Retirement in the Shadow (Banking)

Guillermo Ordoñez

University of Pennsylvania \& NBER

Facundo Piguillem

EIEF \& CEPR

Fourth ECB Annual Research Conference
September 5, 2019

This is What We Do

- Life expectancy conditional on retirement has increased in the US from 77 to 83 years (this is, 50% !) since 1980.
- Does the "domestic savings glut" change financial intermediation?
- \uparrow savings demand $\Longrightarrow \downarrow$ savings returns \Longrightarrow reach for yields.
- Securitization \Longrightarrow easier liquidation of productive assets.
- \downarrow intermediation costs (interest spreads from 4% to 3%).
- \uparrow credit (household debt from 1GDP to 1.66GDP).
- \uparrow shadow banking (from 10% to 50% of household debt).
- What are the quantitative implications for macro outcomes?
- The gains from shadow banking net of the cost of the crisis (even though this paper is NOT about the crisis) - around half a GDP

This is How We Do It

- Theoretical
- OLG model with retirement, credit and intermediation.
- Empirical
- Measure of how much securitization reduced intermediation costs.
- Quantitative
- Calibration and decomposition of the importance of retirement and securitization in credit and other macroeconomic variables.
- Counterfactual
- Hypothetical economy without shadow banks (nor crisis).

Agents

- OLG of agents (population grows at rate η).
- Working age $j \leq T$: Live with certainty and work.
- Retirement $j>T$: Do not work and die each period with prob. δ.
- When they die, they may leave bequests b_{j}. (equally distributed to younger agents of age $j=T_{I}<T$)

$$
\begin{aligned}
& U(\alpha, \underline{c}, \underline{b})=\sum_{j=0}^{T} \beta^{j} \log c_{j}+\sum_{j=T+1}^{\infty} \beta^{j}(1-\delta)^{j-T-1}\left[(1-\delta) \log c_{j}+\delta \alpha \log b_{j}\right] \\
& \quad \alpha \geq 0: \text { heterogeneous strength of bequest motive }
\end{aligned}
$$

Firms

- Perfectly competitive firms that produce

$$
Y_{t}=K_{t}^{\theta}\left(\Gamma_{t} L_{t}\right)^{1-\theta} .
$$

- Productivity Γ_{t} grows at rate γ.
- Wages and stock returns

$$
\begin{aligned}
y & =F_{L}\left(K_{t}, \Gamma_{t} L_{t}\right) \\
r_{e} & =F_{K}\left(K_{t}, \Gamma_{t} L_{t}\right)-\delta_{k}
\end{aligned}
$$

Agents' Saving Choices

- Agents choose at birth how to save for retirement.
- Capital Markets (C): Buy equity. (or become entrepreneurs!)
- Invest in firms such that
- Working age: Accumulate stocks (with own funds and borrowing).
- Retirement: Sell stocks to consume and leave bequest at death.

Agents' Saving Choices

- Agents choose at birth how to save for retirement.
- Banks (B): Buy debt. (or become depositors!)
- Contract with a financial intermediary that specifies
- Working age: Agent pays d_{j} to intermediary (who lends).
- Retirement: Intermediary pays c_{j} to agent while alive, and b_{j} at death.
- Choose whether to sign the contract with
- Traditional Bank (TB): Return r at no cost.
- Shadow Bank (SB): Securitization \Longrightarrow higher return r at utility cost κ
- Benefits: A bank is a pool \Longrightarrow Insurance against living long.
- Costs: A bank charges a fee \Longrightarrow Lower returns on savings.

Agents' Saving Choices

- Agents choose at birth how to save for retirement.
- Banks (B): Buy debt. (or become depositors!)
- Contract with a financial intermediary that specifies
- Working age: Agent pays d_{j} to intermediary (who lends).
- Retirement: Intermediary pays c_{j} to agent while alive, and b_{j} at death.
- Choose whether to sign the contract with
- Traditional Bank (TB): Return r at no cost.
- Shadow Bank (SB): Securitization \Longrightarrow higher return r at utility cost κ
- Benefits: A bank is a pool \Longrightarrow Insurance against living long.
- Costs: A bank charges a fee \Longrightarrow Lower returns on savings.
- B-agents demand safe assets (smooth consumption after retirement)
- Securitization improves liquidity and raises safe asset returns!

