Digitization and the Macro-Economics of Superstars

Anton Korinek and Ding Xuan Ng

UVA and NBER / Singapore Monetary Authority

Presentation at the ECB Conference on

"Challenges in the digital age"

July 2019

Introduction

Rosen (1981) first described the Economics of Superstars:

- information technology allows a small number of talented individuals to serve a large market and reap large rewards
 - description pre-dated the Internet
 - Rosen's first example: comedians and TV
- superstars were a curious phenomenon in a handful of sectors
- but outside of the domain of traditional macroeconomics

Introduction

Over the past three decades, advances in IT, chiefly the Internet, have supercharged the superstars phenomenon

Superstars (broadly defined to capture both individuals and firms):

- have become macroeconomically relevant
- are important drivers of several recent aggregate trends:
 - 1. declining demand for labor (and traditional capital)
 - 2. declining labor share
 - 3. increasing rents
 - 4. rise in income inequality

Introduction

In "The Macro-Economics of Superstars," we analyze

- the recent forces behind
- the broader macro implications
- policy remedies
 - and -
- the implications for monetary policy

Rising Superstar Market Shares

Rising Markups

Intangible vs Physical Capital

The Macro-Economics of Superstars

Our paper argues that:

- Rise of superstars is natural result of digital innovation = advances in collection, processing, and provision of information
- Digital innovation allows firms/entrepreneurs
 - to replace tasks performed by traditional labor and capital
 - using a technology that is copied at negligible cost

Examples: Internet companies, telecoms, banks, sport stars, musicians, franchise owners, manufacturers who automate, etc.

Key Economic Mechanism

Information differs from other inputs to production:

- ▶ information is non-rival
 - → digital innovation can supply a large market at low cost
 - → gives rise to increasing returns
- ▶ information is excludable
 - → generates monopoly power and economic rents (part of which are actually needed to pay for innovation)
- ightarrow Digital innovation supercharges the superstar effect

Baseline Model

Model structure:

- Unit mass of consumer-workers
- Two traditional factors: capital and labor
- Unit mass of intermediate goods combined into final good

Technologies for intermediate goods production:

- traditional technology: Cobb-Douglas CRS
- ightharpoonup superstar technology: uses digital innovation to automate a fraction γ of production

Baseline Model

Consumers:

- ▶ Inelastic labor supply L = 1
- ightharpoonup Final good obtained from differentiated intermediate goods with $\epsilon>1$

$$Y = \left(\int Y_i^{1-\frac{1}{\epsilon}} di\right)^{\frac{\epsilon}{\epsilon-1}}$$

with price of final good $P=\left(\int P_i^{1-\epsilon}di
ight)^{rac{1}{1-\epsilon}}=1$ as numeraire

Demand for each intermediate good is

$$Y_i = (P_i)^{-\epsilon} Y$$

ightarrow inverse demand curve $P_{i}\left(Y_{i};\cdot\right)$

Traditional Technology

Traditional technology for intermediate goods:

$$Y_i = F_i(K_i, L_i) = A_i K_i^{\alpha} L_i^{1-\alpha}$$

open access \rightarrow perfect competition

- Factors are hired at market prices R and W
- Total cost function with traditional technology

$$TC^{T}(Y_{i}) = \left(\frac{R}{\alpha}\right)^{\alpha} \left(\frac{W}{1-\alpha}\right)^{1-\alpha} \frac{Y_{i}}{A_{i}}$$

Constant unit cost

$$UC^{T}(Y_{i}) = \left(\frac{R}{\alpha}\right)^{\alpha} \left(\frac{W}{1-\alpha}\right)^{1-\alpha}/A_{i}$$

Superstar Technology

- Consider an entrepreneur in sector i who develops a digital innovation
 - ▶ that automates a fraction $\gamma_i \in (0,1)$ of production tasks at negligible marginal cost
 - ▶ but that imposes a fixed cost $\xi_i \geq 0$
 - in baseline model: entrepreneur has exclusive right to the innovation (e.g. patent)
- ► The total and marginal cost functions of superstars are

$$TC^{S}(Y_{i}) = (1 - \gamma_{j}) TC^{T}(Y_{i}) + \xi_{i}$$

 $MC^{S}(Y_{i}) = (1 - \gamma_{j}) UC^{T}(Y_{i})$

- → fixed cost generates increasing return
- → exclusiveness generates market power

Economic Effects of Superstar Technology

As an entrepreneur introduces a digital innovation/raises γ_i ,

- lacktriangle she first out-competes traditional firms ightarrow superstar
- then profit margins rise with further digital innovation
- optimal markup is reached when $\gamma_i \geq 1/\epsilon$:
 - ightarrow further cost savings passed on to consumers

Flip-side: demand for labor and wages:

- ▶ at first, decline due to cost savings
 - ightarrow labor-saving effect of innovation
- ▶ then rise again as low cost generates more demand for output
 - ightarrow output scale effect of innovation

Digital Innovation and Superstar Profits

Figure: Digital innovation and aggregate factor shares

Note: asset prices also reflect PDV of superstar rents

Public Policy Implications

Proposition (Monopoly Distortions from Digital Innovation)

The free market economy suffers from

- insufficient digital innovation
- inefficiencly low output

Intuition: markups distort quantities and by extension innovation decision

Policy Remedies:

- ► 1st-best: use public investment to finance digital innovation
 - ightarrow basic research should be public
- most other policy interventions have two-sided effects, e.g. breaking up monopolies, freeing information flows, etc.:
 - one the one hand, they reduce monopoly rents
 - ▶ on the other hand, they also reduce innovation

Digital Innovation and Factor Bias

Simple extension to focus on factor bias:

digital innovation ξ_i requires different factor inputs than traditional production

- typically intensive in higher-skilled labor, capital
- ► low-skilled labor experiences losses

Implications for International Affairs

First-order implications for international affairs:

Note: global superstars are global natural monopolies

If superstar and displaced traditional firms located in different countries:

- superstar countries experience most of the gains from progress
- other countries increasingly left behind (esp. developing countries without domestic superstars)
- → introduces novel considerations for trade policy

Implications for Monetary Policy

Let me speculate on three implications:

- 1. falling labor demand but sticky nominal wages
 - ightarrow transitional unemployment
- 2. redistribution from high-MPC workers to low-MPC superstars
 - \rightarrow lower natural interest rate
- 3. greater role for fixed cost & diminished role of variable costs
 - \rightarrow flatter Phillips curve

Superstars and Future Advances in Al

- the rise of human superstars is just the beginning
- artificially intelligent agents (AIAs)
 - are increasingly generating superstar rents of their own
 - and absorb them in the form of investment expenditure
 - while leaving regular human workers behind
- future economy increasingly "of the machines, by the machines, for the machines"
- ightarrow see my paper on "The Rise of Artificially Intelligent Agents"

Conclusions

Information economy drives creation of superstars:

- digitization gives rise to natural monopolies
- generates large inequality (silver lining: limited by optimal monopoly markup)
- creates dilemmas for regulators and policymakers, and significant changes for monetary policy