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Abstract

In this event study, we analyze the effect of market segmentation on stock returns in Europe

amid extreme weather events. We show that local institutional ownership (LIO) mitigates the

negative effect of the uncertainty from the occurrence of extreme weather events on stock

prices. We assess firms’ exposure to physical climate risks using the Eurosystem’s method

that uses physical climate risk indicators. In a sample with materially exposed industries,

we find a negative risk-adjusted abnormal return of 99 basis points for storms on the event

date. This negative return is mitigated however by 1.3% for each percentage point increase

in LIO. We confirm the mitigating role of LIO by testing the information hypothesis through

two channels: the distance between a firm’s headquarters and the affected facility and its

exposure to physical risk.

JEL: C81, G11, G14, G32, Q54

Keywords: extreme weather events, event study, asset pricing, market segmentation
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Non-technical summary

Financial asssets are increasingly exposed to climate risks, yet investor reactions to extreme

weather events remain uncertain. This study explores how local institutional ownership (LIO)

influences stock price movements during extreme weather events in Europe. We find that LIO

plays a stabilizing role, helping to mitigate the negative impact of storms and floods on stock

returns. Using data from 2014 to 2022, we analyze publicly listed firms with varying levels of

LIO and assess their exposure to physical climate risks through the Eurosystem’s methodology.

Our findings reveal that extreme weather events, particularly storms, lead to significant

declines in stock prices. On average, stocks of affected companies experience a negative abnormal

return of 99 basis points on the event date. However, this negative effect is reduced by 1.3

percentage points for each additional percentage point of LIO. This suggests that local institutional

investors, who are more familiar with companies’ exposure to climate risks, incorporate this

knowledge into their investment decisions. As a result, firms with higher LIO experience less

pronounced price drops, as the risks are already reflected in stock valuations before the event

occurs.

Furthermore, our study highlights the importance of geographic proximity in mitigating

uncertainty. When a company’s affected facility is located farther from its headquarters, stock

price reactions tend to be stronger. This indicates that informational distance plays a crucial role

in investors’ ability to assess climate-related risks. Local institutional investors, who often have

better access to firm-specific information, are more effective in stabilizing stock prices when the

affected assets are geographically closer.

Interestingly, we also find a difference in how investors respond to different types of extreme

weather events. While stock prices tend to react negatively to storms, the response to floods is

more mixed and depends on the severity of the event. A potential explanation lies in the nature

of the events and the predictability of their impact. According to Merz et al. (2020), the main

uncertainty in storm forecasting concerns the storm track and the extent of its impact. Storms

can potentially affect large areas, making their consequences harder to predict. In contrast,

floods, although often severe, tend to be more geographically localized and can be anticipated

with greater accuracy. This is especially true when information such as flood risk maps and the

likelihood of government intervention is available in advance. However, the final impact of floods

still depends on complex local conditions.
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Our methodology combines financial market data, institutional ownership records, and

detailed climate risk assessments. We use facility-level data from the European Pollutant Release

and Transfer Register (E-PRTR) and company ownership data from Amadeus to link firms to their

physical assets. Additionally, we estimate expected annual losses due to extreme weather events

using the Eurosystem’s framework, which incorporates land use, historical weather patterns,

and facility-specific exposure. By applying event study techniques, we measure abnormal stock

returns before and after extreme weather events, allowing us to quantify investor reactions.

These findings have important implications for both investors and policymakers. For financial

institutions, understanding the role of LIO can improve portfolio risk management and investment

strategies in the face of climate-related uncertainty. Our results suggest that companies with

a strong base of local institutional investors may be less vulnerable to abrupt price declines

following extreme weather events. For regulators and policymakers, enhancing transparency in

climate risk disclosures and making facility-level climate exposure data more accessible could

help improve market efficiency.
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Introduction

Market segmentation and extreme climate events challenge price discovery in financial markets.

Regulatory barriers, transaction costs, information asymmetry, and geographic limitations restrict

certain investors from fully participating in the market. Consequently, distinct investor groups

may interpret or react to information differently that potentially leads to price inefficiencies. Seg-

mented markets may therefore fail to fully reflect the relevant risks for asset prices, undermining

overall market efficiency. Extreme weather events related to climate change provide a compelling

context to test the effects of market segmentation on asset prices.

The World Economic Forum highlights extreme weather events and information barriers as

major threats to global economies (WEF, 2024). Since 1980, extreme weather has globally caused

$3 trillion in losses that is expected to grow with rising temperatures. Information barriers are

also likely to increase due to de-globalization, further constraining investment decisions (Basel

Committee on Banking Supervision, 2021; Pellegrino et al., 2024).1 The extreme weather events

and the rising information barriers will exacerbate market segmentation as they will affect asset

returns through heightened uncertainty.

Studies have well established that extreme weather events increase uncertainty in stock

returns. This effect is especially pronounced when investors are not fully diversified due to

segmented markets or when behavioral biases, such as the salience of these events, influence

investment decisions (Alok et al., 2020; Kruttli et al., 2025). To reduce uncertainty, investors

tend to focus on stocks they are more familiar with, often based on geographical proximity,

or on stocks where they have a comparative advantage (Coval and Moskowitz, 1999, 2001;

Van Nieuwerburgh and Veldkamp, 2009).

In this study, we investigate how information asymmetries among market participants that

are influenced by ownership structure and physical distance affect the equity price discovery

during extreme weather events. Specifically, we examine whether local institutional ownership

(LIO) mitigates the negative effects of uncertainty on stock prices in these contexts. Using

extreme weather events as a natural experiment, we analyze the price discovery of publicly listed

companies with varying levels of LIO. We test two mechanisms to demonstrate that local investors

possess greater knowledge about companies’ exposure to such events: (1) those with higher

expected annual losses from an extreme weather event but greater LIO should experience smaller

1 Source: Economic losses from climate-related extremes in Europe (8th EAP), EEA, 21 April 2023.
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negative price surprises, as it has already priced the potential loss, and (2) the farther a facility is

from the headquarters of the company, the weaker the informational advantage of LIO. We define

a company’s headquarters as the country from which it issues its stock.

To address the research question, we focus on Europe, a region historically exposed to market

segmentation and increasingly affected by extreme weather events (Boermans and Galema,

2025).2 We use data and methods from European institutions (EIOPA, 2022; Statistics Committee

of the ESCB, 2023) to identify the companies affected by extreme weather events by overlaying

event areas with facility locations from the European Pollutant Release and Transfer Register

(E-PRTR).3 We record storm data from the European Commission Climate Data Store (Copernicus)

and flood areas, timing, and intensity from the Dartmouth Flood Observatory (DFO) (Brakenridge,

2025). A high-performing name-matching algorithm links facility ownership data from the E-

PRTR with the company ownership structures in Amadeus, a database on European private and

public companies, thus associating facilities with their publicly listed parent companies. Using

FactSet data, we then calculate risk-adjusted cumulative abnormal returns (CAR) around the

event.

Due to our innovative data sources and geographic focus, we first validate our approach

using a case study before applying an event study to the full sample. Specifically, we analyze

two case studies: the February 2020 Storm Ciara that started in Ireland and Great Britain

(GB) and the July 2021 river floods in Germany, Belgium, and the Netherlands.4 Next, we

implement a standard event study for all extreme weather events from 2014 to 2022 by following

the established guidelines (MacKinlay, 1997; Barrot and Sauvagnat, 2016; Barnett, 2024). To

compute the abnormal returns, we use the 3- and 5-factor Fama-French models as well as the

4-factor Carhart model (Fama and French, 1993; Carhart, 1997; Fama and French, 2015). We

test for any significant deviations in the actual returns from the predicted returns using the

robust cross-sectional variance method adjusted for event-induced variance by Boehmer et al.

(1991). Next, we assess the effect of LIO on the cumulative abnormal returns (CAR) through

panel regressions.

In our analysis, we hypothesize that foreign investors do not have the same level of access

2 For more information on climate change effects in Europe, see Fragile State Index (FSI) and (Kemp et al., 2022).
3 An overlay estimates the attributes of features by superimposing them over other features and measuring the extent
of overlap. This practice, known as spatial finance, enhances transparency and accountability (McCarten et al., 2021;
Patterson et al., 2022).
4 The storm was selected based on its impact by the European Insurance and Occupational Pensions Authority (EIOPA).

The July 2021 floods caused approximately 50 billion in economic damage, as reported in the 8th EAP.
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to information as local investors; this is a concept known as the “information hypothesis”.

This disparity arises for several reasons: local investors may have a comparative advantage in

information about local stocks, actively disregard signals from foreign stocks, or face high costs

of obtaining information about distant stocks (Klein and Bawa, 1977; Merton, 1987; Pellegrino

et al., 2024). We expect this assumption to hold especially for extreme weather events because

they are still an under-explored risk for investors due to their novel, complex, localized effects,

and the challenges in accurately predicting their financial consequences.

We make four key findings: (i) Consistent with the literature, we find that investors typically

react negatively to storms, but their responses to floods are mixed and model-dependent (Alok

et al., 2020; Huynh and Xia, 2021; Kruttli et al., 2025). The forecasts of storms have longer

horizons and higher uncertainty compared to those for floods, resulting in stronger reactions

(Merz et al., 2021). Additionally, investors are less reactive to flood risks, likely because

government interventions in rebuilding flood-prone areas have reduced their concerns about

them (Alok et al., 2020; Giglio et al., 2025). (ii) The negative effect of storms on stock returns is

mitigated by 1.3% for each percentage point increase in LIO. This result is both economically

and statistically significant and aligns with the information hypothesis (Coval and Moskowitz,

2001; Van Nieuwerburgh and Veldkamp, 2009; Giannetti and Laeven, 2016). (iii)We find that by

interacting LIO with companies’ exposures to storms mitigates the negative reactions of investors.

This is because local investors are likely to have already priced in the higher risk exposure and

therefore are less surprised by the occurrence of the event. (iv) However, the negative investor

reaction intensifies when we interact LIO with the distance between the company’s headquarters

and the affected area. This finding also supports the information hypothesis by showing that

greater informational distance amplifies the reaction.

Given the limited sample size for the time series, we face two main challenges in implementing

the empirical setting of our event study: limited access to information on companies’ physical

assets and the difficulty of translating economic losses into financial losses and price shocks. To

address the first challenge, we use the E-PRTR register to identify the location of production

facilities. To address the second challenge, we estimate the counterfactual – or expected returns –

during the event by using a 90-day estimation window of daily returns that excludes weather-

related disaster events for each company and each event. This approach aligns closely with the

120-day estimation period used by Kruttli et al. (2025), although our method is more conservative

in terms of timing than Blanco et al. (2024). We also limit our sample to stocks priced above e
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5 during the estimation period and with at least a 10% free float, which is a similar practice to

other studies (Barnett et al., 2021).

Our work contributes to the understanding of market segmentation and investors’ perspectives

on climate risks by addressing key questions in climate finance (Starks, 2023). Specifically, we

contribute to two main streams of literature. First, we add to the research on the effect of

securities’ ownership on investors’ reactions to shocks by examining how local and non-local

ownership dynamics unfold in a region characterized by strong home bias. For instance, Huynh

and Xia (2021) show that investors tend to overreact by depressing prices after natural disasters,

leading to higher future expected returns for the affected securities. Furthermore, the authors

show that insider trading behavior helps revert prices when they fall below fundamental value,

and that long-term, sustainability-oriented institutional investors have a positive impact on

prices following such events. Blanco et al. (2024) demonstrate that institutional investors with

significant portfolio exposure to natural disasters divest from disaster-affected stocks while

reducing trading intensity in unaffected stocks, thus ending with portfolio holdings that predict

lower medium-term returns. However, the authors focuse on the impact of ownership changes

on trading patterns and returns, without addressing the role of local versus non-local ownership

dynamics in explaining return behavior. Additionally, Glossner et al. (2025) examine how security

ownership influences price pressures after the Covid-19 pandemic. We extend this literature by

investigating the role of local institutional ownership in mitigating the negative effect of extreme

weather events on stock prices. Specifically, we explore two mechanisms: the distance between

the facilities and headquarters of companies, and the exposure to expected annual losses from

extreme weather events. Our empirical findings contribute to the literature by demonstrating

how local informational advantages mitigate the uncertainty driven by extreme weather events

under market segmentation.

Second, we contribute to the literature with examinations of the effect of extreme weather

events on asset prices using innovative data sources (Alok et al., 2020; Huynh and Xia, 2021;

Bressan et al., 2024; Kruttli et al., 2025; Blanco et al., 2024). Specifically, we leverage the

information contained in European pollutant release and transfer registers (E-PRTR) to identify

the affected facilities. This study contributes to the ongoing debate about the necessity of making

climate data publicly available to enhance replicability and transparency in climate finance

(Condon, 2023). The use of publicly available non-financial data has proven effective for financial

forecasting (Dessaint et al., 2024). For example, data on parking lot traffic has helped explain
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performance differences between quantitative asset managers and those relying on traditional

stock-picking based on industry expertise (Bonelli and Foucault, 2023).5 We contribute to this

line of research by incorporating atmospheric data related to climatic events such as storms and

floods.

Our findings hold relevance for both European institutions and finance practitioners. For

instance, improvements to the E-PRTR could enhance its utility for financial analysis by adding

data on the facilities’ workforce, financial value, and the extent of existing adaptation measures.

Such enhancements would enable more accurate damage assessments and more comprehensive

financial evaluations. Regarding the data on extreme weather events provided by Copernicus,

while the geographic coverage is precise, there are notable gaps, particularly the absence of

data on lower intensity storms for 2018 and 2019, as well as missing information on tropical

Mediterranean storms that is an issue that gained importance following the sinking of the Bayesian

yacht in the Mediterranean Sea or the DANA in Spain in October 2024. For practitioners, our

study demonstrates the value of developing alternative data sources independent of traditional

ESG rating providers. In particular location data can also be applied to research on biodiversity

risks that further expand their relevance for sustainable finance.

We structure the paper as follows: In Section I, we introduce the theory that motivates our

empirical analysis; and in Section II, we formulate our research hypotheses. Section III presents

the empirical setting and physical risk scores, followed by Section IV, where we introduce the

data sources and the sample. We then continue with two case studies in Section IV to validate

our method. In Section VI, we present the results for the full sample, addressing the hypotheses

formulated earlier. Finally, we conclude in Section VIII.

I Motivating theory

Market segmentation refers to the division of investors into distinct groups based on factors such

as geographical location, cultural differences, and access to information. This phenomenon can

have two main consequences: pricing inefficiencies and under-diversified portfolios.

Pricing inefficiencies refer to situations where asset prices deviate from their fundamental

values due to market imperfections or frictions. In the context of market segmentation, these

5 An example is RS Metrics’ historical data on store-level parking lot traffic, including collection start dates for 48

publicly listed U.S. retailers (Bonelli and Foucault, 2023).
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inefficiencies arise because different groups of investors may have limited access to information,

different levels of familiarity with the assets, or restrictions on where they can invest. As a result,

prices may not fully reflect all available information that leads to mispricing. This mispricing

means that securities could be overvalued or undervalued, affecting the optimal allocation of

capital in the real economy via financial markets.

Pricing inefficiencies in global financial markets can arise from the high cost of accessing

information across borders. In a quantitative theory model of international capital allocation by

Pellegrino et al. (2024), investors form expectations about the destination country using both free

and costly signals, with the latter reducing their utility. Acquiring such signals is more efficient

in countries that are geographically, culturally, and linguistically closer. Consequently, when

information is less precise—particularly with respect to the destination country—a change in stock

price results in a smaller shift in the demand curve, reflecting lower demand elasticity. Investors

are reluctant to acquire costly signals unless they significantly improve their understanding that

results in less elasticity in demand when information is more distant or difficult to obtain. Given

the complexity, uncertainty, and need for specialized—often local—expertise, we conjecture that

information on firms’ exposure to climate-related risks is particularly costly. 6

Market segmentation may also lead to under-diversified portfolios that can exacerbate the

effect of idiosyncratic shocks on asset prices. As argued by Merton (1987), investors tend to

invest in securities they are familiar with, resulting in under-diversification where shocks to

idiosyncratic volatility can affect expected returns.

We derive a model from Merton (1987) and Kruttli et al. (2025) to show how extreme

weather events effect the expected stock returns in a segmented market (See Appendix A for

more detail). This model demonstrates that climate-related shocks affect expected returns when

investors face segmented markets. This result is in contrast to the standard CAPM framework in

which market segmentation does not exist and where idiosyncratic shocks are diversified away so

as to not have any effect on expected returns (Strobl, 2011). The theoretical framework accounts

for two main types of uncertainty caused by extreme weather events that affect stock returns:

incidence uncertainty and impact uncertainty. Incidence uncertainty refers to the unpredictability

of whether a company will be hit by an extreme weather event, while impact uncertainty reflects

the degree to which the company will be affected if hit.

