.
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usual linear shape. Like the linear Phillips curve, this specification also maintains the

symmetry property of the model.20 Finally, when ζ = 0, this specification collapses to

the linear case. In the following we will refer to the specification in (17) as zone-linear.

Figure 3 compares the linear and zone-linear Phillips curves. In the example drawn,

the width of the zone, ζ, is assumed to be three percent. Thus, according to this spec-

ification, deviations of output from its potential do not exert a noticeable influence

on inflation as long as they do not exceed one and a half percent, in absolute value.

As drawn, the zone-linear Phillips curve is also steeper than the linear Phillips curve

once the output gap veers outside the range of stability. As we will show in section

6, this feature is consistent with simple estimates of zone-linear and linear Phillips

curves based on U.S and Euro area data.

To examine the implications of this deviation from the linear-quadratic paradigm, we

solve the policymaker’s optimization problem described in section 3 substituting the

linear Phillips curve, (3) with the zone-linear specification (17) while maintaining the

assumption of quadratic preferences. Figure 4 provides an initial comparison of the

solutions to the linear-quadratic (L-Q) and zone-linear-quadratic (ZL-Q) models for

the same representative set of parameter values as in section 3. Regarding the Phillips

curves, the parameters for both, the linear and zone-linear specification, correspond

to the values in figure 3. As with our initial comparisons of the L-Q and L-ZQ models

in the previous section, we set the variance of the shocks in the inflation and output

equations, e and u, to zero. Also in parallel with that comparison, we show optimal

policies for the four combinations of values for β and ω that we examined there.

Starting with the right column which shows optimal policy for “inflation nutters”,

ω = 1, again we note that the discount factor becomes irrelevant. As before, the

optimal policy is to attempt to bring inflation back to its target within one period.

Since the tradeoff facing the policymaker is not the same in the L-Q and ZL-Q models,

however, the policy that can achieve this goal is different. With a zone-linear Phillips

curve, a substantial opening of the output gap becomes necessary to restore inflation

to its target, even if the inflation gap is fairly small. Consequently, the optimal

strategy for an “inflation nutter” in the ZL-Q model exhibits a substantially greater

propensity for output variability than in the L-Q paradigm. Even a tiny inflation

20Asymmetries, of course, would introduce an additional element of complexity. For instance the
average level of output is no longer independent from its variance in that case.
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deviation is met with a substantial policy move.

Turning to the more balanced preferences with ω = 0.5, reveals how the ZL-Q model

provides a rationale for inflation zone targeting behavior. With a zone-linear Phillips

curve, the policymaker opts not to make any progress on the inflation front as long as

inflation is contained within a certain distance from the ultimate target, π∗. Perhaps

the most striking element of the zone-targeting behavior in the ZL-Q model is the

discontinuity of the optimal policy function at the bounds of the optimal inflation

zone.21 Qualitatively, this element of the optimal policy is the same regardless of

the policymaker’s discount rate. However, the width of the zone is quite sensitive

to the degree of discounting. A myopic policymaker (top left panel) would tolerate

inflation deviations from target exceeding five percentage points while a policymaker

discounting the future (bottom left panel) would only tolerate deviations of about

one percentage point before taking corrective action.

6 Model parameters for the U.S. and the Euro area

The two deviations from the conventional L-Q model that we have just examined help

us identify possible rationales for adopting monetary policy strategies with inflation

zone targeting characteristics. However, to assess the practical significance of these

departures from the L-Q framework for optimal monetary policy, we need to conduct

such comparisons with alternative models using reasonable parameter values and

appropriate measures of the uncertainty policymaker’s are faced with due to shocks

to inflation and output. To obtain such parameter values for the simple output and

inflation equations that define our model we estimate least squares regressions using

annual historical data for the U.S. and the Euro area, by which we refer to the 11

countries that have adopted the Euro as of January 1, 1999.22 For the U.S. we

concentrate on the period from 1960 to 1998. For the Euro area, data limitations

restrict us to a shorter period—from 1976 to 1998.

We emphasize that given the simplicity of the dynamic structure of the model we do

not wish to suggest that our parameterization could accurately capture the complex

21Technically the optimal policy is not a function but a correspondence. At the bounds of the zone
defined by the policy, the policymaker is indifferent between taking no action against inflation and
making concrete progress. With a concave-convex Phillips curve, the Euler equation determining
the first order conditions of the value function optimization exhibits multiple zeros whose ranking
switches as inflation crosses over the bounds of the zone.

