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Abstract

The distributive effects of carbon taxation are critical for its political accept-

ability and depend on both income and geographic factors. Using French admin-

istrative data, household surveys, and matched employer-employee records, we

document that rural households spend 2.8 times more on fossil fuels than urban

households and are employed in firms that emit 2.7 times more greenhouse gases.

We incorporate these insights into a spatial heterogeneous-agent model with en-

dogenous migration and wealth accumulation, linking spatial and macroeconomic

approaches. After an increase in carbon taxes, we quantify that rural households

face 20% higher welfare losses than urban households. In an optimal revenue-

recycling exercise, we compare transfers targeting income and geography, and

show that neglecting for geography reduces welfare gains by 7%. We conclude

that carbon policies should account for spatial differences to improve political

feasibility.

JEL classification – C61, E62, H23, Q43, Q58, R13.

Keywords – Carbon tax, inequalities, revenue recycling, spatial and macroeco-

nomic models, migration.
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Non-technical summary

Carbon taxes on households and firms are a key tool for reducing greenhouse gas emis-

sions. However, their costs are unevenly distributed across the population. Rural and

lower-income households face disproportionately higher costs because they spend more

on fossil fuels and have fewer low-carbon alternatives, such as public transport or cleaner

heating options. Moreover, rural residents are more likely to work in carbon-intensive

sectors (such as agriculture, transport or manufacturing), that are more exposed to

carbon pricing. These geographic inequalities can undermine public support for cli-

mate policies, as demonstrated by France’s Yellow Vest protests. Understanding and

addressing these distributional effects is crucial as Europe prepares to implement its

new carbon market for buildings and transport (EU-ETS 2) in 2027.

Using comprehensive French household and firm data, we document that rural

households spend 2.7 times more on fossil fuels than urban households, even after

accounting for income differences. Rural workers are also employed by firms that emit

three times more greenhouse gases per employee. We integrate these empirical patterns

into an economic model that captures household heterogeneity and allows for migration

between regions with different housing and labor market conditions.

Our analysis reveals substantial geographic disparities in carbon pricing impacts. A

uniform carbon tax of e100 per ton of CO would reduce national emissions by 15% but

impose costs averaging e600 per household per year before any revenue recycling. Ru-

ral households would face costs 20% higher than Parisian households. The more limited

EU-ETS 2, with an expected carbon price of e45 per ton, would achieve smaller emis-

sion reductions (3%) and lower average costs (e200 per household) while maintaining

similar geographic disparities.

However, targeted redistribution can eliminate these inequities. Recycling carbon

tax revenues through direct transfers to low-income and rural households not only

compensates for their higher costs but generates net gains averaging e720 for targeted

groups. This demonstrates that carbon pricing can simultaneously achieve environmen-

tal objectives and improve social equity when coupled with appropriate redistribution

mechanisms.

These findings highlight that the success of climate policy depends critically on

its distributional design. Without addressing geographic and social inequalities, car-

bon pricing risks political backlash that could undermine long-term climate objectives.

With well-designed redistribution, however, carbon pricing can build a constituency for

climate action while achieving necessary emission reductions.
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Introduction

Carbon taxes reduce emissions but impose unequal costs for households and firms. Fossil

fuels represent a larger share of expenditures for low-income and rural households, and a

larger share of firms’ input costs in rural areas. These distributive effects can undermine

the political acceptability of carbon taxation, as illustrated in France by the Yellow

Vests protests and the subsequent carbon tax freeze. Consequently, designing socially

acceptable carbon taxes requires careful consideration of their distributional impacts

on both households and firms. While the existing literature has predominantly focused

on the “rich versus poor” dimension of the energy transition burden, less attention has

been given to geographical heterogeneity in energy consumption patterns. This paper

addresses this gap by providing detailed empirical evidence on regional disparities and

integrating these patterns into a rich quantitative model.

In the first part of the paper, we systematically document the distribution of direct

emissions across both households and firms, using several datasets covering the French

economy. We combine household-level survey data with fiscal declarations to estimate

fossil fuel consumption for heating and transportation at a highly granular level. We

derive worker-level emission patterns by linking matched employer-employee adminis-

trative data with sector-level greenhouse gas (GHG) emissions. In both the household

and firm cases, we document how direct emissions vary across income levels and city

sizes.

In the second part of the paper, we integrate these emission patterns into a spatial,

general equilibrium, heterogeneous-agent model that captures heterogeneity in both in-

come and geography. Households endogenously choose whether to migrate in response

to carbon taxation, accounting for mobility frictions and relocation incentives. The in-

teraction between savings and migration costs enables agents to accumulate resources to

migrate and smooth the adverse effects of the carbon tax, while borrowing constraints

impede mobility and give rise to “trapped” households. These dynamic features also al-

low us to evaluate the welfare costs over time, reflecting a gradual process of household

reallocation. Our model successfully replicates the observed heterogeneity in income,

wealth, and energy consumption across regions, as well as the cross-correlations be-

tween income, geography, and migration patterns. We then introduce carbon taxes

on both households and firms. Under a welfare-maximizing planner with an emissions

constraint, we evaluate a range of revenue-recycling scenarios, from increased public

spending to targeted transfers based on location and income. Our paper yields three

key findings.

First, using micro data on households and firms, we show that geography is more

important than income in explaining emission patterns. Household-level survey
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data reveal that rural households consume 2.8 times more fossil fuels, as a share of con-

sumption, primarily due to larger homes and higher reliance on car travel. Additional

evidence suggests that this rural-urban disparity in energy consumption extends beyond

France, with similar patterns observed in the US, the UK, Germany, Spain, Italy, and

the Netherlands. Moreover, by matching employer-employee records with sectoral-level

emissions data, we find that rural workers are twice as likely as their urban counterparts

to be employed in emissions-intensive sectors, such as agriculture and manufacturing.

By attributing firm-level greenhouse gas emissions to employees based on firm size and

sectoral emission intensity, we find that rural households are employed in firms that

emit 2.7 times more GHGs than those employing Parisian households. We incorporate

these findings into our spatial heterogeneous-agent model to examine the distributional

effects of carbon taxation across both income and geographic dimensions.

Second, our quantitative model shows that carbon taxes disproportionately

burden rural households, with effects varying across income levels, tax types, and

time horizons. In our benchmark policy scenario, targeting a 10% reduction in emis-

sions, median welfare losses in rural areas are 20% higher than those in Paris: −17.3%

versus −14.5%, measured as a welfare-equivalent reduction in wealth relative to initial

income. We decompose these effects by distinguishing between taxes on households’

direct emissions and those on firms’ direct emissions. The household tax is highly regres-

sive, as fossil fuels are necessities, disproportionately burdening low-income households.

In contrast, the firm tax is less regressive: it primarily reduces wages, which adversely

affect middle-income households, and lowers interest rates, thereby harming wealthier

households. Moreover, these taxes trigger distinct migration patterns. The household

tax drives low-income households out of rural areas to escape steep energy costs, as en-

ergy is a large share of their consumption basket. On the opposite, the firm tax reduces

the factor prices in rural areas, especially wages, pushing high-productivity households

out, as labor income is a large part of their revenue. Our findings underscore that the

welfare costs of carbon taxation evolve over time, with migration playing a crucial role

in mitigating its impact across regions. We also discuss the implications of our results

for the two European carbon emissions trading systems: EU-ETS 1 and EU-ETS 2.

Third, we find that ignoring geographical location in recycling rules reduces

welfare gains by 7%. Our optimal transfer-recycling policy, which targets both

income and location, outperforms income-only targeting by 7.3% and uniform transfers

by 38%. This approach not only boosts median welfare across all income and geographic

groups but also reduces the share of households experiencing welfare losses by 10%

compared to income-only transfers. This is because tailoring transfer progressivity to

each city’s income distribution enhances the effectiveness of transfers in compensating
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for local carbon-tax burdens. As a result, location-based targeting reduces migration

flows and the associated relocation costs. These results are robust across alternative

welfare objectives, Pareto weights, and parametric formulas.

Our main contribution is to develop a unified framework for analyzing the gen-

eral equilibrium distributive effects of carbon taxation by jointly examining its impact

on both households and firms, incorporating both income and spatial heterogeneity.

This framework bridges two key strands of the literature: the distributive effects of

carbon taxation, and the modeling of income and geographical heterogeneity among

households.

The literature on the distributive effects of carbon taxation examines the hetero-

geneous fiscal incidence of carbon taxes across households, using micro-simulation,

Computable General Equilibrium (CGE), or heterogeneous-agent general equilibrium

models. The general approach is to link the household income distribution to changes

in energy prices, which are impacted by carbon taxes. This requires accounting for

both the direct effect (households consume fossil fuels for housing and transporta-

tion) and the indirect effect (firms use energy as an input, which affects the prices of

other inputs, such as capital and labor, thus influencing income distribution). Based

on micro-simulations, Cronin, Fullerton and Sexton (2019) for the U.S. and Douenne

(2020) in the French context conclude that carbon taxes are regressive, with most of

the heterogeneity occurring within income quantiles. We confirm that carbon taxes

are regressive and explicitly model this within-quantile heterogeneity by introducing

geographical differences, which are a key determinant of tax burden disparities across

households. Within the CGE literature, Rausch, Metcalf and Reilly (2011) and Goulder

et al. (2019) conclude that the progressivity of source-side effects (related to changes in

relative factor prices) offsets the regressive use-side effects (related to the composition

of total expenditures). Compared to these studies, we endogenize income and wealth

distributions by incorporating idiosyncratic income risk, and we introduce geographical

heterogeneity. Our framework is similar to Känzig (2023), who integrates energy into

both household final consumption and firm inputs; we add an additional layer of het-

erogeneity by considering the spatial dimension. Finally, a central component of this

literature is the use of carbon tax revenue. As in Goulder et al. (2019) and Mathur

and Morris (2014), we find that targeted transfers can improve welfare and mitigate

regressivity. However, we show that income-based transfers alone are insufficient to

compensate rural households, motivating the exploration of geography-based transfers.

Unlike Fried, Novan and Peterman (2024) and Barrage (2020), who use revenues to re-

duce distortive taxes, we focus on direct transfers, as they explicitly separate carbon tax
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revenue from the general state budget, which may enhance the political acceptability

of the policy.

This paper also contributes to the growing quantitative macro-spatial literature by

integrating a spatial dimension into heterogeneous-agent general equilibrium models.

Building on Aiyagari (1994) framework, we study the aggregate and distributional

effects of energy shocks and climate policies, as in Auclert, Monnery, et al. (2023), Lan-

got et al. (2023), Pieroni (2023), Chan, Diz and Kanngiesser (2024) and Bayer et al.

(2025). We depart from these studies along several dimensions. First, motivated by the

geographic heterogeneity in emissions from both households and firms, we introduce

a spatial layer into the general equilibrium structure of heterogeneous-agent models.

Our framework incorporates endogenous migration, region-specific energy needs, and

segmented housing and labor markets. Second, we extend the standard consumption

structure by introducing non-homothetic preferences, following Comin, Lashkari and

Mestieri (2021), to better capture heterogeneous energy demand across households. On

the production side, we include multiple sectors, as in Barrage (2020), to allow for

heterogeneous energy use across firms. Third, we connect to the quantitative spatial

literature on migration and worker reallocation in static or partial equilibrium settings

(e.g., Desmet and Rossi-Hansberg (2014), Fajgelbaum et al. (2019) or Couture et al.

(2024)) by embedding endogenous savings and mobility decisions. This addition al-

lows us to study how borrowing constraints interact with migration costs to generate

gradual spatial reallocation in response to carbon taxation. These frictions slow adjust-

ment dynamics and enable the comparison of welfare and population changes across

different time horizons. Finally, we contribute to an emerging literature that combines

joint consumption-saving and location choices in quantitative models. Related studies

have focused on different policy environments: Ferriere, Navarro, Reyes-Heroles, et al.

(2018) analyzes trade shocks, Giannone et al. (2023) examines moving vouchers, and

Greaney (2023) explores responses to local productivity shocks. In contrast, we study

how carbon taxation affects household migration decisions. Our framework highlights

how mobility frictions and local economic conditions interact with household wealth

to produce gradual and uneven migration responses, with important implications for

welfare, spatial inequality, and policy design.

The remainder of the paper is organized as follows. Section 1 presents descriptive

evidence on the distribution of carbon emissions across households and firm. Section

2 introduces our quantitative model. Section 3 discusses the calibration of the model

using French data. Section 4 presents our main results, while Section 5 examines optimal

carbon taxes and rebate policies. Finally, Section 6 concludes.
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1 Descriptive Evidence

This section presents descriptive evidence on the distribution of greenhouse gas emis-

sions by households and firms in France. Our analysis reveals that geographic factors

outweigh income differences. First, rural households consume more energy and fossil

fuels than urban households. Second, businesses in rural areas are more likely to op-

erate in sectors with higher emissions. Although the focus is on France, we observe

similar patterns in other countries.

1.1 Households’ direct emissions

The direct cost of carbon taxes is borne by households with high consumption of carbon-

intensive energy, such as fossil fuels. Since energy is typically a necessary good, most

of the existing literature has focused on income disparities. However, using survey data

from France, we find that the share of fossil fuels in total expenditures is relatively

uniform across the income distribution, but declines significantly with the size of the

city in which households reside.

Data. We use French microdata from the 2017 Budget de Famille (BdF) Insee survey,

covering over 16,000 households. From this consumer expenditure survey, we construct

household-level fossil fuel expenditures by adding up fuels for heating and those used

in vehicles. Fossil-fuel consumption from transportation and heating make up more

than 97% of households’ direct emissions, while other activities are not identified in

consumption surveys. We then consider total energy consumption as the sum of fossil

fuel expenditures and total electricity expenditures.1 Throughout the paper, we classify

locations into five city types: Rural, Small cities, Medium cities, Large cities, and Paris,

based on population size.2 These categories represent 23.5%, 26.0%, 18.5%, 13.4%,

and 18.6% of the population, respectively. For a fair comparison, we also categorize

households into five income groups, ranked by disposable income quintiles.

Empirical Results. We regress households’ energy and fossil fuel expenditures on

city type, income quintile, and control variables, as detailed in Appendix A.4. This

approach helps control for potential correlation between income levels and location

choices. The predicted shares of electricity and fossil fuel in total expenditures, by city

type and income quintile, are shown in Figure 1. These shares can be interpreted as

the average energy share in each city type (or each income quintile) if the city had the

1In the BdF survey, as in the US Consumer Expenditure Survey, it is not possible to distinguish

between electricity expenditures for housing purposes and those for charging car batteries.
2Rural: below 2,000 inhabitants, Small cities: between 2,000 and 20,000, Medium cities: 20,000

and 50,000, Large cities: over 50,000, Paris: Parisian agglomeration. In Appendix A, we provide a

map of France corresponding to these categories.
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same characteristics as the whole population. While total energy is a necessary good

— its share decreases from 11.3% for the first income quintile (Q1) to 8.9% for the

fifth quintile (Q5) — the fossil fuel share remains flat across the income distribution,

at approximately 5.9% of total expenditures. In contrast, geography strongly predicts

energy consumption: rural households consume 2.1 times more energy than Parisians

(13.7% versus 6.5%) and 2.8 times more fossil fuels (8.7% versus 3.1%). We then

impute the fossil fuel share for all households in France using the complete set of fiscal

declarations from households in 2021.3 We present its spatial distribution in Figure 3,

by averaging fossil fuel shares at the city code level.

