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Abstract 

Outlier detection in high-dimensional datasets poses new challenges that have not been investigated in 

the literature. In this paper, we present an integrated methodology for the identification of outliers 

which is suitable for datasets with higher number of variables than observations. Our method aims to 

utilise the entire relevant information present in a dataset to detect outliers in an automatized way, a 

feature that renders the method suitable for application in large dimensional datasets. Our proposed 

five-step procedure for regression outlier detection entails a robust selection stage of the most 

explicative variables, the estimation of a robust regression model based on the selected variables, and 

a criterion to identify outliers based on robust measures of the residuals' dispersion. The proposed 

procedure deals also with data redundancy and missing observations which may inhibit the statistical 

processing of the data due to the ill-conditioning of the covariance matrix. The method is validated in 

a simulation study and an application to actual supervisory data on banks’ total assets.  

Keywords: Outlier detection; Robust regression; Variable selection; High dimension; Missing data; 

Banking data 

JEL classification codes: C18, C81, G21 
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Non-technical summary 

The analysis of high-dimensional data sets is very much affected by the presence of outliers which 

may distort the conclusions reached when standard econometric methods are applied. On the other 

hand, large datasets are becoming more and more common in banking and finance calling for the 

adaptation of existing methods or the adoption of new approaches. In this context, outlier detection in 

high-dimensional datasets poses new challenges, while offering new possibilities for enhanced outlier 

detection methods which have not been investigated in the literature.  

In this paper, we present an integrated methodology for the identification of outliers which is suitable 

for 'fat' datasets i.e. high-dimensional data sets with attributes exceeding the number of observations. 

A typical example of such dataset is represented by the supervisory statistics collected in the context 

of the ECB Banking Supervision, whereby extremely granular information for banks’ activities, risks 

and profitability is provided for the systemically significant and less significant institutions.  

Our method aims to utilise the whole relevant information present in such a dataset to detect outliers 

in an automatized way, a feature that renders the method suitable for application in high-dimensional 

data sets. For example, when one tries to identify outliers in the variable “notional amount of 

derivatives as a percentage of assets”, the variable “asset size” may provide critical complementary 

information for the identification of outliers of the former variable. In fact, it may happen that the 

value of one variable can be considered an outlier conditional on another one, but not in the univariate 

sense. This fact keeps its validity if the conditioning variables are more than one. This type of outlier 

detection, which is based on deviations from the regression hyperplane representing the bulk of the 

data, can produce valuable insights as a by-product and inform further analytical work. 

Our proposed five-step procedure for regression outlier detection entails a robust selection stage of the 

most explicative variables, the estimation of a robust model based on the selected variables, and a 

criterion to identify outliers based on robust measures of the residuals' dispersion. In addition, the 

proposed procedure deals also with data redundancy and missing issues which may inhibit the 

statistical processing of the data due to the ill-conditioning of the covariance matrix. The method is 

validated in a simulation study and it is also applied to actual supervisory data on banks’ total assets.  
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1. Introduction

Data quality is a prerequisite for any reliable, quantitative type of analysis and the large data sets 

which are becoming more common present specific challenges to the task of monitoring and ensuring 

data quality. One critical aspect of data quality monitoring is outlier detection i.e. the identification of 

values which either are obviously mistaken or seem to be unjustified from a business side perspective. 

Classical statistical methods, which underpin analytical tools supporting analysis of large data sets, 

are sensitive to the presence of outliers and may be led, consequently, to present a distorted picture of 

the reality due to the presence of outlier values leading to erroneous conclusions. 

On the one hand, a challenge for outlier detection in large datasets is that the development of purely 

automatized and efficient processes is required (see for example Maciá-Pérez et al. 2015). While large 

datasets present a number of challenges regarding data processing and analysis e.g. related to the 

difficulty of examining the data, it offers also the possibility to utilise the richness of the dataset for 

outlier detection. While the uncertainty of a large dataset may be larger compared to a smaller one 

(except e.g. in the case of surveys, where larger data allow more precise answers to be obtained from 

the data), the size of the dataset compels the development of methods which should make the optimal 

usage of the existing data. 

A strand of research has focused on outlier identification on datums that comprise vectors of 

numerical (or also categorical) attributes i.e. outliers when all dimensions of each datum are 

considered (hereafter called ‘multi-dimensional outliers’). Indicative references from this vast 

literature include Otey et al. (2006), Koufakou and Georgiopoulos (2010), and Kutsuma and 

Yamamoto (2017).1  However, the identification of multi-dimensional outliers presupposes a “clean” 

dataset with respect to the individual values in the sense that large deviations of particular 

observations of specific variables from their expected values represent  the true behaviour of the 

respective variables rather than outliers. In the opposite case, the detection of multi-dimensional 

outliers will also be affected by distortions caused by outliers in individual values. Furthermore, in a 

1 See also the special issue of Data Mining and Knowledge Discovery (Volume 20, Issue 2, March 2010) which 
is entirely devoted to the detection of multi-dimensional outliers. 
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large-dimensional dataset, some of these outliers may not be detected by multi-dimensional methods 

as they may be “hidden” within the granular dataset and not affect significantly the multi-dimensional 

distance metrics used by the respective outlier detection method. Therefore, it is critical to address the 

issue of outliers in single variables. 

The contribution of this paper is to propose a multi-step “integrated procedure” for single variable 

outlier detection which draws on the full information present in a multi-dimensional dataset 

combining robust methods to generate insights about the nature of the detected outliers and the 

structure of the dataset. The proposed method includes both a robust variable selection step and a 

robust regression step. We formulate and implement an integrated approach in different variants 

which differ with respect to the combination of the methods employed in these two key steps. 

Furthermore, we perform a controlled assessment of its performance under different data features in 

order to infer the optimal calibration of the method. In addition, we apply the method to a large 

dataset of supervisory banking data from the largest European banks, collected by the European 

Central Bank (ECB). 

Furthermore, the paper formulates a generic methodology for detecting outliers in “fat” datasets, 

while formalising the procedure to deal with practical problems such as data redundancy. The 

procedure to deal with data redundancy uses a formal criterion to exclude variables, based on a 

measure of the statistical ‘importance’ of each variable. 

The simplest approach to detect outliers for one single variable uses distribution-based techniques. 

However, such univariate approach which utilises only the sample values for a single variable may 

not be sufficient in this specific context. The main reason is that outliers could remain unnoticed 

because information contained in the values of some other related variables is not utilised. For 

example, in an application to banking data, as will be presented below, when one tries to identify 

outliers in the variable “notional amount of derivatives as a percentage of assets”, the variable “asset 

size” may provide critical complementary information for the identification of outliers of the former 

variable. If for example, a small bank’s balance sheet contains a relatively large percentage of 

derivatives, this value may be considered to represent an outlier because in general it is mainly large 

and complex banks that use derivatives extensively. Therefore, in such case the derivative amount 
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value can be considered an outlier conditional on the asset size of the bank, even though neither the 

derivative amount nor the asset size could be considered outliers in the univariate sense. In other 

words, a variable conditional on a set of related variables can represent an outlier even though neither 

of the variables individually represents an outlier. This type of outlier detection in the regression sense 

can produce valuable insights as a by-product and inform further analytical work. 

Therefore, there is clearly ground for regression-based outlier detection in high-dimensional datasets 

in this sense, taking into account the properties of the empirical distribution for each variable, as well 

as statistical information derived from an appropriately defined set of related variables. However, 

when aiming to detect outliers in this manner, a number of new issues arise. First, the identification of 

the explanatory variables should be automatized robustly given the large number of variables and the 

impossibility of selecting the regressors based purely on economic criteria and expert judgment. 

Second, this identification of relevant regressors necessitates the ‘cleaning’ of the initial data set from 

highly correlated subsets of variables, a procedure which should also be automated. This approach 

follows the research strand which incorporates machine learning techniques into economic analysis, 

given the limitations of classical model-based econometric procedures to tackle large datasets (Varian 

2014).  

The existing literature has provided algorithms for regression outlier detection. However, these do not 

seem to be particularly suited for high-dimensional datasets with attributes exceeding the number of 

observations (“fat” data), especially if there are missing observations, collinear variables, or 

observations with outstanding magnitude and variability. 

The paper is structured as follows. Section 2 reviews the literature on outlier detection. Section 3 

presents our proposed methodology for regression outlier detection in large dimensions. Section 4 

conducts a simulation study against an appropriate set of benchmarks to assess the performance of the 

proposed method in a controlled environment. Section 4 provides an application to a selection of ECB 

supervisory data, presenting and discussing outlier detection results. Finally, Section 6 concludes. 
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2. Related literature 

 

Outlier detection is a critical step in the statistical analysis of large data sets. Hawkins (1980) provided 

the definition of outlier, intended as ‘an observation which deviates so much from the other 

observations as to arouse suspicions that it was generated by a different mechanism’. Barnett and 

Lewis (1994) define outlier(s) as ‘an observation (or subset of observations) which appears to be 

inconsistent with the remainder of that set of data’. These general definitions may be applied and 

assume different meaning in various contexts. Many statistical branches include outlier detection as a 

relevant topic, as widely described in Huber (2004). 

2.1 Distribution-based methods 

 

Most of standard non-robust statistical methods are based on distributional assumptions which are 

strongly affected by the presence of outliers. For example, classical multivariate linear and non-linear 

regressions, clustering, principal components, and factor analysis all are based on standard means, 

covariance and correlation matrices, which are not robust against outliers. A point that is often missed 

by researchers applying classical statistical or econometric methods is that the presence of outliers 

affects the estimation of the model and cannot be conducted ex-post after a model has been estimated; 

on the contrary, the ‘distorted’ model may fit the data fairly well, but the insights it offers about the 

underlying data have been irrevocably determined by the presence of outliers. Consequently, the 

outlier detection stage should precede the statistical analysis of the data, or, alternatively, a robust 

version of above mentioned methods should be used.  

Robust methods have been first developed to limit the effect of the presence of outliers for location 

parameters estimation. The Huber estimator (or M-estimator, see Huber (1964)) was the seminal idea, 

which opened the path to robust likelihood methods. Another seminal contribution is the Hampel 

identifier which proposes a quantile-based outlier identification rule (Hampel 1968). The use of 

distribution-based outlier detection methods is the most direct approach to univariate outlier detection. 