22Austria, Belgium, Finland, France, Germany, Ireland, Italy, Luxembourg, Netherlands, Portugal
and Spain. The European System of Central Banks also includes the central banks of the EU countries
which have not yet adopted the Euro as national currency, Denmark, England, Greece and Sweden.
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dynamics as could be described, for instance, by a more detailed quarterly model.

Rather, our goal here is merely to provide guidance as to the rough quantitative

magnitudes relating to the policy problem we explore. Further, unlike our theoretical

formulation of the policy problem, the relevant empirical measures of inflation, the

output gap and the interest rate are far from obvious. Thus, it must be understood

that the parameter values which we obtain very much depend on the concepts we

employ and are limited by the accuracy of the underlying data.

For inflation we use the annual percentage change in the output deflator (Q4/Q4 ba-

sis). For the Euro area this measure is obtained by aggregating data for the individual

Euro area countries. For the output gap we rely on data from the Congressional Bud-

get Office (CBO) for the U.S. and the Organization for Economic Cooperation and

Development (OECD) for the Euro area.23 Since the methodologies for constructing

these output gap series differ we also try to indicate the importance of this difference

for our parameters. To do this, we report additional model estimates based on an

output gap for the U.S. provided by the OECD for the 1976-1998 period and com-

pare those estimates with another set based on the CBO series for the same sample.

Estimation of the output equation also requires data on the nominal interest rate

minus inflation. For the U.S. we employ the annual average of the federal funds rate,

deflated by the annual rate of inflation measured as the percent change in the output

deflator on a Q4/Q4 basis. For the Euro area, identifying a comparable historical

series for interest rates is more problematic since monetary policy differed in the indi-

vidual countries. Although it is possible to construct an aggregate historical interest

rate using comparable rates for the individual countries, it is not entirely clear how

to best aggregate these data. While output may be aggregated using relative GDP

weights, the weights for the interest rate that are most appropriate for the output

equation should reflect the relative importance of the individual country interest rates

for influencing aggregate demand in all of the Euro area. Since German monetary

policy served as a de facto anchor to several of the other Euro area countries over

much of the historical sample, we decided to use German interest rates as an appro-

priate proxy for the Euro area.24 Specifically we use the German call money rate

deflated by the annual rate of inflation measured as the percent change in the output

23See Congressional Budget Office (1999) and Giorno et al. (1995).
24Peersman and Smets (1999) provide supporting arguments for this choice.
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deflator for Germany on a Q4/Q4 basis.

Table 1 presents the parameter estimates for the output equation. All variables in

the regression are measured in percent. Our baseline estimate for the Euro area with

data from 1976 to 1998 is shown in column (1). Our baseline for the U.S. with data

from 1960 to 1998 using the CBO measure of the output gap is shown in column (4).

Columns (2) and (3) show the alternative estimates for the U.S. using the OECD and

CBO concepts from 1976 to 1998. As can be seen, the point estimates for both, the

persistence parameter, ρ and the interest elasticity, ξ, differ by sample and area. By

these estimates, the output gap exhibits greater persistence in the Euro area than in

the U.S. and also a greater sensitivity to interest rate changes. The residual variance

is much smaller for the Euro area than for the U.S.. Comparing columns (2) and (3),

estimated for the common 1976-1998 period for the U.S. using the OECD and CBO

measures of the output gap, respectively, illustrate how much the choice of output

gap measure can influence the parameters of the model.

Next we obtain parameters for the inflation equation. For the same four sample/area

combinations we examined for the output equation in Table 1, Table 2 presents esti-

mates of the parameters of the Phillips curve. In the top panel we show parameter

values obtained under the assumption that the Phillips curve is linear. The slope

parameter for the Euro area (column 1) and our baseline U.S. sample (column 4) do

not differ by much. Both imply a sacrifice ratio of about 3. That is, maintaining the

linearity assumption, each additional opening of the output gap by three percentage

points changes inflation by one percent. We use these parameters in our L-Q and

L-ZQ models.

The bottom panel shows parameter values for the zone-linear specification that we use

in the ZL-Q model. Here, in addition to the slope parameter, we need a parameter for

the width of the zone over which inflation is not materially influenced by changes in

the output gap. To let the data provide information on what an appropriate value for

this width might be, we estimated regressions with alternative zone widths, starting

with ζ = 0 and raising it in 0.1 increments. We then selected the width that resulted

in the smallest sum of squared errors. The parameters in the table report the resulting

width and slope parameters. To note, this procedure nests the linear specification

since it includes the estimate with a zone width ζ = 0.0. The data suggest that

the zone-linear specification does yield a smaller sum of squared errors although the
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difference can be very small.25 However, we do not intend these simple regressions to

serve as a horse race between the linear and zone-linear specifications. Our purpose

is merely to obtain comparable parameters we can then employ to highlight the

policy implications of the difference between the two alternatives. The uncertainty

associated with estimating Phillips Curves is substantial.26

Using the OECD concept of the output gap suggests a width of about two percent for

both the Euro area and the U.S.. With the CBO concept of the output gap, the data

suggest a width of about three percent for the U.S.. To some extent, this difference

may reflect the fact that the OECD measured output gap is less variable than its

CBO counterpart. An important feature is that in every case, the parameter for the

Phillips curve slope outside the zone is much larger, about twice as large than the

corresponding parameter for the linear Phillips curve.