Figure 1: Energy share in total consumption (regression-adjusted)

Notes: share of fossil fuel and electricity in total consumption expenditures, results net of controls

(details in Appendix A.4). These are the mean energy share in each group (city type, income quintile)

if the group had the same characteristics as the whole population.

Source: Authors’ computations using Budget de Famille 2017

To explain these differences in energy shares, we break down household energy use

into two categories: housing and transportation, as shown in Table 3 in Appendix.

Housing accounts for 5.2% of total expenditures on average (56% of energy con-

sumption), but varies significantly across households, ranging from 6.3% in rural areas

to 3.6% in Paris, and from 6% in Q1 to 4.1% in Q5. The primary determinant is the

share of households living in a house, which is very high in rural areas (94%) and very

low in Paris (22%), while it is more stable across income quintiles (44% to 64%). Ad-

ditional administrative data4 also reveal that rural households have nearly twice the

living space of Parisian households — an average of 105.6 square meters compared to

3See Appendix A for details.
4Supplementary data is available in Appendix A.
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64 in Paris. Examining the disposable income distribution, we find that the wealthiest

households (Q5) have an average living space of 108.6 square meters, while the poorest

households (Q1) live in an average of 72.5 square meters.

Transportation accounts for 4.1% of total expenditures on average (44% of energy

consumption), but regional differences are again more pronounced: 5.8% for rural areas

versus 2.1% for Paris, compared to 4% for Q1 and 3.4% for Q5. Rural households

almost universally own a car (93%) and use it for commuting (48%), whereas Parisian

households rely more on public transportation and own cars less often. The number

of vehicles and the necessity of commuting increase with income, resulting in relatively

uniform transportation costs across income quintiles. Consequently, geography is more

important than income in explaining household energy shares, driven by higher housing

and transportation costs in rural areas.

Table 1: Energy share in total consumption (%) for several countries

Rural Towns Cities Q1 Q2 Q3 Q4 Q5

France (sum) 11.8 10.3 7.9 10.3 10.0 10.3 9.8 8.6

electricity & gas (housing) 5.2 4.6 3.6 5.5 4.8 4.5 4.2 3.6

transport costs incl. fuels 6.6 5.7 4.3 4.8 5.2 5.8 5.6 5.0

Germany (sum) 13.7 12.6 9.8 12.7 12.3 12.1 11.9 11.1

electricity & gas (housing) 5.7 5.3 5.0 7.7 6.5 5.7 5.1 3.9

transport costs incl. fuels 8.0 7.3 5.7 4.0 5.8 6.4 6.8 7.2

Italy (sum) 14.1 12.2 9.8 – – – – –

electricity & gas (housing) 6.7 5.8 5.0 – – – – –

transport costs incl. fuels 7.4 6.4 4.8 – – – – –

Netherlands (sum) 10.4 10.2 9.1 7.4 8.4 9.3 9.6 11.0

electricity & gas (housing) 4.5 4.2 3.8 5.0 4.5 4.1 3.9 3.4

transport costs incl. fuels 5.9 6.0 5.3 2.4 3.9 5.2 5.7 7.6

Spain (sum) 14.6 11.0 8.5 10.2 11.0 10.9 10.0 9.1

electricity & gas (housing) 5.1 4.2 3.9 5.4 4.8 4.5 4.2 3.6

transport costs incl. fuels 7.5 6.8 4.6 4.8 6.2 6.4 5.8 5.5

UK (sum) 14.3 12.8 10.2 11.2 12.6 12.2 12.5 11.7

electricity & gas (housing) 5.4 4.8 4.9 7.6 6.5 5.2 4.5 3.7

transport costs incl. fuels 8.9 8.0 6.3 3.8 6.1 7.0 8.0 8.0

US (sum) 8.3 7.1 5.7 8.8 8.9 7.7 6.9 4.8

electricity & gas (housing) 3.9 3.3 2.8 4.9 4.5 3.6 3.1 2.2

fossil fuels (transports) 4.4 3.8 2.9 3.9 4.4 4.1 3.8 2.6

Sources: Eurostat 2020 Household Budget Surveys (HBS) for European countries, 2023 Consumer

Expenditure Survey (CES) for the US.

The dominance of geography over income extends to many countries, as shown in

Table 1. In Germany, Spain, the Netherlands, and the United Kingdom, the energy
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share of total expenditures is relatively flat across income quintiles, with Q1-to-Q5 ratios

of 1.1, 1.1, 0.7, and 1.0, respectively. However, the energy share in these countries

varies significantly across living areas, with Rural-to-City ratios of 1.4, 1.1, 1.7, and

1.4, respectively. In the United States, geography also plays a key role in determining

energy consumption (8.3% in rural areas versus 5.7% in cities with populations over

1 million). Income differences are more pronounced, with energy shares of 8.8% for

Q1 compared to 4.8% for Q5. This contrast between the United States and Europe

can be attributed to transportation costs: while transportation expenses are higher

for wealthier households in Europe, the opposite is true in the United States, where

even the lowest-income households allocate a substantial share of their expenditures to

transportation.

Therefore, geography plays a more significant role than income in explain-

ing the share of energy and fossil fuels in household expenditures. Account-

ing for this geographic dimension is crucial for understanding the distributive effects of

carbon taxation, as fossil fuels constitute the majority of households’ direct emissions.

However, carbon taxes affect not only households but also the firms that employ them.

1.2 Firms’ direct emissions

Some sectors, such as metalworking, agriculture, and transportation, have higher emis-

sions and are therefore more affected by carbon taxes. These sectors are also unevenly

distributed across regions and occupations, implying that both income and geography

play a role in determining the firms where households are employed. This, in turn,

shapes the distribution of the indirect costs of carbon taxes.

Data. We use administrative matched employer-employee data from France known

as BTS-Salariés.5 The BTS dataset has two advantages. First, it is exhaustive, contain-

ing 32 million workers per wave, providing rich demographic, geographic, and plant-level

information. Second, it has a panel version that covers the entire work history of a rep-

resentative set of workers (over 3 million individuals).6 The large sample size enables

us to conduct a detailed analysis by city code and to finely disaggregate employer and

worker groups, which allows us to control for composition effects. Our contribution is

to merge this dataset with sectoral emissions data from the 2022 National Accounts.7

To assess workers’ exposure to a carbon tax on firms, we compute GHGs emissions per

worker in each establishment of the economy. Using sectoral-level emissions and estab-

lishments’ labor share, we construct plant-level emissions. We then build worker-level

5Base Tous Salariés – fichiers Salariés.
6We use the panel dimension of the dataset to analyze mobility rates across regions.
7See Appendix A.3 for details.
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emissions by dividing plant-level emissions by employment. We favor establishment-

level estimates since the biggest firms may own several establishments operating in

distinct sectors. As a robustness check, we do the same exercise using firm-level data

in Appendix A.3 and find very similar results.

Empirical results. We regress worker-level emissions, measured as “tons of CO2eq

per worker”, on city type and income quintile, as described in Appendix A.4. The pre-

dicted tons of CO2 per worker by city type and income are displayed in Figure 2. We

also present its spatial distribution in Figure 3. Additionally, we present an extensive

margin indicator showing the share of workers in emissions-intensive sectors. Emissions-

intensive sectors are defined as those with emissions intensity above 5 tons of CO2 per

worker. Figure 2 reveals that rural households work in establishments that emit three

times more than those employing Parisian workers (19.5 tons of CO2 per worker versus

7.3). Moreover, considering that rural areas account for 24% of the population, com-

pared to 19% for Paris, we find that establishments employing rural residents account

for 36% of total firm emissions, versus 9% for Paris. Along the income dimension,

wealthier households tend to work slightly more in emissions-intensive establishments

and firms, but the gradient is steeper for the geography dimension.

Figure 2: Emissions imputed to workers and % of workers in emissions-intensive firms

Notes: tons of C02eq imputed per worker, controlling for variables detailed in Appendix A.4. It

represents the average tCO2eq/worker in each group (city type, income quintile) if the group had the

same characteristics as the whole population.

Source: Authors’ computations using 2022 BTS-Salariés and National Accounts.

We provide a sectoral decomposition along the income and geography dimensions

in Table 5 in Appendix to explain these results. Workers in the two most polluting

sectors, agriculture and industry, are heavily concentrated in rural areas: respectively
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3% and 14.2% of rural households are employed in these sectors, against only 0.1%

and 4.3% of Parisian households. In contrast, 0.4% and 15% of high-income households

(Q5) work in agriculture and industry, compared to 2.5% and 5.6% of households in the

lowest income quintile (Q1). In Table 6 in Appendix, we additionally show that rural

households represent 46% of all agriculture workers and 30% of manufacturing workers,

compared to 0.4% and 3% for Parisian households. Therefore, because both rural and

wealthier households are more likely to be employed in emissions-intensive sectors, they

may be more affected by the introduction of a carbon tax on energy consumed by firms.

Figure 3: Spatial distribution of fossil fuel share and emissions per workers

Sources: Panel a: BdF 2017 and 2021 households fiscal declarations. Panel b: 2022 BTS and national

accounts

In conclusion, geography plays a more significant role than income in explaining both

households’ energy consumption and firms’ emissions intensity. As a result, house-

holds in rural areas will be affected by the introduction of a carbon tax in

two ways: first, through their higher fossil fuel consumption, and second, because they

work for firms that are more emissions-intensive. The role of income is less straight-

forward: while energy consumption is a necessary good, wealthier households tend to

work in more polluting sectors. Therefore, to fully understand the distributive effects

of carbon taxes, we need to develop a model that incorporates these geographic and

sectoral differences.

1
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2 A spatial heterogeneous-agent model

We combine heterogeneous-agent à la Aiyagari (1994), with idiosyncratic productivity

shocks leading to income and wealth heterogeneity, to spatial models, with segmented

labor and housing markets, different subsistence energy levels by living areas, and

endogenous migration choice. Our productive sector is composed of a regional final good

producer in each living area, which uses capital, labor, electricity and imported fossil

fuel as intermediate inputs. Another national representative firm produces electricity

using capital and imported fuel. Finally, the fiscal authority has access to several

instruments: a progressive labor income tax Γ(·), a flat capital income tax τ k, a VAT

tax τVAT and carbon taxes on households τh or firms τ f . Carbon tax revenue is used

either to increase public spending or to implement targeted transfers. Our algorithms,

developed from scratch in MATLAB, are precisely detailed in Appendix B.

2.1 Households

The economy is populated by an infinite amount of households indexed by i that are

heterogeneous in two dimensions. The “vertical” heterogeneity is related to the id-

iosyncratic productivity process z, creating a distribution for wealth and income. The

“horizontal” heterogeneity is related to the living area, with several household types

k ranking households from “rural” to “urban”, depending on the size of the city they

live in. The living area determines the minimum subsistence energy consumption level

ē(k), the energy mix parameter γh(k), housing price pH(k), wage w(k), and the mean

and variance of the idiosyncratic productivity shock, so that the individual productiv-

ity is denoted zi(k). Households optimally choose the city type, taking into account

a fixed migration cost: κ(k, k′) ≥ 0. As in Ferriere and Navarro (2025), we assume

a preference shock that follows a Gumbel distribution with variance ϱ, that yields a

closed-form solution for the migration probability (see Appendix B for details).

Households maximize intertemporal utility, choosing consumption c, housing con-

sumption H, asset a′ at the beginning of next period, energy bundle eh (composed of

electricity Nh and fossil fuel F h with the carbon tax τh), subject to their budget con-

straint, their idiosyncratic productivity process and a borrowing constraint. Households

supply an exogenous level of labor l̄. Each household i of type k solves the following

program8 (omitting subscript i for clarity):

8Denoting a the assets at the beginning of the period, z the idiosyncratic productiv-

ity, and x′ the next period of variable x, the Bellman equation is defined as V (a, k, z) =

maxu,a′,k′

{
u1−θ−1
1−θ + βE [V (a′, k′, z′)|k, z]

}
, such that Equations (1) to (5) hold.
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(
ct
uϵC
t

)σ−1
σ

+ Λ
1
σ
E

(
eht − ē(kt)

uϵE
t

)σ−1
σ

+ Λ
1
σ
H

(
Ht

uϵH
t

)σ−1
σ

= 1 (1)

eh =

[
(1− γh(kt))

1
ϵh (Nh)

ϵh−1

ϵh + γh(kt)
1
ϵh (F h)

ϵh−1

ϵh

] ϵh
ϵh−1

(2)

(1 + τVAT)
[
ct + pNt N

h
t + (pFt + τht )F

h
t

]
+ pH(kt)Ht︸ ︷︷ ︸

Total consumption expenditures

+ at+1 − at︸ ︷︷ ︸
Savings

+ κ(k, k′)︸ ︷︷ ︸
Migration cost

= Γ
(
zt(kt)w(kt)l̄

)︸ ︷︷ ︸
Net labor income

+ (1− τ k)rtat︸ ︷︷ ︸
Net capital income

+Tt(kt, zt, at)︸ ︷︷ ︸
Transfers

(3)

zt(kt) = ext(kt) , xt(k) = (1− ρz)µz(kt) + ρzxt−1(kt) + ϵt, ϵt ∼ N (0, σz(kt)) (4)

at ≥ −a (5)

Equation 1 implicitly defines utility following Comin, Lashkari and Mestieri (2021),

which is appealing for two reasons. First, it introduces a non-homotheticity for the

energy consumption that does not vanish with income: energy represents a higher share

of total consumption expenditure for poor households, and stays a non-homothetic good

even for high income. Second, this utility function allows for imperfect substitution

between energy and other goods, with a constant elasticity of substitution σ. Here,

ΛC , ΛH and ΛE control the share of expenditures devoted to c, H and eh, and ϵC , ϵH

and ϵE control the income elasticity of demand for each good. On top of this utility

function, we introduce a minimum subsistence level in energy ē(k) that differs across

living areas, accounting for higher energy needs in rural areas compared to urban areas

(lack of public transportation, less efficient transportation system, bigger houses...).

Equation 2 describes the energy bundle of the household. The elasticity of sub-

stitution between fossil fuel and electricity is determined by the parameter ϵh, and the

energy mix depends on the living area with the parameter γh(k).

Equation 3 defines the budget constraint of households, subject to four taxes.

Good and energy consumptions are subject to a VAT tax at a rate τVAT. Fossil fuel

with relative price pFt is subject to an excise carbon tax τht . On the revenue side, labor

income is taxed according to a progressive tax rule Γ(·) defined later. Capital income

is subject to a flat tax at rate τ k. Finally, households receive lump-sum transfers from

the fiscal authority, which may depend on their disposable income level or place of
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residence. On the expenditure side, revenues can be used for consumption, savings, or

covering migration costs.