Essentially, one needs to define a central value, which can be the mean (as in the case of 3-sigma rule) 
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or the median (as in Hampel identifier). The box plot rule, flagging as outliers all the values being 

more than 1.5 times the interquartile range, is often used. 

Distribution-based methods can also be applied to the multivariate context when adjusted 

appropriately. The analogous of 3-sigma rule in the multivariate context is the Mahalanobis distance 

(Mahalanobis 1936) defined as 𝐷 = √(𝒙 − �̅�)′𝑆−1(𝒙 − �̅�), where 𝑆 is the covariance matrix, 𝒙 is a 

data vector and �̅� is the mean vector. In order to robustify this distance, which may be conditioned by 

outliers, the MCD (Minimum Covariance Determinant) estimator is computed (Rousseeuw and van 

Driessen 1999), where only the 100(1 − 𝛼)%, 𝛼 ∈ [0,0.5], observations giving the smallest possible 

determinant of 𝑆  are kept. In this way masking or swamping problems can be effectively addressed. 

MCD estimates can be computed by Fast-MCD, proposed in the same paper, or by an alternative 

procedure called Bacon EEM algorithm (Beguin and Hulliger, 2008). 

Hubert et al. (2008) proposes robust estimations of the mean vector and covariance matrix together 

with 𝜒2 approximation to obtain cut-off values. In Cerioli (2010) the size properties of the same

methodology are improved by using finite-sample distributional results for the definition of distances 

and the cut-off values. Robust multivariate mean and covariance estimation has been recently 

approached in an alternative way by Maronna and Zamar (2012) and Pena and Prieto (2012). 

Maronna and Yohai (2016) provides a general overview on the topic. 

2.2 Regression-based methods

Besides distribution-based methods, regression-model based methods can be used in a multivariate 

context. Rousseeuw and Leroy (1987) provide a detailed description of outlier detection methods in 

relationship to regression methods, highlighting two different approachs. First, there is the outlier 

diagnostics approach which works with residuals produced by a standard OLS regression or a 

standard OLS regression where some points have been omitted. Studentised residuals computed from 

the leave-one-out approach (Weisberg 1985) or the application of the Cook distance and DFFITS can 

be effective to detect influential objects, i.e. the observations which are affecting significantly the 
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regression plane. In addition, the properties of the ‘hat’ matrix 𝐻 which transforms the observed 

values to the predicted ones (�̂� = 𝐻𝑦) can be investigated for outlier identification. For example, if a 

diagonal element of 𝐻 is ‘large’, meaning that 𝜕�̂�𝑖

𝜕𝑦𝑖
 is large (as defined by some criterion), then i is an

influential point (e.g. Henderson and Velleman 1981). Unfortunately, these methods are effective 

when the number of outliers and observations is small (e.g. one or two outliers), however they become 

computationally infeasible when the number of outliers is high. Therefore, the scope for their 

application in a ‘fat’ large data set is very limited. 

The second approach is to apply robust regression methods which are less sensitive to the presence of 

outliers compared to the OLS. Several approaches have been proposed and their effectiveness can be 

assessed using the concept of the ‘breakdown point’ i.e. the fraction of distorted points which can 

have an arbitrarily large effect on the regression operator (see Hubert et al. 2008).  

Three very well-known robust regression estimation methods are: i) Least Trimmed Squares (LTS), 

which estimates regression coefficients minimizing the trimmed squares of residuals (Rousseeuw and 

Leroy 1987, 2006); ii) the MM-estimation, which is a 3-stage procedure, based on M-estimation, 

ensuring at a given breakdown point much higher efficiency than LTS (Yohai, 1987); and iii) the GS-

estimation, which is based on the optimization of a generalized function of the residual scale, 

guaranteeing minimum max-bias (Croux et al., 1994). In addition, Salibian-Barrera and Zamar (2002) 

propose a bootstrap approach to robust regression. For a general overview on robust regression we 

refer to Hubert et al. (2008) and Rousseeuw and Hubert (2011). 

A rather different approach, described in Au et al. (2008), proposes a methodology for irregularity 

detection in time series data by using a decomposition of time series, clustering of time series and 

LASSO regression method for components selection. This approach has some similarities with this 

paper, given that it can be used for large cross sections, however, it is assumed that there is a high 

degree of homogeneity among the individual variables (time series), so that they can be conveniently 

classified into clusters, which is not the case for supervisory data, because the degree of heterogeneity 

among variables is extremely high. 
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2.3 Methods for high-dimensional data 

The emergence of high-dimensional datasets creates the need for the development of new data 

analysis techniques. We know that ‘Big data’ are large datasets possessing the so called 5 Vs: volume, 

velocity, variety, variability, veracity. They can also be viewed as data sets for which standard 

statistical techniques are not effective and whose size poses logistical challenges for existing database 

software tools. As Varian (2014) notes, the size of the data requires automated techniques for the 

identification of subsets of variables which are statistically linked. In addition, high-dimensional data 

sets may exhibit types of statistical relationships, such as highly correlated variables, which would 

affect negatively the application of standard statistical techniques, for example by rendering 

correlation matrices ill-conditioned. In such datasets, even in case they are not so high-dimensional to 

be defined as ‘Big’, the procedures for eliminating statistically redundant information should be 

automatized. For example, the decision to exclude one of two highly correlated variables should be 

based on a specific computational criterion because it is not possible to decide by inspecting the 

variables in question. Furthermore, ‘fat’ datasets require some kind of variable selection when 

working in a multivariate context, since the number of potential regressors may be larger than the 

number of observations. In this direction, and considering these practical issues, there is a need to 

develop single-variable outlier detection methodologies in a multivariate context simultaneously 

robust to the presence of missing data, high collinearity, innovation outliers and a dimension larger 

than the sample dimension. 

The most traditional method for variable selection is LASSO (Tibshirani, 1996): even if LASSO gives 

the sparsest possible solution and has a certain protection from noise (see Xu et al., 2009, Yang and 

Xu, 2013), it is not robust against corrupted measurements. For this reason, some variants of the 

LASSO like the extended LASSO (Nasrabadi et al., 2011) and the fused LASSO (Kim et al., 2015) 

have been proposed. In addition, there are alternative methods exploiting Huber penalty (Owen, 2007) 

or minimum distance estimators (Lozano et al., 2016). 
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A recent approach by (Yi and Huang, 2016) integrates Huber/quantile losses and the elastic net 

penalty for robust regression estimation, thus encompassing both LASSO and ridge penalties. This 

procedure is based on a semi-smooth Newton coordinate descent algorithm which provides regression 

coefficients estimates, but no robust estimate of the residual scale. This happens because the objective 

is not optimized via a reweighted least squares method. Consequently, this approach (from now 

labelled “HQ”) will be used as the robust variable selection step to identify the most explicative 

covariates, so that the usual robust regression methods like LTS, GS and MM may be subsequently 

used to perform outlier detection.  

A competitive family of regression outlier detection methods in high dimensions is based on the 

optimization of a function which selects covariates and identifies outliers robustly at the same time. 

These methods include the robust version of the Least Angle Regression (LARS) by Efron et al. 

(2004), which was developed in (Khan et al., 2007), and SPARSE-LTS (Alfons et al., 2016), a 

method which optimizes an objective composed by a trimmed sum of squares and an 𝑙1penalty. 

SPARSE-LTS will be the main competitor of our integrated approach throughout the paper. 

For the sake of completeness, we mention that there are several multivariate outlier detection methods 

for high-dimensional data which do not employ multivariate regression. Among others we mention 

Entropy Fast Detection (Liu et al., 2013), Local Search Algorithm (He et al, 2006), a rank-order 

approach for high-dimensional databases (Texeira et al. 2008), a cluster-based similarity method 

(Christy et al. 2015), and Cell-DROS method (Van Hieu and Meesad 2016). In the same context, 

Todorov et al. (2011) and Templ et al. (2017) are two multivariate outlier identification methods for 

datasets affected by missing values and structural zeros respectively. Despite that, our aim is to 

identify the outliers in one variable, taking advantage of the knowledge of other related variables. For 

this reason, we will not take into account this family of methods. 

In this paper, our reference model setting has the distinctive feature that neither 𝑦 nor 𝑥 are directly 

perturbed, while the regression coefficients β are. This case may be very common for banking data, 

where the usual relationships among variables may be amplified or annihilated for specific banks. In 
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addition, we allow for the presence of missing data, high collinearity, innovation outliers (i.e. outliers 

with arbitrarily amplified innovation error) and a dimension 𝑝 (i.e. the number of quantitative 

variables or attributes) larger than the sample dimension 𝑛 (i.e. the number of observations). 

Therefore, it is of interest to study the behaviour of SPARSE-LTS and our integrated procedure under 

these conditions. Our integrated approach takes successfully into account all these issues at the same 

time being an “integrated” methodology for regression outlier detection.  

3. An integrated outlier detection methodology 

3.1. Outlier detection in supervisory data 

As already explained, the literature has not paid sufficient attention to the development of integrated, 

automatized methodologies which can deal with large datasets and perform multivariate outlier 

detection in them. ‘Integrated’ here refers to the incorporation of all required steps for multivariate 

outlier detection, including the preparation steps of the data set, such as standardisation, dealing with 

completeness issues and ‘cleaning’ the data from redundant information. This paper aims to fill this 

gap, focusing on ‘fat’ large datasets, and employing banking supervisory data to test the proposed 

method. Our data set does not strictly possess the size which would lead to its characterisation as ‘Big 

data’, however the techniques we develop are aimed for application in a ‘Big data’ context; given also 

the increase in the supervisory data set that we use, which will growth significantly with time, as 

banks submit an expanded data set at a quarterly frequency.  