6 Several papers have noted that investors achieve higher returns when they invest locally (Coval and Moskowitz,

1999, 2001; Van Nieuwerburgh and Veldkamp, 2009; Giannetti and Laeven, 2016).
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Intuitively, the expected return of a stock reflects the risk-free rate, its correlation with the

broader financial market, and an additional variance component driven by stock-specific factors.

In the model developed by Merton (1987) and extended by Kruttli et al. (2025), this variance

depends on the number of investors aware of the stock’s existence and its market share. When

information asymmetry is present, expected returns increase with higher variance, which arises

either from lower investor awareness leading to less due diligence or from a higher market

share combined with elevated risk aversion. We further decompose the variance into three

components: an idiosyncratic element and two related to extreme weather events. The first,

incidence uncertainty, captures the probability that a company is affected by such an event. The

second, impact uncertainty, reflects uncertainty about the severity of the event’s effect on the firm.

Both contribute to higher expected returns; however, impact uncertainty only affects returns

prior to the realization of the extreme weather event.

II Hypotheses

Building on the theoretical considerations introduced in Section (I), we hypothesize that stock

prices can be influenced by both idiosyncratic extreme weather events and investors’ knowledge

of a company’s risk exposure, which we assume is higher for local institutional investors. To

empirically test these relations we formulate four hypotheses in this section.

First, we test the effect of different types of weather events on stock prices. The literature

has shown that the incidence and effect of storms are less predictable compared to floods (Merz

et al., 2020). We provide a practical example of early warning systems for storms and floods in

Appendix B. For Hurricane Ian on September 2022 in the US, we demonstrate that the precision

of incidence predictions improved over the span of a few days. In contrast, for the floods in

Germany in June 2024, we show that prediction certainty was higher from the outset. Floods

represent a more contained setting, as the locations of rivers and weak spots are known in

advance. Based on these differences between storms and floods, we hypothesize that:

H1: The securities of firms that are affected by more predictable events experience less negative

cumulative average abnormal returns (CAAR) compared to those affected by less predictable ones.

Second, we test what the effect of LIO, or the share of investors who are informed about

the company, is on stock prices under distress. In Section (I), we saw that local investors have

an informational advantage over other investors when signals are costly. Therefore, we expect
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companies with a greater average presence of LIO to experience a smaller negative surprise

from extreme weather events. This expectation is plausible for two reasons: first, local investors

tend to do more thorough due diligence on local companies, thereby reducing informational

distance (Coval and Moskowitz, 1999, 2001; Van Nieuwerburgh and Veldkamp, 2009); second,

the share elasticity is higher for local investments. Local investors are more likely to demand

a higher quantity of shares for a smaller price decline if they anticipate higher returns, which

helps mitigate the negative price effect (Pellegrino et al., 2024). As a result, the demand for

these companies’ shares will adjust more quickly to an increase in supply compared to companies

whose shares are predominantly held by foreign investors. This difference leads to our second

hypothesis:

H2: The greater the degree of local institutional ownership in a security before an event, the

higher the cumulative abnormal returns (CAR) will be around the event’s occurrence.

Third, we test the effect of local institutional ownership on stock prices when facilities are

located in regions with higher exposure to extreme weather events. This effect provides insight

into local institutional investors’ ability to assess a company’s exposure to weather-related risks.

We expect local investors to have a deeper understanding of the company’s vulnerabilities to such

events. Specifically, the interaction between local ownership and expected annual losses from

extreme weather events should positively affect the security’s performance on the event date. To

test this information channel, we formulate the third hypothesis as follows:

H3: The positive effect of local institutional ownership is larger when the affected facilities are

located in regions with higher exposure to extreme weather events.

Fourth, we test the effect of physical distance as a proxy for informational distance by mea-

suring the distance between a company’s headquarters and the affected facility. We hypothesize

that greater physical or informational distance reduces the precision of investors’ information.

Consequently, when a facility is located further from the company’s headquarters, investors

will have less knowledge of the affected physical assets. Therefore, the greater the distance

between a firm’s facilities and its headquarters, the weaker the positive effect of local ownership

on securities’ performance. This is logical, as companies rarely disclose their exposure to extreme

weather events at the facility level, making it more costly for investors to access this information.

We test this second channel by formulating the fourth hypothesis as follows:

H4: The positive effect of local institutional ownership weakens as the distance between a facility

and the company’s headquarters increases.
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III The empirical setting and physical risk scores

To address these hypotheses, we link facilities to their parent companies using a name matching

algorithm, quantify the proportion of LIO in these parent companies, and extract geographic data

on the occurrence of extreme weather events. Using this information, we introduce the event

study in which we analyze the effect of these extreme weather events on securities prices and

investor behavior.

III.a The name matching algorithm: linking facilities with parent companies

The first step is to link facilities to their parent companies using a name matching algorithm. We

retrieve the names for facility ownership from the E-PRTR and company names from Amadeus, a

Bureau van Dijk product. We calculate multiple string similarity measures and then test several

machine learning algorithms to leverage these measures’ strengths for accurate name matching.7

To streamline the matching process, we preprocess the company names from both the facility

owners’ sample (E-PRTR) and the sample of company names (Amadeus). We normalize these

names with the following steps: First, we convert all characters to lowercase. Second, we compile

a comprehensive list of commonly occurring suffixes across European languages. For instance,

“International” is abbreviated to “#INT” to reduce computational complexity. Third, we compute

the cosine similarity of the strings, defined as the cosine of the angle between two non-zero

vectors in a multidimensional space, and retain only those with a similarity score above 60% to

get a list of paired names.

After this preprocessing, we compute the string similarity measures with complementary

strengths for the list of paired names. Specifically, we calculate Jaro-Winkler, Levenshtein, and

Q-gram similarities between every retained name match from the sample of facility owners

and the sample of company names (van der Loo, 2014). These measures are complementary:

Jaro-Winkler focuses on prefix similarity, Levenshtein on the edit distance between two strings,

and Q-gram is effective at identifying localized differences. While character-based measures like

Levenshtein and Jaro-Winkler handle typographical errors well, they struggle with capturing

similarities when the order of characters changes that is where the Q-gram measure excels (Gali

et al., 2019).

7 The algorithm is developed by Michiel Nijhuis from the Data Science Hub of De Nederlandsche Bank. See this

webpage for more information: Company Name Matching.
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After computing the string similarity measures, we use the resulting scores as input variables

for various machine learning classification algorithms, testing their classification accuracy on a

manually labeled sample. To match facility owners with company names, we create a balanced

sample of 2,400 randomly selected entries that we manually classify to evaluate the performance

of different machine learning (ML) algorithms in combining the string similarity measures. To

prevent overfitting, we split the sample into training and test sets through cross-validation. The

results of this analysis are presented in Table (I). It shows the average and variation of several

performance measures assessing the classification quality of the implemented supervised ML

methods.

We choose the “Extra Tree" (ET) method to classify the matches. To determine which

supervised machine learning algorithm performs best, we use a set of performance measures.

For cross-validation, we divide the sample into six parts and test the algorithm on the left-out

test sample. The procedure is repeated until we compute the accuracy, the F1 score, precision,

and recall in all test samples for all the methods compared. In Table (I) we see that the ET

classification method shows the highest accuracy ratio and very high levels of precision and recall

and a rate of 89% of true positives. Although some measures outperform ET in terms of average

values, ET retains the lowest standard deviation (σ) for most measures. Additionally, our decision

is supported by an Area Under the Curve (AUC) analysis, provided in Appendix (C).

After running the ET on the full sample of potential matches, we link each facility to the first

publicly listed entity in its ownership structure. Specifically, we identify the first publicly listed

company in the historical ownership chain of the facility owner. Amadeus provides information

on subsidiaries; immediate shareholders (ISH), the immediate majority security owner of the

company; domestic ultimate owners (DUO), the majority security owner within the same country;

and global ultimate owners (GUO), the last global majority owner of the company’s securities.

Each of these ownership tiers is based on an ownership chain of at least 50%. To select which

stock to link with the facility, we first consider the subsidiary, then the owner of the subsidiary,

followed by ISH, DUO, and GUO.

III.b Measuring securities’ local institutional ownership

The second step is to calculate the LIO of stocks by aggregating the investments of all LIO in a

local company. Local means that the institutional owner and the company are based in the same
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SVM Logit Tree NB AB GB RF ET KNN

Accuracy µ 56 73 86 71 80 87 88 88 84
σ 7 10 3 7 9 5 4 3 5

F1 µ 36 72 85 74 78 87 88 87 84
σ 36 15 4 9 14 6 5 4 6

Precision µ 45 69 88 65 81 89 90 89 84
σ 35 6 4 4 3 3 4 3 2

Recall µ 49 79 83 88 78 85 85 86 85
σ 49 23 7 16 21 9 7 7 10

Table I. Supervised machine learning algorithms by classification performance: Table
(I) presents the accuracy ratio, F1 ratio, precision, and recall for all classification models tested to
merge company names over the cross-validation samples. The methods presented include the linear
support vector machine (SVM), logistic regression (Logit), decision tree (Tree), naive Bayes (NB),
adaboost (AB), gradient boost (GB), random forest (RF), extra tree (ET), and k-nearest neighbor
(KNN) classification models. The µ and σ denote the average and standard deviation of algorithm
performance across all cross-validation samples. The accuracy ratio is defined as AR = aR

aP
where

aR is the area under the performance curve of the model compared to a random classification model,
and aP is the area under the perfect model curve compared to the random model. Precision is
the ratio of true positives to all observations classified as positive, while Recall is the ratio of true
positives to all observations that should have been classified as positive. The harmonic mean of
accuracy and precision is denoted by the F1 ratio.

country. Inspired by Coval and Moskowitz (2001) and Coeurdacier and Rey (2013), we define

LIO in company i at time t as follows:

LIOi,t = 1−

(

Share of foreign institutional ownership in company i at time t

Share of total institutional ownership in company i at time t

)

(1)

We use this LIO measure as a proxy for the general preference level of local investors for local

companies. Following the approach of Boermans and Galema (2025), we collect all institutional

owners of the companies in the sample and classify them as local if their country of residence

matches that of the company’s. We determine the location of a company’s headquarters to

classify the issued security as either local or non-local, as managers base investment decisions on

the securities available in the market rather than the geographical distribution of a company’s

physical assets (Coval and Moskowitz, 1999).

III.c Expected annual loss (EAL): the Eurosystem method

In the third step, we calculate the physical risk indicators in the form of expected annual losses

(EAL) at the company level by using the framework developed by the Eurosystem of Central
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Banks (Statistics Committee of the ESCB, 2023).8 This approach offers several advantages. First,

it allows us to compute expected losses at the facility level that we then aggregate to determine

the average EAL at the company level. Second, it eliminates reliance on third-party methods

that may be less transparent or could become unavailable over time (Condon, 2023). We begin

with explaining the reasoning behind our method followed by an exact explanation.

We replicate the framework from Statistics Committee of the ESCB (2023) to compute

the company-level EAL by using data on facility locations, land use, extreme weather events,

building-type distribution maps, and damage functions, as shown in Figure 1. Facility location

data are sourced from the E-PRTR (mid-left panel of Figure 1), while land use maps are provided

by Copernicus Land Monitoring (upper left panel of Figure 1). Land use refers to the management

and designation of land for specific activities, such as residential, commercial, agricultural,

industrial, and recreational purposes.

To compute the EAL from extreme weather events at a facility level, we follow three main

steps. First, we calculate the probabilities of events with specific intensities occurring at the

facility’s location. Second, we identify the damage functions associated with these intensities to

estimate the losses incurred by the facility. Third, we compute the EAL as the weighted average

of probabilities and losses for all potential events that could affect the facility’s location. In the

following paragraphs, we detail these steps for storms and floods, using the visualization on

storms from Figure 1 to guide understanding.

To compute the EAL from storms at a facility level, we first calculate the probability of an

event with a given intensity occurring in the facility’s location within the next year. To achieve

this, we use maps of extreme weather event intensities based on historical occurrences for storms

(lower left panel of Figure 1). Specifically, we use historical footprint maps of European storms

since 1980 that come in a pixel format with a grid size of 1 km. For each pixel, we derive

a distribution of wind intensity recordings based on observations from 1980 onward. Return

periods or the probabilities of a storm occurring within a given wind intensity range in a year are

computed by fitting the historical distribution of events at each geographic pixel to a Gumbel

distribution (lower middle panel of Figure 1).9 In the second step, we identify the level of damage

a facility would incur from an event with a specific wind intensity. To do this identification, we

8 The framework introduced by Statistics Committee of the ESCB (2023) refers to Antofie et al. (2020) to explain the
calculations in detail.
9 The Gumbel distribution is commonly used to model the distribution of the maximum (or minimum) of a number
of samples from various distributions. For example, in this context, it represents the distribution of maximum wind

intensity in a specific region.

ECB Working Paper Series No 3069 15



require the building type of the facility, the wind intensity of the event, and the associated loss.

Since the E-PRTR does not provide information on the facility’s building type, we use a proxy

suggested by Statistics Committee of the ESCB (2023): the combination of land use and the

distribution of buildings by land use for each country in Europe. In other words, the building type

of the facility is approximated as the weighted average of building types for the corresponding

land use and is based on the frequency of buildings in that area (Jaiswal et al., 2010).10 Now,

the damage functions for Europe are calibrated for different types of buildings by Feuerstein et al.

(2011). An example for this step is provided in the upper middle panel of Figure 1. Consequently,

the damage functions for storms at the facility level result from the weighted average of the

damage functions associated with the different building types in the land use code of the facility

location where the weights are given by the frequencies of different building types in that area.

Given the probabilities of the occurrence of different events, the wind intensities of these events,

and the damage functions just introduced, we can compute the EAL at the facility level as in

Statistics Committee of the ESCB (2023) (right panel of Figure 1).

To compute the EAL from floods at a facility level, we follow the same steps as for storms,

albeit more straightforwardly. First, the event intensities associated with return periods and thus

probabilities of occurrence are readily available as flood hazard maps. We access those through

Delft University (Paprotny et al., 2017, 2019). Second, the damage functions for floods are

calibrated at the country and land-use levels and are provided for different levels of flood depths

(Huizinga et al., 2017). Third, using the facility’s location, which is associated with a specific

land use (see left middle and upper panels of Figure 1), we combine flood depth maps by return

period with the respective damage functions to calculate the EAL for floods at a facility level.

Now that we have the expected annual loss at the facility level, we turn to our primary

measure of exposure to physical risk: the EAL at the company level. To derive this measure, we

aggregate the facility-level EAL values at the company level by assigning equal weights to all

10 Unfortunately, this is the best achievable at a cross-country level in Europe. While the damage function for specific
building types is available from Feuerstein et al. (2011), we do not have information on the building type of each
facility. In the third step, and replicating Statistics Committee of the ESCB (2023), we use the distribution of building
types for specific land usage categories by country and land usage in Europe. From the facility’s location, we identify
the type of land usage and calculate the damage function for the facility as the weighted average of the damage
functions for different building types within that land usage category in the facility’s country. For example, as shown
in the top-middle panel of Figure 1, if a facility is located in a nonresidential urban area in Spain, where this land
usage type comprises 69% concrete buildings and 31% weak brick buildings, the damage function for a wind intensity
of 34 meter per second (m/s) is calculated as 69% times the loss ratio for concrete buildings at that wind intensity
plus 31% times the loss ratio for weak brick buildings at the same wind intensity. The distribution of building types by

country and land usage type is provided in Jaiswal et al. (2010).
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a) Land usage for Europe

b) Facilities of Company “X"

c) Wind intensity by event

Facility “A" in Spain is in a non-residential urban land (land
usage) where with 69% probability there is a concrete
building (“c1") and with 31% probability a weak brick

structure (“c4") (Jaiswal et al., 2010). On “c1" and “c4" we
apply the damage functions from Feuerstein et al. (2011)

Fit a Gumbel distribution on all wind intensities
recorded for Facility “A" to obtain return periods.

