Stock Price Cycles and Business Cycles

Klaus Adam University of Oxford

Sebastian Merkel Princeton University

October 2019

- New technologies often associated with aggregate instability:
 - 1990's dotcom; 1920's auto/aviation/electricity, 19th cent. railways
 - booms: output + employment + stock prices
 - booms followed by output falls & spectacular asset price collapses

- New technologies often associated with aggregate instability:
 - 1990's dotcom; 1920's auto/aviation/electricity, 19th cent. railways
 - booms: output + employment + stock prices
 - booms followed by output falls & spectacular asset price collapses
- Aggregate instability associated with low real rates: Taylor (2007)
 - secular decline in safe interest rates (Laubach & Williams)
 - repeated stock price boom-bust cycles over past 30 yrs....

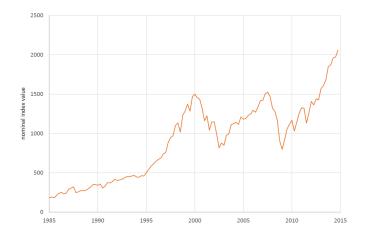


Figure: Price cycles in the S&P 500 (Q1:1985-Q4:2014)

• Simple economic model: technology shocks only driving force

- Simple economic model: technology shocks only driving force
- Model quantitatively replicates
 - behavior of postwar U.S. business cycle
 - volatility of postwar U.S. stock prices

- Simple economic model: technology shocks only driving force
- Model quantitatively replicates
 - behavior of postwar U.S. business cycle
 - volatility of postwar U.S. stock prices
- Generates occasional boom-bust cycles in stock prices & ec. activity

- Model predicts likelihood of boom-bust episodes to be
 - higher in periods of high productivity growth
 - higher in periods of low real interest rates
 - higher following a previous boom: tendency to repeat cycles

- Model predicts likelihood of boom-bust episodes to be
 - higher in periods of high productivity growth
 - higher in periods of low real interest rates
 - higher following a previous boom: tendency to repeat cycles
- Large booms feature 'Minsky moment':

Persistent undershooting: depressed ec. activity & stock prices

• Only 'non-standard' model feature:

Subjective expectations about capital gains in the stock market

• Only 'non-standard' model feature:

Subjective expectations about capital gains in the stock market

• All other expectations rational & all agents maximize

• Only 'non-standard' model feature:

Subjective expectations about capital gains in the stock market

- All other expectations rational & all agents maximize
- Learning from experience in line with survey evidence: Malmendier&Nagel (QJE 2011), Adam,Marcet&Beutel (AER 2017)

• Only 'non-standard' model feature:

Subjective expectations about capital gains in the stock market

- All other expectations rational & all agents maximize
- Learning from experience in line with survey evidence: Malmendier&Nagel (QJE 2011), Adam,Marcet&Beutel (AER 2017)
- Some amount of extrapolation from past capital gains:

$$E_t^{\mathcal{P}}\left[\frac{P_{t+1}}{P_t}\right] = E_{t-1}^{\mathcal{P}}\left[\frac{P_t}{P_{t-1}}\right] + g\left(\frac{P_t}{P_{t-1}} - E_{t-1}^{\mathcal{P}}\left[\frac{P_t}{P_{t-1}}\right]\right)$$

Rationalizable as Bayesian learning:g > 0 is the Kalman gain

Survey Data and Extrapolative Expectations

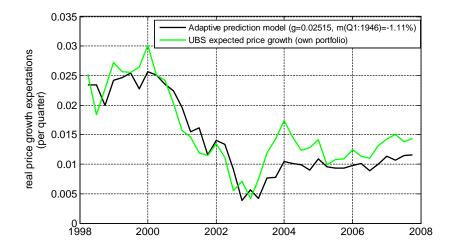


Figure: UBS survey expectations versus adaptive prediction model

• Fundamental shocks => move stock prices

- Fundamental shocks => move stock prices
- Stock price movements amplified by extrapolation

- Fundamental shocks => move stock prices
- Stock price movements amplified by extrapolation
- Stock price movements translate into real economy:
 high capital price trigger investment => output & hours worked
 - => financial accelerator without financial friction

- Fundamental shocks => move stock prices
- Stock price movements amplified by extrapolation
- Stock price movements translate into real economy:
 high capital price trigger investment => output & hours worked
 - => financial accelerator without financial friction
- Amplification stronger when interest rates low or tech growth high

• Time-separable household preferences

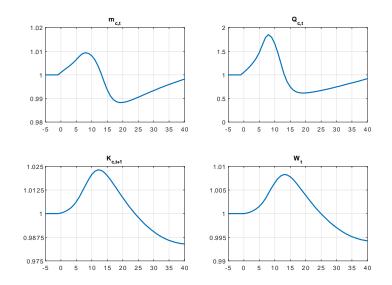
$$E_0^P \sum_{t=0}^{\infty} \beta^t \left(\log C_t - H_t \right)$$