Zhang et al (2010) provide a survey of outlier detection techniques focusing on specific type of data, 

namely data from wireless sensor networks. They point out that, in this specific field, the approaches 

adopted for outlier detection neglect in various ways the properties which characterise the underlying 

data; for example, the range of dependencies considered does not correspond to the actual 

dependencies characterising the sensor data. In general, the development of integrated methodologies 

should be customised for the type of data in which it will be applied. The dimensions, dependence 

structures, range of values, and the statistical distributions properties all influence the optimal 

selection of methods. 
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Outliers in supervisory data can be succinctly defined as those data that significantly deviate from the 

normal pattern of scaled data. This definition is based on the fact that supervisory data (e.g. the 

various types of loans) when scaled by the banks’ size (total assets) are comparable across banks of 

different sizes and represent the composition of the activities and corresponding risks that the bank is 

undertaking. Differences in the composition of activities among subsets of banks may exist e.g. 

because different banks follow different business models (Farnè and Vouldis, 2016). Furthermore, 

there may be scale effects in the composition of activities, e.g. large banks with more complex 

strategies may, for example, make more extended use of derivative instruments. Despite the existence 

of such distinctive features which can characterise subsets of banks, and may lead to various reported 

variables following distinct statistical distributions within such subsets, we expect that there is also an 

aggregate statistical distribution for almost all reported items when they are standardised. The bulk of 

these distributions (usually strongly skewed, as pointed out by Hubert and van der Veeken, 2008) is 

expected to be located within a subset of [0,1], given the normalisation with respect to assets2 and the 

fact that most items are lower than the bank’s size – although a few variables, such as the notional 

amounts of derivatives, may exceed unity i.e. their size may be higher than the bank’s total assets.  

3.2. Problem definition 

Our problem can be formulated in an abstract way as follows. Let 𝑋 be a  𝑛 × 𝑝 matrix containing a 

set of 𝑝 variables with 𝑛 observations. In our case, each observation index refers to a bank-reference 

date combination, while the variables cover a wide range of aspects about the banks’ activities, 

performance or risk-taking. 

Each observation vector is denoted as 

𝑥𝑖 = (𝑥𝑖1,⋯,𝑥𝑖𝑝), 𝑖 = 1, ⋯ , 𝑛. 

 Each observation can be thought of as referring to either a specific bank, in the case that our sample 

contains observations for 𝑛 banks, or a bank-date pair, in the case of panel data, when more than one 

                                                           
2 The total asset value represents an upper bound for almost all the items present in banks’ balance sheets, 
irrespectively of whether they represent assets, liabilities, off balance sheet items or flow components such as 
profit. Some of these constraints are driven by accounting identities and some others by the business reality. 
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reference date is present in the dataset. In the more general case, we could also have an unbalanced 

panel of banks, i.e. a changing cross section of banks, if we have data from different reference 

periods.  

Each variable vector is denoted as 

𝑥𝑗 = (𝑥1𝑗,⋯,𝑥𝑛𝑗), 𝑗 = 1, ⋯ , 𝑝. 

The present paper focuses on outliers for specific variables (see Farnè and Vouldis (2016) for the 

analysis of outlier data vectors). Consequently, our aim is to identify outlier data points meaning 

specific data points 𝑥𝑖𝑗 that come from another population compared to the other elements of the 

vector 𝑥𝑗.  

The outlier detection process for a variable 𝑥𝑗 takes as input a certain information set 𝛺𝑗. The 

simplest approach is to use only the sample of variable 𝑥𝑗 in order to identify the outliers within that 

sample i.e. 𝛺𝑗 = 𝑥𝑗.  An alternative, which is explored here, is to extend the information set and 

include also other “related” variables. The idea then would be to utilise statistical relationship(s) 

between a relevant set of variables in order to define the outliers. For example, one could identify the 

loan-to-assets ratio as being an outlier for a bank based solely on the sample distribution of loan-to-

assets for the whole set of banks. However, one could utilise additional information, e.g. trading 

assets-to-assets in order to identify outliers, given that we would expect a negative relationship 

between these two variables, and, therefore, a bank which is characterized by relatively high values 

for both of these variables is an outlier. It is clear in this example, that an outlier detection algorithm 

which utilises this additional information would identify values of dubious quality more reliably. 

A salient feature of our approach is that it is suited for high-dimensional large data, such as those 

collected under the ECB Banking Supervision institutional set-up, i.e. data where 𝑝 ≫ 𝑛. In other 

words, the granularity of the data set is very large compared to the number of entities which are 

reporting the supervisory data.  

The manipulation of this information provides a challenge to develop robust methodologies for outlier 

detection. Specifically, due to the large size of the data, the selection of relevant variables which could 

be used to inform the outlier detection procedure for each specific variable is not straightforward and 
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needs to be automatized. Consequently, we aim to identify outlier one-dimensional data points in this 

large data set taking into account the relations which exist among the variables in this data set, while 

automatizing all the steps in this procedure.  

3.3. A five-step procedure 

Our proposed methodology consists of five (5) steps, entailing robust covariates selection, estimation 

of a robust model based on the selected variables and a criterion to identify outliers based on robust 

measures of the residuals’ distribution. Statistically related information is therefore identified and then 

utilised to spot outliers for each variable. This procedure can be applied consecutively to all the 

variables of a data set, therefore enabling the identification of outliers for all variables. 

Specifically, our proposed multivariate outlier detection methodology consists of the following steps, 

which will be explained below in detail: 

Step 1: Standardization of variables or normalization (optional). 

Step 2: Selection of “closely related” variables (“determinants”) using a procedure based on 

the semi-smooth Newton coordinate descent algorithm for elastic-net penalized Huber loss 

regression of Yi and Huang (2016) (HQ procedure). Such method estimates the regression 

coefficients by minimizing a Huber loss plus a classical 𝑙1 penalty. In this way, we can 

identify the most relevant 𝐿 determinants in a robust way. 

Step 3: Using the selected set of variables we run a robust regression. In this step, three 

possible alternatives could be utilised: 

- least trimmed squares (LTS) estimation, which identifies the 100 × (1 − 𝛼)% most 

concentrated observations and estimates the model on those; 

- MM-estimator (Yohai, 1987), the most efficient estimator given a level of 

breakdown, which minimizes a Huber function of the residuals and uses a robust 

initialization of the coefficients β and the residual scale σ; 
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- GS-estimator (Croux et al., 1994), which estimates the residual scale minimizing a 

Tukey biweight function of scaled residuals. 

More details about these methods are provided below. 

Step 4: Calculate in a robust way the dispersion of residuals. 

Step 5: Identify outliers based on the calculated dispersion.   

These steps are described in detail below. 

Step 1: Standardisation (optional)  

The aim of standardisation is to abstract from differences in the first two moments of the distributions 

followed by the variables in the dataset. Standardisation is performed by subtracting a robust 

estimator of the mean of each variable and then dividing the result by a robust measure of variance. 

This step is optional. The main criterion for its application is whether we would like to retain or 

abstract from the background (‘confounding’) characteristics of the Pvariables. Each of the described 

methods has its natural standardization pre-processing step, which is used by default. In principle, our 

outlier detection method could work with both standardized and non-standardized input data. 

Step 2: Selection of determinants3 using results of LASSO estimations  

This step aims to select, in an automatized way, the statistical determinants of the variable in question. 

Specifically, for each variable 𝑥𝑗, we would like to search within the set of remaining variables 

𝑉𝑗 = {𝑥𝑘: 𝑘 = 1, ⋯ , 𝑝; 𝑘 ≠ 𝑗} and select a subset of its “closely related” variables (“determinants”) 

which can be used to predict the values of 𝑥𝑗. Given the “fat” nature of the dataset, the aim here is to 

select a relatively small number of ‘determinants’. This is accomplished by estimating the following 

linear model with the set 𝑉𝑗at the righthand side 

𝑥𝑗 = 𝛼 + 𝑉𝑗𝛽 + 𝜀 

                                                           
3 The term “determinants” here does not imply causality in an economic sense but refers to the set of variables 
which are statistically related to and can be used to estimate a statistically “plausible” value for the dependent 
variable. 
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using the semi-smooth Newton coordinate descent algorithm for elastic-net penalized Huber loss 

regression (Yi and Huang, 2016):  

𝑚𝑖𝑛
𝛽 = {𝛽𝑘}𝑘=1,𝑘≠𝑗

∑ (𝜌𝜏(𝑟𝑖) + 𝜆 ∑ |𝛽𝑘|
𝑝
𝑘=1,𝑘≠𝑗 )𝑛

𝑖=1 , 

where 𝑟𝑖 = 𝑥𝑖𝑗 − ∑ 𝛽
𝑝
𝑘=1,𝑘≠𝑗 𝑘

𝑥𝑖𝑗 and 𝜌𝜏(𝑡) =
1

2
{|𝑡| + (2𝜏 − 1)𝑡2} is the Huber weight function. This 

minimization procedure performs robust variable selection and shrinkage at the same time. The 

nonnegative regularization parameter 𝜆 determines the weight given to exclude variables which do not 

possess “explanatory” power over 𝑥𝑗i.e. as 𝜆 increases, the number of nonzero 𝛽𝑗 components 

decreases. Therefore, the HQ procedure allows to identify a parsimonious subset of variables which 

are statistically relevant as predictors of 𝑥𝑗 from the large data set 𝑉𝑗. 

The model is estimated for a range of 𝜆 values, and for each variable we select the estimated models 

with maximum 3 determinants. Let us denote by 𝐷1
𝑗, 𝐷2

𝑗, and 𝐷3
𝑗 the sets of determinant variables 

for 𝑥𝑗, with one, two and three members, respectively.4 

Step 3: Calculation of statistical relationship between the examined variable and its predictors using 

robust regression  

After having identified subsets of variables which are linked statistically with 𝑥𝑗, we estimate the 

corresponding statistical models in a way which is robust to the presence of outliers. There is a 

number of robust regression methods, which identify statistical relationships between variables 

without being affected by the presence of outliers to the degree that this is the case for the standard 

OLS regression. These techniques differ from the standard OLS with respect to the function that is 

being minimised, which is not the sum of squared residuals but an alternative that is less sensitive to 

extreme values. Specifically, the LTS estimator (Rousseeuw 1984) is given by  

𝑚𝑖𝑛
𝛽

∑(𝑟2)𝑖:𝑛

ℎ

𝑖=1

 

                                                           
4 See also Davidson and Tayi (2009) for an alternative approach. 
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where (𝑟2)𝑖:𝑛 denotes the squared lower residual from the set which remains after the lower 𝑖 − 1 

ones have been removed:(𝑟2)1:𝑛 ≤ (𝑟2)2:𝑛 ≤ ⋯ ≤ (𝑟2)𝑛:𝑛. Consequently, the above expression 

contains the ℎ lower residuals. The parameter ℎ is critical for the outcome of the estimation; relatively 

high values of ℎ could be ‘permissive’ allowing outliers to influence the results, while relatively low 

values of ℎ could be excessively ‘strict’. The first case entails the risk of ‘masking’ leading to Type II 

errors of the algorithm i.e. non-identification of existing outliers while the latter case could lead to 

‘swamping’ i.e. Type I errors i.e. mislabeling of non-outlying data as outliers. 