The EAL of facility
“A" is calculated as

the weighted average
of percent losses
associated with a

specific wind intensity
event, multiplied
by the probability
of occurrence of

that event, summed
over all potential

events. The EALX

of company “X" is
then computed as the
unweighted average of

the EAL values for
all facilities belonging
to company “X". For
example, if company
“X" has only facility
“A" and facility “B",
then EALX equals

EALA + EALB

2

Figure 1. The relevant steps to compute the expected annual loss (EAL) from storms at a company
level using the ESCB method: From left to right, we outline the steps to compute the EAL for company “X"
based on the framework developed by the Eurosystem of Central Banks (ESCB) (Statistics Committee of the ESCB,
2023). Red dashed lines indicate the data sources used to compute damage functions for a specific event occurrence.
Blue dashed lines represent the sources required to compute the probability of an event with a specific wind intensity,
modeled using a Gumbel distribution, where the probability mass is concentrated on less extreme events. Finally, this
information is combined to calculate the EAL at the facility level that is then aggregated to derive the company-level
EAL.

facilities, thus not explicitly differentiating by facility importance as also implemented in Kruttli

et al. (2025). Thus, for both storms and floods, the EAL at the company level is the equally

weighted average of the facility-level EAL across all facilities associated with the company.

After explaining the reasoning behind calculating the EAL at the facility and company level,

we now outline the exact computation process for storms as an example for both hazards. The

starting point is defined by the probabilities of a storm in a particular intensity range such as wind

speeds between 30 m/s and 34 m/s.11 For each intensity range we collect the corresponding

11 The average historical maximum three-second wind gust at 10m height in the sample is 34 m/s, with wind speeds

above 30 m/s already capable of causing structural damage to most European buildings (Feuerstein et al., 2011).
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damage ratio or the percentage of total value that would get destroyed in case of an event’s

occurrence (Feuerstein et al., 2011). Finally, we compute the EAL as the weighted average of the

damage ratios across all intensity ranges, weighted by the respective probabilities of occurrence

for each intensity range.

To derive the probability of an event’s occurrence we need to start with the probability of an

event’s likelihood that a stochastic process exceeds a critical value across various return periods

(e.g., 10 years). The probability of exceedance, PTn , for an event with a return period of n years,

ranging from T1 to Tn, is given by:

PTn = 1−

Tn
∏

s=T1

(1− ps), (2)

where ps is the probability of occurrence of a single event. PTn can for instance be the

probability that wind intensity exceeds 30 m/s in the next 10 years, PT10 . We can rearrange this

formula to get an expression for the probability of occurrence pn of an event with a return period

Tn:

pn =
PTn − 1

∏Tn−1

s=T1
(1− ps)

+ 1. (3)

Logically, PTn represents the probability that a threshold is exceeded, while pn is the

probability of an event of this magnitude occurring. The probability of exceedance, PTn , is

higher than pn because it includes all more extreme scenarios, except when it corresponds to the

highest return period n.

To demonstrate how to compute the probability of occurrence for different return periods, we

provide the following example. Consider the return periods T100, T50, T10. First, the probability of

occurrence pn of the longest return period T100, is set equal to the exceedance probability PTn

(Antofie et al., 2020). Second, from this assumption, we calculate the individual probabilities

associated with the events having shorter return periods:

PT100 = p100 =
1

100
= 0.01

p50 =
PT50 − 1

(1− p100)
+ 1 =

0.02− 1

1− 0.01
+ 1 = 0.0101

p10 =
PT10 − 1

(1− p100)(1− p50)
+ 1 =

0.1− 1

(1− 0.01)(1− 0.0101)
+ 1 = 0.0816

(4)
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Following Antofie et al. (2020), we calculate the damage ratio for a given event as the product

of the probability of occurrence, the exposed facility value, and the vulnerability factor. We

use the exposed facility value as a proxy for the damage ratio associated with different event

magnitudes. Specifically, the exposed value represents the proportion of a facility’s value relative

to the total value of the company’s facilities. For example, if a company owns two facilities, each

one’s exposure value is 50%, meaning the damage ratio will be calculated as a fraction of 50% of

the total potential damage. We assume a vulnerability factor of one, indicating that the full value

of the company could be lost as a result of extreme weather events. The events are assumed to

be independent, as causal relationships between them cannot currently be established Antofie

et al. (2020). Therefore, the EAL at the company level is obtained by summing the product of

the expected loss and the probability of occurrence for each return period by facility, and then

averaging over all facilities, as explained in the right panel of Figure 1. Consequently, assuming

independence of events, we express the EAL for a company i for all events expected in the next

k years as:

EALi,k =
1

Z

Z
∑

z=1

Tn
∑

s=T1

(ps,k,zLs,z), (5)

where ps,k,z is the probability of occurrence of an event with return period Ts in k years for

facility z.12 Z is the total number of facilities linked to a company. Further, Ls,z is the damage

ratio associated with a single event for a given hazard, which occurs with a specific intensity

for a specific facility, accounting for land use and the distribution of buildings in that area. We

then average the EAL at a facility level over the Z number of facilities that belong to a company.

Using the example from the previous paragraph, consider a company with two facilities in which

each represents 50% of the total assets. If the damage ratio at the location of one facility, based

on the damage function for a specific hazard and return period, is estimated at 20%, then the

expected loss for that facility is calculated as Ls,z = 0.2 · 0.5.13

12 For simplicity, we calculate the EAL for the next year only, setting k = 1, instead of using longer time periods.
13 Here, we follow the approach suggested in Kruttli et al. (2025) who show that facility weighting does not lead to
significantly different results. Weighting can be done by building size, the amount of waste produced or the amount of

energy used, but data on these variables are scarce.
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III.d The event study

The fourth step is the event study. We follow the literature on how to implement an event study

to analyze the effect of extreme weather events on securities’ prices (MacKinlay, 1997; Barrot and

Sauvagnat, 2016). The events of interest are major storms and floods that occurred in Europe

between 1 January 2014 and 31 December 2021. We define the event window for analyzing

securities’ prices as the five days preceding landfall for storms and two days before the occurrence

for floods.14 The event window ends 22 trading days after the event’s start to allow all market

participants sufficient time to adjust their positions (Lanfear et al., 2019).

Facilities are assigned to an extreme weather event if they are located in the area affected by

the event. Based on this criterion, we identify publicly listed companies that owned facilities in

the affected area at the time of the event. Figure 6 provides an example of our flood selection

criteria, with similar criteria applying to storms. Company Y, shown in Figure 2a, has an industrial

site located in the area affected by the flood in July 2017 and is therefore included in our study.

In contrast, company X, in Figure 2b, does not have an industrial site in the affected area and is

excluded from our sample.

(a) Company Y is included (b) Company X is not included

Figure 2. Examples of companies that are and are not affected by a flood: The blue-shaded
area represents the region affected by a major flood in northern Germany on 25 July 2017. In sub-figure 2a,
the pink dots indicate the locations of company Y’s production facilities, one of which is in the affected area.
Therefore, this company is included in our sample of affected companies. In sub-figure 2b, the yellow dots
represent the locations of company X’s production facilities. Since none of company X’s facilities are in the
affected area, this company is not included in our sample for that period.

We compute the expected and abnormal returns using the market model and the factor

models developed by Fama, French, and Carhart (Fama and French, 1993; Carhart, 1997; Fama

and French, 2015). Many studies have shown that various factors play a crucial role in explaining

14 These choices are consistent with other studies, such as Lanfear et al. (2019); Nagar and Schoenfeld (2022) and

the literature on early warning systems Merz et al. (2020).
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the returns on equity portfolios. In this study, we use factors specifically calibrated for European

developed markets, sourced from the Kenneth French Data Library. We believe this is also a

conservative approach for US stocks, as cross-listed stocks are less prone to shocks Kacperczyk

et al. (2021).

The occurrence of multiple events in close succession could bias our estimates, especially if

the same company is affected through its facilities in the same or different affected regions. The

latter could mean that investors are still updating their investment beliefs based on a previous

event. We mitigate this potential bias in two ways. First, we set the estimation window for

calculating the expected (normal) return to end before each event occurs. Second, we retain

only those securities issued by companies affected by extreme weather events whose estimation

windows do not overlap with other events of the same type. This approach helps to isolate the

idiosyncratic effect of individual occurrences.

In the literature a typical estimation window to compute normal expected returns ranges

from 120 to 30 days (Kruttli et al., 2025; Blanco et al., 2024). To include as many companies as

possible for each event we choose a 90-day estimation window. In Figure (3), we summarize

the relevant information on the length of the two windows that are relevant for the event study:

the estimation period for calculating the normal expected returns and the event window during

which the event takes place.

τ0 τ1 0 τ2





Estimation
window

L1









Event
window

L2





Figure 3. The relevant windows of the event study: Estimation periods
L1 and L2 are defined in days. The estimation window for calculating normal
expected returns is fixed and set at L1 = τ1 − τ0 = 90 days. L2 varies depending
on the type of hazard. The event window typically starts 0− τ1 = 5 days before
the event and we observe price changes until τ2 − 0 = 22 days after the event.

For the event study, we compute daily abnormal returns for each company (AR), cumulative

abnormal returns for each company (CAR), and cumulative average abnormal returns across

companies and events (CAAR). Daily abnormal returns ARi,m,t per company i and event m

are calculated as the difference between the actual Ri,m,t and the expected returns ERi,t using

various expected return models for the latter. Next, we calculate CAR for each company and

event by aggregating daily returns over the event window from τ1 to τ2. Finally, we compute the
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CAARs for extreme weather events averaged across companies and events. The three necessary

formulas read as follows:

ARi,m,t = Ri,m,t − ERi,t, (6)

CARi,m =

τ2
∑

t=τ1

ARi,m,t, (7)

CAAR =
1

N

1

M

N
∑

i=1

M
∑

j=1

CARi,m. (8)

In Equation (8), N represents the number of companies and M the number of events. To ensure

the robustness of our results, we compute the standardized cross-sectional variance following

Boehmer et al. (1991) that is robust to any variance induced by the event (Boehmer et al., 1991;

Kolari and Pynnönen, 2010). Further technical details on the implementation of Boehmer et al.

(1991) are provided in Appendix D.

IV Data sources and sample

We merge several data sources to analyze how security prices react to the effect of extreme

weather events. First, we obtain the locations of facilities and their links to parent companies

and securities by merging the E-PRTR with Amadeus ownership data from Bureau van Dijk.15

Second, we use facility locations, the timing and the geographical extent of extreme weather

events to identify when and where companies are affected by their facilities. Third, we match the

resulting dataset with daily historical returns and institutional shareholder ownership data for

the parent company obtained from Factset. Additional details on the data and matching methods

are provided in Appendices E and F.

We identify 4,162 European facilities linked to 1,452 publicly listed companies, only a

subsample is affected. Of the companies, 168 reflect 373 facilities of which 195 were hit by

storms and 178 by storms and floods. Another 516 companies reflected 1,774 facilities of which

1,596 were only affected by floods and 178 by storms and floods. The amount of facilities and

companies are in line with similar studies on physical risks using facility data outside the US

15 We assume that the ownership structure of a company does not change over four years. Therefore, we take two
snapshots of Amadeus ownership (2018-2022) and extrapolate backward, assuming ownership remained unchanged

for the four years prior.
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(Bressan et al., 2024). We implement several measures to enhance the scientific rigor of our

analysis. First, when extreme weather events occur multiple times, we only consider those with

a sufficient event-free period to estimate the expected returns. This consideration ensures that

the event is more likely to prompt investors to update their risk preferences, rather than being

influenced by a previous event. Second, we only use securities with prices above 5 euros during

the estimation period to avoid the influence of penny stocks.16 Third, we exclude securities from

the financial sector, except for the insurance sector, and include only those with at least a 10%

free float. These measures account for the liquidity and microstructure effects on stocks (Barrot

and Sauvagnat, 2016; Barnett et al., 2021).

Most securities included in the event study come from large-cap or mid-cap companies. Figure

4 shows the names of companies affected by floods and storms between 2014 and 2022. From the

figures, we observe that some major publicly listed US companies are linked through subsidiaries

and branches to facilities in Europe.17 The sample is materially relevant in terms of economic

exposure to physical risk. The companies in the analysis belong to sectors such as agriculture,

manufacturing, mining, pharmaceuticals, utilities, and water. These sectors are highly exposed

to weather-related disasters, as demonstrated by Dunz et al. (2021). We provide more detailed

information on the sample breakdown by industry in Appendix H.a.

(a) STORMS (b) FLOODS
Figure 4. Companies affected by extreme weather events from 2014 to 2021: In sub-figure (4a), we
show the names of all companies affected via their subsidiaries by storms in Europe. In sub-figure (4b), we show the
companies affected via their subsidiaries by floods in Europe in the same time frame. The font size is linked to the
market capitalization of the company.

The number of yearly extreme weather events increased from 2014 to 2022, with floods

affecting a larger number of facilities and resulting in a higher EAL compared to storms. In

Table II, we present the actual number of companies (securities) and facilities affected by extreme

16 Stock prices in foreign currencies are converted to euro prices by Factset, so that all returns are in euros.
17 We treat US companies with facilities in the EU as local companies for US institutional investors. In one of
the robustness checks we exclude US companies from the sample and show that the results are resilient over all

specifications.
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weather events broken down by country and type of event. EAL is expressed as the percentage

average loss over all facilities by risk type that is based on the theoretical damage functions as

introduced in Section III.c. The first four columns show the key figures for storms: the absolute

number of affected securities and facilities, the percentage of affected facilities as a share of the

total for that country, and their average EAL across all facilities. The last four columns show the

similar information for flood-affected facilities.

Table II shows that more facilities are affected by floods than by storms in Europe. Additionally,

Great Britain (GB) is the country most affected by extreme weather events. On average, the

EAL is considerably lower for storms compared to floods. For example, Belgium, Denmark, and

Germany have EAL percentages of 0.002, 0.013, 0.003, respectively, indicating that the EAL for

storms is relatively low in Europe. By contrast, floods lead to a higher EAL for Austria, Hungary,

and Ireland with percentages of 12.0, 10.6, and 13.5 respectively.

The share of LIO varies widely across Europe. In Figure 5, we observe that some countries

have very high levels of LIO, while others have much lower levels. For instance, Sweden has an

LIO of 90%, while Luxembourg has less than 10%.

In Appendix (F.d), we provide a detailed breakdown of facilities, securities, and IO by

country and sample( “ALL”,“STORM”,“FLOODS”). The distribution of ownership does not vary

considerably across samples.

V Investors’ reactions to extreme weather events: case studies

Before analyzing the full sample, we first present the results for two case studies to illustrate

the effectiveness of our method. These case studies were selected for their significant effects on

Europe in terms of damages. In the first case study, we examine Storm Ciara in early February

2020, which was highlighted in EIOPA (2022). While the worst effects were felt in Ireland and

GB, Ciara caused widespread wind and flood damage across Europe. The second case study

involves the July 2021 floods which severely affected Belgium, Germany, and the Netherlands

and rank among the most damaging floods in European history as the estimated damages were

e10 billion (EIOPA, 2022).

