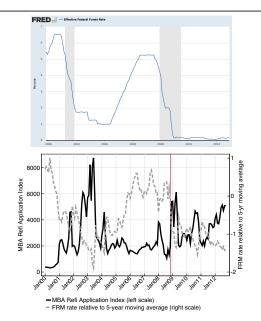

State Dependent Effects of Monetary Policy: The Refinancing Channel

Discussion by Benjamin Moll

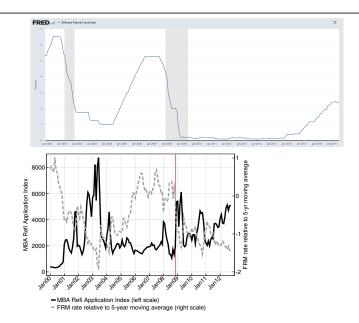
Fourth ECB Annual Research Conference, September 6, 2019

- Exciting project!
- I learned a lot about mortgage market, refi decisions and how they are affected by monetary policy
- Main result: in countries with predominantly fixed-rate mortgages (U.S.), monetary policy's effectiveness depends on its history
 - "normal times": rate cut ⇒ many homeowners refinance mortgage ⇒ disposable income ↑⇒ C ↑
 - after long period of low rates (i.e. now!): almost everyone has already refinanced. Rate cut ⇒ only small *C* increase.
 - Example of state dependence, state = dist'n of "rate gaps"

Story in graphs: 1. Rate gaps \Rightarrow refis & consumption

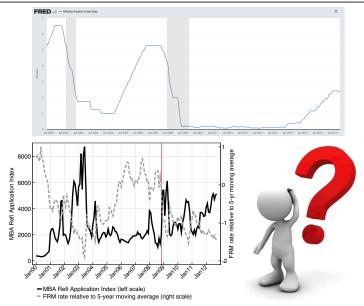

FIGURE I

Mortgage-refinancing Activity in the United States over 2000-2012


Figure shows monthly average of Mortgage Bankers Association (MBA) Refinancing Index (seasonally adjusted; March 1990 = 100) and the 30-year fixed-rate mortgage rate (relative to five-year moving average), also from MBA.

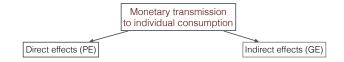
Source: Beraja, Fuster, Hurst & Ospina (QJE, 2018)

Story in graphs: 2. Monetary policy \Rightarrow rate gaps

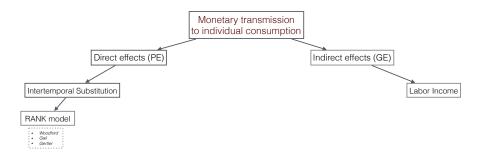

Story in graphs: 3. persistently low $r \Rightarrow$ everyone refi's

Story in graphs: 4. Cut r now? Small effect!

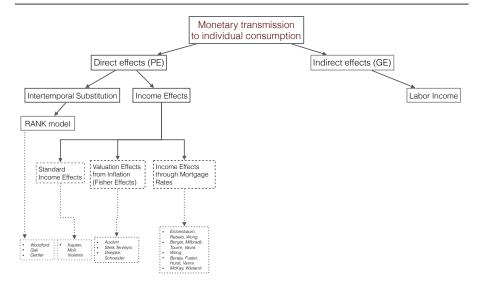
(Comment 0: simple time-series evidence?)

