## How Costly Are Markups?

Chris Edmond<br>Virgiliu Midrigan<br>Daniel Yi Xu

Fourth ECB Annual Research Conference

## Motivation

- Increase in product market concentration, markups
- Kehrig-Vincent, Autor et al.
- Barkai, De Loecker-Eeckhout, Gutierrez-Philippon, Hall
- Question:
- What are the efficiency costs of markups?


## Model

- Heterogeneous firms, endogenously variable markups
- firms with larger market shares charge larger markups
- markups returns to sunk investments
- Use data to evaluate magnitude of 3 distortions:
- uniform output tax reduces aggregate investment, employment
- size-dependent tax reallocates factors towards unproductive firms
- too little entry

Model

## Consumers

- Representative consumer owns all firms, maximizes

$$
\sum_{t=0}^{\infty} \beta^{t}\left(\log C_{t}-\psi \frac{L_{t}^{1+\nu}}{1+\nu}\right), \quad \text { subject to } \quad C_{t}=W_{t} L_{t}+\Pi_{t}
$$

- Firm profits net of investment in new products, $\Pi_{t}$


## Final Goods Producers

- Final good used for consumption, investment, materials

$$
Y_{t}=C_{t}+X_{t}+B_{t}
$$

- Assembled from intermediate varieties $\omega$ using Kimball aggregator

$$
\int_{0}^{N_{t}} \Upsilon\left(\frac{y_{t}(\omega)}{Y_{t}}\right) d \omega=1 \quad \text { with } \quad \Upsilon^{\prime}>0, \Upsilon^{\prime \prime}<0
$$

- Demand for variety $\omega$ :

$$
p_{t}(\omega)=\Upsilon^{\prime}\left(\frac{y_{t}(\omega)}{Y_{t}}\right) D_{t}
$$

## Demand Function



## Intermediate Goods Producers

- Each producer monopoly supplier of good $\omega$
- mass of new entrants $M_{t}$, fixed cost $\kappa W_{t}$ to enter
- exit with probability $\delta$ so $N_{t+1}=(1-\delta) N_{t}+M_{t}$
- At entry draw efficiency $e \sim G(e)$, make one-time investment $k_{t}(e)$
- Production function at age $i$

$$
y_{i, t}(e)=e k_{t-i}(e)^{1-\eta} v_{i, t}(e)^{\eta}
$$

$-v_{i, t}$ CES composite of labor and materials

## Intermediate Goods Producers

- Solve in 2 stages:
- given productivity $z=e k^{1-\eta}$, solve optimal price
- markup times marginal cost, markup $\sim$ demand elasticity
- gives profits $\pi(z)$
- given $\pi(z)$, solve optimal investment, entry choice


## Optimal Markup

- Profits of firm with productivity $z$

$$
\pi(z)=\max _{p} p y-P_{v} v \quad \text { subject to } \quad p=\Upsilon^{\prime}\left(\frac{y}{Y}\right) D
$$

- Optimal markup increases in relative size $q=y / Y$

$$
\mu(q)=\frac{\theta(q)}{\theta(q)-1}=\frac{\sigma}{\sigma-q^{\frac{\varepsilon}{\sigma}}}
$$

## Static Choice





## Dynamic Choices

- Having paid $\kappa W_{t}$ and drawn $e$, entrant chooses investment $k_{t}(e)$ to

$$
\max -k_{t}(e)+\beta \sum_{i=1}^{\infty}(\beta(1-\delta))^{i-1}\left(\frac{C_{t+i}}{C_{t}}\right)^{-1} \pi_{t+i}\left(e k_{t}(e)^{1-\eta}\right)
$$

- Mass of entrants $M_{t}$ pinned down by free entry condition

$$
\kappa W_{t}=\int\left\{-k_{t}(e)+\beta \sum_{i=1}^{\infty}(\beta(1-\delta))^{i-1}\left(\frac{C_{t+i}}{C_{t}}\right)^{-1} \pi_{t+i}(e)\right\} d G(e)
$$

## Aggregation

- Let $n_{i, t}$ measure of producers of age $i$
- Aggregate production function

$$
Y_{t}=E_{t} K_{t}^{1-\eta} V_{t}^{\eta}
$$

where $\quad K_{t}=\sum_{i} n_{i, t} \int k_{t-i}(e) d G(e)$,

$$
V_{t}=\sum_{i} n_{i, t} \int v_{i, t}(e) d G(e)
$$

- Aggregate efficiency

$$
E_{t}=\left[\sum_{i} n_{i, t} \int \frac{q_{i, t}(e)}{e} d G(e)\right]^{-1}
$$