The key findings for the two events are shown in Table (III), with the strongest negative

abnormal return observed for Storm Ciara. The table presents the CAAR across different models

of the expected returns and was calculated over three distinct periods. The first period covers five
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STORM FLOOD TOTAL

Sec. Facility % Fac. EALi Sec. Facility % Fac. EALi Sec. Facility

AT - - - 0.0008 10 30 0.72 12.01 36 88
BE 12 21 0.5 0.0024 13 17 0.41 9.82 105 187
CH - - - 0.0011 12 19 0.46 13.32 35 55
CY - - - 0.0017 - - - - 1 2
CZ - - - 0.0013 15 36 0.86 9.36 66 104
DE 7 11 0.26 0.0025 89 196 4.71 9.98 228 564
DK 7 10 0.24 0.0128 1 3 0.07 8.97 24 38
EE - - - 0.0020 - - - 7.51 11 24
ES - - - 0.0009 33 111 2.67 10.10 105 287
FI - - - 0.0016 - - - 8.07 46 121
FR 15 25 0.6 0.0014 111 480 11.53 8.30 185 746
GB 93 261 6.27 0.0016 132 580 13.94 8.21 156 885
GR - - - 0.0009 1 1 0.02 8.81 7 14
HR - - - 0.0032 1 2 0.05 9.61 11 12
HU - - - 0.0025 - - - 10.62 18 32
IE 19 25 0.6 0.0020 16 23 0.55 13.51 33 42
IS - - - - - - - - 2 3
IT - - - 0.0005 47 204 4.9 10.46 121 385
LI - - - 0.0041 - 1 0.02 - 1 1
LT - 2 0.05 0.0015 - - - 8.83 5 6
LU 1 1 0.02 0.0012 1 1 0.02 4.20 2 2
NL 11 14 0.34 0.0018 19 34 0.82 9.74 28 40
PL - - - 0.0022 9 21 0.50 9.38 125 312
PT - - - 0.0012 - - - 8.03 28 40
RO - - - 0.0008 6 15 0.36 11.97 13 45
RS - - - 0.0006 - - - 9.17 3 6
SE 3 3 0.07 0.0021 - - - 10.98 51 113
SI - - - 0.0003 - - - 8.81 6 8
Total 168 373 8.96 0.0020 516 1774 42.62 9.59 1,452 4,162

Table II. Affected companies and facilities by country: In this table, we show the number of unique
affected publicly listed companies owning these facilities (Sec.=Security), the actual number of unique affected
facilities (Facility), and the percentage of affected facilities as a percentage of total facilities in a country (%Frac).
However, facilities might be affected several times over the years by extreme weather events, which would lead to
a higher number of affected facilities. Additionally, the theoretical EAL is the expected annual loss per country
averaged over the affected facilities, based on the model in Section III.c. The final column represents all companies
and facilities, affected and not affected, in a country. The average is computed from 2014 to 2021, and data on
facilities are obtained from the E-PRTR.

days prior to one day before the event for storms, and two days prior to one day before the event

for floods. The second period spans from the event date to 10 days after, and the third period

extends from 11 days to 22 days post-event. In columns 1 through 4, we display the CAAR for

each expected return model for Storm Ciara, while columns 5 through 8 show the corresponding

results for the floods. We observe that the negative surprise from Storm Ciara ranged from -2.72

to -2.91 percentage points (p.p.) over the 10 days following the event. A similar negative surprise

occurs for the floods, but it only materializes from 11 to 22 days after the event, reaching a
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Figure 5. Institutional ownership ownership of securities by country: This figure presents equity
ownership segmented by the issuing country and type of extreme weather event. For simplicity, three groups are
highlighted to show geographic ownership patterns. If an institutional owner (IO) is based in the same country
as the company it owns, this ownership is classified as “HOME." If the IO is based in a different country within
the EU, it is categorized as “ABROAD-EU." Finally, if the IO is located outside the EU, it is classified as “ABROAD
NON-EU." The right panel shows the distribution of ownership for all companies matched with publicly listed
equities, while the two right-hand panels display the ownership percentages for the sample of companies affected
by storms and floods.

negative CAAR of -0.61 to -2.16 p.p. This return indicates that for floods, investors require more

time to fully price in the negative effect of such significant events.

To support the case study, we show whether the affected companies disclose information

on their exposure to or effect from extreme weather events in their annual reports. Table

(IV) provides excerpts from the 2020 and 2021 annual reports of some of the companies

affected by Storm Ciara or the summer floods. These excerpts disclosed that these companies

acknowledged their exposure to extreme weather events. Using these case studies, we validate

our implementation of the method developed by the Statistics Committee of the ESCB (Statistics

Committee of the ESCB, 2023).
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CAAR

Storm Ciara February 2021 Summer floods July 2021

Mkt 3F 4F 5F Mkt 3F 4F 5F

(-5/-2:-1) -0.81*** -0.85*** -0.83*** -0.78*** 0.73*** 0.6** 0.45* 0.37
(0.14) (0.14) (0.14) (0.14) (0.21) (0.25) (0.25) (0.24)

(0:10) -2.91*** -2.72*** -2.72*** -2.79*** 0.63*** 0.29 0.13 -0.16
(0.27) (0.29) (0.29) (0.32) (0.24) (0.27) (0.29) (0.29)

(11:22) -1.38*** -1.71*** -1.37** -1.66*** -0.61** -0.74** -1.54*** -2.16***
(0.49) (0.48) (0.56) (0.5) (0.31) (0.32) (0.41) (0.38)

N 39 39 39 39 9 9 9 9

Table III. CAAR for Storm Ciara in 2020 and floods in 2021: In Table (III), we show the CAAR for
Storm Ciara in 2020 and the floods in 2021. The first period covers five days to one day before storms and two
days to one day before floods. The second spans the event date to 10 days after, and the third from 11 to 22 days
post-event. We use the following models to estimate the normal expected returns: Mkt, 3F , 4F , and 5F . N is
the number of uniquely affected companies. The numbers in brackets below the average estimates are standard
deviations computed using the test statistics from Boehmer et al. (1991).

Company (year of annual report) Annual Report Excerpt

Ciara 2020

OCI (2020)
“Adverse weather conditions and natural disasters

such as hurricanes [...] could result in property damage

loss of life, production interruptions and supply chain disruptions"

Wienerberger AG (2020) “After a weather related weak start to the 2020 business year"

Aperam SA (2020)

“Aperam’s manufacturing plant have experienced

and may in future experience, plants shutdowns or periods of

reduced production as a result of such process failures, or other

events such as natural disasters [...] or extreme weather events"

SCA (2020)

“SCA’s forest land is spread across large

areas of Northern Sweden, which means that forest fires and storms

can usually only impact a minor part of the forest portfolio. The

forest is therefore not insured."

Floods 2021

Norsk Hydro ASA (2021)
“The physical adaptation of assets and supply chain robustness

are important mitigating factors against the risk posed by climate

change related incidents, such as flooding"

Vinci SA (2021)

“VINCI is highly exposed to the acute physical

risks associated with climate change. Extreme weather

events can negatively impact the Group’s activities

in different ways, such as damage to worksites or flooded runways ..."

Derichenbourg (2021)

“A major event in the Recycling Business ( [...] prolonged flooding, etc.)

could lead to a prolonged breakdown in the logistic chain.

Major accident [...] or a natural disaster (earthquake, flood, etc)

interrupting operations."

Table IV. Extracts from annual reports related to risks from extreme weather events for companies
with negative CAAR during Storm Ciara in 2020 and the floods of July 2021: Extracts from 2020 or 2021
annual reports. These reports highlight the risk exposures of companies affected by Storm Ciara in early 2021, as well
as the risk exposures of companies affected by the summer floods of 2021 in Belgium, the Netherlands, and Germany.
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VI Results for the full sample

Building on the insights obtained from the case studies, we now extend our analysis to the

entire sample of companies affected by extreme weather events. In this section, we test the four

hypotheses introduced in Section (II).

VI.a Type of extreme weather event

The first hypothesis states that “Securities of firms affected by storms experience more negative

cumulative average abnormal returns (CAAR) compared to those affected by floods.” To test this

hypothesis, we examine whether the CAARs are significantly different from zero within a classical

event study framework. The evidence from the entire sample supporting this hypothesis is

presented in Table V. The table presents the CAAR across various estimation windows and models

of the expected returns, calculated over four distinct periods. The first three periods resemble

those in Table (III). The additional period covers five days before to 22 days after the event for

storms, and two days before to 22 days after the event for floods. We observe a discrepancy

between investors’ reactions to storms and floods. Investors’ negative reactions to storms are

consistent across all estimation models, with CAAR always negative and ranging from −0.72 to

−0.99 percentage points (p.p.) in the period between the event date and 10 days after. For floods,

however, CAAR shows a slightly positive trend before the event, albeit by only a few basis points

and a negative reaction within 10 days post-event appears only in the 4F and 5F models; there

is a lack of consistency across all models.
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CAAR

STORMS FLOOD

Mkt 3F 4F 5F Mkt 3F 4F 5F

(-5/-2:-1) -0.22*** -0.40*** -0.23*** -0.52*** 0.08*** 0.13*** 0.07*** 0.11***
(0.04) (0.05) (0.05) (0.05) (0.02) (0.02) (0.02) (0.02)

(0,10) -0.72*** -0.97*** -0.72*** -0.99*** 0.06 -0.07 -0.13*** -0.14***
(0.1) (0.1) (0.11) (0.11) (0.05) (0.05) (0.05) (0.05)

(11, 22) -0.61*** -1.21*** -0.67*** -1.08*** 0.02 0.29*** -0.11 0.2**
(0.15) (0.16) (0.17) (0.16) (0.08) (0.08) (0.08) (0.08)

(-5/-2:22) -0.59*** -0.97*** -0.61*** -0.94*** 0.04 0.12 -0.1 0.04
(0.15) (0.16) (0.17) (0.16) (0.08) (0.08) (0.08) (0.08)

N 223 223 223 223 634 634 634 634

Table V. CAAR for storms versus floods: This table gives a summary of the CAAR for storms and floods for
the whole sample for all estimation models of the expected returns (Mkt, 3F ,4F ,5F ). The first period covers five
to one day before storms and two to one day before floods. The second spans the event date to 10 days after, and
the third from 11 to 22 days post-event. The last period covers five days before to 22 days after the event for storms,
and two days before to 22 days after the event for floods. The numbers in brackets below the average estimates are
standard deviations using the t-statistic from (Boehmer et al., 1991). N is the number of companies. Note that
facilities, and therefore companies, can be affected multiple times over the years. Consequently, these numbers will
differ from those in Table II. Additionally, companies can have facilities affected by an extreme weather event in
multiple countries.

We provide additional evidence supporting H1 by plotting CAAR and its confidence intervals

across the entire event window. In Figure (6), the horizontal axis shows days relative to the event

and the vertical axis shows CAAR in percentage points. The estimates in the graph are based

on the market model, with confidence intervals calculated using the event-induced variance

measure from Boehmer et al. (1991). The results consistently demonstrate a negative cumulative

risk-adjusted investor reaction to storms that reaches an average of −0.8 percentage points (p.p.)

on the event date and up to −1.5 p.p. 11 days post-event. For floods, no significant deviation

from zero is evident. Furthermore, Appendix (G.a) shows these results persist over time and are

not driven by specific outliers, such as the Covid-19 pandemic.
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(a) STORM (b) FLOOD
Figure 6. CAAR for all weather-related disaster types: Sub-figure 6a depicts the CAAR for companies
affected by storms, while sub-figure 6b shows the CAAR for companies with facilities affected by floods. The horizontal
axis represents the days relative to the event date, and the vertical axis displays the CAAR in percentage terms. For
storms, forecasts predict an event’s occurrence in a specific region up to five days in advance that allows investors to
anticipate the storm’s effect, resulting in a negative CAAR even before the event occurs. In contrast, flood forecasts are
typically available only two days in advance, providing investors with less time to anticipate and react to the event.

VI.b Market segmentation

In the previous section, we demonstrated that the type of extreme weather event significantly

influences its effect on stock prices. Here, we extend the analysis to examine the role of market

segmentation, specifically testing whether a higher share of LIO positively affects stock prices

during extreme weather events. This analysis is based on the assumption that LIO have superior

knowledge of their local investments. To investigate, we test H2 through 4, as outlined in Section

II. First, we begin with H2: “The greater the degree of local institutional ownership in a security

before an event, the higher the cumulative abnormal returns (CAR) around the event’s occurrence.”

This hypothesis leans in the direction of the LIO having superior information on local stocks. We

follow three approaches: a baseline model and two distinct channels through which to test the

validity of the information advantage hypothesis.

We define the baseline model as follows:

CARModel,i,t = β0 + β1LIOi,t−1 + β2Postt + β3LIOi,t−1 · Postt +Ψt + ϵi,t, (9)

where CARModel,i,t represents the CARs for company i on event day t that is estimated using

the different models of the expected returns presented in Section III.d. LIOi,t−1 is the share of

local institutional ownership for security i in the quarter prior to the event. Postt is a dummy

variable that equals one if the date is on or after the event day, and zero otherwise. Ψt represents

time fixed effects which account for variation in the estimates solely due to time-related factors,
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and ϵi,t is the error term.

Second, we test H3: “The positive effect of local institutional ownership is greater when the

affected facilities are located in regions with higher exposure to extreme weather events.” Therefore,

we introduce a triple interaction term between LIO and the days following the event. Additionally,

we include all relevant double interaction terms to account for potential sources of heterogeneity

in this analysis, as recommended by (Olden and Møen, 2022). Consequently, the model to test

H3 is as follows:

CARModel,i,t =β0 + β1LIOi,t−1 + β2EALi + β3Postt + β4LIOi,t−1 · Postt+

β5LIOi,t−1 · EALi + β6EALi · Postt + β7LIOi,t−1 · Postt · EALi+

Ψt + ϵit

(10)

In Equation (10), EALi is a company’s exposure to the extreme weather event type as a

percentage of total tangible assets. We compute EAL at the facility level and average it with

equal weights over all facilities that are linked to a company. EALi is fixed over the whole period

for every company as this is based on future events’ probabilities as explained in Section III.c.

We test the hypothesis regressing Equation (9), with time fixed effects and clustering for time as

suggested in Petersen (2009), where time is the event date.

Third, we test whether a longer distance between the affected facility and its headquarters

reduces the positive effect of LIO. This model builds on the concept of Pellegrino et al. (2024),

where investment barriers increase with distance. We calculate the distance between a facility

and its headquarters using latitude and longitude data, following the approach of Coval and

Moskowitz (2001). This approach allows us to test H4: “ The positive effect of LIO weakens as the

distance between a facility and the company’s headquarters increases”. We use the following model

to test this hypothesis:

CARModel,i,t =β0 + β1LIOi,t−1 + β2ln(Disti) + β3Postt + β4LIOi,t−1 · Postt+

β5LIOi,t−1 · ln(Disti) + β6ln(Disti) · Postt + β7LIOi,t−1 · Postt · ln(Disti)+

Ψt + ϵit,

(11)
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where ln(Disti) is the natural logarithm of the distance in kilometers between the affected

facility and the headquarters of the company.

Before we go to the results, we first provide the descriptive statistics of the variables used in

the models from Equations (9), (10) and (11) in Table (VI). The CAR variables and the distance

variable Dist are winsorized. The daily average CAR, denoted as µ, is negative across all models

for both storm and flood events. For floods, the CAR has a lower standard deviation than for

storms, while the minimum and maximum values are quite similar in both samples. The median

LIO for storms exceeds that for floods by almost 10 percentage points, although the volatility

is very similar. However, the LIO distribution for floods shows a higher density closer to the

median compared to storms. The EAL is higher for floods than for storms. Similarly, companies

affected by both storms and floods have similar volatilities in Dist.

CARMkt,i,t CAR3F,i,t CAR4F,i,t CAR5F,i,t LIOi,t−1 EALi ln(Disti)

STORM

µ -0.77 -1.12 -0.88 -1.12 42.31 0.0022 1.89
σ 5.63 5.59 5.74 5.67 30.77 0.0022 0.31
min -18.68 -18.97 -17.94 -17.83 0.47 0.0000 -1.08
P25% -3.54 -3.81 -3.75 -3.98 18.43 0.0010 1.77
P50% -0.82 -0.91 -0.80 -0.96 33.00 0.0016 1.90
P75% 1.98 1.62 1.78 1.71 73.42 0.0029 2.15
max 13.62 12.55 13.87 12.75 95.96 0.0110 2.22
N 5,677 5,677 5,677 5,677 5,677 5,677 5,565

FLOOD

µ -0.15 -0.08 -0.32 -0.15 34.37 9.57 1.74
σ 5.01 4.88 5.42 4.93 29.75 3.67 0.72
min -16.95 -15.78 -19.44 -16.06 0.04 3.66 -5.29
P25% -2.59 -2.57 -2.86 -2.69 12.69 6.89 1.73
P50% -0.07 -0.11 -0.21 -0.15 23.53 8.72 1.83
P75% 2.40 2.37 2.38 2.34 51.06 12.04 1.99
max 12.08 12.18 12.92 12.25 97.11 19.49 2.21
N 14,022 14,022 14,022 14,022 14,022 14,022 13,776

Table VI. Descriptive statistics for the key regression variables: This table provides descriptive statistics for
the main variables used in the regressions. The µ and σ represent the daily mean and standard deviation in the sample,
respectively, expressed as percentages. The P25%, P50%, P75% are the percentiles of the distribution. The distance is
defined as the natural logarithm of the kilometers between a facility and its company’s headquarters. The previous
quarter’s LIO and EAL are expressed as percentages. We compute EAL at the facility level and average it by using
equal weights across all facilities linked to a company by the name-matching algorithm. All variables are winsorized
at the 1st and 99th percentiles to mitigate the effect of outliers. N represents the number of CAR observations by
company and date on which the descriptive statistics are based.

We now turn to the main results of the regressions, presented in Table (VII). The results for

Equation (9) are shown in column (1) for both storms and floods, supporting H1. The findings

indicate that a higher LIO prior to the event positively effects CAR on the event date, especially

for events with greater uncertainty, in this case as storms. The variable LIOt−1, representing
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the share of local institutional ownership in the quarter preceding the weather event, shows a

positive and significant effect on CAR. This effect remains significant when LIO is interacted

with the dummy variable Post.