Figures 5 and 6 show the underlying data and parameterized linear and zone-linear

Phillips curves for the U.S. and Euro area respectively. The figures highlight the

differences that result from the two models for the shape of the short-run policy

tradeoff. Furthermore, they provide visual confirmation that it is difficult to ascertain

from the data which one of the two forms may be the more appropriate approximation

of this tradeoff.

7 Inflation Zone Targeting under Uncertainty

As discussed earlier, central banks that employ target ranges or tolerance levels in the

design of their inflation targeting framework typically motivate these zones by point-

ing to uncertainty and the imperfect controllability of inflation. In the conventional

L-Q framework, of course, uncertainty, if it is additive has no effect on the optimal

policy, and even if it is multiplicative in nature, it does not change the intrinsic lin-

earity of the optimal policy response. This property no longer obtains in the cases

of the zone-quadratic preferences or zone-linear Phillips curves discussed in sections

4 and 5.

In what follows we investigate the impact of uncertainty due to the price shocks,

et+1, in the inflation equation (3) or (17), and due to the demand shocks, ut+1, in

25Alternatively, we could have reported estimates based on non-linear least-squares. The point
estimates for ζ are nearly identical to the ones we report in the four columns of the Table and their
corresponding t-statistics are 1.8, 1.6, 2.0 and 2.0.

26See also Staiger, Stock and Watson (1997a,b) for a discussion of the difficulties involved in
estimating Phillips Curves and the implications for monetary policy.
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the output gap equation (4) on the optimal inflation zone targeting strategy. We

proceed in steps, first introducing only price shocks and then both types of shocks in

the model with zone-quadratic preferences and then applying the same procedure to

the model specification with the zone-linear Phillips curve.

As baseline parameter values for the inflation and output gap equations we use the

parameter estimates based on annual U.S. data from 1960 to 1998 with potential

output as measured by the Congressional Budget Office, which were reported in the

fourth column of Table 1 and Table 2 respectively. In fact, the optimal policies under

certainty that were presented in figures 2 and 4 in the preceding sections were based

on those same parameter estimates. Later on we will also compute optimal policies

using the parameter estimates based on Euro-area data. In these experiments we

concentrate on the case with β = 0.9 and ω = 0.5.

Another question is how to obtain estimates of the variance of the demand and

price shocks. One option would be to use the standard error of the estimate from the

respective regression in Tables 1 and 2 that is based on annual data. However, such an

estimate would severely overstate the degree of uncertainty faced by the policymaker

that is due to unforeseen shocks. In practice, central banks continuously update

their information about output and inflation throughout the year and can base their

estimate on many other variables in addition to lags of output and inflation. In the

following we use one-half the standard error of the estimated regressions as a measure

of the uncertainty due to price and demand shocks. Of course, the choice of one-half

is somewhat arbitrary. Some sensitivity analysis is provided in a later section in form

of a comparison between the Euro area and the U.S., since the respective regression

equations have different standard errors.

Zone-quadratic preferences

The upper panel of figure 7 shows optimal policies under uncertainty due to price

shocks alone, while the lower panel shows the policies that result under uncertainty

due to price and demand shocks together. As previously, the horizontal axis cor-

responds to the observed inflation gap, while the vertical axis denotes the intended

or expected output gap in the next period that would result given the interest rate

set by the policymaker. As a benchmark for comparison the thin solid line in each

panel depicts the optimal policy response for the L-Q specification. It is computed

analytically, based on equation (10) and has, of course, exactly the same slope in
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both panels because it is unaffected by the degree of uncertainty. Optimal poli-

cies under zone-quadratic preferences are computed numerically using the numerical

dynamic programming algorithm described in the appendix. The dashed curve in

each panel repeats the dynamically optimal policy with zone-quadratic preferences

under certainty from figure 2. The optimal policy under uncertainty is represented

by the dotted curve with every dot corresponding to a grid point of the numerical

approximation.

