#### Collateral Booms and Information Depletion

Vladimir Asriyan Luc Laeven Alberto Martin CREi ECB CREi and ECB

#### Fourth ECB Annual Research Conference

The views expressed in this paper do not reflect those of the ECB or its staff.

#### Introduction

- Fluctuations in credit are common (more so in recent years).
  Claessens et al. 2011, Mendoza and Terrones 2012, Bakker et al. 2012.
- Good things happen during credit booms...
  - Asset prices, GDP growth and investment are higher than in normal times.
- > Yet, credit booms are often viewed with suspicion...
  - Fall in lending standards/information quality on borrowers, Asea and Blomberg 1998; Keys et al. 2010; Becker et al. 2018.
  - Rise in factor misallocation, Gopinath et al. 2017; Garcia-Santana et al. 2017; Doerr 2018.
  - Often followed by crises and low growth. Schularick and Taylor 2012.

► Our focus: role of information production during credit booms.

- Our focus: role of information production during credit booms.
- ► Model: financial frictions and imperfect information.
  - Entrepreneurs need credit to undertake long-term projects.
    - Projects are heterogeneous in "quality," low or high.
    - Low quality projects allow entrepreneurs to extract rents.
  - Lenders have two ways of protecting themselves:
    - Collateralization: ask entrepreneurs to put up assets as collateral.
    - Screening: produce costly but durable information about project quality.
  - Collateralization-screening mix depends on aggregate value of collateral.

- Our focus: role of information production during credit booms.
- ► Model: financial frictions and imperfect information.
  - Entrepreneurs need credit to undertake long-term projects.
    - Projects are heterogeneous in "quality," low or high.
    - Low quality projects allow entrepreneurs to extract rents.
  - Lenders have two ways of protecting themselves:
    - Collateralization: ask entrepreneurs to put up assets as collateral.
    - Screening: produce costly but durable information about project quality.
  - Collateralization-screening mix depends on aggregate value of collateral.

#### Questions:

- · How do credit booms shape investment and its composition?
- Does the source of the credit boom matter?
- Is information production efficient during credit booms?

- Our focus: role of information production during credit booms.
- ► Model: financial frictions and imperfect information.
  - Entrepreneurs need credit to undertake long-term projects.
    - Projects are heterogeneous in "quality," low or high.
    - Low quality projects allow entrepreneurs to extract rents.
  - Lenders have two ways of protecting themselves:
    - Collateralization: ask entrepreneurs to put up assets as collateral.
    - Screening: produce costly but durable information about project quality.
  - Collateralization-screening mix depends on aggregate value of collateral.

#### • Questions:

- · How do credit booms shape investment and its composition?
- Does the source of the credit boom matter?
- Is information production efficient during credit booms?
- Evidence in support of the main mechanism using US firm-level data.

# The Model

#### Environment, preferences and endowments

- Time is infinite,  $t = 0, 1, \dots$  Small-open economy.
- ► OLG of agents, of constant size and two-period lifetimes.
- ▶ Entrepreneurs and households, unit mass each, with preferences

$$U_t = E_t C_{t,t+1}.$$

#### Environment, preferences and endowments

- Time is infinite,  $t = 0, 1, \dots$  Small-open economy.
- ► OLG of agents, of constant size and two-period lifetimes.
- ▶ Entrepreneurs and households, unit mass each, with preferences

$$U_t = E_t C_{t,t+1}.$$

Households:

- Supply one unit of labor when young, and receive wage  $w_t$ .
- Supply expert services, which are used in screening.
- Save abroad or lend to entrepreneurs at (expected) gross return  $\rho$ .

#### Environment, preferences and endowments

- Time is infinite,  $t = 0, 1, \dots$  Small-open economy.
- ► OLG of agents, of constant size and two-period lifetimes.
- ▶ Entrepreneurs and households, unit mass each, with preferences

$$U_t = E_t C_{t,t+1}.$$

Households:

- Supply one unit of labor when young, and receive wage  $w_t$ .
- Supply expert services, which are used in screening.
- Save abroad or lend to entrepreneurs at (expected) gross return  $\rho$ .

#### • Entrepreneurs:

- Endowed with collateral with value  $q_t$  at time t (e.g. land, real estate).
- When young: purchase and invest in capital.
  - Finance these activities by borrowing from lenders.
- When old: hire labor to produce consumption goods.