The computational complexity is also a significant factor when the method is intended to be applied to 

a large data set. The FAST-LTS algorithm proposed in Rousseeuw and van Driessen (1999) provides 

an efficient implementation of the LTS regression.5 

Alternative robust regression methods tested in place of LTS are the MM and GS estimators. The MM 

type is based on the following optimization problem: 

𝑚𝑖𝑛
𝛽 = {𝛽𝑗}

∑ 𝜌𝜏(𝑟𝑖
2)𝑛

𝑖=1 , 

where 𝜌𝜏(𝑡) is a Tukey bi-weight function with an efficiency level of 95%, initialized by M-estimates 

of coefficients and residual scale at a breakdown point of 50%. The minimization problem is solved 

via reweighted least squares. MM-estimator is proved to have much higher efficiency than LTS given 

a specific breakdown point. For further details, we refer to Yohai (1987). 

The GS type, instead, optimizes the residual scale based on the constraint that the sum of a bi-weight 

function of rescaled residuals equals a particular value. In symbols: min 𝜎(𝛽), given that the 

following equation holds: 

(
𝑛
2

)
−1

∑ 𝜌 (
𝑟𝑖 − 𝑟𝑗

𝜎(𝛽)
) = ((

𝑛
2

) − (
ℎ𝑝

2
) + 1) /

𝑖<𝑗

(
𝑛
2

) 

                                                           
5 The approach proposed in Zioutas et al. 2009 avoids the need to pre-define h but at an increased computational 
cost. 
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where ℎ𝑝 = (
𝑛+𝑝+1

2
) and 𝜌(𝑡) = min (

3𝑡2

𝑐2 −
3𝑡4

𝑐4 +
𝑡6

𝑐6 , 1) is the Tukey biweight error function with 

𝑐 = 0.9958. For further details, we refer to Croux et al. (1994). 

As explained in Section 2, we compare the results of our proposed method to those of  SPARSE-LTS 

(Alfons et al., 2013), which is based on the following minimization objective: 

𝑄(𝐻, 𝛽) = ∑ 𝑟𝑖
2

𝑖∈𝐻 + 𝛼𝑛 ∑ |𝛽𝑗|𝑗 ,

where 𝐻 is the subsample of length 𝛼𝑛, 𝛼 ∈ [0.5,1],  producing the minimum for Q respect to 𝛽. The 

optimal 𝛽 is the sparse-LTS solution. The minimum is computed via a Sparse Fast-LTS algorithm, 

which computes at each step the LASSO estimate on the 100 × (1 − 𝛼)% most concentrated 

observations. We remark that SPARSE-LTS does not need any variable selection step like our Step 2, 

because variable selection and robust model estimation are performed contemporaneously minimizing 

𝑄(𝐻, 𝛽). 

Step 4: Robust estimation of residual dispersion  

A robust calculation of the residuals dispersion should exclude the impact of outliers i.e. it should be 

conducted by first assigning binary weights to the observations, assigning zero weights to the 

observations which are deemed to be outliers from an initial dispersion estimate. 

Specifically, the dispersion estimate is given by the standard consistent dispersion formula adjusted 

with binary weights which exclude extreme values: 

�̂� = √
(∑ 𝑤𝑖�̂�𝑖

2𝑛
𝑖=1 )

∑ 𝑤𝑖 − 𝑝𝑗𝑛
𝑖=1

where the weights  𝑤𝑖 will be defined below and 𝑝𝑗  is the number of explanatory variables in the

regression equation considered (i.e. 1, 2 or 3). 

The weights  𝑤𝑖 are defined by utilising an initial estimate of the dispersion:

�̂�0 = √𝑚𝑒𝑑𝑖𝑎𝑛𝑖(�̂�𝑖
2)/𝜙−1(0.75)
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The above expression assumes that the residuals follow a normal distribution 𝑁(0, 𝜎2) (where 𝜎 is the 

real value of the dispersion). Consequently, following Ruppert (2010, p. 118) this expression provides 

an estimation of the population dispersion. Rousseeuw and Leroy (2003, p. 202) propose in addition 

to multiply the second term with the finite-sample correction factor [1+ 5

𝑛−𝑝
]. 

Having calculated this initial dispersion, the weights can be defined at a pre-specified level e.g. 1%, 

considering our normality assumption for the residuals: 𝑤𝑖 = 1 if | �̂�𝑖

�̂�0
| ≤ 2.5, and 0 otherwise.  

Alternative considered methods have different estimation procedures for residual dispersion. 

Concerning MM estimator, the  𝑖 −th observation is flagged as a regression outlier if the estimated 

robustness weight �̂�𝑖 = 0. Robustness weights vary from 0 to 1, and are exploited to estimate the 

residual scale. Concerning the GS type, robust Mahalanobis distances of the residuals are computed, 

observations exceeding √𝜒𝐿,1−𝛼/2
2  , 𝛼 = 0.05, are flagged as regression outliers, and the residual 

scale is robustly estimated accordingly. SPARSE-LTS, instead, identifies regression outliers by a 

reweighting step, which then provides final estimates of coefficients and residual scale, in a specular 

way respect to LTS. 

Step 5: Identification of outliers based on the estimated dispersion   

With the dispersion estimation �̂� in hand, the outliers can be specified at e.g. 1% level by the 

condition |�̂�𝑖

�̂�
| ≤ 2.5 . The underlying assumption in this step is that the set of residuals follow a 

normal distribution with �̂� as the standard deviation. 

Chart 1 below illustrates graphically the different steps of the proposed algorithm, including the data 

preparation phase which is presented in detail in Appendix A.  
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Chart 1: Schematic representation of the proposed methodology 
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4. Simulation study 

In this section we conduct a simulation study to test the validity of our method. Specifically, the three 

variants of our integrated approach, namely the versions utilising LTS, MM, and GS in the third step 

respectively (will be called HQ+LTS, HQ+MM, HQ+GS henceforth), are compared to each other and 

also to two benchmark methods. The first benchmark method is a robust 3-sigma rule where location 

and scale parameters are estimated in a robust way using logistic psi-functions.6 The second 

benchmark is the SPARSE-LTS method. 

Our generated 𝑛 × 𝑝 data matrix 𝑋 contains  𝑝 variables each with 𝑛 observations, we assume that 

𝑝 > 𝑛  (i.e. “fat” data). The first column of 𝑋 contains our response variable 𝑦 of which we would like 

to identify outliers, utilising also the additional information contained in 𝑋.  

It is assumed that some of the remaining variables in 𝑋 provide supplementary information which can 

enhance the detection of outliers in 𝑦 due to the existence of relevant statistical relationships. 

Therefore, a number of 𝐿 determinants is randomly selected across the remaining 𝑝 − 1 variables.  

We call 𝐿 the set of “determinant” indices and 𝑋𝐿 refers to the matrix which contains the relevant 

columns from 𝑋. A number of 𝛼 × 𝑛 outliers is randomly generated across the 𝑛 observations.  We 

call 𝑂 the generated set of outlier indices i.e. a set of indices in the set 1, … , 𝑛 of observation indices. 

We call 𝐷 the generated set of determinants indices and 𝐷′ the generated set of non-determinants 

indices in the set 2, … , 𝑝 of variable indices. 

The simulation proceeds as follows. First, we generate the 𝑝 − 1 covariates according to a 

multivariate normal distribution 𝑀𝑉𝑁(0, 𝛴) with the null vector as mean and 𝛴, a matrix with unitary 

diagonal and all the off-diagonal elements equal to ρ, as covariance matrix. For the response variable 

𝑦, i.e. the first column of 𝑋, we set a linear model without intercept where the covariates are only the 

𝐿 chosen determinants. In symbols:  

𝑦𝑖 = 𝑋𝑖,𝐷𝛽 + 𝜀𝑖, 𝑖 ∉ 𝑂,  

                                                           
6 Using the MATLAB functions mloclogist and mscalelogist. 
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where 𝑋𝑖,𝐷, 𝑖 ∉ 𝑂, is the 1 × 𝐿 vector of the chosen  determinants for observation 𝑖, β is a generated 𝐿-

dimensional vector, 𝛽𝑞~𝑈(𝛽𝑚𝑖𝑛,𝛽𝑚𝑎𝑥), ∀𝑞 = 1, … , 𝐿, and  𝜀𝑖~𝑁(0,1), ∀𝑖 = 1, … , 𝑛.  

Regression outliers in the response variable 𝑦 are generated by multiplying the coefficients in 𝛽 by an 

amplifying term 𝑚 randomly drawn from the set (𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥): 

𝑦𝑖 = 𝑚𝑋𝑖,𝐷𝛽 + 𝜀𝑖, 𝑖 ∈ 𝑂.In order to test for the presence of multicollinearity in the data, we allow for 

the possibility of the covariates to be correlated with a correlation coefficient 𝜌𝑋 which is set to 

belong to {0.3, 0.7}. In order to test for the presence of sparsity in the data, we establish that a 

prescribed percentage 𝛾𝑋, within the range {0.3, 0.7} , of the entries in 𝑋𝐷′ (the matrix containing as 

rows all observations and as columns only the non-determinants) may be randomly set to 0. In 

addition, we establish that a prescribed percentage 𝛾𝑋𝐿
, within the range {0.3, 0.7} , of  the rows in 𝑋𝐷 

(the matrix containing as columns only the determinants) may be randomly set to 0. 

