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Abstract

This paper employs a benchmark heterogeneous-agent macroeconomic model to examine a number

of plausible drivers of the rise in wealth inequality in the U.S. over the last forty years. We find that

the significant drop in tax progressivity starting in the late 1970s is the most important driver of the

increase in wealth inequality since then. The sharp observed increases in earnings inequality and the

falling labor share over the recent decades, on the other hand, fall far short of accounting for the data.

The model can also account for the dynamics of wealth inequality over the period—in particular the

observed U-shape—and here the observed variations in asset returns are key. Returns on assets matter

because portfolios of households differ systematically both across and within wealth groups, a feature

in our model that also helps us to match, quantitatively, a key long-run feature of wealth and earnings

distributions: the former is much more highly concentrated than the latter.

1 Introduction

The distribution of wealth in most countries for which there is reliable data is strikingly uneven. There is

also recent work suggesting that the wealth distribution has undergone significant movements over time,

most recently with a large upward swing in dispersion in several Anglo-Saxon countries.1 For example,

according to the estimates in Saez & Zucman (2016) for the United States, the share of overall wealth

held by the top 1% has increased from around 25% in 1980 to over 40% today; for the top 0.1% it has

increased from less than 10% to over 20% over the same time period.

The observed developments have generated strong reactions across the political spectrum. In his 2014

book, Capital in the Twenty-First Century , Piketty is obviously motivated by the growing inequality

in itself, but he also suggests that further increases in wealth concentration may lead to both economic

and democratic instability. Conservatives in the U.S. have expressed worries as well: is the American

Dream really still alive, or might it be that a large fraction of the population simply will no longer be

∗The authors’ affiliations are, respectively, Yale University; Institute for International Economic Studies, NBER, and
CEPR; and Yale University and NBER. For helpful comments the authors would like to thank Chris Carroll, Paolo Sodini,
Harald Uhlig, and seminar participants at the 2015 SED Meetings, the 2015 Hydra Workshop on Dynamic Macroeconomics,
the Seventh Meeting of the Society for the Study of Economic Inequality, the 2017 NBER Summer Institute, Bern, Johns
Hopkins, Indiana, M.I.T., Oslo, Penn State, University of Pennsylvania, SOFI, and Yale. A previous version of this paper
circulated under the title “The Historical Evolution of the Wealth Distribution: A Quantitative-theoretic Investigation”.

1See, e.g., Piketty (2014) and Saez & Zucman (2016).
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able to productively contribute to society? Given, for example, that parental wealth and well-being are

important determinants behind children’s human capital accumulation, this appears to be a legitimate

concern regardless of one’s political views. As a result of these concerns, a number of policy changes have

been proposed and discussed. The primary aim of the present paper is to understand the determinants of

the observed movements in wealth inequality. This aim is basic but well-motivated: to compare different

policy actions, we need a framework for thinking about what causes inequality and for addressing how

inequality—and other variables—are influenced by any policy proposal at hand.

In an effort to understand the movements in wealth inequality, Piketty (2014) and its online appendix

suggest specific mathematical theories and as part of the present study we examine those theories.2 Our

aim, however, is to depart instead from a more general, and by now rather standard, quantitatively

oriented theory used in the heterogeneous-agent literature within macroeconomics: the Bewley-Huggett-

Aiyagari model. This is a very natural setting for the study of inequality. This model incorporates rich

detail on the household level along the lines of the applied work in the consumption literature, allowing

several sources of heterogeneity among consumers. It is based on incomplete markets and, hence, does not

feature the “infinite elasticity of capital supply” of dynastic models with complete markets.3 This model

also involves equilibrium interaction: inequality is determined not only by the individual household’s

reactions to changes in the economic environment in which they operate but also by their interaction,

such as in the equilibrium formation of wages and interest rates, two key prices determining the returns to

labor and holding wealth, respectively. Our aim is to see to what extent a reasonably calibrated model can

account for the movements in wealth inequality from the mid-1960s and on as a function of a number of

drivers, the importance of each of which we then evaluate in separate counterfactuals.4 In this endeavor,

we proceed as follows.