Agents' Wealth

- Consolidated wealth at birth (for $i \in\{B, S\}$).
- All agents earn y_{j} when working. Labor taxes are τ.
- All agents of age T_{I} obtain an inheritance of \bar{b}.
- Agents i receive social security transfers $T r_{i}$ after retirement.
- Savings of agents i pay a return $r_{i} \in\left\{r, r_{e}\right\}$.

$$
v_{0}^{i}=\sum_{j=0}^{T-1} \frac{(1-\tau) y_{j}}{\left(1+r_{i}\right)^{j}}+\frac{\bar{b}}{\left(1+r_{i}\right)^{T_{I}}}+\frac{\left(1+r_{i}\right)}{r_{i}+\delta} \frac{T r_{i}}{\left(1+r_{i}\right)^{T}}
$$

When calibrating we will assume $T r_{i}=s s_{i} y_{T}$.
Only source of uncertainty in the model is death!

BANKS

- Balance sheet of perfectly competitive banks.
- Liabilities: $D(1+r)$.
- Assets:
- Government bonds: $(1-f) A\left(1+r_{L}\right)$.
- Loans: $f A\left(1+r_{e}\right)$.
- Management cost: $A \widehat{\phi}$
- Banks choose A^{*}, f^{*} and r^{*} such that
- Feasibility: $A^{*} \leq D$.
- Zero-profit condition:

$$
\left[f^{*}\left(1+r_{e}\right)+\left(1-f^{*}\right)\left(1+r_{L}\right)-\widehat{\phi}\right] A^{*}=\left(1+r^{*}\right) D
$$

- Liquidity: Use bonds and a fraction z of risky loans to face a run,

$$
\left[z(1+q)+\left(1-f^{*}\right)\left(1+r_{L}\right)\right] A^{*} \geq\left(1+r^{*}\right) D \quad \text { where } z \leq f^{*}
$$

Banks

- Assumptions:
- No arbitrage (agents can buy bonds): Implies $r_{L}=r$.
- Relatively low operation costs $\left(r_{e}>\widehat{\phi}\right)$: Implies $A^{*}=D$.
- Market for liquidated assets (fire sales):
- Demand: Buyers can rematch the asset and obtain r_{e}.
$\max _{z}[\underbrace{\operatorname{Pr}(\text { rematch })}_{(1+\Psi) \ln \zeta(1+z) \frac{1+r}{1+r_{e}}}\left(1+r_{e}\right)-(1+q) z] \Longrightarrow 1+q_{D}=\frac{(1+\Psi)(1+r)}{1+z}$
- Supply: From liquidity constraint: $1+q_{S}=\frac{f(1+r)}{z}$.
- Market clearing: $z^{*}=\frac{f}{1+\Psi-f} \quad$ s.t. $z^{*} \leq f \quad \Longrightarrow f \leq \Psi$

Banks

- Assumptions:
- No arbitrage (agents can buy bonds): Implies $r_{L}=r$.
- Relatively low operation costs $\left(r_{e}>\widehat{\phi}\right)$: Implies $A^{*}=D$.
- Market for liquidated assets (fire sales):
- Demand: Buyers can rematch the asset and obtain r_{e}.

- Supply: From liquidity constraint: $1+q_{S}=\frac{f(1+r)}{z}$.
- Market clearing: $z^{*}=\frac{f}{1+\Psi-f} \quad$ s.t. $z^{*} \leq f \quad \Longrightarrow f \leq \Psi$
- Banks choose $f^{*}=\min \{1, \Psi\}$. From ZPC, $r^{*}=r_{e}-\frac{\widehat{\phi}}{f^{*}}$.

$$
S P R E A D: \phi \equiv r_{e}-r^{*}=\underbrace{\widehat{\phi}}_{V A} \underbrace{\max \left\{1, \Psi^{-1}\right\}}_{\text {Liq cost }}
$$

Government

- Commitment to fiscal expenses, transfers and a debt policy.
- Set τ to balance the budget

$$
\tau y_{t} L_{t}+\left(D_{t+1}^{G}-D_{t}^{G}\right)=g Y_{t}+\overline{T r}_{t}+r_{L} D_{t}^{G} .
$$