## Technology

- lnvestment: one consumption good at  $t \rightarrow$  one unit of capital at t + 1.
  - Two types of capital,  $\theta \in \{L, H\}$ , but more on this shortly...
  - A unit's type persists throughout its life.
  - Capital depreciates at rate  $\delta$  and is reversible.
- Production: Cobb-Douglas technology

$$F_t(k_{it}, l_{it}) = A_t \cdot k_{it}^{\alpha} \cdot l_{it}^{1-\alpha},$$

where  $A_t$  is aggregate TFP,  $k_{it}$  are units of capital and  $l_{it}$  are units of labor.

# Quality of projects

- ► *L*-type suffers from an agency problem.
  - Entrepreneur can run away with all the resources generated by it.
  - Thus, *L*-type capital is effectively less pledgeable.

# Quality of projects

- ► *L*-type suffers from an agency problem.
  - Entrepreneur can run away with all the resources generated by it.
  - Thus, *L*-type capital is effectively less pledgeable.
- ▶ Baseline: *H* and *L* types of capital are equally productive.
  - In the paper: productivity differences  $\rightarrow$  factor "misallocation."

## Screening and information production

- Ex-ante, the quality of each unit of investment is uncertain.
  - $\mathbb{P}(\theta = H) = \mu \in (0, 1)$  and quality iid across units.
- Before investing, each unit can be "screened" at cost \u03c6<sub>t</sub>, in which case its type is publicly revealed.
- Screening requires expertise, which is scarce:
  - Each household has expertise to screen up to n > 0 projects at unit cost  $\psi_i$ .
  - $F(\cdot)$  is the distribution of costs in the population, with support  $(0,\infty)$ .
  - Expertise market is competitive:  $\psi_t$  is the expert "wage" rate.
- Past performance of a unit is not publicly observable.

#### The Model

#### Markets

Notation:  $\theta$ -type capital  $k_{it}^{\theta}$ , unscreened capital  $k_{it}^{\mu}$ , and effective capital  $k_{it} = k_{it}^{H} + k_{it}^{L} + k_{it}^{\mu}$ . The aggregate capital stock is  $k_t = \int_i k_{it} di$ . Marginal product of capital:  $r_t = A_t \alpha k_t^{\alpha-1}$ .

#### The Mode

#### Markets

Notation:  $\theta$ -type capital  $k_{it}^{\theta}$ , unscreened capital  $k_{it}^{\mu}$ , and effective capital  $k_{it} = k_{it}^{H} + k_{it}^{L} + k_{it}^{\mu}$ . The aggregate capital stock is  $k_t = \int_i k_{it} di$ . Marginal product of capital:  $r_t = A_t \alpha k_t^{\alpha-1}$ .

- 1. Expertise market: young entrepreneurs hire experts at wage  $\psi_t$ .
- 2. Labor market: old entrepreneurs hire workers at market wage  $w_t$ .
- 3. Capital market:
  - Old entrepreneurs sell capital to young at prices  $p_t^j$  for  $j \in \{H, L, \mu\}$ .
  - Since capital is reversible, the old strictly prefer to sell only if  $p_t^j > 1$ .
- 4. Credit market:
  - Young entrepreneur borrows from lenders and invests  $q_t + f_{it}$ .
  - Contracts are state-contingent, but pledgeability is endogenously limited:

$$R_{it+1}f_{it} \le \left(r_{t+1} + (1-\delta)\max\{p_{t+1}^H, 1\}\right)k_{it+1}^H + \left(r_{t+1} + (1-\delta)\max\{p_{t+1}^\mu, 1\}\right)\mu k_{it+1}^\mu$$

#### Equilibrium prices

Expertise market clearing:

$$\psi_t = \psi(s_t) \equiv F^{-1}\left(\frac{s_t}{n}\right),$$

where  $s_t$  denotes the aggregate units screened in period t.

Labor market clearing:

$$w_t = A_t \left( 1 - \alpha \right) k_t^{\alpha}.$$

Credit market clearing:

$$E_t\{R_{it+1}\} = \rho.$$

Capital market clearing:

$$p_t^H = 1 + \frac{\psi(s_t)}{\mu} \ge 1 = p_t^\mu = p_t^L.$$

Intuition: price equals production cost.

