Discussion of 'A Multisector Perspective on Wage Stagnation' by L. Rachel Ngai and Orhun Sevinc

Zsófia L. Bárány

Sciences Po and CEPR

2019 December, Frankfurt ECB-CEPR Labour Market Workshop

Summary

Wage decoupling & low-skill wage stagnation well known. This paper: Look at low-skill wage divergence (decoupling).

Empirical decomposition:

$$\frac{\text{labour productivity}}{\text{real low-sk wage}} = \frac{y/P_Y}{w_l/P_C} = \frac{P_C}{P_Y}\frac{y}{w_l} = \frac{P_C}{P_Y}\frac{\frac{w}{\beta}}{w_l} = \frac{P_C}{P_Y}\frac{w}{w_l}\frac{1}{\beta}$$

•
$$\frac{P_C}{P_Y}$$
 – cost of living

- $\frac{y}{w_i}$ nominal divergence
 - * $\frac{w}{w_l}$ wage inequality * β labour income share
- Propose a mechanism:
 - Augment standard structural change model.
 - + Nested CES of K, H, L with diff & changing intensities across sectors.
 - + K and H complements, both are good substitutes for L.
 - + ST comes from: TFP growth diff across sectors & falling price of K.

Olibrate to gauge magnitudes.

Decompose

real divergence

into the contribution of

- increasing living costs
- increasing inequality
- decreasing labour share

Decompose

real divergence

increasing over time

into the contribution of

- increasing living costs
- increasing inequality
- decreasing labour share

Decompose

• real divergence increasing over time

into the contribution of

- increasing living costs
- increasing inequality
- decreasing labour share

positive, decreasing, average: 30%

Decompose

• real divergence increasing over time

into the contribution of

- increasing living costs
- increasing inequality
- decreasing labour share

positive, decreasing, average: 30% positive, fluctuates, average: 49%

Decompose

• real divergence increasing over time

into the contribution of

- increasing living costs
- increasing inequality
- decreasing labour share

positive, decreasing, average: 30% positive, fluctuates, average: 49% pos/neg, fluctuates, average: 21%

The model in a nutshell

• output
$$j = G, S$$
:

$$Y_{j} = A_{j} \left[\xi_{j} L_{j}^{\frac{\eta-1}{\eta}} + (1 - \xi_{j}) \left[\kappa_{j} K_{j}^{\frac{\rho-1}{\rho}} + (1 - \kappa_{j}) H_{j}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1} \frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

- P_j equals the marginal cost of production
- labour market: exogenous *H* and *L*

wage equalisation across sectors

- C_g and C_s chosen to maximise homothetic utility, elasticity arepsilon < 1
- market clearing: $Y_s = C_s$ and $Y_g = C_g + \phi K$
- \rightarrow Question: is K determined as a residual from accounting identity?

Exogenously changing:

- skill supply: *H*, *L*
- sectoral TFP: A_g, A_s
- price of capital: ϕ
- production "weights": $\xi_g, \xi_s, \kappa_g, \kappa_s$

Mechanism 1: Structural Transformation

- output
$$j = G, S$$
:

$$Y_{j} = A_{j} \left[\xi_{j} L_{j}^{\frac{\eta-1}{\eta}} + (1 - \xi_{j}) \left[\kappa_{j} K_{j}^{\frac{\rho-1}{\rho}} + (1 - \kappa_{j}) H_{j}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

- P_j equals the marginal cost of production
- labour market: exogenous H and L

wage equalisation across sectors

- $\mathit{C_g}$ and $\mathit{C_s}$ chosen to maximise homothetic utility, elasticity $\varepsilon < 1$
- market clearing: $Y_s = C_s$ and $Y_g = C_g + \phi K$

Assumptions:

$\varepsilon < 1$ & $A_g \uparrow > A_s \uparrow$ (Ngai and Pissarides 2007)

Mechanism:

1. G more productive \Rightarrow ceteris paribus $Y_g/Y_s \uparrow \& P_g/P_s \downarrow$ demand for G goes up, but less than supply would due to $\varepsilon < 1$ \Rightarrow inputs reallocate towards S

2. increasing P_s/P_g & K comes from Y_g \Rightarrow rising relative cost of living

Mechanism 2: Skill biased ST

- output
$$j = G, S$$
:

$$Y_{j} = A_{j} \left[\xi_{j} L_{j}^{\frac{\eta-1}{\eta}} + (1 - \xi_{j}) \left[\kappa_{j} K_{j}^{\frac{\rho-1}{\rho}} + (1 - \kappa_{j}) H_{j}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1} \frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

- P_j equals the marginal cost of production
- labour market: exogenous H and L

wage equalisation across sectors

- C_g and C_s chosen to maximise homothetic utility, elasticity arepsilon < 1
- market clearing: $\mathit{Y_s} = \mathit{C_s}$ and $\mathit{Y_g} = \mathit{C_g} + \phi \mathit{K}$

Assumptions:

$$arepsilon < 1$$
 & $A_g \uparrow > A_s \uparrow$ & $\xi_g > \xi_s$ (Buera et al. 2018)

Mechanism:

inputs move to S, which more intensive in $H \Rightarrow$ demand for $H/L \uparrow \Rightarrow$ skill premium \uparrow

Mechanism 3: Capital-skill complementarity

output
$$j = G, S$$
:

$$Y_{j} = A_{j} \left[\xi_{j} L_{j}^{\frac{\eta-1}{\eta}} + (1 - \xi_{j}) \left[\kappa_{j} K_{j}^{\frac{\rho-1}{\rho}} + (1 - \kappa_{j}) H_{j}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1} \frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