We build on the model studied in Aiyagari (1994), i.e., we use the core setting of the recent literature

on heterogenous agents in macroeconomics.5 This kind of theoretical model is quantitative in nature: it

is constructed as an aggregate version of the applied work on consumption. Moreover, in it, inequality

plays a central role. We calibrate some key parameters of this model to match the wealth and income

distributions in the United States in the mid-1960s and treat these distributions as representing a long-run

steady state. In the 1960s, too, the dispersion of wealth was striking, and it is not immediate how to make

the basic model match the data in this respect. In particular, the benchmark models in the literature

do not readily produce long-run wealth inequality that is as striking as that observed: they do not

produce wealth dispersion that goes much beyond earnings dispersion. The data shows, again wherever

reliable data is available, a wealth Gini much above 0.5 (say, 0.8), whereas the earnings Gini is typically

significantly below 0.5. In this paper we depart from the benchmark model by introducing portfolio

heterogeneity across and within wealth groups. As we shall discuss in detail below, such heterogeneity

2The appendix is available here: http://piketty.pse.ens.fr/files/capital21c/en/Piketty2014TechnicalAppendix.pdf. See
also Piketty (1995) and Piketty (1997) which develop theories of the dynamics of the wealth distribution.

3This elasticity refers to the long-run response of a household’s savings to a change in the interest rate: in particular, with
infinitely-lived consumers and complete markets the equilibrium interest rate is pinned down by the rate of time preference.

4We do not specifically study Piketty’s “Second Fundamental Law”, which is not a theory about inequality per se but
about the aggregate capital-output ratio and which has also been extensively examined in Krusell & Smith (2015).

5The first application in this literature was one to asset pricing (the risk-free rate): Huggett (1993). Aiyagari (1994)
addresses the long-run level of precautionary saving, whereas Krusell & Smith (1998) look at business cycles.
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has recently surfaced as a striking feature of households’ investment patterns. In particular, register data

in Norway and Sweden (see Fagereng et al. (2015) and Bach et al. (2015)) have revealed, first, an average

return that is increasing in the household’s overall level of wealth; second, there is an idiosyncratic

return component (because different households hold different types of assets) whose variance is also

systematically different by wealth group—it is highest for the wealthiest.

Our first major finding is that, once portfolio heterogeneity, calibrated to the findings in Bach et al.

(2015), is incorporated into the model, we replicate wealth inequality of the magnitude we see in the

data. Thus, in order to match the agglomeration at the top, we do not need to consider discount-factor

heterogeneity, as in Krusell & Smith (1998), or other mechanisms that raise the saving of the wealthiest.

Our model, which is fully nonlinear with household decision rules for saving whose slopes differ widely

between the poorest and the richest, delivers a law of motion for wealth that becomes approximately linear

in wealth for high wealth levels, with a random coefficient. It can thus be viewed as a microfoundation for

the kind of models entertained in Piketty & Zucman (2015) (who simply assume linear laws of motion for

wealth accumulation and either random saving propensities or random returns). A closely related setting

is that in Benhabib et al. (2015a). These models, and by extension ours, generate a wealth distribution

whose right tail is Pareto-shaped, a feature shown to characterize the data; we discuss this finding, and

the relation to a number of other papers building on the same kind of reduced form, in detail in the paper.

With the resulting, realistic, starting wealth distribution, we then examine a number of potential

drivers of wealth inequality over the subsequent period. One is tax rates: beginning around 1980 tax

rates fell significantly for top incomes, so that tax progressivity in particular fell substantially. Thus,

higher returns to saving in the upper brackets since that time can potentially explain increased wealth

gaps between the rich and the poor. Another potential explanation for increased wealth inequality is the

rather striking increases in wage/earnings inequality witnessed since the mid-1970s. Since at least Katz

& Murphy (1992) it has been well-documented that the education skill premium has risen. Moreover,

numerous studies have since documented that the premia associated with other measures of skill have

also risen, as have measures of residual, or frictional, wage dispersion.6 In terms of the very highest

earners, Piketty & Saez (2003) document significant movements toward thicker tails in the upper parts

of the distribution. So to the extent that this increased income inequality has translated into savings

and wealth inequality, it could explain some of the changes we set out to analyze. Moreover, and very

importantly as it will turn out, we feed in fluctuations in asset returns like those observed in the U.S. and

that, given the systematic portfolio heterogeneity across wealth groups, may imply dynamic movements

of wealth inequality. Finally, the share of total income paid to capital has increased recently, potentially

contributing to increased wealth inequality (see, e.g., Karabarbounis & Neiman (2014b)). We consider

this factor as well in this study.