## Distortions

## Three Sources of Inefficiency from Markups

(1) Uniform output tax
(2) Size-dependent firm tax
(3) Entry distortion

Illustrate by comparing equilibrium allocations to those chosen by planner

## Planner's Problem

$$
\max \sum_{t=0}^{\infty} \beta^{t}\left(\log C_{t}^{*}-\psi \frac{\left(L_{p, t}^{*}+M_{t}^{*} \kappa\right)^{1+\nu}}{1+\nu}\right)
$$

subject to

$$
\sum_{i} n_{i, t}^{*} \int \Upsilon\left(\frac{y_{i, t}^{*}(e)}{Y_{t}^{*}}\right) d G(e)=1
$$

same resource constraints

## Uniform Output Tax

- Employment

$$
\psi C_{t} L_{t}^{\nu}=W_{t}=\frac{1}{\mathcal{M}_{t}} \times \frac{\partial Y_{t}}{\partial L_{p, t}}
$$

- Investment

$$
\rho+\delta=\frac{1}{\mathcal{M}} \times \frac{\partial Y}{\partial K}
$$

- Aggregate markup $\mathcal{M}_{t} \equiv$ uniform output tax

$$
\mathcal{M}_{t}=\sum_{i} n_{i, t} \int \mu_{i, t}(e) \frac{v_{i, t}(e)}{V_{t}} d G(e)
$$

## Aggregate Markup

- Aggregate markup wedge $=$ cost-weighted average of firm markups
- not driven by specifics of demand system
- ratio of aggregates $=$ denominator-weighted average of individual ratios
- Compare to more popular sales-weighted average using Compustat
- compute firm markups using De Loecker-Eeckhout 2018 approach


## Cost vs Sales-Weighted Average


sales-weighted average $=$ cost-weighted average + coefficient of variation

## Size-Dependent Tax

- Aggregate productivity

$$
E=\left(N \int \frac{q(e)}{e} d G(e)\right)^{-1}
$$

- Planner maximizes $E$ by choosing

$$
\Upsilon^{\prime}\left(q^{*}(e)\right) \sim \frac{1}{e}
$$

- Equilibrium: markup increases with e and firm size

$$
\Upsilon^{\prime}(q(e)) \sim \frac{\mu(q(e))}{e}
$$

## Planner Reallocates to High Productivity Firms



## Entry Distortion

- Equilibrium entry determined by markup $\mu(q)$
- Planner values firms due to love-for-variety
- decreasing returns so higher productivity with higher $N$
- $N / Y$ depends on $\frac{\Upsilon(q)}{\Upsilon^{\prime}(q) q}$
- $N / Y$ coincide with CES, ambiguous otherwise
- $Y$ too low in equilibrium, so $N$ too low


## Parameterization

## Calibration

- Assign conventional values to standard parameters
- Calibrate three key parameters jointly
$\xi$ Pareto tail productivity, to match sales concentration
$\sigma$ average elasticity, to match $\mathcal{M}=1.15$
$\varepsilon$ superelasticity, to match relationship labor productivity and sales
- SBA Statistics of US Businesses, 6-digit NAICS, 2012
$-\quad$ 'firm' $=$ size class


## Implies $\varepsilon / \sigma=0.14$



Markups $\sim$ labor productivity $p y / l$.

## Double $\varepsilon / \sigma$



## How Costly Are Markups?

## From Distorted to Efficient Steady State



Consumption-equivalent welfare gains $6.6 \%$

## Requires Large Subsidies to Large Firms




Marginal subsidy equal to firm markup

## Largest gains from uniform output subsidy

efficient<br>uniform<br>size-dependent

log deviation from benchmark, $\times 100$

| consumption, $C$ | 29 | 29 | 1.2 |
| :--- | :---: | :---: | :---: |
| employment, $L$ | 17 | 16 | -0.3 |
| mass of firms, $N$ | 13 | 6.3 | -2.9 |
| aggregate efficiency, $E$ | 2.9 | 1.0 | 0.3 |
| welfare gains, CEV, $\%$ | 6.6 | 4.9 | 1.3 |

Negligible gains from entry subsidy: $0.1 \%$.