In the case where innovation outliers are allowed, the above equations become 

𝑦𝑖 = 𝑋𝑖,𝐷𝛽 + 𝜀𝑖 , 𝑖 ∉ 𝑂,  𝜀𝑖~𝑁(0,1) 

and 

𝑦𝑖 = 𝑚𝑋𝑖,𝐷𝛽 + 𝜀𝑖, 𝑖 ∈ 𝑂,  𝜀𝑖~𝑁(0, 𝑚). 

Therefore, in the last equation, both regression and innovation outliers are present. We also 

distinguish the case in which the coefficients 𝛽 are allowed also to be negative. In that case, the sign 

is decided by throwing a dice ξ before they are generated. Concretely, if ξ=1, then 𝛽~𝑈(5,15) while 

if ξ=0 then 𝛽~𝑈(−15, −5). We also set 𝑚𝑚𝑖𝑛, = 1, 𝑚𝑚𝑎𝑥 = 19. 

We focus on the following simulation settings: 

- case 1: 𝑝 = 200, 𝑛 = 100, 𝐿 = 3, 𝛼 = 0.1, 𝜌𝑋 = 0, 𝛾𝑋𝐿
= 0, 𝛾𝑋 = 0, Presence of innovation 

outliers=NO, Mixed sign of coefficients=NO. 

- case 2: 𝑝 = 200, 𝑛 = 100, 𝐿 = 3, 𝛼 = 0.1, 𝜌𝑋 = 0, 𝛾𝑋𝐿
= 0, 𝛾𝑋 = 0,  Presence of innovation 

outliers=YES, Mixed sign of coefficients=NO. 

- case 3: 𝑝 = 100, 𝑛 = 50, 𝐿 = 3, 𝛼 = 0.1, 𝜌𝑋 = 0, 𝛾𝑋𝐿
= 0, 𝛾𝑋 = 0.7,  Presence of innovation 

outliers=YES, Mixed sign of coefficients=YES. 
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- case 4: 𝑝 = 100, 𝑛 = 50, 𝐿 = 3, 𝛼 = 0.1, 𝜌𝑋 = 0, 𝛾𝑋𝐿
= 0.7, 𝛾𝑋 = 0.7,  Presence of 

innovation outliers=YES, Mixed sign of coefficients=YES. 

- case 5: 𝑝 = 200, 𝑛 = 100, 𝐿 = 3, 𝛼 = 0.1, 𝜌𝑋 = 0.3, 𝛾𝑋𝐿
= 0, 𝛾𝑋 = 0.7,  Presence of 

innovation outliers=YES, Mixed sign of coefficients=NO. 

- case 6: 𝑝 = 200, 𝑛 = 100, 𝐿 = 3, 𝛼 = 0.1, 𝜌𝑋 = 0.3, 𝛾𝑋𝐿
= 0, 𝛾𝑋 = 0.7,  Presence of 

innovation outliers=YES, Mixed sign of coefficients=YES. 

For each setting, a number of 𝑁 = 100 replicates have been generated. For each simulation set-up, we 

compute the following performance measures: 

- masking rate, which is the rate of non-identified outliers over the true ones (type I errors); 

- swamping rate, which is the rate of erroneously identified outliers over the recovered ones 

(type II errors); 

- aggregate error rate, which is the mean between masking and swamping rates. 

 All measures range from 0 to 1.  

Table 1: masking, swamping and aggregate rates for cases 1-6 and each performed method (𝑚 = 19). Numbers 
in bold show the lower values for each column. 

 

 
 

We report in Table 1, masking, swamping and aggregate rates for each of the six cases and for each 

method. As it can be observed, the HQ+LTS method is the best performer with respect to the masking 

rate for all cases. Furthermore, HQ+GS performs best with respect to the swamping rate for all cases 

but Case 4 among regression methods. At the same time, HQ+MM is often prevailing with respect to 

the aggregate rate, even if relevant exceptions are Cases 1 and 4, when it is outperformed by 

Masking Swamping Aggregate Masking Swamping Aggregate Masking Swamping Aggregate

HQ+LTS 0.01 0.10 0.05 0.14 0.10 0.12 0.17 0.13 0.15

HQ+GS 0.05 0.02 0.04 0.30 0.03 0.16 0.26 0.03 0.15

HQ+MM 0.01 0.06 0.04 0.16 0.08 0.12 0.18 0.13 0.16

SPARSE-LTS 0.01 0.02 0.02 0.29 0.06 0.18 0.28 0.10 0.19

Logistic 0.15 0.01 0.08 0.99 0.93 0.96 0.96 0.85 0.91

Case 1 Case 2 Case 3

Masking Swamping Aggregate Masking Swamping Aggregate Masking Swamping Aggregate

HQ+LTS 0.02 0.10 0.06 0.10 0.10 0.10 0.12 0.11 0.11

HQ+GS 0.23 0.01 0.12 0.26 0.03 0.15

HQ+MM 0.02 0.11 0.06 0.11 0.06 0.08 0.12 0.08 0.10

SPARSE-LTS 0.02 0.02 0.02 0.19 0.03 0.11 0.23 0.05 0.14

Logistic 0.03 0.61 0.32 0.98 0.79 0.88 0.93 0.57 0.75

Case 5 Case 6Case 4
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SPARSE-LTS. The observed pattern is that for complex cases our integrated approach outperforms 

the benhchmark methods, while the benchmark method SPARSE-LTS is the best performer when 

only regression outliers are present and when the number of zero observations is very high.  

We present the results in more detail below, showing how the two rates, relevant for assessing the 

performance of the outlier detection methods, change while the disturbance parameter 𝒎 increases. 

The logistic method performs clearly worse than all other methods both with respect to swamping and 

masking rates, therefore we do not include these results below.  

In Figure 1 we report the masking rate for case 1. All variants of our method perform very well with 

HQ+GS performing slightly worse. The swamping rate for case 1 is reported in Figure 2. We see that 

among regression methods SPARSE-LTS and HQ+GS exhibit the best results regarding the 

swamping rate, which is in both cases lower than 5%. On the contrary, HQ+LTS and HQ+MM are 

characterised by larger rates. Therefore, if there are no innovation outliers, SPARSE-LTS has a 

distinct advantage. We remark that variable selection works perfectly for both methods (HQ and 

SPARSE-LTS), while the logistic method converges slowly to a masking rate of 15% and a swamping 

rate smaller than 2% as the disturbance coefficient 𝑚 increases. Therefore, the benchmark method 

SPARSE-LTS proves to be the superior one in this simple case, showing an aggregate error rate 

smaller than 2%.  

Figure 1: Masking rate for case 1 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals.  
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Figure 2: Swamping rate for case 1 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 

 

Case 2 introduces innovation outliers and the results as presented in Figures 3 and 4 show the 

corresponding masking and swamping rates. Convergence is slower than before and now SPARSE-

LTS is not the best-performing method anymore, neither with respect to the masking nor and the 

swamping rate. Instead HQ+LTS performs best with respect to the masking rate criterion, with a 15% 

masking rate, followed by HQ+MM.  From the swamping rate side, HQ+GS exhibit the better 

performance, while HQ+LTS shows the worst at 10%.  Covariate recovery is almost perfect, while the 

logistic method goes completely wrong, with a masking rate close to 100%. Therefore, in this case 

both the HQ+MM and the HQ+LTS variants of our proposed method seem optimal if the aggregate 

measure is considered. 

Figure 3: Masking rate for case 2 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals.
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 Figure 4: Swamping rate for case 2 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 

 

When sparsity is introduced (case 3), Figures 5 and 6 show that both HQ+LTS and HQ+MM feature a 

masking rate below 20% and a swamping rate slightly above 10%. HQ+GS exhibits a more uneven 

performance, with a higher masking rate and a very low swamping rate. SPARSE-LTS shows the 

worst performance among regression methods, with a masking rate around 30% and a swamping rate 

around 10%. The other benchmark method fails completely, exhibiting masking rates above 90%.  

Figure 5: Masking rate for case 3 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 

 

The average number of masked or swamped determinants is never above 0.1 both for HQ and 

SPARSE-LTS. Overall, all three variants of our proposed approach are close with respect to the 

aggregate performance and the optimal choice is determined whether the user is more ‘risk averse’ 

(i.e. aims to minimise the masking rate) in which case HQ+LTS or HQ+MM would be the preferred 
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choices or more focused to avoid over-identification of outliers in which case HQ+GS would be the 

preferred choice. 

Figure 6: Swamping rate for case 3 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 

 

Case 4 is designed to test how the presence of missing rows in the matrix of determinants affects 

outlier detection. In that case, the GS method becomes completely infeasible, because the linear 

system behind the procedure has not a unique solution. The reason is that the condition number of the 

sample covariance matrix is close to infinity.  On the contrary, the other regression methods are robust 

to such perturbation, still showing satisfactory results. Specifically, Figures 7 and 8 show that the 

masking rate is for all methods close to 0.  

Figure 7: Masking rate for case 4 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 
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Figure 8: Swamping rate for case 4 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 

 

The swamping rate is significantly better for SPARSE-LTS, standing at 2% against the 10% of 

HQ+LTS and the 11% of HQ+MM. The same holds for the aggregate rate, which is equal to 2% for 

SPARSE-LTS and 6% for HQ+LTS and HQ+MM.  Variable selection is perfect for SPARSE-LTS, 

while HQ shows an average number of masked determinants lower than 0.1. The logistic method 

converges to a masking rate of 2% and a swamping rate of 60%, thus being completely ineffective.  

If we combine a zeros rate of 0.7 and a correlation level of 0.3 among the covariates (case 5), 

HQ+LTS and HQ+MM also converge to the lowest masking rates, in both cases around 10%, while 

HQ+GS is again higher at 23% (Figure 9).  However HQ+GS exhibits the lower degree of swamping 

at 1%, while for HQ+MM swamping is around 6% and for HQ+LTS around 10% (Figure 10). 

SPARSE-LTS shows a swamping rate around 3% and a masking rate around 20%. On aggregate, 

HQ+MM shows the best overall error rate at around 8%, followed by HQ+LTS, SPARSE-LTS and 

HQ+GS by a small margin. Variable selection is still almost perfect for both methods (HQ and 

SPARSE-LTS). 
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Figure 9: Masking rate for case 5 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 

Figure 10: Swamping rate for case 5 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals.