Thus, the overall methodology we follow is to attempt to quantify the mechanisms just mentioned

and then to examine their individual (and joint) effects on the evolution of wealth inequality from the

1960s. For the time period considered, we find, first, that the benchmark model does account well for

the net increase in wealth inequality over the period. The model is more or less successful depending on

6See, e.g., Acemoglu (2002), Hornstein et al. (2005), and Quadrini & Rios-Rull (2015).
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what aspect of the wealth distribution is in focus. The shares of wealth held by the top 10% or top 1%

exhibit net increases that are very similar in the model and in the data, though for the top 0.1% and

0.01% the benchmark model does not deliver enough of an increase, especially for the very top group. For

the bottom 50%, the model’s fit is also good. Second, in terms of the dynamics, the model also proves to

be successful in replicating the marked U-shape of wealth inequality. Furthermore, the model delivers a

time path for the ratio of capital to net output that is similar to the one in the data.

Turning to which specific features explain the largest fractions of the increase in wealth inequality, the

marked decrease in tax progressivity is by far the most powerful force for the cumulative increase in wealth

inequality.7 First, other things equal, decreasing tax progressivity spreads out the distribution of after-tax

resources available for consumption and saving. Second, decreasing tax progressivity increases the returns

on savings, leading to higher wealth accumulation, especially among the rich for whom wages (earnings)

are a smaller part of wealth. As for the dynamics, here swings in the returns of the different asset groups

turn out to be crucial. Hence, without portfolio heterogeneity, and without asset-price movements, we

would not be able to understand the short- and medium-run movements in wealth inequality.

Wage inequality, on the other hand, has less clearcut effects on wealth. As we argue in our paper, it

can both increase and decrease wealth inequality, depending on the nature of the increased earnings risk

and on what wealth-inequality statistics one looks at. In some aggregate sense—measured by the shares

of wealth held by the richest households—the kinds of earnings inequality we feed in on net contributes

negatively to wealth inequality, taken together. We consider increases in earnings inequality of different

kinds. We follow Heathcote et al. (2010) in modeling increased wage inequality as an increase in the

riskiness of wage realizations around a mean. In a standard additive permanent-plus-transitory model of

wages, we use the estimated time series in Heathcote et al. (2010) for the variances of the permanent and

transitory shocks to wages. Both of those variances have increased over time, leading to a reduction in

the share of wealth held by the richest for two reasons. First, increasing wage risk dampens the tendency

of heterogeneity in returns or discount rates to drive apart the distribution of wealth.8 In particular, as

wage risk increases, poorer and less patient consumers—who are less well-insured against this risk through

their own savings—engage in additional precautionary saving, compressing the distribution of wealth at

the low end. Second, with more risk aggregate precautionary savings increase, reducing the equilibrium

interest rate and reducing the relative wealth accumulation of the rich, for whom wage risk is also not so

important. In sum, the increasing riskiness of wages compresses the wealth distribution at both ends.9 At

the same time, these increases in earnings risk do induce higher inequality if one looks at the dispersion

of wealth within the bottom part of the distribution.

In addition, we follow Piketty & Saez (2003) by adding a Pareto-shaped tail to the wage distribution

so as to match the concentration of earnings at the top of the earning distribution; the standard wage

process (as in Heathcote et al. (2010)) does not match this extreme right tail well. Moreover, the right

tail has thickened over this period, and accordingly we model this thickening as a gradually decreasing

7These conclusions are line with two studies of France and the U.S.: Piketty (2003) and Piketty & Saez (2003).
8As Becker (1980) shows, if discount rates are permanently different and there is no wage risk at all, then in the long-run

steady state the most patient consumer owns all of the economy’s wealth.
9Similar forces are at play in Krusell et al. (2009), but in the opposite direction: they find that reductions in wage risk

that accompany the elimination of business cycles lead to higher wealth inequality.
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Pareto coefficient, based on the estimates in Piketty & Saez (2003). This element of increased wage

inequality does generate more wealth inequality—because it occurs in a segment of the population where

most workers are already rather well-insured through their own savings—but it is not so potent as to

produce a net overall increase in wealth inequality from higher wage inequality. To allow for an increasing

capital share over time we conduct an experiment using a CES production function with a somewhat

higher than unitary elasticity between capital and labor. The resulting paths in this experiment differ

only marginally from the case with unitary elasticity.

Given the role of portfolio heterogeneity and of asset-price movements, it is important to think more

about the origins of these observations. In the present paper we take short-cuts in both these respects.