A comparison of the dashed and dotted curves in the upper panel shows that the

inaction zone, which results from zone-quadratic preferences in the perfect certainty

case, disappears once the possibility of unforeseen price shocks is taken into account.

Instead, the optimal policy in the presence of such shocks is smoother and responds

immediately to small deviations of inflation even though the policymaker is endowed

with zone-quadratic preferences. Nevertheless, the optimal policy still exhibits a

region of “zone-like” behavior. As inflation deviates more and more from the target

rate, policy responds more than proportionally to inflation and the intended output

gap increases more than proportionally with the inflation gap. This region of “zone-

like” behavior is about as wide as the 2 % zone that is embodied in the policymaker’s

preferences. A comparison of the dashed and dotted curves in the lower panel shows

that the inclusion of demand uncertainty further increases the smoothness of the

policy response to small inflation deviations in the “zone-like” region.

The intuition for this result is fairly straightforward. In a world with uncertainty due

to unforeseen shocks there is always some probability that a shock pushes inflation

outside the range of inflation gaps over which the policymaker with zone-quadratic

preferences perceives no relevant welfare loss. To reduce the likelihood of inflation

falling outside this zone, the policymaker is willing to open up small output gaps even

though inflation is still inside the zone. This result is very much consistent with the

practice of central banks who use target ranges but typically emphasize that these

ranges are not implemented in a mechanical manner.

Zone-linear Phillips curve

Figure 8 reports the outcome of a similar exercise under the assumption of a zone-

linear Phillips curve. Again, the optimal policy for the L-Q framework is depicted

by a thin solid line, the optimal policy under perfect certainty in the case of a zone-

linear Phillips curve is represented by the dashed curve and the optimal policy under
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uncertainty is represented by the dotted curve.

A comparison of the dashed and dotted curves in the upper panel of Figure 8 reveals

an interesting effect of uncertainty due to unexpected price shocks on the optimal

policy. The width of the inaction zone increases with the variance of the price shocks.

While the optimal policy under perfect certainty exhibits a zone of a little less than

+/- 1%, the optimal policy response which takes into account the possibility of price

shocks exhibits an inaction zone that is almost twice as large. The intuition for this

result is a bit more complicated. First, as pointed out before, in the case of a zone-

linear Phillips curve the sacrifice ratio declines with the size of the output gap. In

fact, if the short-run Phillips curve is completely flat in some neighborhood of the

natural rate, opening up a small output gap has no effect on inflation. Thus, it is

not worthwhile to move to offset small inflation deviations from target. Furthermore,

any policy move against larger inflation gaps needs to incur a fixed initial cost in

terms of the output gap to reach an output level that results in a disinflationary

or inflationary impulse. A policymaker who takes into account the possibility of

unexpected shocks to inflation, realizes that even in the case of a somewhat larger

inflation gap, there is some probability that inflation will be driven back towards

the target by an unexpected shock in a subsequent period. Thus, he is a bit more

reluctant to incur the fixed initial cost in terms of the output gap that is needed to

return inflation to target by policy action. In other words, the fixed cost creates an

option value to wait which will be larger the larger the variance of shocks to the price

level. As a consequence, the optimal inaction zone increases with the variance of price

shocks. This result is closely related to the option value of postponing irreversible

investment decisions (see, e.g. Dixit and Pindyck, 1994).

The lower panel in figure 8 shows the optimal policies in the presence of price and

demand shocks. Adding demand uncertainty results in a smoother policy response in

the case of the zone-linear Phillips curve. Thus, just as in the case of zone-quadratic

preferences under uncertainty, the somewhat mechanical inaction zone is replaced by

“zone-like” behavior over a region of inflation gaps. The size of the region over which

a “zone-like” policy response is optimal, however, is not sensitive to the variance of

demand shocks.

Inflation zone targeting in the U.S. and the Euro area: a simple illustration

Next we put all the different ingredients analyzed so far, zone-quadratic preferences,
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a zone-linear Phillips curve, inflation uncertainty and demand uncertainty, together

and compute optimal policies using the parameters estimated from annual U.S. data

(CBO potential, 1960-98) and from annual Euro area data (OECD potential, 1976-

98). As a measure of the variance of output and inflation shocks we use again half the

standard error of the estimated equations. It should be emphasized that one should

approach the results of this exercise with caution. Given the extreme simplicity of the

baseline model and the scarcity of the data, this exercise should only be interpreted

as a simple illustration of inflation zone targeting. Nonetheless, since a number of

authors in the inflation targeting literature have advocated the adoption of an inflation

targeting framework for the U.S. and the Euro area, it would seem useful provide this

simple illustration based on our analysis.