A similar pattern is shown if coefficients are allowed to have different signs (case 6), as exemplified 

in Figures 11 and 12. Therefore, for cases 5 and 6 it turns out that HQ+MM is the optimal option if 

one aims to minimise both the swamping and the masking rate with an equal weight, while HQ+MM 

outperforms the other methods from the masking rate side and HQ+GS from the swamping rate side. 
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Figure 11: Masking rate for case 5 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard deviation 
intervals. 

 
 

Figure 12: Swamping rate for case 6 (constant 𝑚 in the 𝑥-axis). Dashed lines show the one standard 
deviation intervals. 

 

To sum up, we can conclude that the performance of SPARSE-LTS gets worse as the degree of 

sparsity and collinearity increases. As a consequence, for real data with a lot of zero entries or 

collinear variables, HQ+LTS and HQ+MM represent the best approaches, because they ensure a low 

masking rate. In addition, in case of missing rows in the matrix of determinants, GS regression 

becomes infeasible, while HQ+LTS shows also a lower swamping rate than HQ+MM. Furthermore, it 

is observed that the performance of SPARSE-LTS improves considerably as sparsity, collinearity and 

missing rows are present into the matrix of determinants. This occurs because in that case the impact 

of innovation outliers is minimized.   

ECB Working Paper Series No 2171 / July 2018 30



 

Note that if the fraction of outliers α increases, masking and swamping effects are amplified 

accordingly without affecting the relative performance of competing methods. If both p and n are 

increased, the performance is quite similar, and the detected patterns remain unaltered, given that the 

ratio p
n
 remains the same. We remark that the computational cost of SPARSE-LTS increases 

considerably, because it requires O(n2) iterations due to the cost of sorting squared residuals 

(Rousseeuw and van Driessen, 1999). On the contrary, the HQ procedure only requires O(pn) 

iterations (Yi and Huang, 2016), thus being much faster as both p and n are in the order of 103- What 

is more, as p increases it is not easy to select a model with a prescribed number of determinants via 

SPARSE-LTS, because the trimmed sum of squares is very sensitive to the value of  λ. On the 

contrary, the HQ method is less affected by this drawback, due to the use of the Huber loss function. 

5. An application to supervisory banking data 

The methodology is applied using real data, specifically to the supervisory data submitted by the 

European banks to the Single Supervisory Mechanism (SSM) operating within the European Union. 

The broader context is the institutional changes at the European level, brought about by the financial 

crisis leading to the harmonised supervision of large banks in Europe and the centralised collection of 

their data by the European Central Bank (ECB) and specifically its supervisory function. 

More broadly, during the last years, economic policy institutions, like international organisations, 

finance ministries or central banks face the challenge to incorporate the newly emerging large data 

sets into their mode of operation.7 The challenges pertain both to the conceptual and the technical 

dimensions. On the conceptual aspect, the sheer amount of information contained in large data sets 

poses methodological questions such as the selection between theoretically grounded or a-theoretical, 

data-driven approaches.  A report from the Bank of International Settlements notes that “conventional 

                                                           
7 For an overview, focusing on central banks, see Hammer, Kostroch, Quiros et al. (2017) and Nymand-
Andersen (2016). The workshops on big data organised by the European Central Bank in 2014 
(https://www.ecb.europa.eu/pub/conferences/html/20140407_workshop_on_using_big_data.en.html) , the Bank 
of England (see Bholat 2015 for a synopsis), and the Riksbank in 2015 (http://www.riksbank.se/en/Press-and-
published/Notices/2015/The-Riksbank-organises-a-workshop-on-big-data/) testify for this increasing interest in 
the central banking community. 
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structured data sources” appear to be … more effectively mobilised than “new” big data sources” 

highlighting the methodological exploration which takes place with respect to analysing such datasets 

(Bank of International Settlements 2015). Moreover, on the technical front, the standard econometric 

techniques for analysing data need to be extended, or new ones should be adopted, borrowed from 

other data-rich fields, dictated again by the size of such data sets. See Varian (2014) for an overview 

of techniques suited for big datasets. 

At the European level, the assumption of the supervision of euro area banks by the ECB, starting from 

2014, has as one of its implications, the collection of large sets of supervisory data from a number of 

countries within one institution, a feature which is unique at a world scale. The supervisory data, 

reported by the banks to the ECB, cover, with a high degree of granularity, the different activities 

undertaken by the banks. A number of breakdowns are present in the data e.g. with respect to 

counterparties, products, geographical areas, accounting portfolios, risk classes and types of risk. This 

exceptional granularity is the distinctive feature of this particular dataset and is also present in big 

datasets collected in other finance-related fields, for example in banking sector’s credit registry 

datasets (where detailed profiles for each borrower are recorded) or behavioural data utilised by 

insurers (where various dimensions of behaviour are aggregated, aiming to provide insights on 

expected insurance claims) or finally data from over-the-counter derivatives (with many-attribute non-

standardised contracts). 

Monitoring the quality of these supervisory data, from a statistical perspective (as opposed to a 

compliance or regulatory perspective) is a task with critical implications for the quality of supervision. 

Improved data quality enhances the reliability of analyses and supervisory decisions which are 

informed using these data. This is a challenging task due to the sheer amount of these data and the 

substantial heterogeneity contained therein. 8 

Our sample consists of a cross section of 365 SSM banks. A subset of these institutions, specifically 

124 of them, have been labelled as ‘Significant Institutions’ in the context of the SSM i.e. they 

                                                           
8 Studies investigating the biases caused by outliers on the measurement of financial risk include Chatterjee and 
Jacques (1994) and Grane and Veiga (2014). Seaver and Triantis (1995), Johnson and McGinnis (2008) and 
Bellini (2012) investigate the impact of outlier points on technical efficiency measurement. 
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possess systemic importance with respect to the European or their domestic banking sector i.e. based 

on the consolidated group size or on their size at the individual SSM country level. The reference date 

of the data is 2014 Q4.9  

We analyse a selected set of FINREP templates which contains all basic breakdowns of the banks’ 

balance sheet, therefore providing very granular information on banks’ activities. ‘FINREP’ stands for 

‘Financial Reporting’ and includes data on the prudential scope of consolidation (as opposed to the 

accounting scope of consolidation) using IFRS accounting concepts. FINREP templates were initially 

developed as a part of a guideline from the Committee of European Banking Supervisors (CEBS) in 

2005. During the following years, the European Banking Authority (EBA) which superseded CEBS 

continued to coordinate the development of the templates. In the context of the SSM, FINREP data 

have a much more elevated status since they form part of the mandatory reporting framework, given 

that there is a relevant legal requirement incorporated into European Law with the Capital 

Requirement Regulation (CRR), No 575/2013, Article 99 on 26 June 2013.  

The templates can be found at the EBA website.10 Henceforth, we will refer to each data point as F x.y 

[rz,cw] where x, y, z, and w refer to the sheet numbering (the first two), row numbering and column 

numbering, respectively e.g. F 1.1 [r380,c10] refers to the data point ‘Total assets’. 

The selected templates contain information on the breakdown of the balance sheet across at least four 

dimensions, namely accounting portfolios, instruments (e.g. debt, equity, derivatives), products (e.g. 

types of loan products) and counterparties (e.g. governments, central banks, other financial 

institutions, non-financial corporations). This granularity is present for both the asset and the liability 

sides. The main accounting categories for assets which are included are as follows: i) Loans and 

receivables & held-to-maturity assets (Loans and HtM); ii) Assets held for trading (HfT); iii) Assets at 

Fair value through profit or loss (FVPL); iv) Available-for-sale assets (AfS). These categories differ 

                                                           
9 The reference date is the first one in which FINREP was submitted, therefore a change in completion rates and 
other characteristics of the submitted data may be present in subsequent submissions. 
10 The URL address is: https://www.eba.europa.eu/documents/10180/359626/Annex+III+-
+FINREP+templates+IFRS.xlsx/049e48a4-e7c2-44c6-89b1-4086447bced9  
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with respect to their valuation and to the extent that they affect the profits of the bank. Both liabilities 

valued at amortised cost and FV liabilities are included.  

Specifically, our input set consists of the following templates (in parenthesis their main contents): F 

1.1 (overview of assets), F 4.1 (HfT assets), F 4.2 (FVPL assets), F 4.3 (AfS assets), F 4.4 (loans and 

HtM assets), F 5.0 (loans and advances by product e.g. on demand, credit card, leases loans etc), F 8.1 

(overview of liabilities), F 9.1 (off-balance sheet items e.g. loan commitments and guarantees), F 10.0 

(derivatives – trading), F 11.1 (derivatives – hedge accounting). 

The practical application of the multivariate outlier detection has to take into account two additional 

issues: the data availability issue (missing data and differential completeness rates among variables) 

and the existence of a number of (mainly linear) identities among the variables of the data sets. Both 

these features are strongly present in our data set. These practical issues are generic enough to be of 

wider interest for other applications, therefore their treatment is elaborated in the Appendix of our 

paper.  

5.1  Results and discussion 

 

In this section, we present the results of our approach with respect to detecting outliers on the banks’ 

size (measured as the value of total assets). The five-step procedure that was formulated in Section 2.3 

is applied to the data set of 433 variables which remain after the exclusion of degenerate and highly 

correlated variables (see the Appendix for the details). The resulting data matrix has 77% of missing 

data, while the mean absolute correlation coefficient is 0.051.  

The histogram below shows the distribution of the log of banks’ size, expressed in millions. It 

transpires that the median value of banks’ size is 11.3bn (the mean is 10.2bn) and the log of size 

follows a distribution which is close to normal (as can be inferred from the p-value of the Jarque-Bera 

test, which equals 0.43 and allows the non-rejection of the null hypothesis of a normal distribution). 

The fact that the size follows a log normal distribution is intuitive, given the existence of a large 
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number of small- and medium-sized banks, high variances (also reflecting the size dispersion of the 

countries in the sample e.g. with respect to their GDP) and the non-negativity of the size variable. 