## Economy with 8\% Aggregate Markup

|  | efficient | uniform | size-dependent |
| :--- | :---: | :---: | :---: |
| log deviation from benchmark, $\times 100$ |  |  |  |
| consumption, $C$ | 15 | 11 | 1.7 |
| employment, $L$ | 9.0 | 8.2 | 0.0 |
| mass of firms, $N$ | 15 | 3.5 | -0.1 |
| aggregate efficiency, $E$ | 2.0 | 0.3 | 0.6 |
| welfare gains, CEV, \% | 2.7 | 1.2 | 1.3 |

## Economy with $25 \%$ Aggregate Markup

|  | efficient | uniform | size-dependent |
| :--- | :---: | :---: | :---: |
| log deviation from benchmark, $\times 100$ |  |  |  |
| consumption, $C$ | 57 | 57 | 2.3 |
| employment, $L$ | 26 | 25 | -0.5 |
| mass of firms, $N$ | 16 | 10 | -2.8 |
| aggregate efficiency, $E$ | 5.6 | 2.6 | 0.5 |
| welfare gains, CEV, $\%$ | 18.9 | 15.4 | 2.5 |

## Why Small Gains from Size-Dependent Subsidies?

- Compare equilibrium $E$ to efficient $E^{*}$
aggregate productivity loss

| benchmark $\varepsilon / \sigma=0.14$ | $0.8 \%$ |
| :--- | :--- |
| double $\varepsilon / \sigma$ | $1.8 \%$ |

- Losses small since markups high precisely when low demand elasticities
- losses $6 \times$ larger if use CES to compute misallocation
- Also narrow measure of misallocation: $\operatorname{var}(\mathrm{MP})$ due to firm size


## Why Negligible Gains from Entry?

- Recall aggregate markup is weighted average

$$
\mathcal{M}_{t}=\sum_{i} n_{i t} \int \mu_{i t}(e) \frac{v_{i t}(e)}{V_{t}} d G(e)
$$

- Individual $\mu_{i t}(e)$ fall, but weights $v_{i t}(e) / V_{t}$ on large firms increase
- Aggregate $\mathcal{M}$ hardly changes, from 1.150 to 1.149
- Implies rising entry barriers cannot explain rising markups
- Related to ACDR 2018 neutrality result in international trade


## Oligopolistic Competition

- Nested CES, $\theta$ across sectors $\gamma>\theta$ within, as in Atkeson-Burstein
- Finite number of firms $n(s)$ in sector $s$, oligopolistic competition
- With Cournot competition, firm with sales share $\omega_{i}(s)$ has markup

$$
\frac{1}{\mu_{i}(s)}=1-\left(\omega_{i}(s) \frac{1}{\theta}+\left(1-\omega_{i}(s)\right) \frac{1}{\gamma}\right)
$$

- Solve static sequential entry game, $n(s)$ pinned down by free entry

$$
\int \pi\left(e ;\left(\boldsymbol{e}_{n-1}(s), e\right)\right) d G(e) \geq \kappa \geq \int \pi\left(e ;\left(\boldsymbol{e}_{n}(s), e\right)\right) d G(e)
$$

- Calibrate this model to same concentration facts


## Sectors with fewer firms have higher markups

Strong correlation sector $n(s)$ and markups $\mu(s)$


But this reduced-form correlation is not a good guide to policy.

## Entry still has small effect on aggregate markup

- Subsidize entry cost so number firms doubles
- Markup falls from 1.150 to 1.148
- Aggregate markup unchanged due to reallocation to large firms
- Sectoral correlations due to unusually large $e$ draws in some sectors
- leaders in such sectors charge high markups
- other firms do not expect to profitably compete, do not enter


## Conclusions

- Model with monopolistic competition and variable markups
- potentially large costs of markups
- mostly due to aggregate markup distortion
- entry subsidy too blunt a tool, negligible gains
- Robust to assuming oligopolistic competition within industries

Extras

## Average Top 4 Concentration, Services



Source: Autor et al. 2017, average across 4-digit industries

## Average Top 4 Concentration, Manufacturing



Source: Autor et al. 2017, average across 4-digit industries

Figure 1: The changing distributions of labor shares and value added



Source: Kehrig - Vincent 2017, U.S. Manufacturing

## Average Top 4 Concentration, Retail



Source: Autor et al. 2017, average across 4-digit industries

## Average Top 4 Concentration, Wholesale



Source: Autor et al. 2017, average across 4-digit industries

## Bounds on Quantities and Prices

- Second order condition for profit maximization requires

$$
1<\theta(q)=\sigma q^{-\frac{\varepsilon}{\sigma}} \quad \Leftrightarrow \quad q<\sigma^{\frac{\sigma}{\varepsilon}} \equiv \bar{q}
$$