- P_j equals the marginal cost of production
- labour market: exogenous H and L wage equalisation across sectors
- $\mathit{C_g}$ and $\mathit{C_s}$ chosen to maximise homothetic utility, elasticity $\varepsilon < 1$
- market clearing: $Y_s = C_s$ and $Y_g = C_g + \phi K$

Assumptions:

 $\eta > 1 > \rho$ & $\phi \downarrow$ (Krusell et al. 2000)

Mechanism:

1. $\phi \downarrow \Rightarrow$ more K, complements H and substitutes $L \Rightarrow$ skill premium \uparrow 2. $\kappa_g > \kappa_s$ and $K \uparrow \Rightarrow G$ output grows faster \Rightarrow ST

Calibration: 1980-2003

Calibration strategy largely follows Buera et al. (2018):

- ε, η, ρ : elasticities taken off the shelf
- $\gamma_{A_g}, \gamma_{A_s}, \gamma_{\phi}$: calibrated to match Δ in P_g/P_s , relative price of capital, aggregate lab prod growth
- $\xi_{g,t}, \xi_{s,t}, \kappa_{g,t}, \kappa_{s,t}, H_t/L_t$: calibrated to match income share of factors (K, H, L) within sectors, and overall income share of H and L
- $\rightarrow\,$ How is the weight in the utility function calibrated? To match value added shares?

Quantification: 1980-2003

Model

- reproduces 75% of real divergence
- relative role of change in living costs, inequality and labour share in line with decomposition

Quantify importance of each channel by shutting down the rest:

- $\gamma_{A_g} > \gamma_{A_s}$: 1/3 of real div, half through living costs, but lab share \uparrow
- $\gamma_{\phi} <$ 1: 1/4 of real div, almost all through inequality, but lab share \uparrow
- $\xi_j, \kappa_j \downarrow$: 55% of real div, 3/4 inequality, 1/4 labour share
- H/L \uparrow : suppresses real div, but reduces lab share

 \rightarrow Points to interaction between channels.

What is new in this paper?

- Model and calibration basically identical to Buera et al. (2018), with the addition of capital (as in Krusell et al. (2000))
- The question is different:
 - Buera et al: skill premium
 - this paper: divergence and its components
 - 1. inequality (very related to skill premium)
 - 2. labour share
 - 3. cost of living
 - \rightarrow 2. and 3. cannot be studied without capital

What do we learn from this paper?

- Empirical decomposition of low skilled wage divergence into inequality, labour share and cost of living.
 → I find this very interesting.
- 2. Why do we want a model with three mechanisms that delivers all three components jointly?

It could be that each of these is driven by different mechanisms.

 \rightarrow However, model shows that each mechanism connects some components.

- ► Diff sectoral TFP growth generates inequality and rising costs of living.
- Changing "weights" generate inequality and decline in labour share.
- ► Falling capital cost and changing capital "weights" less important.

Comments - Changing factor weights

• What do changes in the weights of various production factors mean?

$$Y_{j,t} = A_{j,t} \left[\xi_{j,t} L_{j,t}^{\frac{\eta-1}{\eta}} + (1-\xi_{j,t}) \left[\kappa_{j,t} K_{j,t}^{\frac{\rho-1}{\rho}} + (1-\kappa_{j,t}) H_{j,t}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

A_{j,t} – between sector skill biased demand shift

• $\xi_{j,t}$ – within sector skill biased demand shift

Comments - Changing factor weights

• What do changes in the weights of various production factors mean?

$$Y_{j,t} = A_{j,t} \left[\xi_{j,t} L_{j,t}^{\frac{\eta-1}{\eta}} + (1 - \xi_{j,t}) \left[\kappa_{j,t} K_{j,t}^{\frac{\rho-1}{\rho}} + (1 - \kappa_{j,t}) H_{j,t}^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

A_{j,t} – between sector skill biased demand shift

- $\xi_{j,t}$ within sector skill biased demand shift
- Equivalent to sector-specific factor-augmenting technologies.

$$Y_{j,t} = \left[\left(Z_{jL,t} L_{j,t} \right)^{\frac{\eta-1}{\eta}} + \left[\left(Z_{jK,t} K_{j,t} \right)^{\frac{\rho-1}{\rho}} + \left(Z_{jH,t} H_{j,t} \right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1} \frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

- Normalising the changing weights is not innocuous. ⇒ The distinction of *between sector* and *within sector* demand shifts hinges on this.
- Alternative: calibrate sector-specific factor-augmenting technologies
 → extract sector and factor components from these (Bárány and
 Siegel (2019a)).

Comments - Low vs high-skilled labour

- Understanding the drivers of low-skilled wage growth is important.
- Here: model low- and high-skilled labour as different factors of production.
 - Equivalent to high-skilled having different jobs than low-skilled.
- Alternative production function: occupational labour as diff inputs.
 - The mapping from education to occupations is not unique and is changing.
 - In particular composition of occupations among the low-skilled have changed and contributed to wage stagnation.

Comments

- Definition of sectors.
 - Makes sense from the production side.
 - Not justified from the consumption side. All industries within 'Goods' are perfect substitutes.
- Look at sub-periods.
 - Marked changes in relative role of cost of living, inequality, and labour share.
 - Could check whether the evolution of model implied sources, φ, changing weights, sectoral TFP are in line with this timing.

Summary

- Very interesting paper.
- Key novelty: Empirical decomposition and its connection to the various channels in the model.
 - Could be further developed by looking at sub-periods.
 - Consider looking at occupations.
 - Distinction of between- and within-industry shifters.