The results of this exercise are displayed in Figure 9. The three panels on the left-

hand side show the dynamically optimal policy based on U.S. parameters while the

right-hand side panels provide the same information based on Euro area parameters.

The top panel on each side reports the familiar relationship between the observed

inflation gap and the intended output gap in the next period. The middle and lower

panels report the implied optimal response of the real interest rate to the inflation gap

given a zero current output gap (middle panel), and the response to the output gap

given a zero inflation gap (lower panel). Thus, the middle and lower panel illustrate

the response coefficients of the optimal policy rule.

In each panel the solid line corresponds to the optimal policy for the L-Q frame-

work, while the dotted curve represents the dynamically optimal policy when the

policymaker has zone-quadratic preferences and the economy is characterized by a

zone-linear short-run inflation-output tradeoff. Comparing the top left panel for the

U.S. to the bottom panel in figure 10, it becomes apparent that combining the zone-

quadratic preferences and the zone-linear Phillips curve increases the width of the

region of “zone-like” behavior.

As expected, the interest rate response to the inflation gap depicted in the middle

panel is a mirror image of the response of the intended output gap. The size of the

necessary response, of course, depends on the estimated interest elasticity of aggregate

demand, which is rather small in the case of the U.S. estimates. Not surprisingly,

given our assumptions, the interest rate response to the current output gap is always

linear and coincides with the optimal policy response in the L-Q framework. As shown
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in section 3 it is simply determined by the ratio of the coefficients in the output gap

equation.27

As far as the Euro area parameters are concerned, we also find that the optimal

policy response to inflation exhibits a “zone-like” region. The width of this zone is

somewhat smaller than in the U.S. case, primarily because the estimated zone in the

Phillips curve is only about 2% compared to about 3% in the case of the U.S. data.

The optimal policy does not exhibit as much smoothness as in the case of the U.S.,

and the “inaction” zone is a bit more pronounced. The reason simply is that the

chosen value for the standard error of demand shocks is only half of the U.S. value.

Finally, the optimal interest rate responses are somewhat smaller in the case of the

Euro area, primarily because the estimated interest rate elasticity of demand is twice

as large.

Structural Uncertainty

As a last step, we consider the implications of uncertainty regarding the structure

of the economy for optimal policy. Specifically, building on the inflation zone tar-

geting example for the U.S. and the Euro area that we just discussed, we ask how a

policymaker should behave if he is uncertain as to whether the relationship between

inflation and output in the economy is best described by the linear or zone-linear

Phillips curves under consideration. To capture this uncertainty, we simply posit

that when the policymaker decides what policy to adopt in period t he holds the

view that the output-inflation relationship relevant for period t+ 1 is the zone-linear

one with probability p and the linear one with probability 1 − p. For simplicity,

we maintain that the probability p remains fixed over time and abstract from the

policymaker’s possible efforts to reduce this uncertainty through learning.28

Figure 10 presents the resulting optimal policies for alternative values of the proba-

bility p. From top to bottom, the three rows correspond to the values, 0.75, 0.5 and

0.25. As in Figure 9, the panels on the left are based on parameters for the U.S. while

the ones on the right are based on parameters for the Euro area. Thus, the top row in

Figure 9 which is based on the assumption that the Phillips curve is zone-linear with

27However, to apply this response appropriately, it is also necessary to take into account the fact
that in real-time the output gap is measured with substantial error. See e.g. Orphanides (1998) and
Smets (1998).

28This approach closely parallels the modeling of multiplicative uncertainty in Brainard (1967) (see
Estrella and Mishkin, 1999, for a recent exposition) but differs from the robust control approach in
Sargent (1999) and Onatski and Stock (1999). Wieland (1998) illustrates the differences in optimal
policy that arise with active learning.
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certainty, is directly comparable to the policies shown in Figure 10 and corresponds to

the limiting case with p = 1. As can be seen from Figure 10, even if the policymaker

is not certain that he faces a zone-linear Phillips curve, if the presumption of linearity

is under significant doubt, policy will exhibit “zone-like” characteristics. Of course,

this behavior becomes increasingly muted if greater confidence is placed on the linear

specification, that is, for lower values of p.

8 Conclusion

The success of monetary policy in restoring near price stability over the past decade

in many industrialized nations has brought the question of the relevant forces for the

design of monetary policy in a low inflation environment to the forefront. When infla-

tion is much higher than the desirable long-run target, there is not much controversy

that policy ought to aim for reducing inflation. Once low inflation is achieved, how-

ever, finer details need to be worked out. How forcefully should policy lean against

shocks that might induce minor deviations of inflation from its desirable long-run

target? When is it sensible to employ the blunt force of the monetary instrument to

effect changes in aggregate demand with that aim? What is the appropriate level of

tolerance for the resulting fluctuations in output and employment?