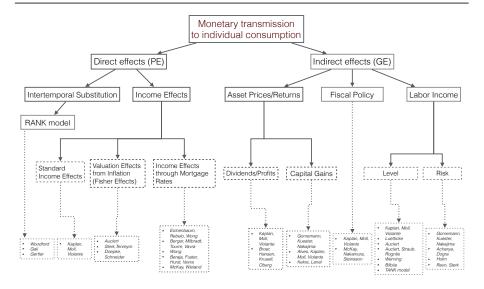


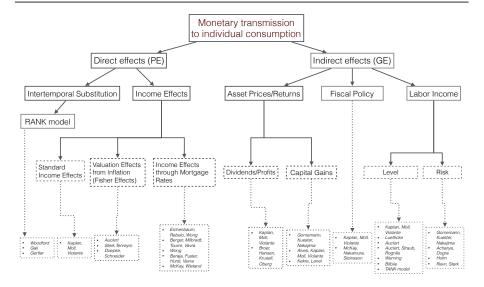
- 1. Empirical results on state dependence and how large it is
- 2. Quantitative lifecycle model (Wong, 2019) that match these
- 3. Policy counterfactuals
 - Authors place a lot of weight on quantitative results (as opposed to theoretical insight)
 - 2nd paragraph: "[Our] results are interesting to the extent that our model is a credible representation of the data."
 - So my comments are mostly about those as well

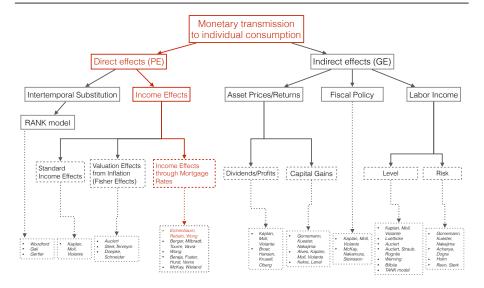

- 1. Place paper in macro literature on monetary policy & consumption
- 2. Some comments on quantitative model
- 3. A minor question on empirics

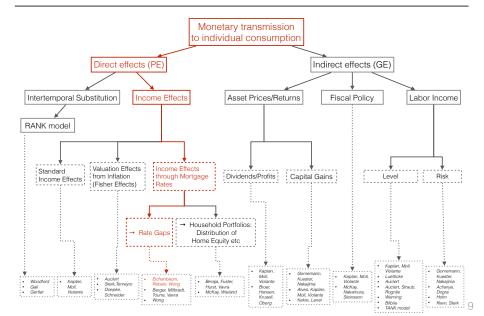
Monetary policy and consumption (RANK, HANK,...)


Monetary policy and consumption (RANK, HANK,...)


RANK: all about intertemporal substitution (Euler Eqn)

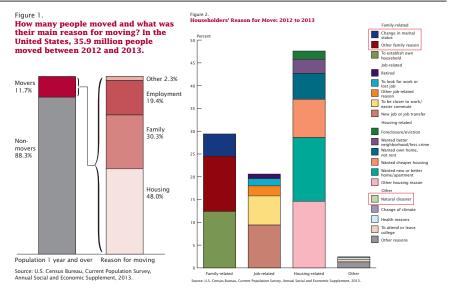

HANK: emphasizes alternative direct effects...


HANK: ... and indirect effects (given high MPCs)


We've come long way since rep agent Euler equation!

This paper focuses on specific direct effect

This paper focuses on specific direct effect


This paper focuses on specific direct effect

- Paper focuses on specific but arguably very important part of monetary transmission mechanism (at least in U.S.)
- More generally
 - literature is growing very quickly
 - will be important (but challenging!) to put everything together and assess relative importance of different mechanisms

- Model in paper: all refinancing and moving decisions determined by "economic fundamentals" (financial incentives, lifecycle, ...)
 - essentially an (S, s) model of optimal inaction
 - this state dependence at individual level generates the aggregate state dependence that paper emphasizes
- But empirically, this is probably a bit extreme

- Model in paper: all refinancing and moving decisions determined by "economic fundamentals" (financial incentives, lifecycle, ...)
 - essentially an (S, s) model of optimal inaction
 - this state dependence at individual level generates the aggregate state dependence that paper emphasizes
- But empirically, this is probably a bit extreme
- 1. Refinancing:
 - households leave large sums on table (Keys-Pope-Pope "Failure to Refinance")
 - inconsistencies over time that violate optimal inaction
 (Andersen-Campbell-Nielsen-Ramadorai using Danish admin data)
 - ...

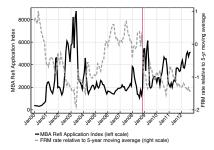
2. Moving: many reasons unrelated to economics - see next slide

Source: Ihrke (2014)

- Natural solution: add some time dependence or "Calvoness"
 - refinance/move randomly
 - natural conjecture: less state dependence at individual level would weaken aggregate state dependence
- Question: how would realistically calibrated "Calvoness" alter quantitative results?
- Note: most related paper by Berger-Milbradt-Tourre-Vavra has this (but they abstract from many other things that current paper has)

A comment authors have already partially addressed...