Gives upper bound on quantities

- Firms with high marginal costs shut down

$$
p<\Upsilon^{\prime}(0) \quad \Leftrightarrow \quad p<\frac{\sigma-1}{\sigma} \exp \left(\frac{1}{\varepsilon}\right) \equiv \bar{p}
$$

Gives upper bound on prices

## Estimates from Taiwan Manufacturing

- Suppose we have data on sales $s_{i}=p_{i} y_{i}$ and markups $\mu_{i}$
- Model implies sales given by

$$
s_{i}=p_{i} y_{i}=\Upsilon^{\prime}\left(q_{i}\right) q_{i} \frac{D Y}{N}
$$

and markups given by

$$
\mu_{i}=\frac{\sigma}{\sigma-q_{i}^{\varepsilon / \sigma}}
$$

- Eliminating $q_{i}$ between these gives

$$
\left(\frac{1}{\mu_{i}}+\log \left(1-\frac{1}{\mu_{i}}\right)\right)=\text { const. }+\frac{\varepsilon}{\sigma} \log s_{i}
$$

- Estimates of slope coefficient give $\varepsilon / \sigma$


## Taiwan Manufacturing Data

- Product classification (more detailed than NAICS 6-digit)
- examples: desktop computer, laptop, tablet, ...
- Measure producer markups using De Loecker and Warzynski (2012)
- estimate a industry-specific production function
- infer markup from variable input share + output elasticity
- focus on single product producers
- All regressions control for product and year effects


## Estimates of $\varepsilon / \sigma$

|  | I | II |
| :---: | :---: | :---: |
| estimate | 0.145 | 0.161 |
| (s.e.) | $(0.002)$ | $(0.007)$ |
| year fixed effects | Y | Y |
| product fixed effect | Y | N |
| producer fixed effect | N | Y |

## Estimates 2-Digit Industries

| NAICS industries | $\xi$ | $\sigma$ | $\varepsilon$ | misallocation, $\%$ |
| :--- | :---: | :---: | :---: | :---: |
| benchmark | 6.9 | 11.6 | 2.2 | 1.2 |
| (1) exclude finance, real estate, <br> education, religion | 6.8 | 11.5 | 2.2 | 1.2 |
| (2) exclude (1), <br> health, accommodation, food <br> $(3)$ only manufacturing | 6.7 | 11.8 | 2.4 | 1.3 |

## Returns to Entry




$$
\mu(e)>\varepsilon(e) \text { for large producers }
$$

## Intuition for Magnification

- Suppose gross output production function:

$$
Y=E L^{1-\phi} B^{\phi} \quad \text { with } \quad B=\frac{\phi}{\mathcal{M}} Y
$$

- So GDP, $Y-B$ is equal to

$$
\mathrm{GDP}=\mathrm{TFP} \times L
$$

- TFP lower both due to misallocation (lower $A$ ) and aggregate tax $(\mathcal{M})$

$$
\mathrm{TFP}=\left(1-\frac{\phi}{\mathcal{M}}\right)\left(\frac{\phi}{\mathcal{M}}\right)^{\frac{\phi}{1-\phi}} E^{\frac{1}{1-\phi}}
$$

## Include SGA Expenses



## Production Function

$$
\Upsilon(q ; \sigma, \varepsilon)=1+(\sigma-1) \exp \left(\frac{1}{\varepsilon}\right) \varepsilon^{\frac{\sigma}{\varepsilon}-1}\left[\Gamma\left(\frac{\sigma}{\varepsilon}, \frac{1}{\varepsilon}\right)-\Gamma\left(\frac{\sigma}{\varepsilon}, \frac{q^{\varepsilon / \sigma}}{\varepsilon}\right)\right]
$$

$$
\begin{aligned}
& \Gamma(s, t)=\int_{x}^{\infty} t^{s-1} e^{-t} d t \\
& \varepsilon=0: \Upsilon(q)=q^{1-\frac{1}{\sigma}}
\end{aligned}
$$

