Gender Gaps in the Evaluation of Research: Evidence from Submissions to Economics Conferences

by Laura Hospido and Carlos Sanz

Discussion by
Nicola Fuchs-Schündeln
Goethe University Frankfurt
October 21, 2019

Summary of Results

- All-male authored papers are 3.2 pp more likely to be accepted to conferences than all-female authored papers
- Holds after controlling for referee FEs, citations of paper, prominence and affiliation of (best published) author
- Result is driven by male referees
- Result holds only for "prominent" authors
- All-male authored papers also get higher referee grades

Overview of Comments

- Paper extremely well written and well executed

■ I will talk about the following:

1 Analyzed setting

2 Mechanism: Connections vs. implicit bias

3 Some suggestions

4 Policy implications

Analyzed Setting

- 3 conferences: EEA Annual Congress, SEA Annual Meeting, SMYE
- All three are large conferences
- First go-to conferences for young researchers
- Fairly high acceptance rates
- Given low prior information, implicit biases could play important role
- Yet, authors find stronger effects for prominent authors
- Would be very valuable to conduct same exercise at more prominent (but open) conferences: AEA Annual Meetings, or top field conferences (SED, etc.)
- Conference setting with fast refereeing could give large role to both implicit biases and connections

Connections as Main Explanation?

- Authors suggest stronger male networks as most likely explanation
- What is underlying hypotheses:
- Women are less connected (to any gender)?
- Fewer cross-gender connections?
- If first: should we expect no effect for female referees?

■ If second: Shouldn't we expect bias towards women of female referees?

- Mengel et al. (2015): women are as connected as men, but same-gender connections more prevalent, and men reward more through networks

Connections as Main Explanation (cont.)?

Table A3: The Impact of the Authors' Gender on the Probability of Acceptance, Non-linear Effects

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Half Male Authors	$0.0459^{* *}$	0.00169	0.00256	-0.000146	-0.00254	-0.00549	0.00395
	(0.0211)	(0.0247)	(0.0247)	(0.0246)	(0.0245)	(0.0242)	(0.0238)
Majority Male Authors	$0.0608^{* * *}$	$0.0427^{* * *}$	$0.0453^{* * *}$	$0.0433^{* * *}$	$0.0406^{* * *}$	$0.0299^{* *}$	$0.0309^{* *}$
	(0.0144)	(0.0145)	(0.0144)	(0.0145)	(0.0144)	(0.0144)	(0.0139)

■ Non-linear results: half-male/half-female papers as (un)likely to be accepted as all-female papers

- Is this in line with connection story?
- Shouldn't one male author be enough to establish connections?

■ Connection explanation could be strengthened by using the number of male authors as explanatory variable

Implicit Biases as Main Explanation?

- Prominence results are important, since they are an argument against implicit biases/stereotypes as explanation

■ Robustness checks on "prominence" measure:

- Right now, number of publications of most prolific co-author in top 35 journals
- Use dummy of prominence >0 in interaction regressions:
* Is 1 publication in top 35 enough to establish prominence?
* Is this enough to capture setting with more connections?
- Does it matter whether prominent author is male or female (in mixed papers)?
- Job market sessions vs. general sessions in SEA probably very correlated with prominence dummy

Implicit Biases as Main Explanation (cont.)?

■ Are results stronger in male-dominated fields or not?
■ Would be expected in stereotypes explanation

- Male fields: econometrics, theory, finance, macro, pol. econ.
- Could you do robustness checks?

Table 4: The Impact of the Authors' Gender on the Probability of Acceptance, by Masculinity of Field

	(1)	(2)	(3)	(4)	(5)	(6)
Sh. Male Authors	$0.0463^{* *}$	0.0361^{*}	0.0362^{*}	0.0345^{*}	0.0228	0.0211
	(0.0188)	(0.0187)	(0.0190)	(0.0190)	(0.0189)	(0.0182)
Sh. Male Authors x Masc. Field	0.0202	0.0233	0.0276	0.0242	0.0240	0.0264
	(0.0296)	(0.0295)	(0.0289)	(0.0287)	(0.0286)	(0.0278)

In-Group Bias?

- Bias only arises for male referees: In-group bias?
- Mengel et al. (2019) find bias against female teachers from both female and male students in teaching evaluations
- Two differences in setting:
- Superiors vs. subordinates
- Later career vs. very early career

■ Maybe female evaluators learn over time and overcome biases?

Suggestions

- In some analyzed conferences, papers are assigned to two referees (average of 1.5 referees per paper):
- Do within-paper analysis in mixed-sex refereeing couple
- Is effect present for single- and multiple-authored papers?
- Can you control for publications and affiliation of all authors?
- Additional measure of quality of paper: semantic measures used by Hengel (2018)

Conclusion and Policy Implication

- Very nice and relevant paper
- Effect found here adds to other gender-effects found in literature: Small effects in each instance add up to large effect on career
- Policy implication:

In this setting of large conference for mainly junior researchers, double-blind evaluation might be possible