#### Equilibrium dynamics

Given  $\{k_0^H, k_0^L, k_0^\mu\}$  and process  $\{q_t, A_t\}_{t \ge 0}$ , equilibrium is characterized by:

Zero expected profits on *H*-type investment:

$$1 + \frac{\psi(s_t)}{\mu} = \frac{E_t \left\{ r_{t+1} + (1-\delta) \left( 1 + \frac{\psi(s_{t+1})}{\mu} \right) \right\}}{\rho},$$

• *H*-type investment: 
$$s_t = \max\left\{0, \frac{k_{t+1}^H - (1-\delta)k_t^H}{\mu}\right\}$$
,

- No *L*-type investment:  $k_{t+1}^L = 0$ .
- Unscreened investment constrained by collateral:

$$k_{t+1}^{\mu} = \min\left\{\frac{\rho}{\rho - \mu E_t \{r_{t+1} + 1 - \delta\}} \cdot q_t, \ k_{t+1}^*\right\},\$$

where  $r_{t+1} = A_{t+1} \alpha (k_{t+1}^H + k_{t+1}^\mu)^{\alpha - 1}$ .

#### Collateral booms and busts

#### Boom-bust episodes

We consider the following illustrative experiments:

- ▶ Collateral q takes values in  $\{\underline{q}, \overline{q}\}$  with  $\mathbb{P}(q_{t+1} = \overline{q} | q_t = \underline{q}) \in (0, \frac{1}{2})$  and  $\mathbb{P}(q_{t+1} = \underline{q} | q_t = \overline{q}) \in (0, \frac{1}{2}).$
- ► For comparison, productivity A takes values in  $\{\underline{A}, \overline{A}\}$  with  $\mathbb{P}(A_{t+1} = \overline{A} | A_t = \underline{A}) \in (0, \frac{1}{2})$  and  $\mathbb{P}(A_{t+1} = \underline{A} | A_t = \overline{A}) \in (0, \frac{1}{2})$ .

Suppose throughout that parameters are such that borrowing constraints bind  $\forall t$ .

#### Collateral boom-bust episode



#### Longer booms $\rightarrow$ larger busts



## Source of the boom matters

#### Productivity boom-bust episode



► Too little information production?

► Too little information production? No...

- ▶ Too little information production? No...
- Consider planner who maximizes discounted consumption subject to same information friction/borrowing constraint as market.

- ▶ Too little information production? No...
- Consider planner who maximizes discounted consumption subject to same information friction/borrowing constraint as market.
- Planner optimality condition:

$$1 + \frac{\psi(s_t)}{\mu} = \frac{E_t \left\{ A_{t+1} \alpha k_{t+1}^{\alpha - 1} + (1 - \delta) \left( 1 + \frac{\psi(s_{t+1})}{\mu} \right) \right\}}{\rho} + \underbrace{\left( \frac{E_t \left\{ A_{t+1} \alpha k_{t+1}^{\alpha - 1} + 1 - \delta \right\}}{\rho} - 1 \right) \cdot \frac{\partial k^{\mu}(k_{t+1}^H, q_t, A_t)}{\partial k_{t+1}^H}}_{\text{Distortion}}$$

Source of inefficiency: by screening more, entrepreneurs bid up labor costs, tightening borrowing constraints and crowding out unscreened investment.

#### Extensions and robustness

- ► Factor "misallocation" during booms:
  - Suppose *H*-type projects are also more productive.
  - Dispersion of TFP across projects increases during booms.
- Bubble-driven fluctuations in collateral values:
  - Activity organized within firms = collection of projects.
  - Rational bubbles on firms randomly appear and burst.
- Irreversibilities and "fire-sales" of productive assets during busts:
  - Suppose capital can be converted to  $\chi \in (0,1)$  units of consumption.
  - During the bust, some of the effect is absorbed by project prices.
- Homogenous capital, but heterogenous projects:
  - Each project employs labor and at most  $\bar{k}$  units of capital.
  - Projects are of heterogeneous quality; become obsolete at rate  $\lambda$ .
- Asymmetric information:
  - Entrepreneurs know quality  $\theta$  before investing.

#### Supporting evidence

Theory is consistent with several strands of stylized evidence:

- 1. Investment is increasing in collateral values (e.g. Chaney et al. 2012).
- Lenders' information about borrowers declines in booms (e.g., Becker et al. 2016, Lisowski et al., 2017).
- 3. Credit booms accompanied by high house prices/low productivity growth are more likely to end in crises (e.g., Schularick and Taylor 2012, Gorton and Ordoñez 2016).

## Supporting evidence

Theory is consistent with several strands of stylized evidence:

- 1. Investment is increasing in collateral values (e.g. Chaney et al. 2012).
- Lenders' information about borrowers declines in booms (e.g., Becker et al. 2016, Lisowski et al., 2017).
- 3. Credit booms accompanied by high house prices/low productivity growth are more likely to end in crises (e.g., Schularick and Taylor 2012, Gorton and Ordoñez 2016).