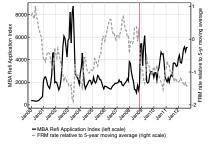
A comment authors have already partially addressed...


Paper focuses on particular moment of rate gap distribution: mean

 but seems unnatural: if everyone's locked-in mortgage rate < current rate, changes in current rate shouldn't affect refinancing

A comment authors have already partially addressed...

Paper focuses on particular moment of rate gap distribution: mean


- but seems unnatural: if everyone's locked-in mortgage rate < current rate, changes in current rate shouldn't affect refinancing
- Indeed, time-series evidence seems consistent w this asymmetry

A comment authors have already partially addressed...

Paper focuses on particular moment of rate gap distribution: mean

- but seems unnatural: if everyone's locked-in mortgage rate < current rate, changes in current rate shouldn't affect refinancing
- Indeed, time-series evidence seems consistent w this asymmetry

- Suggests $\mathbb{E}[r^{\text{old}} r^{\text{new}}|r^{\text{old}} > r^{\text{new}}]$ rather than $\mathbb{E}[r^{\text{old}} r^{\text{new}}]$
- Appendix already shows robustness to using similar moments

• Also model suggests average rate gap A_{t-1} is insufficient statistic

Rate path prior to a 50bp cut	Average rate gap before cut	positive rate	Effect on	Change in consumption	Fraction ST constrained
Panel A: Effects of Flat vs Rising History					
(i) Flat at about 3.5%	0.00%	100%	26%	1.3%	0.48
(ii) Rising from 3.5% to 6.5% over 4 pds	-0.81%	16%	5%	0.1%	0.64
Difference (i)-(ii)	0.81%	84%	21%	1.2%	-0.16
Panel B: Effects of Flat vs Falling History					
(i) Flat at about 3.5%	0.00%	100%	26%	1.3%	0.48
(ii) Falling from 3.5% to 1% over 4 pds	0.46%	100%	23%	0.5%	0.33
Difference (i)-(ii)	-0.46%	0%	3%	0.9%	0.15

Table 9: Alternative paths of monetary policy

Average rate gap very different but refinancing rate very similar

• Also model suggests average rate gap A_{t-1} is insufficient statistic

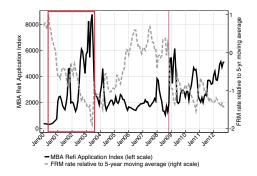

Rate path prior to a rate cut	Average rate gap before cut	Fraction with positive rate gap, after rate cut	Effect on refinancing	Change in consumption	Fraction ST constrained
Reloading Effect with 50bp cut					
 (a) Benchmark case: continuously flat at 3.5% prior to a 50bp rate cut 	0.00%	100%	26%	1.3%	48%
(b) 3.5% cut to 1% for 4 pds, rise for 3 pds to 3.5%, flat at 3.5% for 1 pd	-0.28%	66%	22%	0.9%	57%
(c) 3.5% cut to 1% for 4 pds, rise for 3 pds to 3.5%, flat at 3.5% for 2 pds	-0.27%	68%	26%	0.9%	58%
(d) 3.5% cut to 1% for 4 pds, rise for 3 pds to 3.5%, flat at 3.5% for 3 pds	-0.25%	70%	26%	1.3%	58%

Table 10: Alternative paths of monetary policy

Another example: average gap different but refi rate same

Comment 3: How heavily do results lean on 2001-03?

- Sample period: 1995/99 to 2005
- Part of that period looks anomalous for refis, particularly 2001-03

• How heavily do empirical results lean on 2001-03? Robustness?

- Exciting project!
- Quantitatively credible results on specific but important part of monetary transmission mechanism
- Comments/questions:
 - 0. simple time-series evidence
 - 1. time dependence/"Calvoness"?
 - 2. focus on average rate gap?
 - 3. how heavily do results lean on 2001-03?