Conventional analysis of optimal monetary policy has typically rested on the paradigm

of quadratic preferences and a linear economy to provide answers to such questions.

However, this choice primarily reflects the mathematical convenience embedded in

these assumptions and is far from innocuous. Monetary policy practice in several

countries which have pursued an explicit inflation-targeting strategy and achieved a

low-inflation environment, suggests that the linear-quadratic framework fails to cap-

ture some of the practical considerations that influence policy decisions, in particular

the use of target ranges instead of point targets.

In this paper we have investigated two alternative deviations from the linear-quadratic

paradigm, namely zone-quadratic preferences and a zone-linear Phillips curve. Our

analysis suggests that when inflation is near the policymaker’s bliss level, a policy-

maker may want to avoid deliberate attempts at changing aggregate demand that

would be necessary for further improvements in inflation performance. As a result

policy is characterized by a zone of inaction for small deviations of inflation from

target. Alternatively, this policy can be characterized as inflation targeting with a
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“thick” inflation target.

We have also explored the implications of uncertainty due to unforeseen demand and

price shocks for inflation zone targeting. First, in the case of zone-linear preferences

the zone of inaction is replaced by zone-like behavior, that is, a moderate policy

response to inflation inside the zone and a more activist response outside of the zone.

Although a policymaker with zone-quadratic preferences faced with a small inflation

gap may not yet perceive a significant welfare loss, it is optimal to respond to this

inflation gap because of the increased likelihood of inflation falling outside this zone in

the future due to unexpected price or demand shocks. Second, in the case of a zone-

linear Phillips curve the zone of inaction increases with the variance of price shocks,

because the steep cost of small improvements in inflation creates an option value to

wait, while demand shocks again induce zone-like behavior with a moderated policy

response inside the zone. Finally, we also considered the effect of model uncertainty.

Clearly, the available evidence does not allow a clear-cut distinction between the linear

and the zone-linear Phillips curve specifications on empirical grounds. We show that

if the policymaker assigns some probability to each of the two cases, the optimal

policy involves a moderated response to inflation deviations within the zone. In sum,

these results indicate that uncertainty provides a possible rationale for central banks

that have adopted zone rather than point targets, to respond at least moderately to

small inflation deviations within the zone.

It is important to note that we have left many important elements of monetary pol-

icy in a low inflation environment out of the analysis by concentrating on a simple

stylized model. For example, our model does not capture the appearance of inter-

est rate smoothing and inertia that monetary policy exhibits in many countries (e.g.

Sack, 1998, Sack and Wieland, 1999, and Woodford, 1999), and although it takes into

account some nonlinearities in the structure of the economy it does not consider the

practical concerns that arise from the presence of the zero bound on nominal interest

rates in a low inflation environment (e.g. Fuhrer and Madigan, 1997, Orphanides

and Wieland, 1998, and Rotemberg and Woodford, 1998). Furthermore, we have

maintained the simplifying assumption of adaptive expectations and have abstracted

from the possible gains from commitment to maintaining inflation stability that be-

come evident in more forward looking models (e.g. Clarida, Gali and Gertler, 1999;

Lengwiler and Orphanides, 1998; Levin, Wieland and Williams 1999; and Woodford,

1999). Introducing rational expectations would bring additional interesting elements
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into the analysis and is a useful extension for future research. For instance, recog-

nition of the increased policy responsiveness outside the inflation zone would have a

stabilizing effect on inflation within the zone similar to the type of honeymoon effects

discussed in the exchange rate target zone literature.

Our analysis has been normative in nature, simply providing possible rationales as

to why it may be sensible for central banks to pursue policies with inflation zone

targeting characteristics. Of course, the two rationales studied may not necessar-

ily provide the best motivation for the actual practice of inflation zone targeting as

currently implemented. A number of alternative and possibly complementary moti-

vations have been advanced. One argument we discussed earlier is that target zones

provide a simple way for communicating unconditional confidence intervals for infla-

tion to the public. Another is that if targets are announced at infrequent intervals

and target changes involve some cost, a zone target allows partial adjustment to new

information arising in the interim period. Further, an inflation target zone may be

used to accommodate transient inflation shocks, as a partial substitute for target-

ing core inflation. A fruitful avenue for future research would be to provide formal

microeconomic foundations for these and other potential rationales for the practice

of inflation zone targeting. Finally, as data from the practical experience in various

countries accumulate, it would be very interesting to test empirically whether interest

rate setting by central banks that have announced zone targets is consistent with the

nonlinear decision rules implied by the theory.
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Appendix: The Numerical Dynamic Programming Algorithm