#### Theory's core mechanism:

Collateral booms accompanied by a fall in screening/information production.

#### Empirical strategy

Two challenges:

- 1. Identify shocks to collateral:
  - Build on Chaney et al. (2012): effect of real estate prices on investment.
  - Extend sample: COMPUSTAT firms 1993-2012.
  - Real estate assets in 1993: infer market value using local real estate inflation.
- 2. Measure screening/information production: proxy info on firm i with,
  - (i) Length of banking relationship: duration of firm  $i{\rm 's}$  main lending relationship.
  - (ii) Analyst coverage: number of financial analysts following firm i.

How does collateral affect information production on firm i in location k?

$$Info_{it} = \alpha_i + \delta_t + \beta \cdot RE_{it} + \gamma \cdot P_{kt} + controls_{it} + \varepsilon_{it},$$

#### Evidence

# **Empirical findings**

|                                 | (1)            | (2)             | (3)          | (4)            | (5)            | (6)            |
|---------------------------------|----------------|-----------------|--------------|----------------|----------------|----------------|
|                                 | Relationship   | Relationship    | Relationship | Analysts       | Analysts       | Analysts       |
| VARIABLES                       | OLS            | OLS             | IV           | OLS            | OLS            | IV             |
|                                 |                |                 |              |                |                |                |
| RE Value (State Prices)         | -0.0691***     |                 |              | -0.136***      |                |                |
|                                 | (0.00869)      |                 |              | (0.00771)      |                |                |
| RE Value (MSA Prices)           |                | $-0.0429^{***}$ | -0.0486***   |                | $-0.142^{***}$ | $-0.154^{***}$ |
|                                 |                | (0.00920)       | (0.0101)     |                | (0.00838)      | (0.00919)      |
| State Prices                    | $-3.127^{***}$ |                 |              | $-4.992^{***}$ |                |                |
|                                 | (1.209)        |                 |              | (1.415)        |                |                |
| MSA Prices                      |                | -0.597          | -3.378***    |                | $-14.33^{***}$ | -1.294         |
|                                 |                | (3.624)         | (1.008)      |                | (4.792)        | (0.865)        |
| Cash                            | -0.00141       | -0.00360        | -0.00349     | $0.0176^{***}$ | 0.0198***      | $0.0177^{***}$ |
|                                 | (0.00409)      | (0.00445)       | (0.00454)    | (0.00376)      | (0.00415)      | (0.00434)      |
| Market/Book                     | -0.0315***     | -0.0311***      | -0.0294***   | 0.0646***      | 0.0657***      | 0.0684***      |
|                                 | (0.00414)      | (0.00513)       | (0.00541)    | (0.00375)      | (0.00410)      | (0.00426)      |
|                                 |                |                 |              |                |                |                |
| Initial Controls x State Prices | Yes            | No              | No           | Yes            | No             | No             |
| Initial Controls x MSA Prices   | No             | Yes             | Yes          | No             | Yes            | Yes            |
| Year FE                         | Yes            | Yes             | Yes          | Yes            | Yes            | Yes            |
| Firm FE                         | Yes            | Yes             | Yes          | Yes            | Yes            | Yes            |
| Observations                    | 23 153         | 19 841          | 17 031       | 17 135         | 14 572         | 12 529         |
| Adjusted R-squared              | 0.671          | 0.668           | 0.665        | 0.809          | 0.810          | 0.816          |

#### Conclusions

- Model of Collateral Booms and Information Depletion.
  - · Rising collateral values boost investment and economic activity,
  - But reallocate investment towards less information-intensive activities:
    - Lower incentives to produce information.
    - Information depletion over time...
  - Longer booms  $\rightarrow$  more info depletion  $\rightarrow$  larger busts.
- Source of the credit boom matters.
  - Productivity-driven booms do not deplete information.
- Normative aspects of credit booms:
  - "Misallocation" may increase during booms, but save on screening costs.
  - If anything, due to a pecuniary externality, there is too much information!
- Evidence in support of the main mechanism using US firm-level data.

#### Related literature

- Credit booms and lending standards: Manove et al. (2011), Ruckes (2004), Martin (2005), Dell'Ariccia and Marquez (2006), Gorton and He (2008), Favara (2012), Petriconi (2015), Krishnamurthy and Muir (2017), Farboodi and Kondor (2019).
- Information production in macro: Van Nieuwerburgh and Veldkamp (2006), Ordoñez (2013), Gorton and Ordoñez (2014, 2016), Fajgelbaum et al. (2017), Straub and Ulbricht (2017).
- Collateral and investment: Peek and Rosengreen (2000), Gan (2007), Chaney et al. (2012).
- Financial frictions and invest composition: Matsuyama (2007), Diamond et al. (2018).
- Financial frictions and pecuniary externalities: Caballero and Krishnamurthy (2003), Lorenzoni (2008), Dávila and Korinek (2017).