First, we simply hard-wire the portfolio heterogeneity. The agent making a saving decision knows, given

the current level of wealth, what the return characteristics are (but have no choice but to accept them,

i.e., cannot switch to holding different asset shares) and what they will be like henceforth. Since there is

a higher average return as a function of wealth, the household therefore factors in this small amount of

“increasing returns” to saving in setting the current saving rate. Interestingly, the household’s choice of a

saving rate is not very sensitive to the return characteristics, and hence a Solow-like constant saving rate

comes close to approximating optimal behavior.10 In particular, a model with myopic forecasts delivers

very similar behavior to that in our benchmark (where agents have perfect foresight). Second, we do not

attempt to solve for asset prices by market clearing for each asset class. This would necessitate taking

a stand on how to solve the equity premium puzzle and, more than that, also match returns for other

asset classes—we incorporate houses and private equity as well, which are very important for the average

household and the richest, respectively. The two shortcuts we take seem necessary at this stage; rather,

we view our present paper as an important step forward in noting just how important portfolios and

asset prices are for inequality. Taking the whole step forward in explaining them is one or two orders of

magnitudes more challenging, but these steps definitely seem worth taking now.

What are the implications of our dynamic model of wealth inequality for the future? Quite strikingly,

if the progressivity of taxes remains at today’s historically low level, then wealth inequality will continue

to climb and reach very high levels by, say, 2100: the top 10% will have an additional 10% of all of wealth,

while the top 1% share will increase by more than 20%. Thus, decreasing the progressivity of taxes is a

rather powerful mechanism for wealth concentration.

Our paper begins in Section 2 with a brief literature review, the purpose of which is to put our

modeling in a historical perspective. We discuss the data on wealth inequality and its recent trends in

Section 3. We describe the basic model in Section 4 and the implied behavior of the very richest in Section

5. Section 6 discusses the calibration in detail and Sections 7 and 8 the benchmark results for long-run

wealth inequality and its historical evolution, respectively. A number of extensions are then included

in Section 9. We conclude our paper in Section 10 with a brief discussion of potential other candidate

explanations behind the increased wealth inequality and, hence, of possible future avenues for research.

10Bach et al. (2015) document striking “stickiness” in individuals’ portfolio choices. This is consistent with our saving
rates being quite insensitive to the return characteristics.
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2 Connections to the recent macro-inequality literature

The study of inequality in wealth using structural macroeconomic modeling can be said to have started

with Bewley (undated), though in Bewley’s paper the focus was not on inequality per se.11 Bewley’s

paper was not completed—it stops abruptly in the middle—and the first papers to provide a complete

analysis of frameworks like his are Huggett (1993) and Aiyagari (1994). A defining characteristic of these

models is that long-run household wealth responds smoothly to the interest rate, so long as the interest

rate is not too high (higher than the discount rate in the case without growth).

In their early papers, neither Bewley nor Huggett nor Aiyagari focused on inequality per se but rather

on other phenomena related to inequality (asset pricing and aggregate precautionary saving in the latter

two cases, respectively). Soon after, however, the macroeconomic literature that arose from these analyses

began to address inequality directly. There were several reasons for this development. One was the

interest in building macroeconomic models with microeconomic foundations in which heterogeneity could

influence aggregates, i.e., cases that are in some sense far from aggregation and the typical permanent-

income behavior that characterize the complete-markets model.12 Another was an interest in wealth

inequality per se and the challenge it posed: the difficulty that these models have in generating significant

equilibrium wealth inequality. The difficulty is apparent in Aiyagari (1994), where the wage process is

calibrated to PSID data (as an AR(1) in logs): the resulting wealth distribution is slightly more skewed

than the wage distribution the model uses as an input, but not by much. The Gini index for wealth, in

the stationary distribution of Aiyagari’s model, is only around 0.4, whereas it is around 0.8 in the data.

The purpose here is not to go over the entire literature aiming at matching the wealth distribution but

several different extensions of the model have been proposed in order to match the data better. On some

general level, successful paths forward involve introducing “more heterogeneity”: typically in preferences

(such as discount factors, as in Krusell & Smith (1998)), in the wage/earnings process (as in Castañeda

et al. (2003)), or in occupation (as in Cagetti & De Nardi (2006) or Quadrini (2000)).

More recently, a literature evolved that focuses on explaining the observed Pareto tail at the top of

the wealth distribution. Benhabib et al. (2011) show analytically that the stationary wealth distribution

in an overlapping-generations (OLG) economy with idiosyncratic capital return risk has a Pareto tail.

Analogously, they provide analytical results for an infinite-horizon economy (Benhabib et al., 2015b).