Equation 4 is the idiosyncratic productivity process. Productivity follows an AR(1)

process with normally distributed shocks. We allow the mean µz and the variance σz

to depend on the type k.

Finally, Equation 5 depicts the borrowing constraint leading to imperfect capital

markets. Households cannot borrow more than a, so that some agents will be con-

strained and “hand-to-mouths”, creating households with high marginal propensity to

consume at the bottom of the wealth distribution.

2.2 Production: goods, energy and housing

2.2.1 Regional Goods & Services sector

The consumption good (Y ) is produced competitively in each living area k using labor

LY , capital KY and energy bundle eY (composed of electricity NY and fossil fuel F Y

with the carbon tax τ f ). We assume that goods in each region are perfect substitutes,

so that Y =
∑

k Yk. Good producer in region k solves the following program:

max
{LY

k ,KY
k ,eYk ,FY

k ,NY
k ,Yk}

ΠY = Yk − rKKY
k − w(k)LY

k − (pF + τ f )F Y
k − pNNY

k

such that

Yk =

[
(1− ωy(k))

1
σy
(
(KY

k )
α(LY

k )
1−α
)σy−1

σy + ωy(k)
1
σy (eYk )

σy−1

σy

] σy
σy−1

eYk =

[
(1− γy)

1
ϵy (NY

k )
ϵy−1

ϵy + γ
1
ϵy
y (F Y

k )
ϵy−1

ϵy

] ϵy
ϵy−1

ωy(k) is region-specific, reflecting the fact that carbon-intensive industries are often

located in rural areas, whereas less intensive service firms are more common in ur-

ban areas. All other parameters (δ, α, σy, γy, ϵy) are similar across regions. Since labor

supply is not uniformly distributed and production function parameters differ across

regions, wages w(k) are region-specific. Hassler, Krusell and Olovsson (2021) points

toward a very low short-run substitutability between energy and other inputs once the

technology factors have been chosen. Moreover, Casey (2024) shows that Cobb-Douglas

production functions with energy inputs vastly overestimate transitional emissions ad-

justments. Both papers motivate our choice for a CES production function, with σy

being the elasticity of substitution between energy and non-energy inputs. Moreover,

we assume constant return to scale since Lafrogne-Joussier, Martin and Mejean (2023)

finds a full pass-through of positive energy price shocks using French firm microdata.
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Finally, the energy used by the firm is a bundle of electricity and fossil fuel, with an

elasticity of subtitution governed by the parameter ϵy.

2.2.2 National electricity sector

Electricity N (for Nuclear) in our model is a consumption good for households (Nh) and

an intermediary input for firms (Ny). We assume electricity is produced competitively

using capital kN and fossil fuel FN , according to the following program:

max
{KN ,FN ,N}

ΠN = pNN − rKKN − (pF + τ f )FN

such that

N = (KN)ζ(FN)1−ζ

2.2.3 Imported fossil fuel sector and the rest of the world

Fossil fuel is imported from the rest of the world, at a price pF that reacts to the

demand:

pF = p̄F δF

The rest of the world uses this revenue to import goods X from the domestic economic.

The budget constraint of the rest of the world – or equivalently the equilibrium condition

for the current account of both the domestic economy and the rest of the world – is

then:

X = pFF

This assumption is a reduced-form representation of the rest of the world, while still

allowing fossil fuel prices to adjust following a decline in domestic demand.

2.2.4 Regional housing supply sector

Each city-type k has a housing supply HS(k) that may react to the regional housing

price:

HS(k) = Hk

(
pH(k)

)δH
where Hk is a constant and δH is the price elasticity of housing supply.

2.3 Fiscal authority

The fiscal authority gets revenue from taxes on labor income, capital income, con-

sumption and carbon taxation (i.e. fossil fuel consumption). It uses its revenue to
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fund transfers (T ), public spending (G) and public debt repayment (rtd̄). Denoting

µt(a, z, k) the measure of households with state (a, z, k), the aggregation over all house-

holds is given by Xt =
∫
x dµt(a, z, k) for x ∈ {a, c, F h, Nh}, and firms aggregation

F Y
t =

∑
k F

Y
k,t. The government has the following budget constraint:

Tt +Gt + rtd̄ =

∫
[ztwtlt − Γ(ztwtlt)] dµt + τ krtAt + τVAT

(
Ct + pNt N

h
t + pFt F

h
t

)
+ τht (1 + τVAT)F h

t + τ ft (F
Y
t + FN

t )︸ ︷︷ ︸
Carbon tax revenue (CTR)

Following Heathcote, Storesletten and Violante (2017), we assume a progressive labor

tax that gives the following net labor income:

Γ(zwl) = λ(zwl)1−τ

Apart for the carbon tax revenue, the budget constraint clears with G. However, the

carbon tax revenue can be separately allocated either to finance an increase in public

spending, or to fund lump-sum transfers towards households, possibly contingent on

income and location. We explore these different scenarios in Section 5.

2.4 Market clearing conditions and equilibrium

We denote µk̄
t = µt(a, z, k = k̄) the regional aggregation of households of type k̄. The

firm aggregation is X =
∑

k X(k) for X ∈ {KY , HS, Y, IY , F Y , NY }. Finally, to close

the model, we have the following market clearing conditions:

At = KY
t +KN

t +HS
t + d̄ (Asset)

∀k,
∫
zl dµk

t = LY
k (Labor)

∀k,
∫
H dµk

t = HS
t (k) (Housing)

Yt = Ct + INt + IYt +Gt +Xt +
∫
κtdµt (Goods and services)

Ft = FN
t + F Y

t + F h
t (Fossil fuel)

Nt = NY
t +Nh

t (Electricity)

Households’ savings are claims on a mutual fund that holds capital, housing and public

debt, and redistribute the average return to households according to the equation:

rtat = (rKt − δ)Kt +
∑

k p
H
k,tH

k
t + rtdt. The goods and services (G&S) production

(Y ) is consumed by households (c), government (G) or foreigners (X), or invested

by firms (IN , IYk ), partly to compensate the depreciation rate, so that we have It =
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Kt+1 − (1− δ)Kt. Electricity N is consumed as intermediate inputs by firms (NY ), or

as a commodity good by households (Nh).

We define the equilibrium as paths for households decisions {Ct, Ht, N
h
t , F

h
t , At+1, Kt+1}t,

G&S firm decisions {Yk,t, L
Y
k,t, K

Y
k,t, F

Y
k,t, N

Y
k,t}k,t, electricity firm decisions {Nt, K

N
t , FN

t }t,
relative prices {rt, wk,t, p

N
t }k,t, fiscal policies {Γ(.), τ k, τVAT, τht , τ

f
t }t, public expenditures

{Tt, Gt}t, and aggregate quantities, such that, for every period t, (i) households and

firms maximize their objective functions taking as given equilibrium prices and taxes,

(ii) the government budget constraint holds, and (iii) all markets clear.

3 Calibration on French macro and micro data

As this paper assesses the distributive effects of carbon taxation, the main point of

the calibration is to reproduce the energy mix used by households and firms in France,

along the geography and income dimension. As shown in Section 1, households in rural

areas consume more energy and fossil fuel than households in large cities, and work

in more emission-intensive firms. We carefully calibrate the joint geography-income

distribution, the migration patterns between regions, and the main aggregates. As

explained in Appendix B, our calibration strategy is to directly integrate parameters as

guesses of the model, so that each aggregate target is precisely matched. In this section,

we describe how we choose the target for each parameter. The values for all parameters

are presented in Table 8. Untargeted moments – income composition, taxes, wealth

and MPCs distributions – are presented in Appendix C.

3.1 Households

Consumption heterogeneity. We use ΛE and ΛH to match the average energy and

housing share in total expenditures, and we normalize ΛC to 1 as in Comin, Lashkari and

Mestieri (2021). The parameters ϵE and ϵH are calibrated to fit the non-homotheticity

of energy and housing across the income distribution and ϵC is normalized to 1. We

then add the ē(k) to match the observed spatial heterogeneity in energy constraints.

We normalize ē(Paris) = 0 and set the other ē(k) to match the average energy share in

each city type, and γ(k) to have the right energy mix in each area, as shown in Figure

4.a.
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Figure 4: Energy share in total consumption

Notes: share of fossil fuel [(pF + τh)Fh] and electricity [pNNh] in total consumption expenditures

[c+ (pF + τh)Fh + pNNh]. Panel a: by geographical location. Panel b: by disposable income quintile,

untargeted in the model.

Source: BdF 2017 Insee survey.

We estimate the elasticity of substitution between energy and G&S consumption to σ =

0.2, using National Accounts longitudinal data from 1959 to 2021 (the data and method

are described in Appendix C). Finally, we set the elasticity of substitution between fossil

fuel and electricity to ϵh = 1.5. Literature estimates range from 0.02 in the short-run in

Hassler, Krusell and Olovsson (2021) to 2 in the long-run for Papageorgiou, Saam and

Schulte (2017): we choose this value to be the same as the one selected for firms (ϵy),

estimated in Fried, Novan and Peterman (2024). In Appendix F, we provide robustness

check for alternative values of σ, ϵh and ϵy.

Income process. As changes in transfer, labor and capital incomes account for a large

part of the distributive effects of carbon taxation, we calibrate carefully the distribution

of each type of income. We fit the disposable income distribution9 (Figure 5.a), using

the AR(1) persistence parameter ρz, which is set to be the same across all types. We use

the means µz(k) and variances σz(k) of the idiosyncratic productivity process for each

type to match the proportion of each geographical location type within each disposable

income quintile (Figure 5.b). Our model recovers that Parisian households are richer

than average, as they account for 26% of the top income quintile but only 19% of the

population. Households living in rural areas or small cities are more equally distributed,

9From the 2021 Insee survey “Revenus et patrimoine des ménages” (RPM 2021).
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with over-representation in Q2, Q3 and Q4, and under-representation in Q1 and Q5.

Finally, we set the annual discount factor β = 0.94 to match the French capital-to-

income ratio10 when excluding public debt: a
GDP

= 4.5, and the intertemporal elasticity

of substitution (IES) 1/θ to 1.

Figure 5: income distribution of households

Notes: Panel a: quintile of disposable income (source: RPM 2021 Insee survey). Panel b: share

of each geographical location type within each quintile in data (solid lines, source: BdF 2017 Insee

survey) and in the model (dashed lines). Each quintile sums to 100%.

3.2 Migration costs

We use migration costs κ(k, k′) to recover the empirical probability of migrating from

region k to region k′. We first compute the empirical migration matrix over a 5-year

horizon.11 Specifically, we compute the probability of being in region k′ at time t + 5,

conditional on being in region k at time t. We then construct a 5 × 5 migration cost

matrix κ to match the empirical migration matrix, normalizing the diagonal to zero to

reflect zero cost for staying in the same region. The migration probabilities in the model

and in the data are shown in panels a and b of Figure 5. The model fits the data well,

and it replicates three key stylized facts. First, on average, 85% of households remain in

their current region over a 5-year period, implying an annual migration probability of

approximately 3% (1− 0.851/5). Second, movers tend to relocate to regions of a similar

type (i.e., values close to the diagonal), with very few migrations between extremes such

as Paris and rural areas. Third, very few people move to Paris, and 93% of current

Parisians remain in Paris five years later (or 98.6% after one year).

10See 2022 Banque de France report.
11To construct this migration matrix, we use the panel dataset BTS-Salariés 2016–2021. We retain

only workers aged between 30 and 55, with annual wages above €2,100, and who are present in the

dataset throughout the 2016–2021 period. This sample includes 1,010,559 individuals.
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Figure 6: Migration matrix and migration parameters

Notes: Panel a and b: probability to have migrated from k towards k′ 5 years later, with {1, 2, 3, 4,
5} = {Rural, Small, Medium, Large, Paris}. Sources: panel data from BTS-Salaries 2016-2021. Panel

c: migration cost from k to k′ in the model, as % of income. Panel d: change in model probability of

migrating in region k′, following a decrease in average labor income tax rate in region 1, see text.

How do our migration costs relate to the empirical literature? There are two main

approaches in the literature to discipline migration costs in models. The first is to

estimate monetary moving costs directly from data or through structural modeling.

For instance, Kennan and Walker (2011) estimate an average moving cost of $312,000,
equivalent to approximately 600% of annual income. However, this is a hypothetical

cost, as it reflects the case of an individual being forced to move to a random location; in

practice, households choose destinations, typically reducing the cost. Similarly, Artuç,

Chaudhuri and McLaren (2010) estimate sectoral migration costs ranging from 2 to 13

times the average annual wage. Other studies, such as Bryan and Morten (2019) and

Clemens, Montenegro and Pritchett (2019), employ lower values, between 15% and 50%

of annual income. Panel c of Figure 6 presents our migration cost matrix, expressed as a

share of GDP per capita. We highlight three important features. First, averaging across

the entire matrix (excluding the diagonal), and using population weights, the average

(hypothetical) migration cost is 84% of annual income, or approximately e29,000. This

hypothetical cost is the average an individual would have to pay to move to an arbitrary
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location. If we instead average over observed migration flows, we find that migrating

households pay 30% on average. Second, migration costs vary substantially depending

on the origin region. Averaging across each row, i.e.
∑

k′=k κ(k, k
′)/4, we obtain the

hypothetical cost of moving from region k to a randomly chosen region. These values are

118%, 115%, 92%, 69%, and 0% for rural, small, medium, large, and Paris, respectively.

Thus, the smaller the origin region, the higher the expected cost of migration. Third,

migration costs also depend on the destination region. Averaging across each column,

i.e. considering the cost of migrating to region k′ from a randomly selected origin,

yields values of 15%, 10%, 28%, 50% and 289% for rural, small, medium, large, and

Paris, respectively. This suggests that the larger and more urbanized the destination,

the higher the associated migration cost.