The algorithm for computing the value function and optimal policy relies on successive

application of the functional operator T , which is based on the Bellman equation (8)

and defines a contraction mapping:

TW =
Min

ŷ

+∞∫
−∞

+∞∫
−∞

l(π, ŷ, e, u) + βW (π′(pi, ŷ, e, u))f(e)f(u)dedu (A.1)

Here W (.) denotes a continuous bounded function of the state variable and represents

an approximation of the value function V in equation (8). l defines the one-period

loss function, while π and π′ represent this period’s and next period’s values of the

inflation rate–the state variable of this DP problem. ŷ is the intended output gap,

which is effectively the control variable. Next period’s value of the inflation rate, π′,

is a function of the intended output gap ŷ, the current inflation rate π and of the

shocks to the inflation and output equation, e and u. f(e) and f(u) stand for the

normal density functions of these zero-mean, normally distributed shocks.

Successive application of the operator T will generate a sequence of functions Wn

that will converge to the value function V , if T is a contraction mapping. Note that

the space of continuous bounded functions is a complete and separable metric space

in the sup metric defined:

d(Wn,Wn+1) =
Sup

(π)
|Wn(π)−Wn+1(π)| (A.2)

Standard arguments can be used to show that Blackwell’s sufficiency conditions of

monotonicity and discounting are satisfied and that T is a contraction mapping. The

proof follows Stokey and Lucas (1989), Chapter 9. The contraction mapping implies

that:

d(TWn+1, TWn) ≤ βd(Wn+1,Wn) (A.3)

Thus, T has a unique fixed point, V , which can be computed by value iteration, that

is, by successive application of the operator T . TnW converges to V uniformly as

n→∞. A convenient starting value W0 is the single period loss function l(.).

It is straightforward to construct an upper bound on the approximation error. If

Wn+1 = TWn, then d(Wn+1,Wn) ≤ (Wn,Wn−1) and after iterating d(Wn+1+i,Wn+i) ≤
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β1+i‘d(Wn,Wn−1). This implies an upper bound on the error in approximating V by

Wn:

d(V,Wn) ≤
∑

d(Wn+1+i,Wn+i) ≤
β

1− β
d(Wn,Wn−1) (A.4)

This bound only depends on the discount factor β and the distance between the

approximations obtained in the last two iterations. Note also that the time needed for

convergence within a maximal error bound can be reduced significantly by introducing

policy iterations in between every value iteration.

The numerical algorithm is implemented as follows: first, compute starting values W0

for a grid of values of the state variable (π) and save them in a table; second, calculate

W1 by applying the operator T to W0 and update said table. This step involves a

minimization with respect to the control ŷ for each grid point. This minimization in

turn requires repeated evaluation of the two integrals in (A.1). The one-period loss

function l(.) and the transition equation π′(.) are known functions and the density

functions for u and e are normal. Thus the integrals can be calculated using repeated

Gaussian quadrature and values of W0 from the table, where W (.) is evaluated in

between grid points by bilinear interpolation.

Given an approximation of this integral the minimization problem can be solved by

standard numerical optimization procedures. However the search for the minimum

requires special care because there may exist multiple local minima. As a consequence

there may be kinks in the value function and discontinuities in the optimal policy.

In particular, this is the case for the zone-linear specification of the Phillips curve.

Therefore we need to use a slow but secure optimization procedure such as golden

section search supplemented by a rough initial grid search. For each value of π, the

minimum in ŷ constitutes the value of W1 at π that is used to update the table. The

maximum of |W1(π) −W0(π)| is used to calculate the upper bound of the approxi-

mation error. Finally, this procedure is repeated to obtain W2 and so on until the

difference between two successive approximations is sufficiently small (< 0.5%).