For storms, a percentage point increase in LIO leads to a 0.013 percentage point increase

in CAR. After the event, the effect strengthens, with a percentage point increase in LIOt−1

leading to a 0.023 percentage point increase in CAR. Considering that Post is associated with an

average decrease in CARt,Mkt of -2.66 percentage points, LIOt−1 mitigates this negative effect

by approximately 1.3 percentage points.

The results of Equation (10) for storms and floods are presented in column 2 and provide

mixed evidence for H2. The primary coefficient of interest in this regression is the triple interaction

term LIOt−1 · Post · EALi. Column (2) confirms the results of the baseline model for storms,

indicating that companies with a greater share of LIO before the event experience less severe

negative abnormal returns when EALi is higher. This experience means that LIO are better

informed about the type of risk, reducing the surprise effect of the event. However, in the case

of floods (also shown in column (2)), local ownership does not appear to mitigate the negative

effect of the event. This contrast means that local knowledge plays a more substantial role in

reducing adverse outcomes when the event carries greater uncertainty about when it will occur

and what its effect will be.
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CARt,Mkt

STORM FLOOD

(1) (2) (3) (1) (2) (3)

β0 0.0064 -0.0008 1.0003** 0.2610 0.3110 0.3816
(0.2538) (0.2565) (0.4665) (0.2362) (0.2250) (0.4135)

LIOt−1 0.0131*** 0.0060 0.0142 0.0026 0.0014 0.0049
(0.0021) (0.0039) (0.0111) (0.0027) (0.0031) (0.0073)

Postt -2.6585*** -2.0402*** -3.6713*** -0.6898** -0.7927*** -1.0638*
(0.3216) (0.3501) (0.6330) (0.2850) (0.2870) (0.5619)

LIOt−1 · Postt 0.0226*** 0.0139*** 0.0946*** 0.0035 0.0062 0.0053
(0.0030) (0.0050) (0.0144) (0.0038) (0.0044) (0.0099)

EALi -52.949** -0.0220
(25.107) (0.0288)

LIOt−1 · EALi 3.1644** 0.0007
(1.2943) (0.0005)

Postt · EALi -165.65*** 0.0473
(35.864) (0.0341)

LIOt−1 · Postt · EALi 3.6874** -0.0018**
(1.4834) (0.0007)

ln(Disti) -0.1779*** -0.0230
(0.0605) (0.0517)

LIOt−1 · ln(Disti) 0.0002 -0.0003
(0.0015) (0.0011)

Postt · ln(Disti) 0.1453* 0.0647
(0.0866) (0.0735)

LIOt−1 · Postt · ln(Disti) -0.0094*** -0.0004
(0.0019) (0.0014)

N 5,593 5,593 5,593 14,022 14,022 14,022
R2 0.0322 0.0514 0.0541 0.0014 0.0020 0.0016

Time FE Yes Yes Yes Yes Yes Yes

Table VII. Effect of local institutional ownership, expected annual loss, and distance on cumulative
abnormal returns: This table shows the fixed effects regression where CARit,Mkt is the dependent variable. The
explanatory variables are: LIO(i,t−1) or the quarterly lagged percentage of local institutional ownership calculated
using the measure by Coeurdacier and Rey (2013) and definitions from Coval and Moskowitz (2001), EALi, or the
expected annual loss. Postt which is a dummy equal to one for the days at or after the event and ln(Disti) that is the
logarithm of the distance in kilometers between the facility and the headquarters as suggested in (Pellegrino et al.,
2024). Covariance is clustered by time (Petersen, 2009). N is the number of CARt,Mkt by day and company over
which regressions are computed.

Finally, column (3) shows the results from testing regression (11) that provide support

for H4. In this specification, we are particularly interested in the triple interaction LIO(t−1) ·

Post · ln(Disti) as it shows that the positive effect of the information advantage decreases with

the distance from the headquarters, which is by definition closer to LIOs. The results of this

specification are presented in column (3) for storms (STORM) and floods (FLOOD) in Table

(VII). Column (3) confirms the results of the baseline model for STORM. Additionally, column

(3) shows that the interaction term is negative and decreases the information precision with
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increasing distance. For example, for a 100% increase in distance, then CAR decreases by 0.009

percentage points for every percentage point increase in LIO(t−1), thus supporting H4.18

VII Robustness checks

In this section, we discuss the robustness checks conducted to test the resilience of our results.

We replicate the analysis from Section VI.b. Instead of using only the market model, we also

use the 3F, 4F, and 5F models to calculate the CAR. This robustness test shows that the results

are not materially affected by different models to derive the expected returns. We also add two

specific robustness checks. First, we repeat the regression excluding companies from the US as

they constitute a large share of our sample and could disproportionately influence the outcomes.

Second, we omit the year 2020 to account for the potential effect of the Covid-19 pandemic on

our results.

Adding additional risk factors to the CAR estimation models does not lead to changes in

the results of the main model for testing H2. The results remain consistent when repeating

regression (9) using the 3F, 4F and 5F models to estimate the expected returns and CAR. The

findings of these different estimation models are presented in column (1) of Tables (XI, XII,

and XIII) in Appendix (I). These tables follow the same structure as Table (VII). The results for

CARMkt are also confirmed by the other estimation models. Thus, we conclude that greater LIO

mitigates the negative effect of uncertainty arising from extreme weather events and that this

result is resilient to different financial risk specifications. Also if we exclude US companies or

remove the year 2020 from the sample, it does not alter our findings for H2. The results from

these two robustness checks can be found in Appendix (J).

We also test H3 by running regressions using different factor models to estimate the expected

returns and CAR. The results are presented in column (2) of Tables XI, XII, and XIII in Appendix I.

The findings for H3 remain valid across all different estimation models. We find that the results

are robust when excluding US companies from the analysis, but not when excluding the year

2020. Specifically, when the year 2020 is removed from the sample, the coefficient for the

interaction term LIOt−1 · Post · EALi changes sign, as illustrated in Appendix J. However, the

positive effect of LIOt−1 · Post remains. This finding indicates that the EAL measure would

18 We also test hypotheses H2 to H4 simultaneously using a single-step regression of factor loadings on raw returns,

but this analysis does not yield additional insights.
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benefit from additional information on insurance coverage, which is not captured by the measure

but might be known to investors.

Finally, the results are also resilient to the different CAR estimation models and the robustness

checks for H4. The results for the different estimation models and the robustness checks are

available in column (3) of Tables (XI, XII and XIII) and in section (J). After these results we can

fully support H4 that means this information channel is resilient in all cases and that greater

distance from the event occurrence does influences the results.

VIII Conclusion

Our analysis explores how extreme weather events effect securities prices and whether the

surprise is influenced by informational advantages. We compare storms and floods because early

warning systems show that they have different types of effects and uncertainties about locations.

Our empirical method provides a robust framework for understanding these dynamics. Thanks to

the empirical setting, we investigate how information on risk exposure and distance influence the

informational advantage of local owners.

For storms, we find a negative cumulative average risk-adjusted abnormal daily return of 99

basis points on the event date. Local institutional ownership (LIO) reduces this negative surprise

by 1.3% for every additional percentage point of local ownership. Drawing from the findings

summarized above, our research substantiates the theories posited in the literature (Coval and

Moskowitz, 2001; Van Nieuwerburgh and Veldkamp, 2009; Kruttli et al., 2025). This empirical

validation echoes other studies and contributes to our understanding of the relationship between

extreme weather events and the prices of securities (Alok et al., 2020; Huynh and Xia, 2021;

Kruttli et al., 2025). These results are in line with the literature (Pellegrino et al., 2024; Kruttli

et al., 2025; Blanco et al., 2024).

Our work has several limitations: we lack precise information on the extent to which individual

facilities are affected and on the relative importance of these facilities to the company. However,

as shown in Kruttli et al. (2025), this limitation does not appear to significantly affect the results.

The facilities reported in the E-PRTR are generally key facilities for the reporting companies, as

they must be reported only if they exceed certain waste thresholds, which also suggests higher

production levels.

We contribute to two streams of literature. First, we examine the role of local institutional
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ownership in securities’ performance under exogenous shocks, focusing on market segmentation

and event-driven uncertainty. Second, we contribute to the literature on the effect of extreme

weather events on asset prices by using granular facility-level data. Our approach leverages

innovative, open-source data for financial analysis.

Our findings have important implications for policymakers and finance practitioners. For

policymakers, our research underscores the value of publicly available sources, such as E-PRTR

and Copernicus, in supporting climate finance analysis. However, our study also highlights the

need for harmonizing data across countries to improve the accuracy and completeness of these

sources. For finance professionals, the informational barriers and local equity preferences that

influence market adjustments following extreme weather events emphasize the importance of

considering these factors in portfolio strategies. Additionally, diminishing informational distances

for non-local investors would likely alleviate price surprises before and after the events.

We acknowledge that channels other than the information channel may help explain our

findings. Although non-local investors have higher demand elasticity, local investors whose

demand is less price-elastic due to lower transaction costs and tax advantages seem to cushion

negative price impacts (Koijen et al., 2019).19

In conclusion, our study provides leads for future research on climate finance. The research

can be extended to other countries with E-PRTR locational data, enabling a broader evaluation of

the effects of extreme weather events on financial markets. It would be particularly valuable to

examine how disclosure of insurance coverage affects investors’ reactions to extreme weather

events. In regions with state-backed insurance programs, market dynamics, especially in flood-

prone areas, may shift notably. Finally, we advocate for an interdisciplinary approach that

integrates insights from finance, climatology, and economics to unravel the complex interactions

among extreme weather events, investor behavior, and financial markets.

19 Local investors may exhibit more inelastic demand due to transaction costs or differing tax treatments, as

documented in the home bias literature (Coeurdacier and Rey, 2013).

ECB Working Paper Series No 3069 37



REFERENCES

References

ALOK, S., N. KUMAR, AND R. WERMERS (2020): “Do fund managers misestimate climatic disaster

risk,” Review of Financial Studies, 33, 1146–1183.

ANTOFIE, T. E., S. LUONI, L. EKLUND, AND M. MARIN FERRER (2020): “Update of Risk Data

Hub software and data architecture,” EUR 30065 EN, Publications Office of the European Union,

Luxembourg, JRC119500.

APERAM SA (2020): “Annual report 2020,” Aperam, Available at

https://www.aperam.com/news/annual-report-2020/ (Accessed 11 March 2025).

BARNETT, M. (2024): “A run on fossil fuel? climate change and transition risk,” Available at

SSRN: https://ssrn.com/abstract=4346525 or http://dx.doi.org/10.2139/ssrn.4346525.

BARNETT, M., W. BROCK, AND L. P. HANSEN (2021): “Climate change uncertainty spillover in

the macroeconomy,” NBER Working Paper Series, 36, 253–320.

BARROT, J. N. AND J. SAUVAGNAT (2016): “Input specificity and the propagation of idiosyncratic

shocks in production networks,” The Quarterly Journal of Economics, 131, 1543–1592.

BASEL COMMITTEE ON BANKING SUPERVISION (2021): “Climate-related risk drivers and their

transmission channels,” Bank of International Settlements.

BLANCO, I., J. M. MARTIN-FLORES, AND A. REMESAL (2024): “Climate shocks, institutional

investors, and the information content of stock prices,” Journal of Corporate Finance, 86,

0929–1199.

BOEHMER, MUSUMECI, AND POULSEN (1991): “Event-study methodology under conditions of

event-induced variance,” Journal of Financial Economics, 30, 253–272.

BOERMANS, M. A. AND R. GALEMA (2025): “Carbon home bias of European investors,” Journal

of Corporate Finance, 92, 102748.

BONELLI, M. AND T. FOUCAULT (2023): “Does big data devalue traditional exper-

tise? Evidence from active funds,” HEC Paris Research Paper, Available at SSRN:

https://ssrn.com/abstract=4527672 or http://dx.doi.org/10.2139/ssrn.4527672, 2023-1492.

ECB Working Paper Series No 3069 38



REFERENCES

BRAKENRIDGE, G. R. (2025): “Global active archive of large flood events,” DFO - Flood Observatory,

University of Colorado, USA. http://floodobservatory.colorado.edu/ Archives/ (Accessed 11 March

2025).

BRESSAN, G., A. DURANOVIC, I. MONASTEROLO, AND S. BATTISTON (2024): “Asset-level

assessment of climate physical risk matters for adaptation finance,” Nat Commun, 15, 1–38.

CARHART, M. M. (1997): “On persistence in mutual fund performance,” Journal of Finance, 52,

57–82.

COEURDACIER, N. AND H. REY (2013): “Home bias in open economy financial macroeconomics,”

Journal of Economic Literature, 51, 63–115.

CONDON, M. (2023): “Climate services: The business of physical risk,” Arizona State Law Journal,

55, 148–209.

COVAL, J. AND T. J. MOSKOWITZ (1999): “Home bias at home: Local equity preference in

domestic portfolios,” Journal of Finance, 54, 2045–2073.

COVAL, J. D. AND T. J. MOSKOWITZ (2001): “The geography of investment: Informed trading

and asset prices,” Journal of Political Economy, 109, 811–841.

DERICHENBOURG (2021): “Annual report 2021,” Derichenbourg, Available at:

https://www.derichebourg.com/dam?media-id=63c6d2c75804e9797d005513 (Accessed

11 March 2025).

DESSAINT, O., T. FOUCAULT, AND L. FRESARD (2024): “Does Alternative Data Improve Financial

Forecasting? The Horizon Effect,” Journal of Finance, 79, 2237–2287.

DUNZ, N., T. EMAMBAKHSH, T. HENNIG, M. KAIJSER, C. KOURATZOGLOU, AND C. SALLEO (2021):

“ECB’s economy-wide climate stress test: Methodology and results,” ECB Occasional Paper Series,

281.

EIOPA (2022): “European insurers’ exposure to physical climate change risk - Potential

implications for non-life business,” EIOPA Discussion paper, 22/278.

EPA (2006): “Guidance Document for the implementation of the European PRTR,”

European Commission, Available at: https://www.epa.ie/publications/compliance–

ECB Working Paper Series No 3069 39



REFERENCES

enforcement/licensees/reporting/european-commission-guidance-document-for-the-

implementation-of-the-e-prtr-.php (Accessed 11 March 2025).

FAMA, E. F. AND K. R. FRENCH (1993): “Common risk factors in the returns on stocks and bonds,”

Journal of Financial Economics, 33, 3–56.

——— (2015): “A five-factor asset pricing model,” Journal of Financial Economics, 116, 1–22.

FEUERSTEIN, B., P. GROENEMEIJER, E. DIRKSEN, M. HUBRIG, A. M. HOLZER, AND N. DOTZEK

(2011): “Towards an improved wind speed scale and damage description adapted for Central

Europe,” Atmospheric Research, 100, 547–564.

GALI, N., R. MARIESCU-ISTODOR, D. HOSTETTLER, AND P. FRÄNTI (2019): “Framework for

syntactic string similarity measures,” Expert Systems with Applications, 129, 169–185.

GIANNETTI, M. AND L. LAEVEN (2016): “Local ownership, crises, and asset prices: Evidence from

US mutual funds,” Review of Finance, 20, 947–978.

GIGLIO, S., M. MAGGIORI, J. STROEBEL, Z. TAN, S. P. UTKUS, AND X. XU (2025): “Four facts

about ESG beliefs and investor portfolios,” Journal of Financial Economics, 164, 0304–405.

GLOSSNER, S., P. MATOS, S. RAMELLI, AND A. F. WAGNER (2025): “Do institutional investors

stabilize equity markets in crisis periods? Evidence from COVID-19,” Management Science, 0.

HUIZINGA, J., H. DE MOEL, AND W. SZEWCZYK (2017): “Global flood depth-damage functions.

Methodology and the database with guidelines,” Joint Research Centre (JRC), EUR 28552.

HUYNH, T. D. AND Y. XIA (2021): “Panic selling when disaster strikes: Evidence in the bond and

stock markets,” Management Science, 69, 7151–7882.

JAISWAL, K., D. WALD, AND K. PORTER (2010): “A global building inventory for earthquake loss

estimation and risk management,” Earthquake Spectra, 26, 731–748.

KACPERCZYK, M., S. SUNDARESAN, AND T. WANG (2021): “Do foreign institutional investors

improve price efficiency?” Review of Financial Studies, 34, 1317–1367.

KALEMLI-OZCAN, S., B. SORENSEN, C. VILLEGAS-SANCHEZ, V. VOLOSOVYCH, AND S. YESILTAS

(2024): “How to construct nationally representative firm-level data from the Orbis global

ECB Working Paper Series No 3069 40



REFERENCES

database: New facts on SMEs and aggregate implications for industry concentration,” American

Economic Journal: Macroeconomics, 16, 353–74.