The second approach to disciplining migration costs is to estimate the dynamic

response of migration probabilities following changes in tax rates, typically for high-

income households. For example, Young and Varner (2011) finds that a change in the

top income tax rate leads to a 0.1 percentage point change in the migration probability

of millionaires. Similarly, Akcigit, Baslandze and Stantcheva (2016) estimates an elas-

ticity of around 0.03 for local inventors. In contrast, Martinez (2017) finds much higher

elasticities, ranging from 3.2 to 6.5, for wealthy Swiss taxpayers. In Spain, Agrawal and

Foremny (2019) shows that a 1% increase in a region’s net-of-tax rate relative to others

increases the probability of moving to that region by 1.7 percentage points. In panel d

of Figure 6, we replicate this type of experiment in partial equilibrium. Specifically, we

increase λ, the average net-of-tax rate on labor income, by 1% in the rural region. We

then compute households’ optimal location decisions, holding all other prices constant,

and compare the resulting transition matrix to the baseline. For each income quintile,

we examine the probability of migrating to region k′, conditional on starting in another

region. As expected, we observe positive values in the first column and negative values

in the others: following the tax cut, households are more likely to move to the rural

region and less likely to move elsewhere. Moreover, the change in migration probability

is much larger for high-income households than for low-income ones. This is because

wealthier individuals face lower effective migration barriers and benefit more from lower

income taxes due to their higher productivity. In summary, tax changes can induce mi-

gration, particularly among richer households. We will return to this mechanism in our

results section, when analyzing the effects of carbon taxation—a non-region-specific

policy whose impacts differ by location.
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3.3 Firms

Goods and services firm. The energy share ωy(k) is city-specific and accounts for the

share of each regional firm in total emissions, as illustrated in Figure 2. We follow

Fried (2018) and set the elasticities of substitution between energy and the capital-

labor bundle, and between electricity and fossil fuel, to respectively σy = 0.05 and

ϵy = 1.5. These elasticities lie within the range of estimates from Papageorgiou, Saam

and Schulte (2017): we provide robustness check for alternative values in Appendix F.

The capital share is set to α = 0.31 to match the share of labor revenue wl
GDP

= 65%

following Cette, Koehl and Philippon (2019). The share of fossil fuel in the policy mix

is set to γy = 0.86 such that electricity accounts for 33% of the regional firms’ energy

mix. Finally, the depreciation rate is set to δ = 11.8% to match the aggregate share of

investment as in Auray et al. (2022).

Electricity firm and other parameters. The electricity sector is capital intensive, so

we set ζ = 0.9813 to have FN

F
= 1%. We assume that electricity is produced using

few fossil fuel inputs because France relies mainly on nuclear power plants and hydro-

electricity from dams. The initial price pF of the imported fossil fuel is set such that

fossil fuel imports account for 4% of the GDP. The housing supply scaling parameters

{Hk=1,2,3,4} are set to obtain the population share of each region in France: 23.5%,

26.0%, 18.5%, 13.4%, and 18.6% for Rural, Small, Medium, Large, and Paris. The last

parameter H5 is set to obtain the share of housing in total wealth H/A = 0.66. The

price elasticity of housing supply is set to δH = 0.2, in the range of common values

found in the housing model literature (for example 0.1 for Murphy (2018) and 0.3 for

Baum-Snow and Han (2024)). Finally, in our main quantitative exercise, we suppose

the price of fossil fuel is fixed and does not react to the domestic demand (δF = 0):

this small-open economy assumption is relaxed in Appendix F.

3.4 Fiscal authority

We set lump-sum transfers to T = 0.08 to match the share of transfer in each disposable

income quintile, as shown in Figure 13.a. We set the labor tax progressivity to τ = 0.08

following Ferriere, Grübener, et al. (2023). Following Auray et al. (2022), λ targets

public spending Ḡ at 29.3% of GDP, we set the effective VAT rate τVAT to 22.24% and

the effective capital income tax rate to 9.02%. The resulting amount of tax paid by

each group of households is shown in Figure 13.b. The fit with the data is good, as we

mostly miss corporate taxes in the model.
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4 Quantitative results

In Section 1, we show that geography is an important determinant of energy consump-

tion for households and firms. In Sections 2 and 3, we build a spatial heterogeneous-

agent model, calibrated on France. In this section, we increase carbon taxes τh or τ f

and compute the welfare change associated with the transition.

Experiment. The experiment is as follows. We start at the initial steady state as

described in Section 3. At t = 1, we introduce an unexpected shock to the path of τh

or τ f . After t = 1, the path is perfectly anticipated by agents. The shock is permanent,

with the final tax calibrated to reduce emissions by 10% at the final steady state. The

increase in tax is linear: the tax rises from 0 to τfinal over 10 periods, and stays at τfinal

for t ≥ 10. The carbon tax revenue, in this benchmark experiment, is used to increase

public spending; we consider alternative rebating policies in Section 5.

Welfare measure. The welfare is measured as the wealth transfer now that is equiv-

alent to the welfare change during the transition. It answers the question: “what share

of my income should I receive now to be indifferent between staying at the initial steady

state, or experiencing the transition?”. Formally, for each initial wealth a0, region k0

and productivity z0, we find x that satisfies the following equality:

∞∑
t=0

βtE0[U
no tax
i,t |a0 + x, k0, z0] =

∞∑
t=0

βtE0[U
tax
i,t |a0, k0, z0]

with U = u1−θ

1−θ
. Finally, we express the wealth equivalent by dividing x by total dispos-

able income: WE(a0, k0, z0) = x(a0, k0, z0)/TI(a0, k0, z0)
12. Therefore, a wealth equiv-

alent of −10% means that a household should receive a one-time lump-sum transfer

equal to 10% of their current income in order to be indifferent between staying at the

steady state or going through the transition with the increase in carbon tax. Alterna-

tively, dividing this number by the infinite sum of discount factors
∑∞

t=1 β
t ≈ 15.7 gives

the transfer a households should receive every year in order to be indifferent between

staying at the steady state or experiencing the transition.

In this section, we describe the transmission of τh and τ f to household welfare,

categorized by income quintile and location. We also examine the role of migration in

shaping the distributive effects of carbon taxes, and highlight that the associated costs

may differ between the short run and the long run.

12With TI(a, k, z) = Γ
(
z(k)w(k)l̄

)
+ (1− τk)ra+ T (k).
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4.1 The distributive effects of carbon taxes

The carbon tax burden varies significantly depending on location, income, and the type

of tax. Figure 7 presents the average welfare effects (in wealth equivalent, as described

above) by region and income quintile for the initial distribution, for an increase of τh

only (left panel) and τ f only (right panel).

Before examining the different channels, we provide some general observations.

First, there is a welfare cost associated with reducing emissions by 10%, as the WE

is negative, assuming G is not valued by households to isolate the distributive effects

of carbon taxation. This cost is higher for τh (−27% of initial disposable income on

average) than for τ f (−11% of initial disposable income). This implies that the social

planner would need to compensate each individual with a one-time e10,500 transfer to

make households accept the increase in τh, and e4,250 for the increase in τ f . Alter-

natively, the planner should give e673 and e272 transfers every year, respectively, to

make households accept the increase in τh and τ f . Second, both taxes are regressive, as

the welfare cost is higher for poorer households. The regressivity is significantly more

pronounced for τh. Third, the welfare cost varies substantially by location. Parisian

households tend to experience smaller welfare losses than other regions, regardless of

income, while households in small and medium cities consistently face high losses. We

now detail the distributive effects of both taxes.

Figure 7: Average welfare effect by region and income

Notes: This represents the average welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition. Panel a: change in τh only.

Panel b: change in τf only.

Carbon tax on households (τh). Taxing fossil fuel consumption by households, with

few indirect income effects. As shown in the decomposition in Figure 15, the overall
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welfare impact of τh depends on two key factors: the direct effect of the carbon tax,

and the change in housing rents pH . The direct effect of τh is more pronounced for

households with high fossil fuel consumption, i.e., rural and low-income households.

Although households can substitute energy with goods and fossil fuels with electricity,

the non-homotheticity of energy consumption with respect to income (ϵE) and geogra-

phy (ē) generates heterogeneous welfare costs. Specifically, the welfare cost is equal to

−29.7% of initial disposable income (WE) in rural areas compared to −23.4% WE in

Paris, and −34.7% WE for the bottom income quintile (Q1) versus −19.6% WE for the

top quintile (Q5). However, this adverse effect on rural households is partially offset

by a decline in rents. As some households relocate from small to large cities to avoid

the carbon tax, housing price decreases by 6.2% in rural areas and increases by 4.6%

in Paris, mitigating the geographic disparity. Thus, while the carbon tax dispropor-

tionately burdens rural areas because of energy consumption differences, migration and

housing market adjustments alleviate some of this burden.

Carbon tax on firms (τ f). Taxing fossil fuel consumption by firms alters their input

mix and impacts households through changes in income and general equilibrium effects.

As illustrated in Figure 15, the welfare impact of τ f depends on adjustments in wages,

housing rents, and the interest rate. Since firms in rural areas are more fossil fuel-

intensive, the rise in fossil fuel prices reduces the demand for other inputs, particularly

labor, leading to a decrease in wages of 3.9% in rural areas compared to a 1.1% decrease

in Paris. This results in welfare costs of −17% WE and −5% WE, respectively. The

decline in wages disproportionately affects lower-income households, as labor income

constitutes a larger share of their total income. As with τh, this geographic burden is

partially offset by a decrease in housing rents: as households migrate from rural to urban

areas seeking higher wages, pH decreases in rural areas, mitigating losses for households

that remain. Lastly, the reduction in firms’ capital demand lowers the interest rate,

which mostly affects wealthier households because capital income constitutes a larger

portion of their earnings.

Policy implications of EU ETS 1 and EU ETS 2. Although carbon taxes and carbon

quotas are different, our framework can give us insights into the expected effects of the

European Union Emissions Trading System (EU ETS). The first scheme (EU ETS 1),

introduced in 2005 and targeting specific industrial sectors, is similar to our tax on

firms, denoted as τ f . In contrast, the upcoming extension (EU ETS 2, also known as

Phase 4), scheduled for 2027 and covering sectors not included in the initial phase –

primarily goods directly consumed by households – is more analogous to our tax on

households, τh. In Figure 7, we set τh or τ f such that, at the final steady state, total

emissions are reduced by 10% compared to the initial steady state. This represents a
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carbon tax increase by e149 per ton of CO2eq for households, and by e117 for firms.13

At the peak of the EU ETS 1 in 2023, the price of a ton of CO2 reached e100, which

translates into an 8.5% decrease in total emissions in our model, assuming EU ETS 1

covers all direct emissions by firms. For the future EU ETS 2, the first three years will

include a price containment mechanism, whereby if the price exceeds e45, additional

allowances may be released. According to our simulations, this maximal price translates

into a 3% decrease in total emissions, provided the EU ETS 2 extension covers all direct

household emissions. Therefore, assuming a price of e100 for both the current EU ETS

and its extension, and assuming they cover all direct emissions from both firms and

households, our model predicts a decline of 15% in total emissions, and a welfare cost

equal to −28% of initial disposable income (or a one-time equivalent of −e9, 850, or
−e631 per year).

Robustness checks. Our primary objective is to quantify the redistributive effects

of carbon taxes. To this end, we have calibrated the model using relatively low elas-

ticities of substitution, which reflect households’ and firms’ limited short-run ability to

adapt. In Appendix F, we re-run the main experiments using alternative values for key

elasticities (σ, σy, ϵy, ϵh, δH). We find that the distributional results are largely robust

to changes in σy, ϵy, and δH : average welfare losses remain around −17% (in wealth

equivalent terms), with rural households facing losses about 20% higher than those in

Paris, and households in the bottom income quintile (Q1) experiencing welfare losses

45% higher than those in the top quintile (Q5). The elasticity of substitution between

fossil fuels and electricity for households (ϵh) plays a somewhat more significant role.

Reducing ϵh from 1.5 to 1.3 increases overall welfare losses by 3.2 percentage points, as

it becomes harder to substitute fossil energy with electricity. The rural/Paris welfare

gap also widens slightly, from 18.3% to 18.8%, due to rural households’ greater depen-

dence on fossil fuels. The most influential parameter is σ, the elasticity of substitution

between energy and other consumption goods. Increasing σ from 0.2 to 0.4 reduces the

average welfare cost of carbon taxation by half and significantly lowers the rural/Paris

disparity. As energy becomes more easily substitutable, differences in baseline energy

consumption matter less for welfare outcomes. These findings suggest that long-run

calibrations, featuring greater flexibility and substitution possibilities, may yield dif-

ferent results. They also highlight that the political acceptability of carbon taxation

could be enhanced through policies that facilitate adaptation, such as promoting electric

vehicles, improving public transportation, and investing in energy-efficient housing.

In conclusion, due to differences in households’ energy consumption baskets for τh

13As firms emit more and exhibit greater elasticity of substitution for clean energy, they require

lower taxes to reduce emissions by the same amount.
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and firms’ fossil fuel intensity for τ f , both carbon taxes disproportionately impact rural

areas and lower-income households. Migration and housing price adjustments partially

mitigate the welfare costs along the geographic dimension. In the following section, we

further examine the role of migration and the welfare costs over different time horizons.

4.2 Migration and welfare

In our spatial model, households can migrate subject to a migration cost κ(k, k′), which

tends to smooth welfare costs between regions over time. In this section, we examine

the role of migration in shaping the distributive effects of carbon taxes.

Mobility decisions. Figure 8 illustrates household migration behavior by wealth

level and how it changes under our two carbon taxes. Panel a shows that, in the initial

steady state, wealthier households are more likely to migrate, due to the presence of

fixed migration costs, which disproportionately constrain low-wealth households. Panels

b and c report changes in migration decisions during the first period of the transition,

relative to the initial steady state. In Panel b, following an increase in the household

carbon tax (τh), the 20% poorest households in most regions exhibit no change in their

migration probability. Lacking the resources to afford moving costs, many of these

households remain effectively “trapped.” Some respond by increasing savings, either to

enable future migration or to buffer future consumption losses. In contrast, middle-

wealth households (deciles 3 to 5) in rural and small cities often use their accumulated

savings to finance relocation.

Panel c shows that the firm-level carbon tax (τ f ) induces different mobility dynam-

ics. Since this tax operates through income effects, such as lower wages or reduced

employment, it leads to a broad decline in migration possibilities across wealth groups

and cities. The exception is wealthy households, who have enough wealth to stay mo-

bile and whose labor income is a large share of total income. In Figures 18 and 19 in

Appendix, we compare mobility matrices at different stages of the transition for both

tax scenarios with the mobility matrix of the initial steady state.
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Figure 8: Migration choices by wealth quantiles

Notes: Panel a: probability of leaving the region by wealth decile. Panel b and c: change in migration

decisions in the first period of the transition relative to the initial steady state after an increase in τh

and τf , respectively.

As a result of these decision rules, both taxes leads to significant, but different,

migration dynamics between region. Figure 17 in Appendix illustrates population shifts

between steady states across both income and geographic dimensions. Under τh, the

increase in energy price encourages poor households to move away from rural areas and

small cities, and they are replaced by richer households who can absorb the increase in

prices. In the new steady state, average household income increases by 2.4% in rural

areas and 1.1% in small cities relative to the initial equilibrium, but falls by 3% in large

cities, highlighting interregional recomposition effects.

The migration dynamics is the opposite for τ f . As wages decline by 4% in small

cities compared to only 1% in Paris, high-productivity workers migrate from small to

large cities. They are replaced by low-productivity households for whom the wage

decline has a smaller impact, as transfers constitute a larger share of their income. In

the new steady state, average income is 5.5% lower in rural areas and 2.8% lower in

small cities relative to the initial equilibrium, but increases by 1.6% in medium cities

and 4.2% in large cities.

Short-run and long-run welfare effects. Migration shapes the geographic distribu-

tional effects of carbon taxes, but this adjustment takes time, as households need to

accumulate savings to cover migration costs or wait for a favorable productivity shock.