The algorithm is programmed in Matlab and the computations were performed on

Pentium PC’s as well as SUN Unix workstations. For a more detailed discussion of nu-

merical dynamic programming, quadrature, interpolation and optimization methods

used in implementing this algorithm see Judd (1998).
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Table 1

Output Equation Parameters
yt = constant + ρyt−1 − ξrt−1 + ut

Euro Area United States
(OECD) (OECD) (CBO) (CBO)

1976-1998 1976-1998 1976-1998 1960-1998

(1) (2) (3) (4)

constant 1.07 1.03 0.54 0.64
(0.34) (0.16) (0.56) (0.43)

ρ 0.77 0.47 0.64 0.63
(0.11) (0.16) (0.16) (0.12)

ξ 0.40 0.32 0.23 0.23
(0.10) (0.13) (0.14) (0.13)

σu 0.84 1.51 1.62 1.80

Notes: Estimated with annual data with least squares over the periods shown. Stan-

dard errors are in parentheses. The constant term provides an estimate for ξ r∗. All

data are in percent. OECD and CBO refer to source of series used for the output

gap, y. The real interest rate, r, is constructed as the average rate during a year

minus the rate of inflation measured as the annual (Q4/Q4) percentage change in the

output deflator.
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Table 2

Inflation Equation Parameters
Linear: πt = πt−1 + αyt + et

ZoneLinear: πt = πt−1 + αZ(yt; ζ) + et

Euro Area United States
(OECD) (OECD) (CBO) (CBO)

1976-1998 1976-1998 1976-1998 1960-1998

(1) (2) (3) (4)

Linear

α 0.34 0.39 0.31 0.31
(0.13) (0.09) (0.08) (0.07)

σe 0.96 0.85 0.89 1.06

ZoneLinear

ζ 2.0 1.9 3.1 2.9

α 0.81 0.59 0.53 0.60
(0.28) (0.13) (0.12) (0.11)

σe 0.94 0.85 0.86 0.99

Notes: Estimated with annual data with least squares over the periods shown. Stan-

dard errors are in parentheses. All data are in percent. OECD and CBO refer to

source of series used for the output gap, y. Inflation, π is measured as the annual

percentage change in the output deflator (Q4/Q4 basis.) For the ZoneLinear case, we

estimated regressions with alternative zone widths, starting with ζ = 0 and raising

it in 0.1 increments. The estimates shown reflect the choice of ζ that resulted in the

smallest sum of squared errors.
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Figure 1

Quadratic and ZoneQuadratic Loss Functions
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Notes: The solid line plots the quadratic inflation loss, (π − π∗)2. The dotted line

plots the zone-quadratic inflation loss Z(π − π∗, ζ)2 with a zone width, ζ, of two

percent.
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Figure 2

Optimal Policy in the Linear–ZoneQuadratic Model
Perfect Certainty Case
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Notes: In each panel the horizontal axis is the state variable, πt, and the vertical

axis the intended output gap, ŷt+1. The thin solid line shows the optimal policy for

the L-Q model. The dotted line shows the corresponding optimal policy in the L-ZQ

model. The top row shows the solution to the static problems (β = 0) whereas the

bottom row shows the solution to the dynamic problem (β > 0).
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Figure 3

Linear and ZoneLinear Phillips Curves
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Notes: The dotted line plots the linear Phillips curve πt+1 = πt + α1 yt+1. The solid

line plots the zone-linear Phillips curve πt+1 = πt + α2 Z(yt+1; ζ) with a zone width,

ζ, of two percent and a slope α2 > α1.
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Figure 4

Optimal Policy in the ZoneLinear–Quadratic Model
Perfect Certainty Case
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Notes: In each panel the horizontal axis is the state variable, πt, and the vertical

axis the intended output gap, ŷt+1. The thin solid line shows the optimal policy for

the L-Q model. The dotted line shows the corresponding optimal policy in the ZL-Q

model. The top row shows the solution to the static problems (β = 0) whereas the

bottom row shows the solution to the dynamic problem (β > 0).
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Figure 5

Linear and Zone-Linear Phillips Curve for the U.S.
1960-1998
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Figure 6

Linear and Zone-Linear Phillips Curve for the Euro Area
1976-1998
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Figure 7

Optimal Policy in the Linear–ZoneQuadratic Model
With Uncertainty
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Notes: The upper panel incorporates the uncertainty in the inflation equation only.

The lower panel reflects both inflation and output equation uncertainty. The thin

solid line shows the optimal policy for the L-Q model. The dashed line shows the

optimal policy in the L-ZQ model without uncertainty and the dotted line shows the

corresponding optimal policy with uncertainty.
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Figure 8

Optimal Policy in the ZoneLinear–Quadratic Model
With Uncertainty
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Notes: The upper panel incorporates the uncertainty in the inflation equation only.

The lower panel reflects both inflation and output equation uncertainty. The thin

solid line shows the optimal policy for the L-Q model. The dashed line shows the

optimal policy in the ZL-Q model without uncertainty and the dotted line shows the

corresponding optimal policy with uncertainty.
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Figure 9

Optimal Policy in the ZoneLinear–ZoneQuadratic Model
With Inflation and Output Uncertainty
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Figure 10

Optimal Policy With Structural Uncertainty
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