KEMP, L., C. XU, J. DEPLEDGE, K. L. EBI, G. GIBBINS, T. A. KOHLER, J. ROCKSTRÖM,

M. SCHEFFER, H. J. SCHELLNHUBER, W. STEFFEN, AND T. M. LENTON (2022): “Climate

endgame: Exploring catastrophic climate change scenarios,” Proceedings of the National

Academy of Sciences of the United States of America, 119, 1–9.

KLEIN, R. W. AND V. S. BAWA (1977): “The effect of limited information and estimation risk on

optimal portfolio diversification,” Journal of Financial and Quantitative Analysis, 5, 89–111.

KOIJEN, R. S., M. YOGO, M. ANDRIES, M. BAKER, M. BRUNNERMEIER, J. CAMPBELL, J. DRIESSEN,

S. GIGLIO, V. HADDAD, A. HORTAÇSU, M. JOHANNES, D. LOU, T. MOSKOWITZ, A. PAVLOVA,

H. ENE REY, AND A. VEDOLIN (2019): “A Demand System Approach to Asset Pricing,” Journal

of Political Economy, 127.

KOLARI, J. W. AND S. PYNNÖNEN (2010): “Event study testing with cross-sectional correlation of

abnormal returns,” Review of Financial Studies, 23, 3996–4025.

KRUTTLI, M. S., B. R. TRAN, AND S. W. WATUGALA (2025): “Pricing Poseidon: Extreme weather

uncertainty and firm return dynamics,” Journal of Finance, 0, 01–57.

LANFEAR, M. G., A. LIOUI, AND M. G. SIEBERT (2019): “Market anomalies and disaster risk:

Evidence from extreme weather events,” Journal of Financial Markets, 46.

MACKINLAY, A. C. (1997): “Event Studies in Economics and Finance,” Journal of Economic

Literature, 35, 13–39.

MCCARTEN, M., M. BAYARAA, B. CALDECOTT, C. CHRISTIAEN, P. FOSTER, C. HICKEY,

D. KAMPMANN, C. LAYMAN, C. ROSSI, K. SCOTT, K. TANG, N. TKACHENKO, , AND D. YOKEN

(2021): “Global database of iron and steel production assets,” Spatial Finance Initiative.

MERTON, R. C. (1987): “A Simple Model of Capital Market Equilibrium with Incomplete

Information,” The Journal of Finance, 42, 483–510.

MERZ, B., G. BLÖSCHL, S. VOROGUSHYN, F. DOTTORI, J. C. J. H. AERTS, P. BATES, M. BERTOLA,

M. KEMTER, H. KREIBICH, U. LALL, AND E. MACDONALD (2021): “Causes, impacts and patterns

of disastrous river floods,” Nature Reviews Earth & Environment, 0123456789.

ECB Working Paper Series No 3069 41



REFERENCES

MERZ, B., C. KUHLICKE, M. KUNZ, M. PITTORE, A. BABEYKO, D. N. BRESCH, D. I. DOMEISEN,

F. FESER, I. KOSZALKA, H. KREIBICH, F. PANTILLON, S. PAROLAI, J. G. PINTO, H. J. PUNGE,

E. RIVALTA, K. SCHRÖTER, K. STREHLOW, R. WEISSE, AND A. WURPTS (2020): “Impact

forecasting to support emergency management of natural hazards,” Reviews of Geophysics, 58,

1–52.

NAGAR, V. AND J. SCHOENFELD (2022): “Measuring weather exposure with annual reports,”

Review of Accounting Studies, 29, 1–32.

NORSK HYDRO ASA (2021): “Annual report 2021,” Norsk Hydro, Available at:

https://www.hydro.com/en/global/investors/reports-and-presentations/annual-reports/annual-

report-2021/ (Accessed 11 March 2025), 1–262.

OCI (2020): “Annual report 2020,” OCI, Available at: https://oci-global.com/wp-

content/uploads/2023/02/oci-2020-annual-report.pdf (Accessed 11 March 2025).

OECD (2017): “Framework on the role of pollutant release and transfer registers

(PRTRs) in global sustainability analyses,” OECD Environment Directorate, Available at:

https://prtr.unitar.org/site/document/1313 (Accessed 11 March 2025).

OLDEN, A. AND J. MØEN (2022): “The triple difference estimator,” Econometrics Journal, 25,

531–553.

PAPROTNY, D., O. MORALES-NÁPOLES, AND S. N. JONKMAN (2017): “Efficient pan-European

river flood hazard modelling through a combination of statistical and physical models,” Natural

Hazards and Earth System Sciences, 17, 1267–1283.

PAPROTNY, D., O. MORALES-NÁPOLES, M. I. VOUSDOUKAS, S. N. JONKMAN, AND G. NIKULIN

(2019): “Accuracy of pan-European coastal flood mapping,” Journal of Flood Risk Management,

12, 1–16.

PATTERSON, D. H., S. SCHMITT, P. IZQUIERDO, P. TIBALDESCHI, H. BELLFIELD, D. WANG,

B. O’REILLY GURHY, A. D’ASPREMONT, P. TELLO, C. BONFILS-BIERER, S. BRUMBY, J. BARABINO,

N. VOLKMER, J. ZHENG, C. TAYLEUR, F. A. D’AGNESE, AND J. ARMSTRONG D’AGNESE (2022):

“Geospatial ESG: The emerging application of geospatial data for gaining ’Environmental’

insights on the asset, corporate and sovereign level,” WWF-UK, 1, 37.

ECB Working Paper Series No 3069 42



REFERENCES

PELLEGRINO, B., E. SPOLAORE, AND R. WACZIARG (2024): “Barriers to global capital

allocation,” George J. Stigler Center for the Study of the Economy & the State Working

Paper No. 346, Columbia Business School Research Paper No. 4972105, Available at SSRN:

https://ssrn.com/abstract=4972105 or http://dx.doi.org/10.2139/ssrn.4972105.

PETERSEN, M. A. (2009): “Estimating standard errors in finance panel data sets: Comparing

approaches,” Review of Financial Studies, 22, 435–480.

PRAHL, B. F., D. RYBSKI, M. BOETTLE, AND J. P. KROPP (2016): “Damage functions for climate-

related hazards: Unification and uncertainty analysis,” Natural Hazards and Earth System

Sciences, 16, 1189–1203.

SCA (2020): “Annual and sustainability report 2020,” SCA, Available

at: https://www.sca.com/siteassets/investors/reports-and-presentations/annual-

reports/2020/annual-report-2020.pdf (Accessed 11 March 2025).

STARKS, L. T. (2023): “Presidential address: Sustainable finance and ESG issues - Value versus

values,” Journal of Finance, 78, 1837–1872.

STATISTICS COMMITTEE OF THE ESCB (2023): “Towards climate-related statistical in-

dicators,” ECB, Available at: https://www.ecb.europa.eu/stats/all-key-statistics/horizontal-

indicators/sustainability-indicators/html/index.en.html (Accessed 11 March 2025).

STROBL, E. (2011): “The economic growth impact of hurricanes: evidence from U.S. coastal

counties,” The Review of Economics and Statistics, 93, 575–589.

VAN DEN BRINK, H. W. (2020): “An effective parametrization of gust profiles during severe wind

conditions,” Environmental Research Communications, 2.

VAN DER LOO, M. P. (2014): “The stringdist package for approximate string matching,” R Journal,

6, 111–122.

VAN NIEUWERBURGH, S. AND L. VELDKAMP (2009): “Information immobility and the home bias

puzzle,” Journal of Finance, 64, 1187–1215.

VINCI SA (2021): “2021 universal registration document,” Vinci annual report, Available at:

https://www.annualreports.com/HostedData/AnnualReportArchive/v/vinci_2021.pdf (Accessed

11 March 2025).

ECB Working Paper Series No 3069 43



REFERENCES

WEF (2024): “The global risks report 2024,” World Economic Forum, Available at:

https://www.weforum.org/publications/global-risks-report-2024/ (Accessed 11 March 2025), 19.

WIENERBERGER AG (2020): “2020 | Annual report,” Wienerberger, Available at:

https://www.wienerberger.com/content/dam/corp/corporate-website/downloads/investors-

downloads/2021/2020-Wienerberger-Annual-Report_EN.pdf (Accessed 11 March 2025).

ECB Working Paper Series No 3069 44



A THEORETICAL MODEL

A Theoretical model

In this appendix, we show how impact uncertainty and incidence uncertainty of extreme weather

events affect expected stock returns in a segmented market. The model is derived from Merton

(1987) and Kruttli et al. (2025).

We consider a two-period model with K firms in the economy. Additionally, two other

securities are available for trading in the market. The first is a risk-free asset offering a return of

Rf , and the second is a forward contract settled in cash based on the realized market factor Ỹ .

This common market factor is a random variable with E(Ỹ ) = 0 and E(Ỹ 2) = 1. The return on

the forward contract is given by:

R̃K+1 = R̄K+1 + Ỹ , (12)

where E(R̃K+1) = R̄K+1.

Investor j assigns a portion of its wealth, represented by wi,j , to firm i. Similarly, the fraction

of wealth that investor j allocates to the forward contract is wK+1,j . We define the return on

investor j’s portfolio as follows:

R̃j = R̄j + bj Ỹ + ϵ̃j + g̃j θ̃j . (13)

The total exposure of investor j to the market factor is given by:

bj =

K
∑

i=1

wi,jbi + wK+1,j , (14)

where bi is the exposure of a stock to the common market factor. The portfolio return has two

idiosyncratic factors. The first one is related to firm specific risk and given by:

ϵ̃j =

K
∑

i=1

wi,jσiϵ̃i. (15)

The second one is related idiosyncratic climate-related shocks:

g̃j θ̃j =
K
∑

i=1

wi,j g̃iθ̃i, (16)

where gi is the effect of the extreme event on a stock and is a random variable with mean
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µg,i and variance σ2
g,i. Further, θi is a Bernoulli distributed random variable θ̃i,t+1 ∼ B(1, ϕ) that

indicates whether the firm who issued the stocks is hit by an event, with probability ϕ.

In Eq. (13) R̄j is the expected portfolio return without the idiosyncratic extreme weather risk

factor as given in Merton (1987):

R̄j = Rf + bj(R̄K+1 −Rf ) +

K
∑

i=1

wi,j∆i. (17)

To derive this return, we use the fact that the portfolio share allocated to the risk-free asset is

given by wK+2,j = 1−
∑K+1

i=1 wi,j and set ∆i ≡ R̄i −Rf − bi(R̄K+1 −Rf ).

The expected return and variance of investor j’s portfolio can then be expressed as:

E(R̃j) = R̄j +
K
∑

i=1

wi,jµg,iϕ, (18)

and

Var(R̃j) = b2j +

K
∑

i=1

w2
i,j(σ

2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ)). (19)

We incorporate market segmentation as in Merton (1987) by assuming that investors are

limited to investing only in securities they are familiar with. For each investor j, the set of

securities they are aware of is denoted by Sj , while the set of securities they are unaware of is

denoted by Sc
j .

For an investor with mean-variance preferences, the maximization problem is:

max
bj ,wj

[

E(R̃j)−
δj
2

Var(R̃j)−
K
∑

i=1

λi,jwi,j

]

, (20)

where wj is a vector with elements wi,j . The final term represents the constraint that investors

are only able to invest in securities they are aware of. The Kuhn-Tucker multiplier λi,j is zero if

security i is included in investor j’s knowledge set, Sj . If the investor is unaware of security i,

then wi,j = 0. The first-order conditions with respect to bj and wj are

R̄K+1 −Rf − δjbj = 0, (21)

and
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∆i + µg,iϕ− δjwi,j(σ
2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))− λi,j = 0, i = 1, . . . ,K. (22)

The solutions for the market factor exposure and the portfolio weights for each firm are given

by

bj =
R̄K+1 −Rf

δj
, (23)

and

wi,j =
∆i + µg,iϕ

δj(σ2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))

, for i ∈ Sj , (24)

wi,j = 0, for i ∈ Sc
j , (25)

wK+1,j = bj −

K
∑

i=1

wi,jbi, (26)

wK+2,j = 1− bj +
K
∑

i=1

wi,j(bi − 1). (27)

Using the solutions for individual investor demand, we can aggregate the data across the N

investors in the economy to derive equilibrium asset prices and expected returns. We assume

that all investors share the same level of risk aversion and initial wealth, specifically δj = δ and

Wj = W . As a result, the exposure to the market factor presented in Equation (23) is uniform for

all investors:

bj = b =
R̄K+1 −Rf

δ
. (28)

From all N investors only Ni investors know about security i. Using equation Equation (24),

we can write the aggregate demand for security i as

Di = NiW
∆i + µg,iϕ

δ(σ2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))

. (29)

The equilibrium of total wealth is M ≡ NW . The value of security i as a fraction of the total

market capitalisation is:
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Vi

M
= xi =

qi(∆i + µg,iϕ)

δ(σ2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))

, (30)

where qi is the share of investors who know about the stock, qi = Ni/N , and Vi = Di in

equilibrium. Using the definition of ∆i together with Equations (28) and (30), the equilibrium

expected return for stock i can be expressed as:

E(R̃i) = R̄i + µg,iϕ = Rf + bibδ +∆i + µg,iϕ, (31)

or

E(R̃i) = Rf + bi(R̄K+1 −Rf ) +
δxi(σ

2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))

qi
, (32)

where σ2
g,iϕ reflects the impact uncertainty, that is, the expected variance of the event’s effect

on the stock return, and µ2
g,iϕ(1− ϕ) captures the incidence uncertainty, that is, the uncertainty

about whether the stock will be hit by the event.

We infer the following three observations from Equation (32):

1. An increase in impact uncertainty σ2
g,iϕ leads to higher expected returns,

2. An increase in incidence uncertainty µ2
g,iϕ(1− ϕ) leads to higher expected returns,

3. A lower fraction of investors familiar with the stock qi leads to higher expected returns.

Further, the impact probability ϕ on expected returns is hump-shaped. We take the first

derivative of the expected return w.r.t. probability ϕ:

d

dϕ
E(R̃i) =

δxi
qi

(

σ2
g,i + µ2

g,i(1− 2ϕ)
)

. (33)

Clearly then:

• For ϕ < 1
2

(

1 +
σ2
g,i

µ2
g,i

)

, the derivative is positive.

• For ϕ > 1
2

(

1 +
σ2
g,i

µ2
g,i

)

, the derivative is negative.

Figure 7 shows how the expected returns vary as a function of impact probability ϕ in the

left-hand panel and the fraction of informed investors qi in the right-hand panel.
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Figure 7. Expected stock return as a function of impact probability ϕ and fraction of informed
investors qi: The left-hand panel shows the humped-shaped impacteffect of the impact probability on the expected
returns. The right-hand panel shows how the expected returns increase exponentially if there are more less-informed
investors. The following calibration of Eq. (32) is used: Rf = 0.02, bi = 1, RK+1 = 0.06, 3 = 3, xi = 0.02, σi = 0.3,
σg,i = 0.025 and µg,i = 0.1.
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B Early warning signals for storms and floods

(a) Storm Ian: September 23 2022 (b) Storm Ian: September 28 2022

(c) Flood Neckar: June 2 2024 (d) Flood Donau: June 2 2024

Figure 8. An example of early warning systems with storms and floods: In sub-figures (8a) and
(8b), we see one of the first and of the last forecasts of hurricane Ian in the US in late September 2022. The
predicted area of impact narrows over time and the time-frame of prediction is of around five to seven days. In
sub-figures (8c) and (8d), we see the time frame for predicting the water level as well as the water level compared
with major historical floods for rivers in the regions of Baden-Wuerttenberg and Bavaria in Southern Germany in
June 2024. The time frame of prediction is very short, two days max and the uncertainty about the expected water
level is very limited. Sources: National Hurricane Center of the US forecast archive, Federal states of Bavaria and
Baden-Wuerttenberg.

C Assessing the quality of the matching algorithm

The Extra Tree method achieves a true positive rate of 88% with a relatively low standard

deviation (see Table I). In terms of the F1 score, it ranks as the second-best measure among

all models. Extra Tree also demonstrates the highest efficiency for the area under the curve

(AUC) across all models that we use. We compare all classification algorithms using the receiver

operating characteristic (ROC) curve and AUC, as shown in Figure 9. The classification model
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performs better when the ROC curve is steeper on the left side of the plot, approaching the point

(0,1). Additionally, a higher-performing model features a larger AUC where 0.5 represents a

random model, and 1.0 corresponds to perfect classification. In Figure 9, the Adaboost, Gradient

Boost, and Random Forest and Extra Tree classifiers have the largest AUC values. Notably, Extra

Tree also has the lowest standard deviation across the cross-validation samples.