As a result, welfare effects differ between short-run and long-run horizons. To approx-

imate short-run welfare effects, we compute welfare over a finite horizon by truncating
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the infinite sum of discounted utility. Formally, for a given T , we solve the following

equation:
T∑
t=0

βtE0[U
no tax
i,t |a0 + x, k0, z0] =

T∑
t=0

βtE0[U
tax
i,t |a0, k0, z0]

and scale the x obtained by total income, as explained above. Furthermore, to facilitate

comparisons, we normalize the “horizon-T wealth equivalent” to have the same mean

as the “infinite-horizon WE,” since welfare costs accumulate over time. This metric

indicates the share of income required to compensate a household for the welfare cost

incurred over the first T periods of the transition.

The red and yellow lines in Figure 9 represent the wealth equivalent (WE) for

T = 5 years and T = 20 years, while the blue bars correspond to T = ∞. As shown, the

distributive effects differ significantly between the short run and the long run. At T = 5,

welfare losses are significantly higher for rural households than for urban ones, and much

lower for poor households than for rich ones. In the short run, rural households bear the

cost of carbon taxes but have not yet migrated. Since regional population adjustments

described above have not yet fully occurred, the cost of τh and τ f is concentrated in the

middle of the income distribution, as shown in the decomposition for the 5-year horizon

in Figure 16 in Appendix. This “U-shape” pattern aligns with panel b of Figure 5, which

shows that rural households are concentrated in the middle of the income distribution,

whereas Parisian households are concentrated at the tails. Another reason for this U-

shape is the fact that the real interest rate decreases a lot in the first periods, affecting

low-income households less.
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Figure 9: Welfare effect with and without migration, and at different horizons

Notes: This represents the average welfare change (one-time wealth-equivalent transfer expressed in %

of households’ disposable income) for each group over the transition, for different horizons or without

migration. Results of different horizons are scaled for comparison. Panels a and c: change in τh only.

Panels b and d: change in τf only.

Counterfactual without migration. In Figure 9, we conduct the same experiments

as above (keeping the same target of −10% in total emissions) but restrict households

from migrating (formally, we set κ = ∞). The blue bars represent the results of our

benchmark with migration, while the black dashed line reflects the scenario without mi-

gration. We observe that, although migration does not significantly affect welfare costs

across the income dimension, it substantially reduces disparities along the geographical

dimension. Without migration, rural areas face welfare costs equal to −42% WE of

initial disposable income for τh and −19% WE for τ f , compared to −30% WE and

−12% WE with migration. The opposite effect is observed in large cities: they attract

households from rural areas seeking to avoid the carbon tax, which pushes housing

rents up, and real wages down. Therefore, welfare costs in Paris are significantly higher

with migration than without. These results highlight the critical role of migration in

shaping the distributional effects of carbon taxes.

In conclusion, we have shown that the cost of the carbon transition for house-
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holds heavily depends on income, geography, and the type of taxes. Rural

areas and poor households tend to experience higher losses compared to urban and

wealthy households. Migration plays a significant role in shaping and smooth-

ing these losses across the geographic dimension. Finally, the population recompo-

sition within regions occurs gradually, implying that geographic disparities are more

pronounced in the short run than in the long run.

5 Optimal transfer policies

The distributive effects of carbon taxation are key for its political acceptability. Our

positive analysis in Section 4 showed that poor and rural households are more affected

by carbon taxes, making them more likely to oppose them or protest, as illustrated by

the Yellow Vest movement in France. In this section, we address the normative question

of the optimal use of carbon tax revenue through targeted lump-sum transfers. Our

fiscal system offers multiple ways to recycle the revenue, such as lowering existing taxes

or investing in measures to mitigate incompressible energy consumption. However, we

argue that transfers are essential for communication and political acceptability. By

explicitly separating carbon tax revenue from the state budget, transfers make clear

that the tax aims to influence behavior rather than finance public deficits.

We consider four scenarios, each targeting a 10% ex-post reduction in emissions

between the initial and final steady states. We assume both taxes are equal, i.e. τh = τ f

(in Appendix E, we also consider scenarios with τh = τ f ). The transfer rule in each

scenario is the following14:

T (yi, k) = CTR ·



0 Scenario 1: Benchmark G

1 Scenario 2: Uniform

µ · y−x
i Scenario 3: Income

µ · y−xk
i Scenario 4: Income×Geography

where T is the transfer, yi the total household’s income, CTR the carbon tax revenue,

and µ the scaling parameter15.

In the “Benchmark G” scenario, the carbon tax revenue is used to increase public

spending G (that are not valued by households), with transfers set to zero. In the

14We also computed results for the additive rule T (y, k) = (xk + y−x) · CTR · µ, but found that it

yields a lower welfare than scenario 4. Moreover, in Appendix E, we consider an alternative rule to

account for progressivity.
15Total income: y = Γ(zwl) + (1 − τk)ra + T̄ . Carbon tax revenue: CTR = τh(1 + τVAT)Fh +

τf (F y + FN ). Scaling parameter: µ = 1/
∫
i
y−xk
i .
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“Uniform” scenario, all households receive the same transfer. In the “Income” sce-

nario, we find the optimal value16 of x to maximize welfare, as defined in Section 4.

This scenario assumes the government knows household income and can implement a

progressive transfer (if x > 0) but cannot differentiate based on location k (or is legally

restricted from doing so, as in France). Finally, in the “Income×Geography” sce-

nario, we optimize over five different xk, allowing the government to apply region-specific

progressivity levels during the transition.

In Table 2, we show the median welfare for each scenario, by location and by income.

We choose the median welfare as we are interested in the political acceptability of

carbon taxes. In Appendix E, we show that we obtain the same qualitative results

taking average welfare as a target, using Negishi weights, or with alternative rebate

formulas.

Table 2: Median welfare change by location and income

Scenario Rural Small Medium Large Paris All

(1) Benchmark G −17.3 −17.4 −15.4 −15.3 −14.5 −16.1

(2) Uniform 6.4 6.7 7.9 10.3 7.3 7.3

(3) Income 7.5 7.5 10.1 13.3 10.4 9.4

(4) Income×Geography 7.5 7.9 13.4 24.1 11.8 10.1

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark G −18.2 −19.1 −17.7 −15.3 −12.8 −16.1

(2) Uniform 20.3 12.5 7.21 3.0 0.9 7.3

(3) Income 66.7 26.5 6.2 −2.0 −0.7 9.4

(4) Income×Geography 94.8 31.7 7.5 −1.3 0.1 10.1

Notes: This represents the median welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition, for different rebating policies.

Our benchmark scenario yields welfare losses, as the revenue is used to increase G

that is not valued by households. This is the most natural choice to study the distribu-

tive effects of carbon taxation, as introducing G in the utility function would directly

affect inequality and distort the analysis. Therefore, replacing this inefficient use of

carbon tax revenue with a uniform transfer naturally yields a higher utility: the com-

parison is more relevant for the distributive effects, and the welfare ratios between areas

or income quintiles. Moreover, for our calibration, transfers are welfare-improving: a

uniform transfer policy increases median welfare by 7.3% (WE). As transfers redis-

tribute resources from high-income households with low marginal utility to low-income

households with high marginal utility, they increase aggregate utilitarian welfare (in

16Scenario 3: x = 2.15. Scenario 4: xk = [2.07, 2.08, 2.38, 2.4, 2.27].
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Appendix E, we also use Negishi weights to neutralize the redistribution motive). Ad-

ditionally, they mitigate inefficiencies arising from the borrowing constraint by providing

some insurance to low-income households, which further increases welfare. Hence, the

welfare gains stem from the model’s baseline calibration, and the relevant comparison

is between our different transfer scenarios, not between T and G.

Although a uniform transfer raises median welfare, an optimal progressive transfer

targeting low-income households yields a 29% higher welfare gain (raising WE +9.4%),

at the expense of high-income groups. However, as shown in Appendix Table 13, the

“Income” scenario also generates welfare losses for 24.2% of households, primarily in

rural areas and small cities. These are primarily high-income households who do not

benefit from the progressive transfer yet still bear the tax burden.

We therefore introduce the “Income × Geography” scenario, which allows trans-

fer progressivity to vary by region. Relative to the income-only rule, this policy improves

welfare by increasing progressivity in large cities and reducing it in rural areas and small

towns. It raises median welfare across all income and geographic groups and reduces

the share of households experiencing welfare losses by 10 percentage points compared

to the income-only scenario. These gains stem from the fact that rural households

are concentrated around the middle of the income distribution, whereas the lowest-

and highest-income households are overrepresented in large urban areas. Allowing for

region-specific progressivity better aligns transfers with local income profiles and re-

duces the dispersion of welfare gains. Figure 10 presents the 25th, 50th and 75th

percentiles of the welfare gain distribution within each income quantile. Compared to

the income-only policy, the Income × Geography rule notably reduces the dispersion

of welfare gains within the bottom quintile (Q1). As a result, incorporating geographic

variation into redistribution policies raises median and average welfare gains by 7.4%

(+10.1% WE) and 7.6% (+29.8% WE), respectively, relative to the optimal transfer

based solely on income. While this policy does not increase median welfare in rural

areas overall, it redistributes gains toward middle- and high-income households within

those areas.
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Figure 10: Distribution of welfare gains within income quintiles

Notes: This represents the 25th, 50th and 75th percentiles of the welfare gain distribution (one-

time wealth-equivalent transfer expressed in % of households’ disposable income) within each income

quintile over the transition, for different transfer policies.

As shown in Figure 20 in the Appendix, our different rebating rules yield different

migration and composition effects across income groups and regions. In the “Income”

scenario, many high-income households migrate from rural and small areas to medium

and large cities, while lower-income households move in the opposite direction due to

declining rents. In contrast, this effect is mitigated in the “Income × Geography”

scenario: since transfers are less progressive in rural and small areas and more progres-

sive in medium and large cities, rich households from rural areas and poor households

from urban regions have fewer incentives to migrate.

We show that it is possible to reduce emissions while mitigating the welfare

losses associated with the green transition. By implementing transfers based on income

and location, the share of households experiencing welfare losses can be reduced, thereby

enhancing the political acceptability of carbon taxes.

6 Conclusion

In this paper, we study the distributive effects of carbon taxation with a focus on spa-

tial heterogeneity. Using both household-level surveys and matched employer-employee

data from France, we document that rural households consume 2.8 times more fos-

sil fuels than urban households and are employed in firms that emit 2.7 times more.

These patterns are consistent across other countries. We incorporate these findings into

a spatial heterogeneous agent model, featuring idiosyncratic income risks, endogenous

savings, and migration choices, as well as segmented housing and labor markets, and lo-

cal energy expenditure shares for both households and firms. Our approach contributes

to bridging a gap between spatial models, which emphasize migration decisions, and

heterogeneous-agent models that analyze inequality and wealth accumulation.
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We find that rural households bear a disproportionate burden from carbon taxation.

In our benchmark scenario, their welfare losses are 20% higher than those of Parisian

households. Ignoring spatial heterogeneity in income-based transfer policies reduces

welfare gains by 7%, a result robust to different welfare criteria and rebate schemes.

These findings highlight a key policy implication: geographical location must be explic-

itly accounted for when designing carbon tax frameworks, particularly as the EU-ETS2

for household heating and transport becomes operational in 2027.

This work opens several avenues for future research. We focus on optimal transfer

policies, as they play a central role in addressing distributional concerns and enhancing

political feasibility. However, future studies could explore alternative uses of carbon

tax revenues within our framework, such as reducing distortionary taxes or financing

clean technologies. Finally, our findings indicate that different forms of carbon taxa-

tion generate distinct migration responses, highlighting the need for further empirical

research.
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A Descriptive Evidence

A.1 City types

Our categorization of city types is as follows:

• Rural areas: Fewer than 2,000 inhabitants.

• Small cities: Between 2,000 and 20,000 inhabitants.

• Medium cities: Between 20,000 and 50,000 inhabitants.

• Large cities: More than 50,000 inhabitants.

• Paris: The Parisian agglomeration, including the departments 75, 92, 93, and 94.

We favor this categorization because the population is uniformly distributed across

these locations, according to the latest 2021 French Census. We check that we recover

a similar distribution in our administrative datasets used in the following sections (BTS

and fiscal declarations from households). Figure 11 provides a map of France illustrating

these categories, using 2024 Insee geographical code.

Figure 11: Spatial distribution of city types, France

Notes: We have 34,998 observations with a Insee geographical code.

Sources: Population data downloaded from https://www.data.gouv.fr/ using 2024 Insee geograph-

ical code and 2021 French Census data.
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A.2 Households: energy consumption patterns

Energy share and geography: Table 3 shows the energy, fossil and electricity shares

(in % of total consumption expenditures), by living area and income quintile. We

decompose energy use by two categories: housing (and we show the share of population

living in a house) and transports (with the share of car owners, the average number of

vehicles per households, and the share of households using a car to commute).

Table 3: Descriptive statistics: households consumption, BdF 2017

Variable Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5

energy share 12.1 10.6 10.0 7.9 5.7 10.0 10.2 9.8 8.9 7.5

fossil fuel share 8.1 6.7 6.3 4.9 3.0 5.8 6.4 6.4 5.7 4.6

electricity share 4.0 3.9 3.7 3.0 2.7 4.2 3.8 3.4 3.2 2.9

energy for housing 6.3 5.8 5.4 4.3 3.6 6.0 5.8 5.2 4.7 4.1

% living in a house 94.4 80.2 67.7 41.2 22.2 43.7 54.4 62.3 63.4 63.9

energy for transports 5.8 4.8 4.6 3.6 2.1 4.0 4.4 4.7 4.2 3.4

% car owners 93.3 89.9 85.9 77.9 59.6 63.0 76.6 86.2 88.9 88.8

# of vehicles per hhs 1.6 1.5 1.3 1.1 0.8 0.8 1.1 1.3 1.5 1.5

%using cars (commute) 47.5 47.5 44.6 42.0 25.0 23.5 36.8 45.8 51.8 49.3

Notes. 16,739 households, weighted using survey weights.

Spatial distribution of fossil fuels consumption: Leveraging the complete set

of fiscal declarations from French households in 2021, we estimate the spatial distribu-

tion of fossil fuel consumption. The methodology involves the following steps:

1. Using the 2017 BdF survey, we regress the fossil fuel share on variables that are

also available in the fiscal declarations: disposable income, age of the household

reference person, household size, and city type. To mitigate the influence of

outliers, we limit the analysis to households with a fossil fuel share below 50% (5

standard deviations above the mean).

2. Based on this regression model, we predict the fossil fuel share for each household

in the fiscal declarations dataset. We retain households with an annual income

above e2, 100, and for which a city type can be assigned. This yields 36,582,417

household-level observations.

3. Finally, we calculate the average fossil fuel share for each Insee geographical/city

code (34,987 areas) and present the spatial distribution in Figure 3.

Energy share and age: Table 4 shows the variable described above, by age groups.