The social planner's objective is to maximize:

$$E_0 \sum_{t=0}^{\infty} \rho^{-t} C_t,$$

which is equivalent to p.v. of social welfare with relative weight  $\rho$ .

- Set  $\rho > 1$  so that the economy is dynamically efficient.
- ▶ Information friction: needs to screen to invest in *H*-type capital.
- ▶ Financial friction: unscreened investment must be collateralized by *q*.
- Assume parameters are such that borrowing constraints bind for the planner.

Formally, the planner's problem is:

$$V(k_t^H, k_t^\mu, q_t, A_t) = \max_{s_t} \{Ak_t^\alpha + (1 - \delta)k_t - k_{t+1} - \int_0^{s_t} \psi(x)dx + q_t + \rho^{-1}E_t V(k_{t+1}^H, k_{t+1}^\mu, q_{t+1}, A_{t+1})\}$$

where  $k_t = k_t^H + k_t^{\mu}$ , subject to:

$$s_t = \max\left\{0, \frac{k_{t+1}^H - (1-\delta)k_t^H}{\mu}\right\},\$$
  
$$k_{t+1}^\mu = \frac{\rho}{\rho - \mu E_t \{A_{t+1}\alpha (k_{t+1}^H + k_{t+1}^\mu)^{\alpha - 1} + 1 - \delta\}} \cdot q_t.$$

From borrowing constraint,  $k_{t+1}^{\mu} = k^{\mu}(k_{t+1}^{H}, q_t, A_t)$  is decreasing in  $k_{t+1}^{H}$ .

## Empirical findings: summary statistics

|                                | Mean  | Median | SD   | 25th       | 75th       | Obs.       |
|--------------------------------|-------|--------|------|------------|------------|------------|
|                                |       |        |      | percentile | percentile |            |
| Firm-level data                |       |        |      |            |            |            |
| Relationship                   | 4.74  | 3.58   | 4.91 | 0.00       | 7.42       | $25 \ 717$ |
| Analysts                       | 7.93  | 5.00   | 7.46 | 2.00       | 11.00      | $19 \ 921$ |
| Cash                           | 0.04  | 0.26   | 1.78 | -0.09      | 0.63       | $35 \ 204$ |
| Market / Book                  | 2.16  | 1.52   | 1.76 | 1.10       | 2.42       | 32 512     |
| RE Value (State Prices)        | 0.89  | 0.26   | 1.44 | 0.00       | 1.14       | $35 \ 430$ |
| RE Value (MSA Prices)          | 0.88  | 0.26   | 1.42 | 0.00       | 1.13       | 34 892     |
| Regional data                  |       |        |      |            |            |            |
| State Prices                   | 0.29  | 0.26   | 0.11 | 0.21       | 0.35       | 1  031     |
| MSA Prices                     | 0.14  | 0.14   | 0.04 | 0.11       | 0.17       | 3641       |
| Housing Supply Elasticity      | 1.66  | 1.45   | 0.87 | 1.01       | 2.10       | 1 632      |
| Initial firm-level data (1993) |       |        |      |            |            |            |
| Age                            | 8.09  | 8.00   | 4.66 | 3.00       | 13.00      | 2855       |
| ROA                            | -0.01 | 0.07   | 0.25 | -0.04      | 0.12       | 2844       |
| Log(Asset)                     | 4.05  | 3.96   | 2.19 | 2.58       | 5.46       | 2 852      |

## Empirical findings: first-stage regression

| VARIABLES                     | (1)<br>MSA Prices | (2)<br>MSA Prices      |
|-------------------------------|-------------------|------------------------|
| Housing supply elasticity     | 0.00990***        |                        |
| First quartile of elasticity  | (0.00274)         | $-0.0225^{***}$        |
| Second quartile of elasticity |                   | (0.00548)<br>(0.00751) |
| Third quartile of elasticity  |                   | (0.00141)<br>(0.00744) |
| Year FE                       | Yes               | Yes                    |
| MSA FE                        | Yes               | Yes                    |
| Observations                  | 2 232             | 2 232                  |
| R-squared                     | 0.892             | 0.893                  |