Figure 9. ROC curve of several machine learning models: The figure shows the area
under the curve (AUC) for all classification models tested to assess the merging of two company
names. The models presented are the linear support vector machine (SVM), logistic regression,
the random tree model (Tree), the Naive Bayes classifier, AdaBoost, Gradient Boost, Random
Forest, and the Extra Trees classifier, as well as the k-nearest neighbors model. Additionally,
we measure the AUC for the similarity measures underlying the machine learning classification
models, including Q-Gram, the Jaro-Winkler method, and the Levenshtein measure.

D Boehmer, Musumeci and Poulsen test statistic

We perform a parametric test resilient to event-induced variance, following (Boehmer et al.,

1991). These authors compute the abnormal returns (AR) for the cross-sectional dimension of

the data. Specifically, they test whether the average abnormal returns (AAR) satisfy the null

hypothesis H0 : E(AAR) = 0 by computing the following test statistic:

tB =
1

N

N
∑

i=1

SRi,t

/

√

√

√

√

1

N
(

N − 1
)

N
∑

i=1

(

SRi,t −

N
∑

i=1

SRi,t

)2
(34)
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where:

• i=Company

• N is the number of companies

• t=Event day t in the event window

• SRi,t is the security i’s standardized residual on the event day

SRi,t = ARi,t

/

ŝi

√

√

√

√

√

√

1 +
1

Ti
+

(

Rm,Et − R̄m

)2

∑Ti

t=1

(

Rm,t − R̄m

)2
(35)

• Rm,t market return at event at event day t

• R̄m average market return during the estimation period

• ŝi security’s i estimated standard deviation of ARt during the estimation period

One can expand this test statistic CAR and to factor models following Kolari and Pynnönen

(2010).

E Overlaying storms and facilities’ to identify affected companies

To identify which companies own facilities in areas that were affected by storms, we combine

several databases. For instance, the E-PRTR provides the location of production facilities;

Amadeus tracks the ownership structure; Factset offers time series of prices; and the Copernicus

Climate Change Service (C3S) dataset on storm indicators for 1979 to 2021 from the Climate

Data Store (CDS) from Copernicus, which a service from the European Commission, provides

information on windstorm tracks and footprints among others. An overview of how these sources

are merged is provided in Figure 10. The figure also highlights the strengths (indicated by a ‘+’)

and weaknesses (indicated by a ‘−’) of each source.

From the E-PRTR, we have yearly information about the ownership of facilities. The E-PRTR

database provides details on the company name of the direct facility owner, the geographical

location, and whether the facility was active between 2008 and 2022. From Amadeus (Bureau

van Dijk), we determine whether a company is directly listed on the stock exchange or indirectly
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Companies’

Ownership of

production Facilities

FactSet

E-PRTR

C3S on Storms

Amadeus

Identified facilities

and companies

impacted by floods

(+) Factories’ location
(+) Ownership over time
(-) Parent-name only Identifier

(+) Financial, Accounting
(+) ISIN
(+) Shareholder ownership

(+) Ownership
(+) ISIN
(-) Yearly financials

(+) Wind intensity
(+) Date
(+) Extension

(+) Financial
(+) Location
(+) Ownership

Figure 10. Data sources contributing to the identification strategy: This map illustrates the various data
sources that characterize the dataset underlying the analysis. The flood data are sourced from (Brakenridge, 2025),
facility locations are obtained from the E-PRTR, and financial data are drawn from Amadeus and Factset. The dotted
lines represent merging processes, while the dotted box borders indicate the resulting dataset from a merging process.
The strengths (denoted by ‘+’) and weaknesses (denoted by ‘−’) of each source are noted in parentheses.

listed, for example, as a subsidiary of a directly listed company, or as the immediate shareholder

(ISH), domestic ultimate owner (DUO), or the global ultimate owner (GUO). Amadeus uses the

50% ownership rule to identify the GUO or the DUO of a company. Additionally, Factset provides

information on various components of a company’s balance sheet, stock price developments, and

market capitalization. Finally, the C3S dataset from Copernicus offers data on the wind intensity

date and exact location of 118 major European windstorms that have been identified based on

region and simple wind intensity criteria. This total was reached using a 25 m/s threshold.

To identify companies affected by storms, we first merge companies’ information from multiple

sources (E-PRTR, FactSet, Amadeus) and then geographically join this data with the extent of

regions affected by storms. First, we merge the names of facility owners from the E-PRTR on

a yearly basis with the names of all companies included in Amadeus. Next, we merge use the

ISIN variable from the resulting database in Amadeus with the financial information available in

FactSet. The resulting database, which includes the latitude and longitude of each facility, is then
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overlaid with the extent of regions affected by storms, allowing us to identify which facilities

were affected by storms in a given year. Additionally, we geocode the location of company

headquarters to compute the distance between facilities and their respective headquarters.

F The sources in detail

Our sample consists of publicly listed European companies that, at the time of a flood, had

facilities located in affected regions. Identifying the facilities were affected by extreme weather

events is essential to understanding how investors react to such occurrences. The analysis covers

facilities in all countries in the European Union (27) as well as Great Britain.

F.a Financial measures

We obtain data on stock prices, market capitalization, and institutional stock ownership from

FactSet Financial Data and Analysis. The final sample comprises unique publicly listed companies

whose facilities were affected by extreme weather events. This sample is extrapolated from a

dataset of 3653 daily returns per firm. Financial companies and those with less than a 10% free

float are excluded from the analysis.

F.b Facilities

We derive information on the locations of facilities from the E-PRTR. The E-PRTR, as defined

in Article 1 of the European Pollutant Release and Transfer Register (E-PRTR), is an integrated

pollutant release and transfer register at the community level [...] in the form of a publicly

accessible electronic database. It establishes rules for the implementation of the UNECE

Protocol on Pollutant Release and Transfer Registers, the facilitation of public participation in

environmental decision-making, and its contribution to preventing and reducing environmental

pollution.

According to Article 5 of the E-PRTR Regulation, all operators of facilities undertaking one or

more activities listed in Annex I of the Regulation must report specific information if they exceed

predefined capacity thresholds. These activities cover sectors such as energy; metal production

and processing; the mineral and chemical industries; waste and wastewater management;

paper and wood production; intensive livestock production and aquaculture; food and beverage
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production; and other industrial activities. As a result, many companies are required to report

their facilities’ locations.

The E-PRTR is a public inventory of data submitted by facilities, including information on toxic

chemical releases into the air, water, or land; recycling; energy recovery; and off-site transfers for

treatment or disposal. A key application of PRTRs is supporting sustainability-related decisions by

providing insight into facility-level operations over time. Since 2007, the E-PRTR has expanded

significantly and now comprises approximately 94,000 facilities across Europe. However, not

every country is covered every year, and the types of reported information vary by country and

over time. But, the dataset consistently provides facility locations, ownership details, and waste

production amounts. Through our preliminary data merge, we integrate approximately 21,000

unique facility owners and 34,126 unique facilities. Notably, many facility owners are not publicly

listed.

The E-PRTR covers various industrial sectors but does not encompass all facilities for every

company within these sectors. Facility operators are required to report waste production if their

facility’s output exceeds predefined capacity thresholds. For example, ferrous metal foundries

must report waste production if their capacity exceeds 20 tons per day. However, for some

industries, there is no capacity threshold.20

F.c The ownership structure of companies

Information on the ownership structure of companies and shareholder holdings is obtained

from Amadeus by Bureau van Dijk. We track ownership links between subsidiaries and their

owners. Amadeus provides data on ultimate ownership and active ownership links. To reconstruct

ownership over time, we use the method suggested by (Kalemli-Ozcan et al., 2024) that involves

using multiple vintages (point-in-time observations) provided by Amadeus. Across two years

(2018 and 2022), we collect approximately 35 million active ownership links. These point-in-time

snapshots are assumed to represent the ownership structure for the four years leading up to each

snapshot. Specifically, the years 2014 to 2018 are assumed to reflect the ownership structure in

2018 and similarly in 2022.

To analyze how investors react to extreme weather events, we identify ownership links

between the E-PRTR facility owner and the closest publicly listed company in terms of ownership

20 More details on general applications of PRTRs and reporting requirements are available in (OECD, 2017; EPA,

2006).
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structure. We take the first publicly listed company in the ownership chain of a facility and

compare its location to that of the facility to determine whether they are in the same country.

In Amadeus, we use a 50% ownership threshold to declare a company as the ultimate owner of

another.

F.d Facilities, securities and Institutional owners (IO)

Table (VIII) shows the percentage of ownership broken down by ownership category with respect

to the location of the facility, security, and security owner. This breakdown is provided for

three samples: the E-PRTR facilities successfully linked to securities (“SAMPLE = ALL”), facilities

affected by storms (“SAMPLE = STORM”), and facilities affected by floods (“SAMPLE = FLOOD”).

"Home" refers to the country of the company issuing the security. Depending on the location

of the facility or the institutional security owner (IO), these may be in different regions abroad or

share the same location as the security. For example, if the IO, security, and affected facility are

all located in the same country, the corresponding column in the table will be labeled “LIO”. If

the IO and security are based in the local country while the affected facility is abroad, the column

will be labeled “A(F)”. If the affected facility and the security owner are located in two different

countries abroad, the column will be labeled “A (IO<>F)”.

Table (VIII) shows that there is sufficient geographical ownership variation in the sample.

For 50% of the facilities, the owner and the traded security linked to them are located in the US.

Comparing the three samples presented in Table (VIII), we do not find significant differences

among them.
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F.e Storms

We compute the exposure of companies to storms in Europe using the storm footprints from the

Climate Data Store, provided by the Copernicus Programme.21 The dataset provides climatological

indicators on European storms and their economic impact, derived from ERA5 reanalysis. We

focus on storm footprints, defined as the maximum 3-second 10-m wind gust speed in meter

per second (m/s) over a 72-hour period at each model grid point for significant storms. A storm

footprint thus shows the spatial distribution of maximum wind gust speed for a storm crossing

the area of interest.

The C3S storm footprint dataset consists of footprints from all identified storms, provided by

the Storm Tracking module, over the period 1979-2021 (van den Brink, 2020). Some years are

excluded from the dataset as they did not exceed the selection criteria threshold of 25 m/s 10-m

winds over land, using a 3-degree sampling region. As a result, our sample does not include data

for the years 2018 and 2019. Due to the timeframe considered in our analysis, we only include

storm footprints from 2014 to 2021. Figure 11 shows all areas and the relative storm speed of

all storms that affected Europe from 2014 to 2021. In sub-figure 11b, we show the footprint of

Storm Ciara, which affected Europe from February 7 to February 11, 2020, and had particularly

damaging effects on the affected areas.

(a) Storms (2014-2021) (b) Storm Ciara (7-11 Feb 2020)
Figure 11. storms in Europe from 2014 to 2021: In sub-figure (11), we show the areas and intensity
of storms that affected Europe from 2014 to 2021. In sub-figure (11b), we show the area that was affected by
Storm Ciara from 7 to 11 February 2020. The different colors show different levels of 10 minutes wind speed
in the different areas. The darker the surface the stronger the wind speed.

Our sample consists of 16 storms, which are heterogeneously distributed throughout Northern

21 More information can be found under Copernicus Programme.
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Europe as shown in Figure (11). The average historical the maximum 3-second 10m wind gust

over time and events is 34 m/s. A windspeed of above 30 m/s is considered to be damaging for

most European buildings (Prahl et al., 2016) . The event date is the day of the weather’s landfall

as suggested in (Lanfear et al., 2019).

F.f Floods

To compute the exposure of companies to floods, we use information in form of polygons provided

by Brakenridge (2025). The database provides global coverage of the strongest flood events to

have occurred in history and an estimate of the land surface affected. The severity of the floods

is measured through the Severity Class assessment on a 1 to 2 scale. The floods are divided

into three severity classes. Class 1 events are large floods that caused significant damage to

structures, agriculture, fatalities, and/or featured a 1 to 2 decades long reported interval since

the last similar event. Class 1.5 contains very large events with an interval of greater than 2

decades but less than 100 year between occurrences, a local recurrence interval of 1 to 2 decades

and having affected a large geographic region ( e.g. > 5000 sq. km). Class 2 contains extreme

events with an estimated recurrence interval greater than 100 years.

We restrict our sample geographically and over time. The flood dataset has a global coverage

and starts in 1985. Nevertheless, our geographical coverage extends to the floods that might

affect the facilities recorded in the E-PRTR database. Additionally, as far as our time frame is

concerned we are constrained by our interest in investors’ reactions after the Paris agreement.

Our flood sample consists of 68 flood events. Some 35 events have a severity class of 1.5, 27

have a severity of 1.0, and 6 have a severity class of 2.0.The geographic distribution of events

is very heterogeneous. Figure (12) shows that most of the events take place in Central and

Southern Europe. Specifically, 10 occurred in Spain as the main country, 8 in Italy, 10 in France,

7 in Greece, and 5 in Great Britian. Sub-figure (12b) gives a picture of the case study on the

summer floods in Belgium, Germany, and the Netherlands in July 2021, which affected several

regions. The event is classified as being in severity class 2.

ECB Working Paper Series No 3069 59



G ADDITIONAL RESULTS

(a) Floods (2014-2021) (b) Floods (13 - 15 Jul 2021)
Figure 12. Floods in Europe from 2014 to 2021: In sub-figure (12), we show the areas and severities
of floods that affected Europe from 2014 to 2021. In sub-figure (12b), we show the area that was affected
by the summer floods in the Belgium, Germany, and the Netherlands in July 2021. The different colors show
different levels of severity by polygon. The darker the lower the recurrence interval of that flood event in the
area.

G Additional Results

G.a Cumulative average abnormal returns over years and event types

Our results are persistent over time and are not driven by a specific outlier year, such as the

year when Covid lockdowns were announced. In Table (IX), the horizontal axis shows the CAAR

averaged over the course of a year, while the vertical axis shows the results for different event

window buckets, broken down by weather-related event type. Table (IX) demonstrates that,

after the event, CAAR is negative and significantly different from zero for each year. The only

exceptions to this result are 2016 for storms, and 2014, 2015, and 2018 for floods. Additionally,

we find that the results are consistently larger for storms.
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CAAR

2014 2015 2016 2017 2018 2019 2020 2021
Days

WIND

(-5:-1) -0.18** -0.52*** 0.28*** -0.16 - - -0.73*** -
(0.07) (0.08) (0.1) (0.12) (-) (-) (0.13) (-)

(0:10) -1.6*** -0.72*** 2.98*** -1.2*** - - -2.67*** -
(0.14) (0.2) (0.23) (0.25) (-) (-) (0.26) (-)

(11:22) -1.65*** -1.39*** 2.59*** -2.1*** - - -1.0** -
(0.26) (0.23) (0.33) (0.6) (-) (-) (0.46) (-)

N 85 27 40 20 - - 43 -

FLOOD

(-2:-1) -0.08 2.94*** 0.22*** -0.36*** 0.3*** -0.08** 0.03 -0.19
(0.05) (0.08) (0.03) (0.04) (0.07) (0.04) (0.09) (0.07)

(0:10) 0.28** 4.03*** -0.25** 0.27*** 0.14 -0.64*** -1.22*** -0.49
(0.12) (0.13) (0.1) (0.08) (0.17) (0.11) (0.28) (0.14)

(11:22) 0.92*** 5.13*** 0.05 -0.29** 0.6** -1.79*** -0.67 -1.01
(0.24) (0.21) (0.15) (0.13) (0.24) (0.16) (0.45) (0.24)

N 61 28 126 181 103 40 23 63

Table IX. CAAR by hazard, year and day from the event:In Table (IX), we show the average CAAR for
storms and floods aggregated over the days from the event by year of occurrence and the Mkt estimation models to
estimate the expected returns. N is the number of observations on which it is computed. The numbers in brackets
below the average estimates are p-values computed using the Wilcoxon signed rank test if the number of unique
companies is below 30 in the sample.