Figure 13 allows us to spot immediately two outliers, at the left tail of the distribution, which imply 

that the banks report total assets as equal to 1.8mn and 2.0mn respectively (two implausibly low 

figures). Therefore, this first level check was able to identify two outliers, caused probably by the use 

of a wrong unit e.g. values expressed in million euros, instead of euros as required. We now proceed 

with second level checks for outliers based on the results of our proposed multivariate outlier 

detection approach. 

We perform HQ+LTS on our data matrix, following the assessment of the relative merits of the 

different variants of our proposed method, as was presented in Section 3. We set 𝐿 = 3.  The matrix 

of recovered determinants presents a mean absolute correlation equal to 0.67, a degree of sparsity of 

35% and a percentage of missing rows of 20%.  

The procedure finds (see Table 2) that the optimal determinants of the (normalized by the maximum 

value) size variable is the (normalized by each bank’s assets) amortised cost of debt securities issued, 

the carrying amount reported for hedging derivatives at the asset side, and the notional amount of total 

hedging derivatives.11 This is an intuitive result since these variables contain basic information about 

the use of debt securities and derivatives and these instruments is more widely used by large banks. 

Figure 13: Histogram of the size of banks in logs (there is no x-axis values to ensure data anonymization). 

 

Source: Supervisory data, authors’ calculations 

                                                           
11 i.e. data points F 10.0 [r10,c10], F 10.0 [r320, c30] and F 11.0 [r500,c30]. 
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Table 2: Estimated equation linking banks’ size with the three top covariates. 

Dependent variable: log-

size 

Estimated coefficients 

Constant 18.4521 *** 

(156.418) 

 

Hedge Derivatives 

(Carrying amount) 

Assets  

 

104.9235 *** 

(5.522) 

Debt securities 

(Amortised cost) 

6.1278 *** 

(5.548) 

 

Hedge derivatives 

(Notional amount) 

Total hedging 

3.7063 *** 

(5.391) 

R
2
=0.4644 

Note: The table reports the Least Trimmed squares estimation results. The t-statistic is reported in parenthesis. The asterisks *,** and *** 

indicate statistical significance at 10%, 5% and 1% respectively. 

 

Using the fitted values of the estimated equation we identify the outliers, following the Step 5 of 

Section 2.3. The two outliers which were identified by simply plotting the histogram of values are still 

identified i.e. outliers with a clear innovation outlier component (using the terminology of Section 3). 

In addition, based on the estimated relationship between size and its covariates, we also identify 14 

additional outliers. 

Figure 14 provides a comparison between the histograms of log-size in the non-outlier and the outlier 

set. It can thus be observed that detected outliers are large-sized banks: among those 14, only 3 have 

total assets below the general mean over all the 365 banks. 

 

ECB Working Paper Series No 2171 / July 2018 36



 

Figure 14: Histograms of log-size in the non-outlier (left) and the outlier set (right). 

 

Figure 15: Histogram of the estimated standardized residuals in the outlier set 

 

Figure 15 provides the histogram of the estimated standardized residuals in the outlier set, providing 

information on the size of each bank relative to what would be expected by the size determinants. The 

only bank with a positive residual presents a very large value of total assets compared to the relatively 

small values of the three covariates, or in other words, does not utilise the instruments represented in 

the set of covariates to the extent that would be expected by its size. On the contrary, eleven of the 

remaining banks show a value for notional amounts of hedge derivatives larger than 0.5, and seven of 

them show a value larger than 0.5 for debt securities at amortised cost. Six banks possess a relatively 

high amount of debt securities and notional amounts of hedge derivatives. Four banks even show a 

notional amount of hedge derivatives larger than 1. In general, the 13 banks with a negative residual 

contain more hedging derivatives than expected by their total assets.  
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When the HQ+MM method is used, 19 outliers are identified, instead of 16 as with the HQ+LTS 

method. This difference in the number of identified outliers is consistent with our simulation study of 

Section 3 and the generally higher swamping rates characteristic of HQ+MM compared to the 

HQ+LTS when sparsity increases (as in case 4 of Table 1). Importantly, the outliers are in almost all 

cases (except from one) common among the two methods.  

The insights offered by our proposed methodology are illustrated further by comparing the histograms 

of recovered covariates for non-outlier banks and for the set of outliers comparatively (see Figure 16). 

This comparison is used to delineate the nature of the identified outliers. It is clear that the outlier set 

contains extreme values for all the determinants, showing completely different distributions compared 

to the whole sample. The values are much higher with respect to those expected from the sample 

distributions, leading to the negative residuals presented in Figure 15. The outlier discrimination 

capability of the proposed procedure, with respect to uncovering unusual relationships between log-

size and the identified set of determinants, is well illustrated via these graphs. 

Overall, it is important to stress that the proposed outlier detection technique generates useful insights 

about the nature of the identified outliers: the analysis is able to offer a richer explanation why the 

specific value represents an outlier, offering value added to the data quality analysis.12 

Figure 16: Notional and carrying amounts of hedge derivatives, debt securities at amortised cost: histograms 
comparing the distributions of non-outlier and outlier banks. 

 

                                                           
12 One could investigate further whether the reported values are indeed justifiable, maybe due to idiosyncratic 
features of their strategy, or they represent simply wrong data. A statistical check for data quality can be 
formulated starting from our procedure, aimed at testing data reliability. 
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6. Conclusion

In this paper, we address the problem of outlier detection in a high-dimensional context by presenting 

an integrated, automatized procedure involving a preparatory phase and a multi-step outlier detection 

algorithm. The procedure is suitable for application to high-dimensional datasets, i.e. datasets with a 

very large number of variables compared to the number of observations for each variable. In addition, 

the proposed procedure can be easily adapted for the purpose of pattern recognition in high-

dimensional datasets. 

The proposed integrated outlier detection algorithm is a five-step procedure, which incorporates, data 

standardisation, data selection (via the heuristics of Yi and Huang (2016)), estimation of a robust 

regression model based on the selected variables (via the Least Trimmed Regression), robust 

calculation of dispersion and finally a criterion to identify outliers. The methodological advance lies 

in the effective combination of these techniques which is shown through a simulation study to be 
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particularly useful for collinear and sparse “fat” data, performing better than some robust alternatives 

with respect to minimising both swamping and masking rates. 

The above procedure is then applied to a supervisory dataset, consisting of balance sheet data, which 

are submitted by the Euro Area banks in the context of the ECB Banking Supervision. Algebraic data 

redundancy measures, such as the rank of the correlation matrix, point to the need to address the dense 

correlation structure present in the raw data set. In addition, it is found that the high number of 

accounting identities leads to a concentration of pairwise correlation values close to 1. As a result, the 

data redundancy procedure led to the removal of a significant amount of variables from the initial 

dataset. Application of the determinants’ identification regression to the resulting dataset finds that 

variables related to the use of debt securities and derivatives represent the most closely related subset 

of variables for explaining the size variable. Consequently, the outlier criterion identified outlier size 

values by detecting the banks showing unexpected relationships between size and derivatives-based 

variables. This test case shows that this type of outlier detection analysis is a promising way to both 

enhancing the quality monitoring and identifying patterns in high-dimensional data sets. 

An important aspect to be considered is the interdependence of the various steps. The interaction of 

the different steps is important in similar decision making and signal processing algorithms. Further 

work exploring the possibility to develop a one-step method for regression outlier detection in 

presence of missing data, collinearity and outlying variances would be of great interest.  
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Appendix A: Data preparation 

 

Data completeness and data redundancy 

 

Each of the ten (10) FINREP templates of our input data set is essentially a large matrix with its rows 

corresponding to different banks and the columns to different variables. The first step of our statistical 

analysis is the aggregation of the individual FINREP templates, containing all the banks in rows and 

all the variables in consecutive columns. A matching step of the banks in different templates to align 

the rows (banks) in all templates is performed before applying the outlier detection techniques.  

This section will describe the data completeness analysis per template, and the approach followed. 

The results of this step possess an interest of their own because the differential data completeness per 

template and per data point reflect the significance of the respective templates and data points and 

provide insights for a business analysis; therefore, it is a procedure which provides value added for 

data sets with a similar structure. Subsequently, the data redundancy reduction step has been 

performed in the aggregated matrix. 

We now present the completeness analysis and the procedure we follow to exclude redundant 

information from our data set. Each template 𝑘 is a matrix containing 𝑝(𝑘) columns (variables) and 

𝑛(𝑘) rows (banks). The dimensions of each template are presented in first two rows of Table A-1. As 

it is apparent the different ‘blocks’ (i.e. templates) of our data set seem to be heterogeneous with 

respect to their dimensions. In addition, heterogeneity is present with respect to the submission rate of 

each template by the different banks; some templates have been submitted by fewer banks, reflecting 

that their contents are not as relevant for the whole set of banks under examination. Specifically, the 

number of banks across templates ranges from 207 to 365. As expected, the templates F 1. 1, F 4.4, 

and F 8.1 which present the basic items for each bank (asset composition, loans and liabilities) are 

reported from all banks. On the other hand, the template F 4.2 containing assets assessed using “fair 

value via profit and loss” (FVPL) is reported from only 207 banks. The number of numeric variables 

for a single template ranges from 31 to 215. The overall number of variables is 1039. 
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The issue of data completeness is critical, especially for data sets with a large cross-sectional 

dimension in which heterogeneity is expected regarding the availability of information for the 

different entities. In our case, we take into account the convention underpinning the submission of 

supervisory data in the SSM context, namely that banks are required to report all required data (e.g. in 

contrast to household surveys where the different cross-sectional units are not usually required to 

respond to all questions) and interpret all missing data as zeros i.e. that the bank does not have any 

activity in the respective category. 