We find that age also correlates with energy consumption, mostly because of housing
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expenditures. This is why we add it as a control in our regressions. Yet, it appears

that the fossil fuel share is roughly flat across age groups.

Table 4: Descriptive statistics: age groups, BdF 2017

Variable <30 30-39 40-49 50-59 60-69 >70

energy share 7.3 8.1 8.4 9.4 9.9 10.3

fossil fuel share 4.5 5.2 5.4 6.1 6.1 5.9

electricity share 2.8 2.9 3.0 3.4 3.8 4.4

energy for housing 3.4 3.8 4.3 4.9 5.7 7.3

% living in houses 23.4 50.6 59.0 64.2 67.9 65.2

energy for transports 3.9 4.2 4.1 4.5 4.2 3.0

% of car owners 68.5 82.1 86.2 86.8 84.7 72.1

# of vehicles per hhs 1.0 1.3 1.4 1.5 1.3 0.9

% using cars (commute) 51.5 63.6 65.3 59.8 15.6 1.7

Notes. 16,739 households, weighted using survey weights.

Energy shares in other countries: Table 1 provides the energy share by living

area and income quintile for some countries, using Eurostat 2020 Household Budget

Surveys (HBS) that harmonizes micro-data for European countries. The data is from

2020, except for the UK, which is from 2015. Italy does not have quintile distribution

data. “Towns” includes both towns and suburbs.

We use the Consumer Expenditure Survey (CES) 2023 for the US. We use the latest

tables publicly available. For the US, the category > 1M covers cities with populations

over 1 million.

In both datasets, we can recover average energy shares by income quintiles and by

city sizes. Energy consumption is decomposed between housing and transport costs.

Note that in the HBS dataset, we cannot distinguish fossil fuels from other transport

costs such as repairs or parking fees. We find that rural areas consistently exhibit higher

energy shares compared to towns and cities across all countries.

A.3 Firms: emission patterns

Data on sectoral emissions. To recover sectoral emissions, we use Insee national

accounts that reports total emissions and emissions per euro of value-added for most

sub-sectors of the French economy. As a robustness, we also compute emissions intensity

using datasets from Bach et al. (2024) (mining and manufacturing), CITEPA (waste).

We build a tCO2eq per worker metric using annual value-added and employment levels

ECB Working Paper Series No 3104 43



from 2022 Insee National Accounts. We find very heterogeneous results across sectors.

Within manufacturing, ’Coke & refining’ is the most intensive in emissions with 1, 512

tCO2eq annual emissions per worker. ’Air transports’ is the most intensive across

all sectors with 2, 379 tCO2eq per worker. In the services (except construction and

transportation), firms emit on average 1.9 tCO2eq per worker. A notable exception

among the services are ’Rental and leasing activities’ that emits 43.7 tCO2eq per worker

every year.

Administrative data on workers and firms. All employer - employee data

(BTS-Salariés). The BTS is an annual report that all companies employing salaried

workers in France are required to submit. These reports contain numerous worker- and

firm-level details, including wages, hours worked, job type, qualifications, pay periods,

employment type (full-time/part-time), and both workers’ and firms’ geographical lo-

cations. The BTS dataset covers all employees, including those in public companies,

local governments, and public hospitals. There exists a panel version of that repeated

cross-section called The All Employees Panel. The latter has been tracking employ-

ees since 1976. Up to and including 2001, the sample size was approximately 1/24th,

based on individuals born in October of an even-numbered year. From 2002 onwards,

the sample has been doubled and covers around 3 millions individuals each year. We

notably use the panel version to compute mobility rates by regions and quintiles.

Merging BTS micro data and sectoral emissions. From the BTS 2022, we

assign to each worker i the average emissions intensity from its firm’s f i.e. αi = αf .

In each group (city or quintile), we then compute the average αi i.e.
1

length(q)

∑
i∈q αi.

Those results are presented in Figure 2. For our extensive margin, we define emissions-

intensive sectors as those with a tCO2eq per worker above 5. This represents the

20% most emissions-intensive jobs. We present some additional descriptive statistics in

Tables 5 and 6.

Table 5: Share of workers (%) in each sector, by geography and income quintile

Sector NAF Code Emissions per worker Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5

Agriculture 01-03 227.9 3.0 1.6 0.9 0.6 0.1 2.5 1.8 1.4 0.8 0.4

Industry 05–33 33.6 14.2 12.1 8.9 6.6 4.3 5.6 6.4 10.1 12.7 15.0

Energy 35 227.5 0.8 0.6 0.5 0.5 0.6 0.2 0.2 0.2 0.6 1.8

Water supply & waste 36–39 163.9 0.8 0.8 0.7 0.5 0.5 0.4 0.4 0.7 1.2 0.7

Construction, sales & repairs 41–47 4.1 20.8 20.5 18.2 17.0 16.6 20.9 19.7 22.2 18.3 14.9

Transportation & storage 49-53 62.6 5.4 5.3 5.3 4.5 4.6 3.4 4.1 5.8 7.4 4.9

Services 55–99 1.9 55.0 59.1 64.4 70.4 73.4 67.1 67.5 60.6 59.0 62.3

Sum – – 100 100 100 100 100 100 100 100 100 100

Notes. We use the 2022 cross-section of the BTS. We remove values below e1,000 annual and we

merge individuals present more than once in the dataset, ending up with 31,836,096 observations.

In Table 5 we show the share of workers in each sector, by city types and by income
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quintiles. In Table 6, we show the counterpart statistics: share of each city type (and

income quintile) within each sector. Both statistics go in the same direction: rural

workers are over-represented in emissions-intensive sectors.

Table 6: Share of city type and income quintile by sector, % of workers

Sector NAF Code Emissions Labor share Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5
tCO2

Workers
% total % sectoral workers % sectoral workers

Agriculture 01-03 227.89 1.37 45.96 30.92 16.04 6.69 0.39 36.87 25.98 20.11 11.38 5.65

Crop, animal production, hunting 01 250.58 1.22 46.57 30.37 15.93 6.79 0.35 38.78 26.77 20.05 10.18 4.23

Forestry and logging 02 26.86 0.09 52.29 25.92 15.77 4.97 1.06 20.43 18.15 20.85 25.63 14.94

Fishing and aquaculture 03 68.98 0.07 26.33 47.72 18.60 7.01 0.33 22.97 21.53 20.34 15.18 19.98

Industry 5-33 33.58 9.93 30.35 32.10 21.21 11.13 5.21 11.29 12.87 20.30 25.44 30.09

Mining & quarrying 5-9 18.27 0.07 42.55 30.35 16.70 6.98 3.42 6.59 9.83 17.51 36.10 29.98

Manufacturing 10-33 33.69 9.86 30.27 32.11 21.24 11.17 5.22 11.33 12.90 20.32 25.36 30.09

Paper & paper products 17 38.10 0.20 38.00 35.02 18.08 7.22 1.68 5.64 8.64 19.68 33.61 32.43

Coke & refining 19 1512.03 0.03 23.21 27.94 28.37 15.87 4.61 3.03 4.48 4.91 9.72 77.86

Chemicals & chemical products 20 140.90 0.50 26.95 30.04 22.51 10.40 10.10 6.38 8.60 12.97 21.80 50.25

Other non-metallic mineral prod. 23 208.94 0.35 38.45 32.14 18.87 7.39 3.15 7.39 10.36 20.31 30.41 31.54

Basic metals, metallurgy 24 267.47 0.26 35.28 33.25 21.67 8.76 1.04 4.91 7.58 16.52 32.67 38.32

Energy 35 227.47 0.58 28.15 24.64 20.86 13.97 12.39 5.32 5.95 6.13 19.86 62.75

Water supply & waste 36-39 163.93 0.69 25.71 28.72 23.90 13.58 8.09 10.24 12.49 21.50 34.65 21.12

Waste management 37-39 207.78 0.54 24.59 28.11 24.50 14.00 8.80 11.28 13.61 23.22 33.66 18.22

Construction, sales and repairs 41-47 4.13 19.21 22.95 28.13 23.61 14.90 10.40 21.84 20.62 23.14 19.03 15.38

Transportation & storage 49-53 62.61 5.10 22.35 27.34 24.74 14.70 10.87 13.30 16.11 22.65 28.90 19.03

Land transport & pipelines 49 22.54 2.84 24.04 27.17 23.80 14.08 10.91 16.44 18.17 20.39 29.81 15.20

Water transport 50 2378.54 0.08 14.65 27.38 26.02 27.77 4.17 15.96 19.81 15.49 15.23 33.51

Air transport 51 321.26 0.20 12.81 24.15 26.89 12.32 23.82 4.38 11.16 20.28 27.26 36.93

Services (other) 55-99 1.90 63.11 18.46 24.61 24.13 18.76 14.03 21.35 21.51 18.87 18.63 19.65

Rental and leasing activities 77 43.73 0.42 19.39 27.26 25.23 15.74 12.38 16.85 19.13 21.93 21.99 20.11

Notes. We use the 2022 cross-section of the BTS. We remove values below e1,000 annual and we

merge individuals present more than once in the dataset, ending up with 31,836,096 observations.

Spatial distribution of sectoral emissions. Using the 2022 BTS, we can visual-

ize emissions per worker by geographical location at a very granular level. In Figure 3,

we present a map showing the average emissions per worker at the local scale. We have

31,836,096 worker-level observations, which are aggregated into 34,607 geographical

units.

A.4 Predicted energy shares and emissions

OLS Regressions. Table 3 displays average energy shares for income quintile and

location, but there is a correlation between these dimensions. This is why we regress

our variables of interest using the following OLS regression:

yi = α +
5∑

q=1

βqIQi=q +
5∑

k=1

γkICi=k + µ ∗ Controlsi + ϵi (6)

with yi either individual consumption share or the emissions intensity of the worker, Qi

income quintile groups and Ci city-size groups (as defined in Section 1.1). We control

ECB Working Paper Series No 3104 45



by age and household’s size when regressing for consumption patterns. Results of our

regression are presented in Table 7 below. We use the regression coefficients to build

average energy consumption shares in Figure 1 and average emissions per worker in

Figure 2. One can interpret our results as the mean energy share (or mean emissions

per worker) in each group (city type or income quintile) if the group had the same

characteristics as the whole population. As a robustness, we use different estimates of

sectoral level emissions from Bach et al. (2024) and the CITEPA in column (5), while

column (4) uses sectoral-level estimates from national accounts. In both columns, we

used the sector of the establishment since the biggest firms may operate in several

sectors with different emissions intensities. As an additional robustness check, we also

provide the same regressions using firm-level sectoral emissions in column (6).
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Table 7: Regressions

yi: consumption share yi: emissions per worker

BdF 2017 BTS 2022

(1) (2) (3) (4) (5) (6)

Energy Fossil fuel Electricity Nat. Acc. IPP Firm-level

Intercept 12.00∗∗∗ 6.77∗∗∗ 5.23∗∗∗ 18.03∗∗∗ 20.37∗∗∗ 17.77∗∗∗

(0.32) (0.29) (0.16) (0.04) (0.05) (0.04)

Q2 −0.72∗∗∗ 0.15 −0.88∗∗∗ −0.87∗∗∗ −0.66∗∗∗ −0.94∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Q3 −1.05∗∗∗ 0.21 −1.27∗∗∗ −0.58∗∗∗ 0.35∗∗∗ −0.71∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Q4 −1.65∗∗∗ −0.04 −1.61∗∗∗ 1.32∗∗∗ 3.77∗∗∗ 1.01∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Q5 −2.28∗∗∗ −0.51∗∗ −1.77∗∗∗ 7.55∗∗∗ 11.30∗∗∗ 7.65∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Small −1.89∗∗∗ −1.79∗∗∗ −0.10 −4.13∗∗∗ −5.17∗∗∗ −4.02∗∗∗

(0.22) (0.20) (0.11) (0.04) (0.05) (0.05)

Medium −2.50∗∗∗ −2.01∗∗∗ −0.49∗∗∗ −6.41∗∗∗ −8.32∗∗∗ −6.26∗∗∗

(0.22) (0.20) (0.11) (0.04) (0.05) (0.04)

Large −4.97∗∗∗ −3.68∗∗∗ −1.28∗∗∗ −7.88∗∗∗ −10.51∗∗∗ −7.71∗∗∗

(0.17) (0.15) (0.08) (0.05) (0.05) (0.05)

Paris −7.11∗∗∗ −5.54∗∗∗ −1.56∗∗∗ −12.17∗∗∗ −16.00∗∗∗ −11.85∗∗∗

(0.21) (0.19) (0.11) (0.05) (0.05) (0.05)

Age 0.06∗∗∗ 0.03∗∗∗ 0.02∗∗∗ – – –

Household size −0.11∗ 0.16∗∗∗ −0.27∗∗∗ – – –

Observations 16,739 16,739 16,739 31,836,096 31,836,096 31,614,291

Notes: This table report results of Equation (6). In columns (1) to (3), we use survey weights.

Columns (2) and (3) are used in Figure 1. Column (4) is used in Figure 2. In BdF 2017, we only keep

observations with strictly positive disposable income. In BTS 2022, we only keep workers with annual

net wage declared above e1,000. Column (4) uses sectoral emissions estimates from national accounts

at the establishment-level. Column (5) uses sectoral emissions estimates from Bach et al. (2024) and

CITEPA, again at the establishment-level. Column (6) uses sectoral emissions estimates from national

accounts at the firm-level.
∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001
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B Algorithm

The main challenges of this paper are the heterogeneous-agent structure, the discrete

location choice and the high number of guesses. In this section, we detail the algorithms

used at the steady state, for the calibration and during the transition. Each steady state

takes 5 seconds to compute on a personal computer, and 27 seconds for a non-linear

transition between two distinct steady states. The entire code has been written from

scratch on Matlab.

Heterogeneous-agent structure. Our state-space for asset, income and geogra-

phy is S = A× Z×K. We discretize A over an exponential grid of 100 points between

0 and 40, Z over 5 points using Tauchen (1986) method, and K = {1, 2, 3, 4, 5}, which
gives us 2,500 grid points. We solve the household decision using value function itera-

tion (VFI). The key variable of choice for the household is the implicit utility u(a, k, z):

given u, k′ and the first-order conditions, the households can choose its consumption

c, eh, Nh, F h, H, and the budget constraint gives the saving choice a′ as a residual. To

solve the VFI, the follow these steps:

1. for each choice k′ ∈ K, use a golden-section algorithm to find the implicit utility

uk′(a, k, z) such that a′ = 0, to obtain a lower bound for the maximization of the

utility.

2. guess the expected value function f(a, k, z) = E[V (a, z, k)].

3. for each choice k′ ∈ K, use a golden-section algorithm to find the implicit utility

uk′(a, k, z) that maximizes the value function Uk′(a, k, z) + βf(a′, k′, z′).

4. using Gumbel trick described below, find the new value function V (a, k, z).

5. using spline interpolation over V (a, k, z), compute the new guess for the value

function f(a, k, z).