H Industry analysis

H.a Extreme weather events: industries

Here we show the number of facilities by NACE sectors. MSCI in a recent publication determined

that the sectors of manufacturing, utility, water, and mining were the ones that were highly

exposed to climate hazards of different types. These sectors are highly represented in the sample

we matched with the E-PRTR. The manufacturing sector is around 20% of all facilities that are

owned by public entities and are affected by extreme weather events. The other sectors also

characterised the majority of the facilities affected. In Table (X) we provide an overview of the

facilities affected by extreme weather events as a percentage of the whole sample.
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All companies Listed companies
Affected Total % Total Affected Total % Total

ADMINISTRATIVE 570 1163 1.78 52 90 1.29
AGRICULTURE 282 904 0.88 10 31 0.25
COMMUNICATION 99 233 0.31 18 44 0.45
CONSTRUCTION 356 762 1.11 18 46 0.45
EDUCATION 11 16 0.03 NaN NaN NaN
ENTERTAINMENT 27 69 0.08 1 1 0.02
FINANCIAL 446 798 1.39 34 82 0.85
HEALTH 537 1291 1.68 NaN NaN NaN
MANUFACTURING 7412 15488 23.14 766 1972 19.05
MINING 172 501 0.54 92 287 2.29
OTHER 116 207 0.36 42 52 1.04
PUBLIC 141 242 0.44 8 8 0.20
REAL ESTATE 322 634 1.01 3 6 0.07
SALES 1002 2221 3.13 67 170 1.67
SERVICE 76 159 0.24 1 1 0.02
TECHNICAL 530 1122 1.65 46 110 1.14
TRANSPORTATION 216 515 0.67 33 67 0.82
UTILITIES 575 1427 1.80 179 455 4.45
WATER 1965 4274 6.14 337 599 8.38
Total 14855 32026 46.38 1707 4020 42.46

Table X. Affected facilities by NACE category from 2014-2021 for all hazards: In this
table, we show the number of unique facilities for which we could follow the ownership structure by
NACE category. In the first 3 columns we show the affected facilities, the total number of facilities
we match, and the percentage of facilities affected, with a total of 32,026. In the last 3 columns we
show the same numbers but only for those facilities that have a public listed company in the ownership
structure.

H.a.1 The Case studies

In Figure 13, we report the CAAR for Storm Ciara and we see that it is mostly negative and

persistent over a longer period for three main NACE categories: Construction, Manufacturing,

and Water.22

In Figure (14a), we report the results of the case study for the summer floods in norther

Europe in summer 2021. After a breakdown by economic activity, we find that manufacturing or

professional, scientific, and technical activities are negatively affected by floods.

22 Which are respectively sections C, E, and F of the NACE economic sections.
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(a) Ciara

Figure 13. CAAR for Storm Ciara February 2020 by Industry: In Figure (13), we depict CAAR
broken down by NACE economic section for companies affected by Storm Ciara which formed on 10 February
2020 and dissipated on 16 February 2020. The Y-axis of each figure represents the CAAR in %, and the X-axis
days from the event, where positive values are after event beginning and negative before.

(a) Floods July 2021

Figure 14. CAAR for the summer floods in Central Europe July 2021: In Figure (14), we compute
the CAAR broken down by NACE economic section for companies affected by the summer floods in Germany,
Belgium, and the Netherlands from 13 to 15 July 2021. The Y-axis of each figure represents the CAAR in %,
and the X-axis days from the event, where positive values are after the event’s start and negative before.

H.a.1 The whole sample

Next, we analyse whether the industry of affected companies influences investors’ reaction.

Specifically, we expect to see a stronger reaction for an industry that has a material exposure to

physical risks. For instance those highlighted in the (Dunz et al., 2021), such as manufacturing

ECB Working Paper Series No 3069 63



H INDUSTRY ANALYSIS

and construction.

(a) STORMS

(b) FLOODS

Figure 15. Cumulative Average Abnormal Returns (CAAR) by event type: In sub-figures (15a
and 15b), we depict the CAAR broken down by NACE economic section for companies affected by storms and
floods. The Y-axis of each figure represents the CAAR in %, and the X-axis days from the event, where positive
values are after the event’s start and negative before.

Sub-figure (15a) shows that the industries that are mostly affected are manufacturing, utilities,

construction, and transportation. Sub-figure (15b) shows that transportation related activities

suffer the most from floods.
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I Replicating the analysis with the 3F, 4F and 5F

CARt,3F

STORM FLOOD

(1) (2) (3) (1) (2) (3)

β0 0.4781** 0.4764** 1.8479*** 0.1978 0.3258* 0.3135
(0.1899) (0.1910) (0.3936) (0.2224) (0.1980) (0.4070)

LIOt−1 0.0091*** 0.0032 0.0034 0.0022 -7.87e-05 0.0077
(0.0022) (0.0034) (0.0095) (0.0027) (0.0031) (0.0084)

Postt -3.4715*** -2.8299*** -4.4040*** -0.5805** -0.7356*** -0.8193
(0.2432) (0.2644) (0.6138) (0.2664) (0.2594) (0.5486)

LIOt−1 · Postt 0.0223*** 0.0123*** 0.0948*** 0.0049 0.0083* -0.0061
(0.0030) (0.0047) (0.0143) (0.0042) (0.0048) (0.0106)

EALi -50.768** -0.0471
(25.178) (0.0290)

LIOt−1 · EALi 2.6674** 0.0012**
(1.3012) (0.0005)

Postt · EALi -178.19*** 0.0636*
(35.137) (0.0351)

LIOt−1 · Postt · EALi 4.2143*** -0.0021***
(1.4971) (0.0007)

ln(Disti) -0.2352*** -0.0229
(0.0480) (0.0520)

LIOt−1 · ln(Disti) 0.0012 -0.0007
(0.0012) (0.0012)

Postt · ln(Disti) 0.1323 0.0480
(0.0818) (0.0725)

LIOt−1 · Postt · ln(Disti) -0.0095*** 0.0013
(0.0018) (0.0016)

N 5,593 5,593 5,593 14,022 14,022 14,022
R2 0.0262 0.0476 0.0482 0.0018 0.0024 0.0024

Time FE Yes Yes Yes Yes Yes Yes

Table XI. Regression of CAR3F,i,t on LIOi,t−1 and EALi, ln(Disti): In Table (XI), we show the fixed effects
regression where CARit,Mkt is the dependent variable. The explanatory variables are: LO(i,t−1) or the quarterly
lagged percentage of LIO calculated using the measure by Coeurdacier and Rey (2013) and definitions from Coval
and Moskowitz (2001), EALi or the expected annual loss. Postt which is a dummy equal to one for the days at
or after the event and [ln(Disti), which is the logarithm of the distance in kilometers between the facility and the
headquarters as suggested in (Pellegrino et al., 2024)]. Covariance is clustered by time (Petersen, 2009). N is the
number of CARt,Mkt by day and company over which regressions are computed.
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CARt,4F

STORM FLOOD

(1) (2) (3) (1) (2) (3)

β0 0.1866 0.1769 1.4310*** 0.2267 0.3975 -0.1230
(0.2790) (0.2856) (0.3924) (0.3105) (0.2870) (0.4760)

LIOt−1 0.0127*** 0.0061* 0.0078 0.0019 -0.0010 0.0124
(0.0018) (0.0034) (0.0095) (0.0030) (0.0035) (0.0089)

Postt -2.9088*** -2.3284*** -3.5680*** -0.8324** -1.0226*** -1.3633**
(0.3431) (0.3571) (0.6396) (0.3630) (0.3574) (0.6333)

LIOt−1 · Postt 0.0199*** 0.0116** 0.0922*** 0.0039 0.0079 -0.0047
(0.0026) (0.0045) (0.0138) (0.0046) (0.0054) (0.0115)

EALi -48.049* -0.0605*
(26.994) (0.0313)

LIOt−1 · EALi 2.9374** 0.0014***
(1.3805) (0.0005)

Postt · EALi -156.54*** 0.0757*
(36.378) (0.0387)

LIOt−1 · Postt · EALi 3.5388** -0.0024***
(1.6036) (0.0008)

ln(Disti) -0.2152*** 0.0565
(0.0451) (0.0572)

LIOt−1 · ln(Disti) 0.0010 -0.0015
(0.0012) (0.0013)

Postt · ln(Disti) 0.0879 0.0962
(0.0853) (0.0789)

LIOt−1 · Postt · ln(Disti) -0.0094*** 0.0009
(0.0018) (0.0018)

N 5,593 5,593 5,593 14,022 14,022 14,022
R2 0.0268 0.0428 0.0499 0.0012 0.0019 0.0031

Time FE Yes Yes Yes Yes Yes Yes

Table XII. Regression of CAR4F,i,t on LIOi,t−1 and EALi, ln(Disti): In Table (XII), we show the fixed
effects regression where CARit,Mkt is the dependent variable. The explanatory variables are: LO(i,t−1) or the
quarterly lagged percentage of LIO calculated using the measure by Coeurdacier and Rey (2013) and the definitions
from Coval and Moskowitz (2001), EALi or the expected annual loss. Postt which is a dummy equal to one for the
days at or after the event and [ln(Disti), which is the logarithm of the distance in kilometers between the facility and
the headquarters as suggested in (Pellegrino et al., 2024)]. Covariance is clustered by time (Petersen, 2009). N is the
number of CARt,Mkt by day and company over which regressions are computed.
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CARt,5F

STORM FLOOD

(1) (2) (3) (1) (2) (3)

β0 0.5547*** 0.5943*** 2.2054*** 0.0507 0.2030 0.0289
(0.1888) (0.1963) (0.5024) (0.2138) (0.1937) (0.3960)

LIOt−1 0.0073*** -0.0013 0.0035 0.0021 -0.0003 0.0088
(0.0027) (0.0034) (0.0088) (0.0029) (0.0033) (0.0078)

Postt -3.4155*** -2.7196*** -2.8168*** -0.3670 -0.4652* -0.3777
(0.2403) (0.2667) (0.6772) (0.2577) (0.2541) (0.5361)

LIOt−1 · Postt 0.0219*** 0.0108** 0.0794*** 0.0016 0.0040 -0.0131
(0.0036) (0.0051) (0.0140) (0.0043) (0.0048) (0.0101)

EALi -82.728*** -0.0522*
(22.728) (0.0281)

LIOt−1 · EALi 3.8640*** 0.0011**
(1.1432) (0.0005)

Postt · EALi -181.06*** 0.0419
(31.492) (0.0338)

LIOt−1 · Postt · EALi 4.7448*** -0.0017**
(1.3459) (0.0007)

ln(Disti) -0.2837*** 0.0012
(0.0681) (0.0541)

LIOt−1 · ln(Disti) 0.0010 -0.0009
(0.0012) (0.0012)

Postt · ln(Disti) -0.1049 0.0095
(0.0951) (0.0743)

LIOt−1 · Postt · ln(Disti) -0.0071*** 0.0019
(0.0019) (0.0016)

N 5,593 5,593 5,593 14,022 14,022 14,022
R2 0.0220 0.0475 0.0543 0.0005 0.0013 0.0011

Time FE Yes Yes Yes Yes Yes Yes

Table XIII. Regression of CAR5F,i,t on LIOi,t−1 and EALi, ln(Disti): In Table (XIII), we show the fixed
effects regression where CARit,Mkt is the dependent variable. The explanatory variables are: LO(i,t−1) or the
quarterly lagged percentage of LIO calculated using the measure by Coeurdacier and Rey (2013) and the definitions
from Coval and Moskowitz (2001), EALi or the expected annual loss. Postt which is a dummy equal to one for the
days at or after the event and [ln(Disti), which is the logarithm of the distance in kilometers between the facility and
the headquarters as suggested in (Pellegrino et al., 2024)]. Covariance is clustered by time (Petersen, 2009). N is the
number of CARt,Mkt by day and company over which regressions are computed.
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J Robustenss tests: excluding the US and year 2020

CARt,Mkt w/o the United States

STORM FLOOD

(1) (2) (3) (1) (2) (3)

β0 -0.5332 -0.5538* 0.4010 0.1966 0.2437 0.7049*
(0.3504) (0.3323) (0.5755) (0.2366) (0.2313) (0.4153)

LIOt−1 0.0153*** 0.0145*** 0.0255** 0.0076** 0.0068* -0.0049
(0.0032) (0.0043) (0.0099) (0.0033) (0.0037) (0.0078)

Postt -2.4516*** -1.8738*** -3.8120*** -0.7985*** -0.9432*** -0.6386
(0.4492) (0.4545) (0.7458) (0.2863) (0.2928) (0.5619)

LIOt−1 · Postt 0.0366*** 0.0233*** 0.1111*** 0.0074* 0.0131** -0.0096
(0.0041) (0.0052) (0.0141) (0.0044) (0.0051) (0.0103)

EALi -0.0977 -0.0148
(20.473) (0.0314)

LIOt−1 · EALi 0.4867 0.0003
(1.0974) (0.0007)

Postt · EALi -200.44*** 0.0729**
(34.537) (0.0369)

LIOt−1 · Postt · EALi 5.5407*** -0.0039***
(1.3211) (0.0009)

ln(Disti) -0.1486** -0.0879
(0.0641) (0.0558)

LIOt−1 · ln(Disti) -0.0019 0.0022
(0.0014) (0.0014)

Postt · ln(Disti) 0.2548*** -0.0290
(0.0897) (0.0776)

LIOt−1 · Postt · ln(Disti) -0.0128*** 0.0031*
(0.0020) (0.0018)

N 4,557 4,557 4,557 12,270 12,270 12,270
R2 0.0406 0.0582 0.0644 0.0048 0.0097 0.0077

Time FE Yes Yes Yes Yes Yes Yes

Table XIV. Regression of CARMkt,i,t on LIOi,t−1 and EALi, ln(Disti): In Table (XIV), we show the
fixed effects regression where CARit,Mkt is the dependent variable. The explanatory variables are: LO(i,t−1) or the
quarterly lagged percentage of LIO calculated using the measure by Coeurdacier and Rey (2013) and the definitions
from Coval and Moskowitz (2001), EALi or the expected annual loss. Postt which is a dummy equal to one for the
days at or after the event and [ln(Disti), which is the logarithm of the distance in kilometers between the facility and
the headquarters as suggested in (Pellegrino et al., 2024)]. Covariance is clustered by time (Petersen, 2009). N is the
number of CARt,Mkt by day and company over which regressions are computed.
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CARt,Mkt the year 2020

STORM FLOOD

(1) (2) (3) (1) (2) (3)

β0 -0.0140 0.0640 1.6584** 0.3353 0.3892* 0.3993
(0.2785) (0.3549) (0.7220) (0.2364) (0.2255) (0.4193)

LIOt−1 0.0116*** -0.0069 0.0016 0.0019 0.0005 0.0038
(0.0022) (0.0049) (0.0161) (0.0027) (0.0031) (0.0078)

Postt -2.1879*** -2.5233*** -4.6318*** -0.6651** -0.7862*** -1.1663**
(0.3457) (0.5205) (0.9570) (0.2856) (0.2890) (0.5664)

LIOt−1 · Postt 0.0203*** 0.0330*** 0.1181*** 0.0029 0.0058 0.0043
(0.0032) (0.0074) (0.0205) (0.0038) (0.0045) (0.0104)

EALi -240.65** -0.0240
(102.94) (0.0297)

LIOt−1 · EALi 9.0990*** 0.0008
(1.7440) (0.0005)

Postt · EALi 469.44*** 0.0528
(173.79) (0.0351)

LIOt−1 · Postt · EALi -7.0239*** -0.0018**
(2.4778) (0.0007)

ln(Disti) -0.2803*** -0.0129
(0.0996) (0.0521)

LIOt−1 · ln(Disti) 0.0018 -0.0002
(0.0021) (0.0011)

Postt · ln(Disti) 0.3516*** 0.0875
(0.1336) (0.0735)

LIOt−1 · Postt · ln(Disti) -0.0126*** -0.0004
(0.0027) (0.0015)

N 4,445 4,445 4,445 13,615 13,615 13,615
R2 0.0313 0.0430 0.0582 0.0010 0.0016 0.0014

Time FE Yes Yes Yes Yes Yes Yes

Table XV. Regression of CARMkt,i,t on LIOi,t−1 and EALi, ln(Disti): In Table (XV), we show the fixed
effects regression where CARit,Mkt is the dependent variable. The explanatory variables are: LO(i,t−1) or the
quarterly lagged percentage of LIO calculated using the measure by Coeurdacier and Rey (2013) and the definitions
from Coval and Moskowitz (2001), EALi or the expected annual loss. Postt which is a dummy equal to one for the
days at or after the event and [ln(Disti), which is the logarithm of the distance in kilometers between the facility and
the headquarters as suggested in (Pellegrino et al., 2024)]. Covariance is clustered by time (Petersen, 2009). N is the
number of CARt,Mkt by day and company over which regressions are computed.
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