Table A-1: Completeness statistics per template 

Template 

(1)  

F 1.1 

(2) 

F 4.1 

(3) 

F 4.2 

(4) 

F 4.3 

(5) 

F 4.4 

(6) 

F 5.0 

(7) 

F 8.1 

(8) 

F 9.1 

(9) 

F 10.0 

(10) 

F 11.1 

Number of banks 365 254 207 347 365 362 365 357 329 272 

Number of variables 58 31 33 76 168 60 215 24 177 197 

Mean completion 
rates 

50% 38% 39% 42% 35% 59% 21% 67% 29% 26% 

Null rate 6% 14% 18% 11% 11% 8% 8% 7% 7% 14% 

Zero rate 45% 50% 54% 49% 60% 22% 74% 16% 58% 76% 

Number of degenerate 
points 

20 1 1 6 33 0 89 0 54 64 

Percentage of 
degenerate points 

34% 3% 3% 7% 19% 0% 41% 0% 30% 32% 

Percentage of banks 
with no missing 

values 

1% 20% 48% 8% 6% 9% 1% 10% 1% 12% 

Final number of 
variables, after 

excluding degenerate 
points 

38 30 32 70 135 60 126 24 123 133 

Rank of the 
correlation matrix 

29 27 26 46 76 54 90 21 97 80 

Source: Supervisory data, authors’ calculations 

The data completeness analysis involves the computation of descriptive statistics both with respect to 

variables and banks. Specifically, we compute for each variable the completeness rate, defined as the 

percentage of non-missing values respect to the number of banks, and the percentage of non-zeros 

both respect to the number of non-missing values and to the overall number of banks. Moreover, we 

compute for each template the proportion of banks having complete records (i.e. no missing values). 
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We perform checks on missing data, both row-wise and column-wise. Firstly, for each variable we 

compute the number of missing and non-missing values and the completion rate is derived as the ratio 

between the non-missing values and  𝑛(𝑘)  (see third row of Table A-1). 

It is noted that the higher degree of completeness is found in template 8, a template containing the 

asset side balance sheet items, followed by the loans and receivables items (template 5) and the asset 

breakdown overview (template 1). Templates 1 and 5 contain the most fundamental items of the asset 

side in banks’ balance sheet, therefore it is expected that the majority of banks will report most of 

these items. In addition, template 8 is the smallest one as regards its size (only 24 variables) and the 

off-balance sheet contains items common to many banks, hence its high completeness rate. On the 

other hand, the lowest degree of completeness is found in the liability breakdown (template 7). The 

overall mean completeness rate across all data-points is 33.34%. The minimum is 2.43%, while the 

maximum completeness rate (100%) is reached only by seven (7) data points out of 1039 (see Table 

A-2). As it can be observed, this set of points contains some fundamental asset items which one would 

expect exist for every bank. 

Table A-2: List of points with a 100% completeness rate 

Data point in ITS template Content 

F 1.1 [r10,c10] Cash, cash balances at central banks and other demand deposits 

F 1.1 [r270,c10] Tangible assets, like property, plant and equipment 

F 1.1 [r360,c10] Other assets 

F 1.1 [r380,c10] Total assets 

F 4.2 [r190,c10] Financial assets designated at fair value through profit and loss 

F 4.3 [r190,c30] Available for sale financial assets 

F 5.0 [r80,c30] Loans and advances to credit institutions 

 

Besides completeness rates which measure the percentage of missing elements we also quantify the 

percentage of zero elements within the subset of non-missing data, which we call the null rate. 

Specifically, we compute for each variable contained in the input templates the number of zero values, 
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from which we can derive the rate of zero elements as the ratio between zeros and the number of non-

missing elements. Consequently, we derive the null rate as the ratio between the number of zero and 

the total number of data points. We report the average null rate and zero rate across templates in Table 

A-1. 

The null rate is considerably smaller than the zeros rate, and this difference is related to the degree of 

completeness rate. The mean null rate across templates is 10% (minimum=0% and maximum=31%). 

The templates on “Held for trading” (HfT) assets (F 4.1), FVPL assets (F 4.2) and derivatives for 

trading (F 10.0) exhibit the largest percentage of zeros across the set of templates. The mean zeros 

rate is 61% and gets its maximum values in templates containing liabilities (F 08.1) and derivatives in 

hedge accounting (F 11.1). Overall the template on derivatives for hedge accounting is the one which 

is the most sparsely populated, reflecting the lack of use of complex financial instruments from many 

small banks. 

If the number of zero and non-missing values coincide, we flag that data point as degenerate one i.e. 

this data point always has the value of zero when it is filled, consequently it is an activity which is not 

undertaken by any bank. So, the degenerate variables are the only ones having the null rate coinciding 

with the completeness rate, i.e. having a zeros rate equal to 1.  

The number and percentage of degenerate variables across templates are presented in Table A-1 (sixth 

and seventh rows). The percentage is highest for the general templates of the asset and liability side 

(templates 1 and 7) meaning that there are some specific items in these templates which are not used 

by any of the reporting banks. We can see that templates with the product breakdown of loans (F 5.0) 

and off-balance sheet items (F 9.1) have no degenerate variables. Both of these templates are 

relatively small, refer to subsets of banks’ core business and they do not contain extremely specialised 

items. It is also noted that the mean percentage of degenerate points is equal to 17% and there is a 

quite polarised situation: templates F 4.1, F4.2, F 4.3, F 5.0, F 9.1 are much below the average with 

respect to the percentage of degenerate points, while the templates F 1.1, F 8.1, F 10.0, F 11.1 are well 

above the average. The last two templates contain derivative items with a very detailed breakdown, 
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and therefore it is not surprising that some of these specialised derivative instruments are not found in 

any of the reporting banks. The total number of degenerate variables for all templates is 268. 

The following variables have a completeness rate equal to unity and no zero elements: F 1.1 

[r010,c010] (Cash balances), F 1.1 [r270,c10] (Tangible assets) F 1. 1 [r360,c10] (Other assets) and F 

1.1 [r380,c10] (Total assets). Given the fundamental nature and the wide use of these items this comes 

as no surprise.  

A specific analysis concerning missing values can be performed also row-wise, i.e. on the banks. The 

percentage of banks being complete (i.e. having no missing values) is computed for each template and 

the percentage of complete records for each template is reported in Table A-1. In general, it is 

observed that the row-wise completeness is not directly related to the column-wise completeness. The 

reason is that these completeness rates are driven by various factors. While the column-wise 

completeness is mainly driven by the degree of use of the activities contained in each template, the 

row-wise completeness is driven by the degree of diversification of each bank with respect to the 

different activities. The percentages of banks with no missing variables within each template is 

generally lower than 10% reflecting that most banks do not possess a degree of diversification which 

corresponds to the granularity of the templates.  

Given that for all data points in our input set, the rule is that banks do not report them if the respective 

item is not present in their balance sheets, we set all missing values equal to 0.13 At the same time, we 

exclude all the degenerate variables. The number of data-points which can be used in the analysis, 

after this step, becomes thus equal to 1039-268=771.  

The second-to-last row of Table A-1 presents the number of variables remaining in each template 

after the degenerate points are excluded. This number can be interpreted as the “volume” of 

                                                           
13 Of course it may be the case that a bank has not reported a data point by mistake, but we ignore this effect, 
given that it is also in the interest of the bank to report complete data. Regarding the handling of missing values 
and their substitution with zeros, our approach differs from that usually applied in statistical datasets. This 
approach is justified of course given the institutional context of these data within the SSM framework. 
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information contained in each template (without any inference about their economic significance) 

since it abstracts from non-actually-existing information corresponding to degenerate data points.  

Data selection 

The aggregated dataset that remains after degenerate variables are excluded is not yet ready to be used 

for the multivariate outlier detection approach. The reason is that many variables are involved in 

(accounting) identities, therefore presenting a correlation which is very close to unity. We calculate 

the rank of the modules after the exclusion of degenerate variables (see last row of Table A-1) and 

this testifies to the existence of a number of redundant variables (as the rank is always lower than the 

number of the remaining variables, in some cases to a large degree). Figure 1 presents the histogram 

of correlation values among the variables in this set. It can be observed that there is a large 

concentration of values in ranges close to 1 and to -0.8 (more extreme values are present at the 

positive upper bound, reflecting the existence of accounting identities). 

Therefore, an automatic procedure for dealing with this dense structure of high correlated variables by 

excluding those which provide redundant information has to be applied. The procedure aims to keep 

the more “fundamental” variables of the data set, i.e. those variables which are related to a relatively 

large number of other variables. For example, if there is a choice between keeping a more general 

category e.g. “loans and advances to households” and one of its subcategories e.g. “loans and 

advances to households – real estate collateralized loans”, we would prefer to keep the more general 

one, on the condition that it is strongly related with more of the remaining variables. However, this 

procedure has to be automatized given the large number of variables. 

In order to automatize this selection process, we define a measure of the “importance” of each 

variable within the data set. We re-condition the sample correlation matrix applying the shrinkage 

estimate of Schäfer and Strimmer, 2005, which is able to drastically reduce the numerical instability 

of the raw correlation matrix. We define the “importance” 𝐼(𝑗)of each variable 𝑗 as the linear 

combination of the correlation absolute values with the other variables of a data set: 
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𝐼(𝑗) = ∑ 𝐶𝑜𝑟𝑟(𝑗, 𝑘)𝑘=1,⋯,𝑃,
𝑘≠𝑗

.  

Consequently, we order the variables in a non-increasing order based on their 𝐼(𝑗). We define a level 

of correlation 𝐶∗, which triggers the need to select one of two correlated variables (e.g. 0.7) and then 

apply the following selection algorithm: 

1 begin 

2 for 1 jk  to N   

3 if   *, CkjCorr   then 

4  if    kj II   then 

5   delete variable j  from the dataset 
6  else 
7   delete variable k  from the dataset 
8  endif 
9 endif 
10 end; 
11 end; 

 

A remarkable number of variables are eliminated, and the final set consists of 433 variables. This 

large number of variables removed is expected, given the correlation values distribution that is 

presented in Figure A-1. 

Source: Supervisory data, authors’ calculations 

Figure A-1: Histogram of correlation values (after degenerate points are excluded) 
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The above procedure is able to identify a number of identities that are present in the data. These 

identities consist in relationships of more than two data points, for example the breakdown of 

“Intangible Assets” into “Goodwill” and “Other Intangible Assets”. One important advantage of the 

proposed approach is that the identities among variables located in different templates, a feature 

which is very important when validation rules for big data sets, such as those contained in FINREP 

and COREP, have to be formulated. 
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