Aggregates

- Let $\mu_{j}^{i}(\alpha)$ be the mass of age j agents with bequest motive α who choose savings $i \in\{C, B\}$. Aggregates, as functions of $\left(r_{e}, \bar{b}\right)$, are

$$
\begin{aligned}
\mathbb{C}\left(r_{e}, \bar{b}\right) & =\sum_{i=S, B} \sum_{j=1}^{\infty} \int c_{j}^{i}\left(r_{e}, \bar{b} ; \alpha\right) \mu_{j}^{i}(\alpha) d \alpha \\
\mathbb{W}^{i}\left(r_{e}, \bar{b}\right) & =\sum_{j=1}^{\infty} \int w_{j}^{i}\left(r_{e}, \bar{b} ; \alpha\right) \mu_{j}^{i}(\alpha) d \alpha \\
\mathbb{B}\left(r_{e}, \bar{b}\right) & =\sum_{i=S, B} \sum_{j=T+1}^{\infty} \delta \int b_{j}\left(r_{e}, \bar{b} ; \alpha\right) \mu_{j-1}^{i}(\alpha) d \alpha \\
L_{t} & =\sum_{j=0}^{T-1}(1+\eta)^{t-j}
\end{aligned}
$$

Stationary Equilibrium

Given fiscal policies $\left\{g, T r_{i}, D^{G}\right\}$, a stationary equilibrium is characterized by individual allocations $\{\underline{c}(\alpha), \underline{w}(\alpha), \underline{b}(\alpha)\}_{\forall \alpha \geq 0}$ together with saving decisions $\left\{\left\{B_{T B}, B_{S B}\right\}, C\right\}$, aggregate allocations $\{Y, X, K, \mathbb{B}, \mathbb{C}\}$ and prices $\left\{y, r_{e}, r\right\}$ such that,

- Given prices and fiscal policies, agents maximize utility
- Given prices and fiscal policies, firms and banks maximize profits.
- The government budget constraint holds.
- Markets clear,
- Feasibility:

$$
Y=g Y+\mathbb{C}\left(r_{e}, \bar{b}\right)+X+\phi\left[\frac{\mathbb{W}^{B}(r, \bar{b})}{1+r}-D^{G}\right]
$$

- Assets market: $\quad \frac{\mathbb{W}^{B}(r, \bar{b})}{1+r}+\frac{\mathbb{W}^{S}\left(r_{e}, \bar{b}\right)}{1+r^{e}}=D^{G}+K$
- Bequest=Inheritance: $\bar{b}=(1+\gamma)^{T_{I}} \mathbb{B}\left(r_{e}, \bar{b}\right)$

Comparison of Consumption Patterns

Saving Decisions

Proposition 1: Agents with high bequest motives save in capital markets

 If $\underline{\phi} \leq \widehat{\phi} \leq \bar{\phi}$, there exists a unique $\alpha^{*}>0$ such that,- if $\alpha \geq \alpha^{*}$ the agent saves in capital markets.
- if $\alpha<\alpha^{*}$ the agent saves in banks.

Proposition 2: Longer-living agents will use shadow banking

Among agents with low enough α, saving in banks, there is a unique $\delta^{*}(\alpha, \kappa)>0$ (increasing in α and decreasing in κ) such that,

- if $\delta \geq \delta^{*}(\alpha, \kappa)$ uses traditional banking.
- if $\delta<\delta^{*}(\alpha, \kappa)$ uses shadow banking.

Saving Decisions

Proposition 1: Agents with high bequest motives save in capital markets

 If $\underline{\phi} \leq \widehat{\phi} \leq \bar{\phi}$, there exists a unique $\alpha^{*}>0$ such that,- if $\alpha \geq \alpha^{*}$ the agent saves in capital markets.
- if $\alpha<\alpha^{*}$ the agent saves in banks.

Proposition 2: Longer-living agents will use shadow banking

Among agents with low enough α, saving in banks, there is a unique $\delta^{*}(\alpha, \kappa)>0$ (increasing in α and decreasing in κ) such that,

- if $\delta \geq \delta^{*}(\alpha, \kappa)$ uses traditional banking.
- if $\delta<\delta^{*}(\alpha, \kappa)$ uses shadow banking.