## Production Function

$$
\Upsilon(q ; \sigma, \varepsilon)=1+(\sigma-1) \exp \left(\frac{1}{\varepsilon}\right) \varepsilon^{\frac{\sigma}{\varepsilon}-1}\left[\Gamma\left(\frac{\sigma}{\varepsilon}, \frac{1}{\varepsilon}\right)-\Gamma\left(\frac{\sigma}{\varepsilon}, \frac{q^{\varepsilon / \sigma}}{\varepsilon}\right)\right]
$$

$$
\Gamma(s, t)=\int_{x}^{\infty} t^{s-1} e^{-t} d t
$$

$$
\varepsilon=0: \Upsilon(q)=q^{1-\frac{1}{\sigma}}
$$



## Gains from Variety

- TFP increases with number of producers due to decreasing returns
- Suppose $N_{t}$ identical producers with $y_{t}=l_{t}=L_{t} / N_{t}$
- Aggregate productivity $Z_{t}=Y_{t} / L_{t}$ satisfies

$$
N_{t} \Upsilon\left(\frac{y_{t}}{Y_{t}}\right)=N_{t} \Upsilon\left(\frac{1}{N_{t}} \frac{1}{Z_{t}}\right)=1
$$

- with CES, $Z_{t}=N_{t}^{\frac{1}{\sigma-1}}$



## Entry Distortion

- Equilibrium amount of entry determined by markups

$$
\kappa W_{t}=\int\left\{\beta \sum_{i=1}^{\infty}(\beta(1-\delta))^{i-1}\left(\frac{C_{t+i}}{C_{t}}\right)^{-1}\left(1-\frac{1}{\mu_{t+i}(e)}\right) p_{t+i}(e) y_{t+i}(e)\right\} d G(e)
$$

- Planner instead sets

$$
\kappa \psi C_{t}^{*} L_{t}^{* \nu}=\int\left\{\beta \sum_{i=1}^{\infty}(\beta(1-\delta))^{i-1}\left(\frac{C_{t+i}^{*}}{C_{t}^{*}}\right)^{-1}\left(\epsilon_{t+i}^{*}(e)-1\right) p_{t+i}^{*}(e) y_{t+i}^{*}(e)\right\} d G(e)
$$

where

$$
\epsilon_{t+i}^{*}(e)=\frac{\Upsilon\left(q_{t+i}^{*}(e)\right)}{\Upsilon^{\prime}\left(q_{t+i}^{*}(e)\right) q_{t+i}^{*}(e)} \quad \text { and } \quad p_{t}^{*}(e)=\frac{\Upsilon^{\prime}\left(q_{t}^{*}(e)\right)}{\int \Upsilon^{\prime}\left(q_{t}^{*}(z)\right) q_{t}^{*}(z) d H_{t}^{*}(z)}
$$

## Steady State

- Equilibrium allocation

$$
\frac{N}{Y}=\frac{1}{\rho+\delta} \frac{E}{\kappa \psi C L^{\nu}} \int(\mu(e)-1) \frac{q(e)}{e} d G(e)
$$

- Planner allocation

$$
\frac{N^{*}}{Y^{*}}=\frac{1}{\rho+\delta} \frac{E^{*}}{\kappa \psi C^{*} L^{* \nu}} \int\left(\epsilon^{*}(e)-1\right) \frac{q^{*}(e)}{e} d G(e)
$$

- $\mu(e)=\epsilon(e)$ for CES, $\mu(e)>\epsilon(e)$ for high $e$ with Kimball

```
figure
```

- $N / Y$ ambiguous, $N$ too low


## Neutrality Result in ACDR 2017

- Individual producers' $q$ satisfies

$$
\Upsilon^{\prime}(q)=\mu(q) \frac{1}{B} \frac{1}{e}
$$

- $B$ depends on aggregate variables: $N, Y, W, D$ with $B^{\prime}(N)<0$
- Aggregate markup satisfies

$$
\mathcal{M}=\frac{\int_{1} \mu(q(e, B)) \frac{q(e, B)}{e} d G(e)}{\int_{1} \frac{q(e, B)}{e} d G(e)}
$$

- Let $x=B e$ and use $G(e)$ Pareto

$$
\mathcal{M}=\frac{\int_{B} \mu(q(x)) \frac{q(x)}{x} d G(x)}{\int_{B} \frac{q(x)}{x} d G(x)}
$$

## Neutrality Result in ACDR 2017

- Aggregate markup is

$$
\mathcal{M}=\frac{\int_{B} \mu(q(x)) \frac{q(x)}{x} d G(x)}{\int_{B} \frac{q(x)}{x} d G(x)}=\frac{U(B)}{V(B)}
$$

- So $\mathcal{M}^{\prime}(B)$ depends on the smallest firm's markup

$$
\mathcal{M}^{\prime}(B)=-(\mu(q(B))-\mathcal{M}(B)) \frac{q(B) g(B)}{B V(B)} \geq 0
$$

- Since $B^{\prime}(N)<0, \mathcal{M}^{\prime}(N) \leq 0$
- but effect small since $q(B) \approx 0(=0$ in ACDR $)$

