Worker Churn in the Cross Section and Over Time: New Evidence from Germany

Rüdiger Bachmann, Christian Bayer, Christian Merkl, Stefan Seth, Heiko Stüber and Felix Wellschmied

Universidad Carlos III de Madrid

ECB-CEPR 2019 Labour Market Workshop

3.12.2019

Aggregate worker churn is large, strongly procyclical, and persistently so:

- German quarterly worker churn rate is 6.7% of employment.
- 50% of worker turnover is due to worker churn.
- Churn is 40% higher during booms than during recessions.

- Study cross-sectional relationship between worker churn and employment growth.
 - Restructuring mechanism.
 - Uncertainty mechanism.
 - Propose a model of worker churn.
- Study time-series properties of churn.
 - Conditional on employment growth.
 - Differentiate turnover through non-employment and employment.

- Main data source: Employment History (BeH) of the IAB.
- Unit of observation: establishment.
- Coverage: all West-German private establishments (for short: plants).
- Period: 1975-2014.

- Most variables in the AWFP are calculated on a 'regular worker' basis. A 'regular worker' is
 - employed full-time and
 - subject to social security.
- A worker is considered to be working for a given plant in a given quarter when she is employed at this plant at the end of the quarter. This definition yields the:
 - number of jobs at a plant at the end of a quarter (J_t) .
 - number of hires at a plant (H_t) .
 - number of separations at a plant (S_t) .

- For each plant, we compute the quarterly net job flow, $JF_t = J_t J_{t-1}$.
- When a plant decreases employment $(JF_t < 0)$ within a quarter, we count this as job destruction, JD_t .
- When a plant increases employment (*JF*_t > 0) within a quarter, we count this as job creation, *JC*_t.

(B)

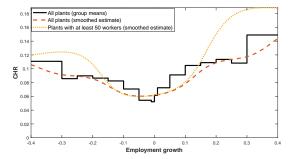
• Worker churn quantifies the amount of worker flows in excess of job flows at the plant (Burgess et al. (2000)):

$$CH_t = (H_t - JC_t) + (S_t - JD_t).$$
(1)

 Intuitively, churn occurs because non growing plants hire workers, and growing plants separate from workers. • We use the average of contemporaneous and lagged end-of-quarter employment as the denominator:

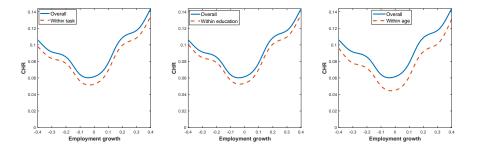
$$N_t = [J_t + J_{t-1}]/2.$$

- For example, $HR_t = \frac{H_t}{N_t}$.
- All rates are bound in the interval [-2,2] with endpoints corresponding to the death and birth.

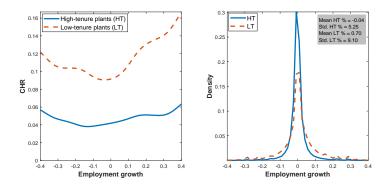

- E > - E >

Aggregate Job and Worker Flows in Germany

				Correlation with U_{t+j}	
	Mean	Std	AC(1)	j = -2 0 +2	
JCR	3.69%	0.29%	0.53	0.19*** -0.04 -0.28***	
JDR	3.69%	0.36%	0.40	-0.03 0.15 0.29***	
EJTR	6.95%	0.39%	0.51	0.21* 0.15 0.11	
HR	7.06%	0.57%	0.82	-0.26*** -0.53*** -0.72***	
SR	7.06%	0.47%	0.47	-0.46^{***} -0.51^{***} -0.48^{***}	
	6.74%		0.92	-0.55*** -0.77*** -0.87***	


Felix Wellschmied (UC3M)

Worker Churn in the Cross-Section


- Churn highest at rapidly adjusting plants.
- Not driven by small plants.

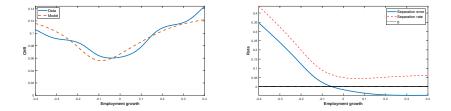
Reorganization Hypothesis

- Churn across worker observables explains little of churn.
- It explains nothing of the V-shape.