6. use the Howard’s improvement: for 30 iterations, iterate the f guess without

optimizing, taking fnew(a, k, z) = uk′(a, k, z) + βf(a, k, z).

7. compare the new value function fnew with the guess f(a, k, z): if the Euclidian

norm of the difference is above 10−8, replace f by fnew and go back to step 3.

Once we have the decision rule, we compute the transition matrix M between (a, k, z)

and (a′, k′, z′). If d(a, k, z) is our column measure of density over the state space, we

compute d′ = Md. This means that the row i of d is associated with the column i of

M . Therefore, for each i of the state space, we fill the column i of M with 2 ∗ 5 ∗ 5

values that are the products of:

• a: for the household’s decision a′(a, k, z), we put a′ on our grid A, by computing

weights ω− and ω+ depending on the distance between a′ and the inferior (a−)
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and superior (a+) points of the grid, and we put the values ω− and ω+ at every

rows a− and a+ of the state space.

• z: using the Tauchen weights, we put the probability P (z → z′) at every rows z′.

• k: using the migration probability P(k → k′) computed during the Gumbel trick

(see below), we put these probabilities for every rows k′.

Note that we use a sparse matrix M , as each column contains only 50 values over 2,500

lines. Finally, we compute d′ = Md until every row of |d′ − d| is lower than 10−8, i.e.

when we obtain the stationary density given the decision matrix M .

Discrete location choice. We follow Ferriere and Navarro (2025) for the im-

plementation of discrete choice with preference shocks drawn from an extreme-value

distribution. Denote V k′
t (a, z, k) the value function for the household at the grid point

(a, z, k) choosing the future location k′. Let ϵk′ the preference shock for each location

k′, and assume the vector −→ϵ = {ϵ1, ϵ2, ϵ3, ϵ4, ϵ5}. Then the complete value function is

the expectation of all k′-value function, taken over −→ϵ :

Vt(a, z, k) = E−→ϵ

[
max

k

{
V k′

t (a, z, k)
}]

= ϱ ln

(∑
k′∈K

exp

(
V k′
t (a, z, k)

ϱ

))

where the last equality derives from assuming that ϵk′ follows a Gumbel distribution

with variance ϱ. The probability of choosing location k′ is given by:

Pk′

t (a, z, k) =
exp

(
V k′
t (a,z,k)

ϱ

)
∑

k′∈K exp
(

V k′
t (a,z,k)

ϱ

) = exp

(
V k′
t (a, z, k)− Vt(a, z, k)

ϱ

)

High number of guesses. We need ng = 13 guesses to solve our model, at the

steady state and during the transition: interest rate R (asset market), total electricity

N (electricity market), housing rents{pH1 , pH2 , pH3 , pH4 , pH5 } (segmented housing markets),

local outputs {Y1, Y2, Y3, Y4, Y5} (segmented labor markets), and carbon tax revenue

CTR (government budget constraint). For the calibration procedure, we use more

than 30 guesses, as we add parameters as guesses and calibration targets as clearing

conditions.

To find the equilibrium values for our guesses at the steady state, we use a quasi-

Newton algorithm, improved with the Broyden method. Denote x the column vector

of our guess variables, and f the function that associates the vector of guesses to the

column vector of errors e in each clearing conditions, so that f(x) = e. f is the central

function, that computes the optimality conditions for firms, governments, households

and the measure. We use the following steps:
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1. guess an initial vector x0, and compute the error e0 = f(x0).

2. for each guess i, create the vector xi
0 with xi

0(i) = x0(i) + ϵ (with ϵ = 10−4) and

xi
0(̄i) = x0(̄i), and compute the error ei0 = f(xi

0).

3. create the Jacobian matrix M of size n2
g that relates a change of each guess to a

change in each clearing condition. The column i is the vector ei0 − e0.

4. iterate the guess using xnew = x + α, with α = −M−1 ∗ e ∗ d, with d a damp-

ening factor (usually equal to 1, can be lower if the initial guess is far for the

equilibrium). Denote elast = e the error.

5. compute enew = f(xnew).

6. modify the Jacobian matrix using the Broyden algorithm: (M−1)new = M−1 +
(α−θ)(α′M−1)

α′θ
, with θ = M−1(e − elast). If the code does not converge, it is also

possible to recompute, every t iterations, the “true” Jacobian of step 3.

7. if max |e| > 10−5, go back to step 4.

For the non-linear transition, we use the same method of guessing a path for our

variables and iterating it using a quasi-Newton algorithm. First, we compute the initial

and final steady state, as we consider a permanent increase in carbon tax.

Second, we compute the Jacobian of our system around the final steady state. This

means that we compute the effect of a shock at any time period tschock of the transition

(100-1 in our experiment), of any variable i (13), on any clearing condition j (13), at

any time tclearing (99), leading to a matrix J = 1287 × 1287. To compute this object

efficiently, we use parallel computation (as any variable can be shocked independently),

sparse vectors, and the fake-news algorithm developed by Auclert, Bardóczy, et al.

(2021). While formally dependent on the final steady state considered, the matrix

J can be used to compute transitions towards other steady states (possibly with a

dampening factor), as it only provides a new guess for the non-linear transition, and

not the real path.

Third, we use the following algorithm to compute the non-linear transition:

1. guess an initial path X of size ng × (T − 1) for our guess variables.

2. starting from period T−1, compute the optimal backward decision for households,

and the firms’ and government optimality conditions.

3. create the transition matrix as explained above for each period, and iterate for-

ward from 1 to T − 1 to obtain the measure and the aggregate variables.

4. compute the path of errors E of size ng×(T−1) for the market clearing condition.

5. iterate the guess path using Xnew = X− J−1E.

6. if max |E| > 10−3, go back to step 2.
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C Calibration

Table 8: Table of parameters

Parameter Description Value Notes and targets

Households

β Discount factor 0.94 a
GDP = 4.5

θ Intertemporal ES 1 Kaplan, Moll and Violante (2018)

σ ES between c and eh 0.2 Estimated in Appendix C

ΛE Energy share 0.095 Energy share in consumption = 9.5%

ΛH Housing rents share 1.464 Housing spending share in consumption = 17%

ϵE Non-homotheticity parameter 0.9 Energy expenditures across income quintiles

ϵH Non-homotheticity parameter 0.25 Housing expenditures across income quintiles

ΛC , ϵC Utility parameters 1 Comin, Lashkari and Mestieri (2021)

γh(k) Fossil share [0.83, 0.81, 0.81, 0.80, 0.73] Fossil fuel share in consumption in each k

ϵh ES between Fh and Nh 1.5 Authors choice

Hs
k Housing supply [0.43, 0.46, 0.29, 0.20, 0.32] Population in each city type

ē(k) Energy incompressible use 0.01 ∗ [1.82, 1.43, 1.30, 0.59, 0] Energy share across types

ρG Gumbel shock variance 0.1 Income heterogeneity, aggregate

ρz Persistence z 0.97 Income heterogeneity, aggregate

µz(k) Mean z [-0.09,-0.07,0.09,0.14,0.04] Average income for each type

σz(k) Variance z [0.29,0.29,0.28,0.27,0.40] Heterogeneity within each type

a Borrowing constraint 0 Authors’ choice

Firms

pF Price of fossil fuel 0.6773 Share of fossil fuel imports = 4%

ωy(k) Energy share [0.09, 0.07, 0.05, 0.04, 0.02] Share of each regional firm in total emissions

σy ES between ey and (K, l) 0.05 Fried (2018)

α Capital share 0.3089 wl
GDP from Cette, Koehl and Philippon (2019)

γy Share of fossil in Y mix 0.86 Firms’ share in total emissions = 62.5%

ϵy ES between F y and Ny 1.5 Fried (2018)

Government

T̄ Transfers 0.08 Share of T in income

τ Labor tax progressivity 0.08 From Ferriere and Navarro (2025)

λ Labor tax level 0.571 Ḡ
GDP = 0.29 as in Auray et al. (2022)

τk Corporate income tax rate 9.02% Effective rate in Auray et al. (2022)

τVAT VAT tax rate 22.34% Effective rate in Auray et al. (2022)
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C.1 Data on income

For Figure 4, we use Enquête Budget des Familles 2017. For Figure 5.a, we use the

average disposable income by decile from Revenus et patrimoine des ménages, Édition

2021. For Figure 5.b, we use fiscal data in 2021 total income as reproduced below:

Table 9: Geographical composition of each revenue decile (%)

Q1 Q2 Q3 Q4 Q5 Mean

Rural 17.7 24.7 25.6 26.8 20.4 23.5

Small cities 21.0 25.9 27.0 28.7 25.5 26.0

Medium cities 22.3 19.8 18.7 17.6 16.8 18.5

Large cities 20.8 14.9 13.05 11.3 12.2 13.4

Paris 18.2 14.7 15.6 15.7 25.0 18.5

Sum 100 100 100 100 100 100

For Figure 13, we use the Revenus et patrimoine des ménages, Édition 2021, that

we reproduce below:

Table 10: Revenues and taxes by income decile (thousand euros)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Primary income 10.5 15.9 21.0 25.9 31.3 36.4 42.2 49.5 60.4 133.1

Net labor income 4.8 9.5 13.5 17.5 21.7 25.7 30.0 35.4 42.0 69.2

Net financial income 1.8 2.1 2.8 3.2 3.7 4.4 5.4 6.6 9.6 52.3

Sum of taxes -4.8 -5.6 -6.7 -7.9 -9.2 -10.5 -12.1 -14.5 -18.5 -46.3

Taxes on products and production -4.2 -4.7 -5.1 -5.6 -6.3 -6.7 -7.3 -8.0 -9.4 -12.7

Taxes on income and wealth -0.6 -1.0 -1.6 -2.3 -3.0 -3.7 -4.9 -6.5 -9.0 -33.6

C.2 Household energy consumption: estimation of σ

In Figure 12, we use French longitudinal aggregate data taken from Insee 2022 national

accounts. As explained in Hassler, Krusell and Olovsson (2021), the share of energy in

total consumption comoves with the relative price of energy. This would not happen if

energy and goods consumption were perfect substitutes.
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Figure 12: Consumption ratio ( e
h

c
) and relative price of energy (ph)

With Comin, Lashkari and Mestieri (2021) preferences, the elasticity of substitution

between goods of different sectors is constant, i.e.

∂ ln(c/eh)

∂ ln(ph)
= σ

Thus, we estimate σ through a simple OLS estimation:

∆ ln(eht )−∆ ln(ct) = −σ∆ ln(pht ) + ϵt

We get σ̂ = 0.2, significant at the 5% level. From the graph, we can isolate two periods.

It seems that before 1990, the consumption ratio comoved more with ph than after.

Restricting our estimation to the 1959-1990 period, we get σ̂ = 0.28 significant at the

5% level. Taking only the 1990-2021 period we get σ̂ = 0.08 not significantly different

from zero. Adding an intercept to the regression always yields a zero for the constant

term. As Hassler, Krusell and Olovsson (2021) that use U.S. data, we find low short-

run elasticity between energy and non-energy inputs in French data. In our benchmark

calibration, we decide to set σ = 0.2, which is in the range of Casey (2024) pointing

out that Cobb-Douglas functions vastly over-estimate transitional energy adjustments,

and Golosov et al. (2014) that use such a framework.

C.3 Other untargeted moments

In this section, we present untargeted moments of our model. In Figure 13, we show

the income composition across income quintile, and total taxes paid by households.
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Figure 13: Income composition and taxes by income quintile

Notes: Panel a: composition of income data and model fit. Panel b: taxes paid by households in the

model and data (excluding social contribution).

Source : Revenus et patrimoine des ménages, Édition 2021.

Our model does not match the upper tail of the wealth distribution but performs

well in matching the distribution of wealth across the first wealth quintiles (Q1 to Q4).

Our MPC distribution falls within the lower bounds of Boehm, Fize and Jaravel (2025)

using bank data in France.

Figure 14: Wealth inequalities and MPC heterogeneity

Notes: Panel a: net mean wealth by net wealth quintile. Panel b: instantaneous MPC (total expen-

diture) by quartile of disposable income.

Sources: Panel a: Insee Revenus et patrimoine des ménages, 2021. Panel b: Boehm, Fize and Jaravel

(2025).

ECB Working Paper Series No 3104 54



D Additional results – Section 4

In Figure 15, we decompose the welfare effect of τh and τ f into the 5 variables that

affect directly households’ budget constraint: wages (w), household carbon tax (τh),

electricity price (pN), interest rate (R) and housing rents (pH). To obtain this decom-

position, we start from the transition path, and we shut one variable at a time by

setting its value to the steady state level. The effect we attribute to each variable is

the difference between the total effect (with all variables moving along the transition)

and the partial transition (with all variables moving, except one).

Figure 15: Decomposition of the welfare effect
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Figure 16 is the same decomposition, but considering only the welfare changes during

the first 5 periods of the transition.

Figure 16: Decomposition of the welfare effect at horizon t = 5
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Figure 17 shows, for each group area × income quintile, the change in population

between the two steady states. The weighted sum of each line is equal to 0, as the

share of households in each disposable income quintile is always 20% but the share of

households within each region is not; the sum of each column can be different from 0,

as households migrate between regions.

Figure 17: Density change by income and region between steady states

Notes: Panel a: only increase τh with a 10% decrease in total emissions. Panel b: only increase τf

with a 10% decrease in total emissions. Disposable income quintiles are built at the national level.

Lecture: After the increase in τh, in the new steady state, the share of households that are in rural

areas and in the 1st quintile decreases by 0.52 points compared to the initial steady state.

For τh, poor households migrate from rural areas to large cities and Paris, due to

the direct effect of carbon tax. For τ f , it is the opposite; rich households migrate to

large cities due to the decrease in wage, and poor households move to rural areas due

to the decrease in housing rents.
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Figure 18: Mobility changes at different time horizon, τh only

Lecture: One year after the increase in τh, the share of rural households that decide to stay in rural

areas (region 1) decrease by 0.56 points compared to the initial mobility matrix.

Figure 19: Mobility changes at different time horizon, τ f only

Lecture: One year after the increase in τf , the share of rural households that decide to stay in rural

areas (region 1) decrease by 0.01 points compared to the initial mobility matrix.

ECB Working Paper Series No 3104 58



E Additional results – Section 5

E.1 τh vs τ f

In Table 11, we show the optimal values of τh and τ f required to reduce emissions by

10%.17 In the benchmark complete model 1, taxing households is costly in terms of

welfare and inefficient at reducing emissions due to the incompressible energy consump-

tion ē. Therefore, the optimal tax is significantly higher for firms than for households.

If we remove the geographic dimension from our model by setting ēk, γk, ωk, and zk to

their average values across all regions, the optimal τh increases while τ f decreases, as

households become less constrained. Finally, eliminating non-homothetic preferences

by assuming ϵE = ϵH = 1 further equalizes the two carbon taxes. Since energy is a

necessary good, taxing household energy disproportionately affects poorer households,

which have the highest marginal utility. Removing non-homotheticity smooths the car-

bon tax burden across income groups, thereby reducing the welfare cost associated with

τh.