From now on we assume that μ agents have $\alpha=0$ and the rest $\alpha=\widehat{\alpha}>\alpha^{*}$

Intuition of the Main Forces

Demand: $K\left(r_{e}\right)-\frac{\mathbb{W}^{S}\left(r_{e}, \bar{b}\right)}{1+r_{e}}$
Supply: $\quad \frac{W^{B}(r, \bar{b})}{1+r}-D^{G}$
Spread: $\quad r_{e}-r=\frac{\hat{\phi}}{f}$

Spreads from NIPA Tables

- We want the spread $\phi \equiv r_{e}-r$

$$
r_{e}-(\overbrace{r_{L}+r_{s}}^{r})=\frac{\overbrace{r_{T}-(1-f) r_{L}}^{r_{e}}}{f}-(\overbrace{r_{L}+r_{s}}^{r})=\frac{r_{T}-r_{L}}{f}-r_{s}
$$

- $r_{T}=($ Total private interest received - bad debt expenses $) /$ hh's debt. (Table 7.11 line 28 - Table 7.1.6 line 12)/Table D.3.
- $r_{L}=($ Total private interest paid) $/$ hh's debt.
(Table 7.11 line 4)/Table D.3.
- $r_{s}=($ Services furnished without payment $) /$ hh's debt .
(Table 2.4.5 line 88)/Table D.3.
- $f=s+(1-s) \widehat{f}$
$(1-s)=$ Consumer credit and mortgages to hh's channeled by TB
$=($ Table 110 lines 14 and 15) $/($ Table D. 3 columns 3 and 4)
$\widehat{f}=($ Total TB loans $) /($ total TB deposits).
$=($ Table 110 lines 12, 14 and 15) $/($ Table 110 lines 23 and 24)

Size of Traditional Banking

$0.40(1-s)$ - Credit channeled through traditional banks 30
0.20

Investment in Productive Loans

0.75
0.70
0.65
0.60

Spreads

2.0\% \qquad
1.0\%
0.0%

- Corbae and D'Erasmo Spreads

Value Added: Philippon (AER, 2015)

The drop in spreads is not because an improvement in efficiency!

\qquad

Liquidity Costs

Taking the Model to the Data

- Calibrate the model economy to 1980.
- Counterfactual in 2007.
- Do life expectancy and shadow banking account for the aggregate changes we observed? What was their individual contribution?
- Counterfactual without shadow banking (and without crisis).

Calibration to 1980

Parameter	Notation	Value	Source
Discount Rate	β	0.99	Standard
Productivity Growth	γ	0.02	Standard
Population Growth	η	0.01	Standard
Capital Share	θ	0.33	Standard
Inheritance Age	T_{I}	29	Age 52
Retirement Age	T	40	Age 63
Fraction of agents with $\alpha=0$	μ	0.75	Flow of Funds
Government Spending/GDP	g	0.20	NIPA Tables
Government Debt/GDP	D^{G} / Y	0.33	NIPA Tables
Depreciation Capital	δ_{k}	0.027	Match $K / Y=3.4$
Bequest Motive	$\widehat{\alpha}$	4.64	Match $\frac{H h D e b t}{Y}=1$
SS Transfers (fix $\left.s s_{S}=0\right)$	$s s_{B}$	0.55	Match $\frac{G D e b t}{Y}=0.33$

Counterfactual in 2007

- Life expectancy and spreads in 1980
- $\delta=0.072 \Rightarrow$ Post-retirement life expectancy of 14 years
- $\phi=0.04$. As discussed above.
- Counterfactuals in 2007
- $\delta=0.052 \Rightarrow$ Post-retirement life expectancy of 20 years
- $\phi=0.03$. As discussed above.

Counterfactual Decomposition

	1980	Lower δ	Same δ	Lower δ
Economy	Benchmark	$T B$	$S B$	$S B$
Interm. Cost (ϕ)	4%	4%	3%	3%
Survival prob. (δ)	0.072	0.052	0.072	0.052
Interest Rates				
Borrowing Rate (r)	0.030	0.023	0.034	0.028
Lending Rate $\left(r_{e}\right)$	0.070	0.063	0.064	0.058
National Accounts				
Output	1.000	1.035	1.031	1.070
Capital output ratio	3.40	3.65	3.62	3.90
Net Worth				
Total	3.73	3.98	3.95	4.23
\quad Equity (Plan C)	2.40	2.68	2.08	2.28
\quad Debt (Plan B)	1.33	1.30	1.86	1.94
\quad Data (FF: Table L100)	1.36			2.33
Bequest/GDP	0.049	0.049	0.040	0.039
Government Debt/GDP	0.33	0.33	0.33	0.33
Households Debt/GDP	1.00	0.96	1.53	1.62
Data (FF: Table D3)	1.00			1.66