• Standard 2-sector production structure

$$\begin{array}{rcl} Y_{C,t} & = & K_t^{\alpha_z} \left(Z_t H_{c,t} \right)^{1-\alpha_c} \\ Y_{I,t} & \propto & \left(Z_t H_{i,t} \right)^{1-\alpha_c} \end{array}$$

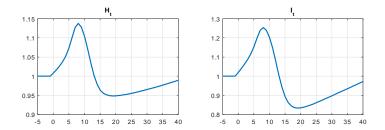
• Technology shocks (only source of randomness):

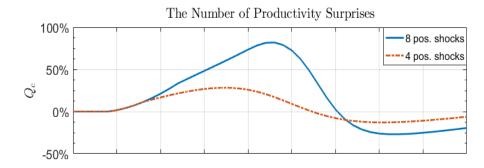
$$Z_t = \gamma Z_{t-1} \varepsilon_t$$


Moment	Data (StdDev)	Model
$\sigma(\mathbf{Y})$	1.72 (0.25)	1.83
$\sigma(C)/\sigma(Y)$	0.61 (0.03)	0.67
$\sigma(I)/\sigma(Y)$	2.90 (0.35)	2.90
$\sigma(H)/\sigma(Y)$	1.08 (0.13)	1.06
$\rho(Y, C)$	0.88 (0.02)	0.84
ho(Y, I)	0.86 (0.03)	0.89
$\rho(Y, H)$	0.75 (0.03)	0.70

Moment	Data (StdDev)	Model
E[P/D]	152.3 (25.3)	149.95
$\sigma(P/D)$	63.39 (12.39)	44.96
$\rho(P/D)$	0.98 (0.003)	0.97
$\sigma(r^e)$	7.98 (0.35)	7.07

Moment	Data (StdDev)	Model
$\rho(P/D,H)$	0.51 (0.17)	0.79
$\rho(P/D, I/Y)$	0.58 (0.31)	0.69
$\rho(P/D, E^{\mathcal{P}}[r^e])$	0.79 (0.07)	0.52


Moment	Data (StdDev)	Model
$E[r^e]$	1.87 (0.45)	1.25
$E[r^f]$	0.25 (0.13)	0.78
$\sigma(\mathbf{r}^{f})$	0.82 (0.12)	0.06


Belief-Driven Propagation (Estimated Model)

October 2019 14 / 21

Boom-Bust Cycles & Belief-Driven Propagation

Aggregate Growth and Macro Instability

 Model predicts more boom-bust episodes with high technology growth or low real interest rates

Aggregate Growth and Macro Instability

- Model predicts more boom-bust episodes with high technology growth or low real interest rates
- Equilibrium capital price equation (slightly simplified):

$$Q_t = rac{X_t}{1 - eta \gamma \cdot m_t},$$

where

- m_t : subjective capital gain expectations $E_t^{\mathcal{P}}[Q_{t+1}/Q_t]$
 - eta : discount factor (eta < 1)
 - $\gamma~$: gross aggregate growth rate $(\gamma>1)$
- X_t : end. variable that depend on parameters, technology, path of capital stock

Technology Growth and Macro Instability

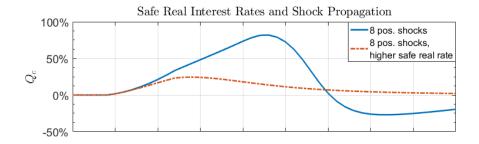
• Equilibrium capital price equation (slightly simplified):

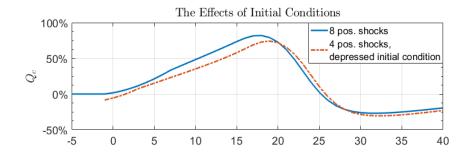
$$Q_t = rac{X_t}{1 - eta \gamma \cdot m_t},$$

Technology Growth and Macro Instability

• Equilibrium capital price equation (slightly simplified):

$$Q_t = \frac{X_t}{1 - \frac{\beta \gamma \cdot m_t}{1 - \beta \gamma \cdot m_t}}$$


• Higher technology growth or higher discount factor:


 $\beta\gamma$ moves closer to 1

$$\Rightarrow \quad \beta \gamma \cdot m_t \text{ closer to one}$$

- \Rightarrow any given movement in m_t generates larger price effect
- \Rightarrow fundamental price movements get amplified more!
- \Rightarrow more boom-bust episodes

Higher Steady-State Safe Rate (1.4% vs. 0.8%)

• Extrapolation in asset markets :

A powerful amplification mechanism of fundamental shocks

- Simple and otherwise standard model:
 Quantitatively consistent with BC & stock price evidence
- Model features boom and bust cycles:
 Persistent over & under-shooting of long-run growth trends
 Higher risk of booms with strong tech. growth / low real rates