Table 11: Optimal taxes to reduce emissions by 10%

Model Description τh τf Ratio

(1) Benchmark model 0.045 1.076 0.042

(2) No geography 0.132 0.743 0.178

(3) Homothetic preferences 0.334 0.476 0.702

E.2 Recycling policies: additional results

While Table 2 in main test shows the median welfare for each group and each scenario,

Table 12 below is the average welfare, computed as the average wealth equivalent (in

% of households expenditures) over the transition.

17For a comparison, when τh = τf we get τ = 0.155. When adjusting only one tax we get: τh = 0.587

and τf = 0.446.
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Table 12: Average welfare change by location and income

Scenario Rural Small Medium Large Paris All

(1) Benchmark model: G −17.4 −17.3 −16.1 −15.9 −14.7 −16.5

(2) Uniform transfers 9.1 9.3 8.9 10.0 9.6 9.3

(3) Income rule 39.5 34.9 18.7 17.9 17.2 27.7

(4) Geo X Income 32.1 29.7 31.9 32.7 22.8 29.8

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark model: G −18.6 −18.8 −17.1 −15.3 −12.5 −16.5

(2) Uniform transfers 21.9 13.0 7.3 3.5 1.2 9.3

(3) Income rule 98.9 32.3 6.9 −0.3 0.9 27.7

(4) Geo X Income 104.4 35.3 8.0 0.5 1.4 29.8

Notes: This represents the average welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition, for different rebating policies.

In Table 13, we show the share of losers by location and by income group, i.e. the

percentage of households within each group that suffer welfare losses after the policy.

Table 13: Share of losers by location and income

Model Rural Small Medium Large Paris All

(1) Benchmark model: G 100 100 100 100 100 100

(2) Uniform transfers 0 0 0 0 0 0

(3) Income rule 29.0 27.2 29.3 26.9 6.1 24.2

(4) Geo X Income 28.2 25.8 25.6 19.9 5.6 21.9

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark model: G 100 100 100 100 100 100

(2) Uniform transfers 0 0 0 0 0 0

(3) Income rule 0 0 6.3 49.6 10.1 24.2

(4) Geo X Income 0 0 0 49.6 9.5 21.9

E.3 Migration & Transfers

In Figure 20, we show the density change between steady states, for each transfer rule.

The “Income” transfer scenario implies large migrations, as poor households are less

constrained and can afford to live in rural areas even with high energy requirements.

The “Income × Geography” scenario implies fewer migrations, as rich households in

rural areas receive a transfer and therefore do not choose to migrate.
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Figure 20: Migration dynamics

Notes: Density change by income and region between steady states. Panel a: increase in public

spending. Panel b: uniform transfers. Panel c: optimal income rebating rule. Panel d : optimal

income × geography rebating rule.

Lecture: After the scenario “Benchmark G”, the share of households that are in rural areas and in

the 1st quintile increases by 0.09 points compared to the initial steady state.

E.4 Alternative Pareto Weight

In the main text, we compute the optimal transfer rule by maximizing the welfare using

uniform weights. This means we maximize

W =

∫ 1

0

αi

∞∑
t=0

βtE0[Ui,t]di

with αi = 1. In the following Table 14, we use Negishi weights to neutralize the

redistribution motive:

αi =

[
∂V (a, z, k)

∂a

]−1

The optimal coefficient to maximize welfare with Negishi weights is equal to x = 1.68

for the “Income” transfer rule (compared to x = 2.15 for uniform weights), and

xk = [2.0, 2.0, 2.25, 2.3, 2.15] for the “Income × Geography” rule (compared to
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xk = [2.07, 2.08, 2.38, 2.4, 2.27] for uniform weights). Therefore, Negishi weights imply

a lower progressivity for the transfer rule, as it neutralizes the redistribution motive.

However, as carbon tax is regressive, we still obtain that the optimal transfer is pro-

gressive. The average welfare with Negishi-optimal transfer rules are shown in Table

14:

Table 14: Average welfare change by location and income, Negishi weights

Scenario Rural Small Medium Large Paris All

(1) Income 33.7 31.0 19.9 20.3 18.8 26.0

(2) Income×Geography 32.8 29.7 29.6 32.3 21.8 29.4

Q1 Q2 Q3 Q4 Q5 All

(1) Income 87.3 31.8 8.9 1.3 1.2 26.0

(2) Income×Geography 102.0 34.9 8.2 0.6 1.4 29.4

Notes: This represents the average welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition, for different rebating policies.

E.5 Alternative transfer rule

Our transfer rule from Section 5 is a simple inverse function. In this section, we compute

the same results with an alternative formula taken from Ferriere, Grübener, et al. (2023):

T (y, ȳ) = mȳ
2 exp

(
−ξ
(

y
ȳ

))
1 + exp

(
−ξ
(

y
ȳ

)) (7)

with y total disposable income and ȳ mean total disposable income. This transfer

function is governed by two parameters: a level m and a phase-out ξ. The parameter ξ

determines how quickly transfers phase out with total income. Optimizing our model

with this new transfer rule, we get: m = 0.19 and ξ = 6.39. Figure 21 compares our

optimal inverse-rule formula with the transfer rule 7. The rule 21 is more progressive

than the main inverse rule, since it fades away faster to 0 when income increases.

This additional progressivity allows to reach higher aggregate welfare (around +3% in

all scenarios) – see our results of aggregate welfare by income and city-type groups

in Table 15. With this transfer rule, we again find that allowing for spatial specific

progressivity parameters ξk
18 enhances aggregate welfare by +8.3%.

18Optimizing other this new set of parameters we get: ξk = [7.69, 7.69, 6.24, 6.08, 6.76] andmk = 0.19
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Figure 21: Inverse formula vs. formula 7

Table 15: Average welfare change by location and income, alternative transfer rule

Scenario Rural Small Medium Large Paris All

(1) Income 38.6 36.2 24.2 23.6 21.8 30.3

(2) Income×Geography 34.7 32.3 34.3 36.6 24.8 32.5

Q1 Q2 Q3 Q4 Q5 All

(2) Income 109.4 36.5 6.7 −1.3 0.8 30.3

(2) Income×Geography 117.7 38.4 6.5 −1.1 1.3 32.5

Notes: This represents the average welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition, for different rebating policies.
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F Robustness

F.1 Elasticities of substitution

Benchmark values for our main elasticities are: σ = 0.2, ϵh = 1.5, σy = 0.05, ϵy = 1.5,

δH = 0.2. In this section, we run the same scenario as our “Benchmark G” for the

following alternative values: σ = 0.4, ϵh = 1.3, σy = 0.2, ϵy = 1.3, δH = 0.3. For

each specification, we find the new initial steady state with carbon taxes equal to 0,

then the new final steady state with −10% decrease in total emissions. We finally

compute the transitional dynamics between the two steady states, to compute average

welfare effects (defined as wealth equivalent in percentage of households expenditures)

by location and income groups. We present our results in Table 16, where the last

column is our inequality ratio, defined as the percentage change between the first and

the fifth column (for example, the 18.3% at the first line means that Rural households

suffer a welfare loss 18.3% higher than Parisian households).

Table 16: Average welfare change by location and income, different elasticities

Scenario Rural Small Medium Large Paris All Rural/Paris

(1) Benchmark model: G −17.4 −17.3 −16.1 −15.9 −14.7 −16.5 18.3

(2) σ = 0.4 −8.8 −8.9 −8.5 −8.2 −8.1 −8.5 8.6

(3) ϵh = 1.3 −20.9 −20.8 −19.1 −18.9 −17.6 −19.7 18.8

(4) σy = 0.2 −15.8 −15.8 −14.7 −14.5 −13.4 −15.0 17.9

(5) ϵy = 1.3 −19.7 −19.6 −18.1 −17.9 −16.6 −18.6 18.7

(6) δH = 0.3 −17.6 −17.5 −16.2 −16.0 −14.5 −16.6 21.4

Q1 Q2 Q3 Q4 Q5 All Q1/Q5

(1) Benchmark model: G −18.7 −18.8 −17.1 −15.2 −12.5 −16.5 49.6

(2) σ = 0.4 −9.1 −9.5 −8.8 −8.1 −7.3 −8.5 24.7

(3) ϵh = 1.3 −22.0 −22.5 −20.5 −18.4 −15.1 −19.7 45.7

(4) σy = 0.2 −16.9 −17.1 −15.6 −13.9 −11.5 −15.0 47.0

(5) ϵy = 1.3 −20.8 −21.2 −19.3 −17.3 −14.3 −18.6 45.4

(6) δH = 0.3 −19.0 −19.0 −17.2 −15.3 −12.5 −16.6 52.0

Notes: This represents the average welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition, for different rebating policies.

Last column: inequality ratio, defined as the percentage change between the first and the fifth column.

Elasticity of substitution between G&S consumption and energy (σ = 0.4). Increas-

ing σ substantially reduces welfare losses across all groups. For example, rural welfare

losses decline to −8.8% and the Q1 group’s losses drop to −9.1%. This is because

households adapt more easily to higher fossil fuel prices. Note that this also dampens
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both geographic and income-based inequalities in welfare impacts: the rural-to-Paris

welfare gap decreases from 18.3% in the benchmark to 8.6%, and the Q1-to-Q5 gap

drops from 49.6% to 24.7%.

Elasticity of substitution between fossil fuels and electricity for households (ϵh = 1.3).

Reducing ϵh from 1.5 to 1.3 increases welfare losses across all groups, as it becomes more

difficult to substitute for households. Rural losses rise to −20.9% and Q1 losses increase

−22.0%. The rural-to-Paris welfare gap widens slightly to 18.8%, while the Q1-to-Q5

gap narrows modestly to 45.7%.

Elasticity of substitution between capital-labor and energy for firms (σy = 0.2). With

a higher σy, welfare costs are smaller for rural (−15.8) and poor (−16.9) households.

The rural-to-Paris welfare gap decreases slightly to 17.9%, and the Q1-to-Q5 gap nar-

rows to 47.0%. This indicates that greater substitution flexibility in production not

only lowers overall welfare costs but also marginally reduces income and geographic

disparities.

Elasticity of substitution between fossil fuels and electricity for firms (ϵy = 1.3).

Decreasing ϵy from 1.5 to 1.3 increases welfare losses across all groups, as energy is less

substitutable, creating a higher decline in wages and interest rate. Rural areas face a

loss of −19.7 while Q1 losses increase to −20.8. The rural-to-Paris welfare gap widens

slightly to 18.7% while the Q1-to-Q5 gap narrows modestly to 45.4%.

Elasticity of housing supply (δH = 0.3). Increasing δH does not change aggregate

losses (−16.5 against −16.6) but it amplifies distributive effects. The rural-to-Paris

welfare gap increases significantly to 21.4%, while the Q1-to-Q5 gap widens to 52.0%.

These results suggest that more elastic housing supply amplifies both income and spatial

disparities in welfare costs.

F.2 Partial Equilibrium vs General Equilibrium

Most of the empirical literature on the distributive effects of carbon taxes imputes

emissions to households’ consumption basket, either directly (on direct consumption of

fossil fuels) and indirectly (on imputed carbon content of good and services). In this

section, we run a “partial equilibrium” analysis in our model. We take as given all the

prices and the distribution, and we impute emissions to F h and c, knowing that F h

accounts for 40% of national emissions and therefore c should account for 60%. Finally,

we find the carbon tax τ such that emissions are reduced by 10%, assuming F h and c

are taxed proportionally to their emission intensity. Table 17 shows the median welfare,

computed as wealth equivalent, between our benchmark model (general equilibrium)

and this partial simulation.
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Table 17: Median welfare change by location and income

Scenario Rural Small Medium Large Paris Rural/Paris

(1) General equilibrium −17.4 −17.3 −16.1 −15.9 −14.7 18.3

(2) Partial equilibrium −87.7 −83.2 −68.9 −68.8 −69.6 26.0

Q1 Q2 Q3 Q4 Q5 Q1/Q5

(1) General equilibrium −18.7 −18.8 −17.1 −15.2 −12.5 49.6

(2) Partial equilibrium −78.6 −82.6 −84.7 −74.8 −63.7 23.4

Notes: This represents the median welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition, for different rebating policies.

Last column: inequality ratio, defined as the percentage change between the first and the fifth column.

The welfare cost is significantly higher in partial equilibrium because households

must fully bear the tax burden through changes in expenditures, without adjustments

in wages, rents, or interest rates. While τh allows households to substitute towards

c and N , and τ f enables firms to substitute toward capital and labor, this unique τ

restricts households’ ability to adjust, forcing a reduction in their overall consumption

basket. In partial equilibrium, households decrease their consumption of goods (−5.4%)

and fossil fuels (−16.9%) while increasing electricity consumption (+22.3%). Because

we assume a fixed population density, migration is not an option, further amplifying

the tax burden. Consequently, partial equilibrium analysis overstates spatial effects

compared to our general equilibrium framework.

On the opposite, partial equilibrium underestimates the income dimension. τh is

regressive because it disproportionately affects households with high fossil fuel consump-

tion, and τ f is regressive through its negative impact on wages. In partial equilibrium,

our τ does not affect wages, and targets consumption c and not only fossil fuel F h,

leading to a more balanced distributional impact across income groups.

F.3 Endogenous fossil fuel price

In this section, we depart from our assumption of a fixed fossil fuel price (δF = 0)

and instead allow the price to respond to changes in domestic fossil fuel demand. We

consider two cases: δF = 0.1 and δF = 0.5. For both cases, we calculate the transition

dynamics using the same carbon tax increase as in our Benchmark G scenario from

Section 5. In these new scenarios, total emissions decrease by 9.6% when δF = 0.1 and

by 8.3% when δF = 0.5. Welfare results, broken down by location and income groups,

are reported in Table 18. These adjustments do not alter our overall quantitative

findings.
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Table 18: Average welfare change by location and income, pF endogenous

Scenario Rural Small Medium Large Paris All Rural/Paris

(1) Benchmark model: G −17.4 −17.3 −16.1 −15.9 −14.7 −16.5 18.3

(2) δF = 0.1 −16.7 −16.6 −15.4 −15.2 −14.0 −15.8 19.3

(3) δF = 0.5 −14.3 −14.2 −13.2 −13.1 −12.0 −13.5 19.2

Q1 Q2 Q3 Q4 Q5 All Q1/Q5

(1) Benchmark model: G −18.7 −18.8 −17.1 −15.2 −12.5 −16.5 49.6

(2) δF = 0.1 −17.8 −18.0 −16.4 −14.6 −12.0 −15.8 48.3

(3) δF = 0.5 −15.3 −15.4 −14.0 −12.5 −10.3 −13.5 48.5

Notes: This represents the average welfare change (one-time wealth-equivalent transfer expressed in

% of households’ disposable income) for each group over the transition, for different rebating policies.

Last column: inequality ratio, defined as the percentage change between the first and the fifth column.
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