Welfare Effects

	1980	Lower δ	Same δ	Lower δ
Economy	Benchmark	$T B$	$S B$	$S B$
Interm. Cost (ϕ)	4%	4%	3%	3%
Survival prob. (δ)	0.072	0.052	0.072	0.052
Interest Rates				
Borrowing Rate (r)	0.030	0.023	0.034	0.028
Lending Rate $\left(r_{e}\right)$	0.070	0.063	0.064	0.058
National Accounts				
Output	1.000	1.035	1.031	1.070
Capital output ratio	3.40	3.65	3.62	3.90
Net Worth				
Total	3.73	3.98	3.95	4.23
\quad Equity (Plan C)	2.40	2.68	2.08	2.28
\quad Debt (Plan B)	1.33	1.30	1.86	1.94
\quad Data (FF: Table L100)	1.36			2.33
Change on welfare at birth	-	-	0.3%	0.4%
Plan C	-	-	-4.3%	-4.8%
Plan B	-	-	2.5%	2.8%

Alternative Gov. Debt/GDP

	1980 Benchmark	2007 Calibration	Free D^{G}	All D^{G} Domestic
Interm. Cost (ϕ)	4%	3%	3%	3%
Survival prob. (δ)	0.072	0.052	0.052	0.052
Interest Rates				
Borrowing Rate (r)	0.030	0.028	0.027	0.029
Lending Rate $\left(r_{e}\right)$	0.070	0.058	0.057	0.059
National Accounts				
Output	1.000	1.070	1.071	1.060
Capital output ratio	3.40	3.90	3.91	3.85
Net Worth				
Total	3.73	4.23	4.21	4.47
\quad Equity (Plan C)	2.40	2.28	2.28	2.36
\quad Debt (Plan B)	1.33	1.94	1.93	2.11
Data (FF: Table L100)	1.36	2.33		
Bequest/GDP	0.049	0.039	0.039	0.041
Government Debt/GDP	0.33	0.33	0.30	0.62
Households Debt/GDP	1.00	1.62	1.63	1.49
Data (FF: Table D3)	1.00	1.66		

Transitions: Realized TFP

(c) Aggregate Assets/Output

(d) Household Debt/Output

Costs and Benefits of Shadow Banking

Costs and Benefits of Shadow Banking

Final Remarks

- People lives longer \Rightarrow "Domestic Saving Glut" $\Rightarrow \downarrow$ saving returns.
- Pressure for a new technology \Rightarrow Shadow Banking $\Rightarrow \uparrow$ saving returns.
- This is why we need to go quantitative. In net
- Large increase in credit.
- Small reduction in returns.
- Sizeable increase in output.
- Careful with asphyxiating shadow banking!

Corbae and D’Erasmo Spreads

ϕ based on comercial banks in the US
1.0\%
(FDIC, Call and Thrift Financial Reports)

Maintaining Debt/GDP constant

- In $1980 \frac{G D e b t}{Y}=0.37$, but 80% held domestically, then $\frac{D^{G}}{Y} \approx 0.3$.
- In $2007 \frac{G D e b t}{Y}=0.62$, but 40% held domestically, then $\frac{D^{G}}{Y} \approx 0.3$.

Figure 2: Holders of U.S. Treasury Securities (percent of total oustanding)

Composition of Financial Assets (bio1-ff)

Shadow intermediaries replaced traditional ones

Composition of Pensions (L118-Ff)

—Corporate equity Corporate Bonds —Treasury-backed Securities Mutual Funds

Securitization was also used by traditional intermediaries.....

Investment Companies in Pensions (5500-ebsa)

....and may have allowed expanding their productive investments

Shadow Banks And CREDIT (D3-Nipa and B101-FF)

....and expanding credit more generally in the economy.

Related Work

- Financial Effects of Savings for Retirement Needs
- Scharfstein (2018), Shourideh and Troshkin (2019).
- Macroeconomics Effects of Shadow Banking
- Moreira and Savov (2015), Begenau and Landvoigt (2017).
- Demand of Safe Assets
- Caballero (2010), Caballero, Farhi and Gourinchas (2016).
- Supply of Safe Assets (via securitization and shadow banking).
- Gorton and Ordonez (2014), Ordonez (2018a, 2018b)

Farhi and Tirole (2017).