Uncertainty Hypothesis

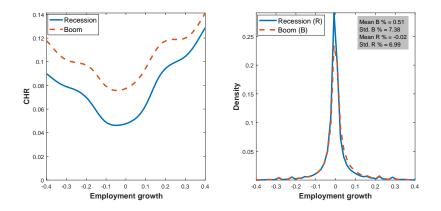
Firms with many low tenured workers have

- more worker churn.
- a more pronounced V-shape.
- more dispersed employment growth.


Firms produce output according to

$$Y_{it}=zE_{it}^{\alpha},$$

Employment dynamics:

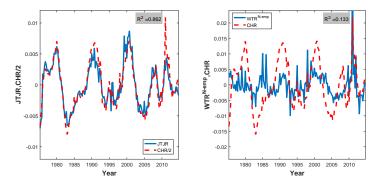

$$\begin{split} & \max_{\Delta_{E_{it}}^a} \left\{ \mathbb{E}_{t-1} \{ z E_{it}^\alpha - w E_{it} \} \right\} \\ & E_{it} = (1 - s_{it}) (E_{it-1} + \Delta_{E_{it}}^a) \\ & s_{it} = \min\{ \exp(\tilde{s}_{it}), 1 \} \\ & \tilde{s}_{it} = (1 - \rho_s) \mu_s + \rho_s \tilde{s}_{it-1} + \epsilon_{it}, \quad \epsilon_{it} \sim N(0, \sigma_s^2), \end{split}$$

Key: Firms do not control size perfectly.

- Rapidly growing plants experienced large shock last period.
- Non-adjusters start close to optimal size.
- Rapidly shrinking plants experience large shock this period.

Churn and the Cycle

- Employment growth churn nexus shifts up during booms.
- Employment growth dispersion changes little.


- The model rationalizes cyclical dynamics by Model
 - higher average separations in booms.
 - more uncertain separations in recessions.
- Procyclical worker turnover does not imply procyclical job turnover.

Write the churning rate as:

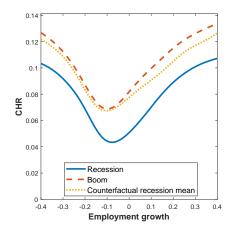
$$CHR_t = (HR_t + SR_t) - (JCR_t + JDR_t)$$

= $(HR_t^{N-emp} + SR_t^{N-emp} + 2JTJR_t) - (JCR_t + JDR_t).$

- Churn may result from
 - churn through the non-employment pool.
 - churn through job-to-job transitions.

Source of Procyclical Churn II

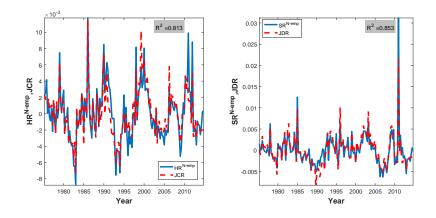
• All procyclical churn is job-to-job.


- Procyclical job-to-job transitions do not lead to procyclical job reallocation.
- Cyclical worker flows from/to non-employment imply job flows.

- Early in boom, short period of hiring from non-employment (job-creation).
- Worker reallocation through job-to-job transitions remains high throughout the boom.
- This lead to no further job reallocation.
- Consistent with job-ladders being idiosyncratic.

- Churn is V-shaped in employment growth.
- Most churn results within worker observables and is linked to uncertainty.
- Separation rate shocks with time-to-hire rationalize the data.
- Churn is procyclical because separations become more frequent and predictable during booms.
- All procyclical churn results from job-to-job transitions.

BURGESS, S., J. LANE, AND D. STEVENS (2000): "Job Flows, Worker Flows, and Churning," Journal of Labor Economics, 18, 473–502.


三日 のへで

▶ Back

三日 のへの

イロト イヨト イヨト イヨ

▶ Back

1= 9QC

・ロト ・ 日 ト ・ 目 ト ・