In Benhabib et al. (2015a), they conduct a quantitative investigation of social mobility and the wealth

distribution in an OLG economy with idiosyncratic returns, which are fixed over a life-time. In a stylized

model, Gabaix et al. (2016) demonstrate that the random growth mechanism that can generate the Pareto

tail in the wealth distribution (either through idiosyncratic capital return risk or random discount factors)

implies very slow transitional dynamics. Furthermore, Nirei & Aoki (2016) consider a stationary Bewley

economy with investment risk. In that setting they find that decreasing top tax rates can explain the

11This model is of course not the first one with theoretical implications for inequality. An early example is Stiglitz
(1969) who, building on his 1966 Ph.D. dissertation, studies the dynamics of the distributions of income and wealth in a
neoclassical growth model with exogenous linear savings functions. A defining characteristic of the literature in focus here is
that consumers face problems much like those studied in the applied consumption literature: they are risk-averse and choose
optimal saving in the presence of earnings shocks for which there is not a full set of state-contingent markets.

12See, e.g., Krusell & Smith (1998) and Guerrieri & Lorenzoni (2011) for this line of work.
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increasing concentration of wealth at the top.

Most of the literature on Bewley models has considered only the stationary (long-run) wealth distribu-

tion. A recent exception is Kaymak & Poschke (2016), who in line with our analysis here aim to quantify

the contribution of changes in taxes and transfers and in the earnings distribution to changes in the U.S.

wealth distribution; we compare their results to our in more detail below. Another recent paper of this

sort is Aoki & Nirei (2017), which studies how a one-time drop in tax rates affects transitional dynamics

in a setting with investment risk.

The present paper has three main characteristics relative to the just-discussed earlier work. The first

characteristic is that, in contrast to all but a handful of studies, it addresses the long-run as well as short-

and medium-run determinants of the wealth distribution. Second, our model is rather comprehensive, in

two ways: it (i) considers all the main mechanisms behind inequality buildup discussed in the literature

and (ii) looks at the full distribution of wealth, i.e., both the upper tail as well as at the bulk of the

distribution. Our model generates a Pareto tail endogenously, because it delivers approximately linear

saving dynamics for households—with a stochastic coefficient on wealth—as wealth grows large. The key

measure of the fatness of the right wealth tail is the (inverse of the) Pareto coefficient. In the data, its

value, as we elaborate on below and is also emphasized elsewhere, is significantly higher than that for the

earnings distribution.13 A model with earnings risk only will either not deliver a Pareto tail for wealth

at all or, if earnings risk is itself Pareto, will deliver a Pareto tail for wealth of the same shape as for

earnings.14 To us, thus, stochastic returns to saving and/or stochastic discounting, which do deliver the

correct right-tail shape of wealth, are essential for understanding the right tail of the wealth distribution

in the long run. This sets our paper apart from other Aiyagari-based models. This includes Kaymak &

Poschke (2016), which delivers a very nice account of the medium-run features of the bulk of the wealth

distribution but which does not have its focus on, and does not fully account for, its right tail.15 We have

in common with Kaymak & Poschke (2016) that we also include a thorough discussion of the the model’s

predictions for the middle and lower parts of the wealth distribution. We discuss how our transitional

results differ from theirs in detail in Section 8 below.

The third characteristic that sets our paper apart from, we believe, all of the above-mentioned litera-

ture and hence is the most novel, is that it incorporates portfolio behavior that differs across households.

Wealthy households have portfolios with more risk and higher average return. In addition, there is a

non-negligible idiosyncratic return component at all wealth levels, with an accentuation for the wealth-

iest. These features are not free parameters in our model: we calibrate them to available micro data

and, in particular, track the returns, by asset subgroup, over time. Because of the systematic differences

in portfolio compositions and in the return to different portfolios over the period, we obtain predictions

for the evolution of the wealth distribution and it turns out that this allows us to match the short- and

medium-run dynamics surprisingly well. In particular, there is a marked U-shape of the top wealth shares

over the time period under study, and none of the other papers in the literature can generate this shape.

13For an illuminating recent discussion, see Benhabib et al. (2017).
14See Stachurski & Toda (2018).
15In Kaymak and Poschke’s work, the long-run wealth distribution does not have a Pareto tail. Moreover, the fraction

held by the top group in their study is as high as in the data only because the earnings inequality is assumed to be more
extreme than what the available micro data suggests.
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We conclude that return heterogeneity, both in terms of the idiosyncratic component (which is important

for understanding the right tail of the long-run wealth distribution) and the systematically different port-

folios across wealth levels (which are important for wealth inequality dynamics) are key components for

understanding wealth inequality. We therefore now consider it crucial in this area to turn our attention

toward understanding the deep determinants of all these features of observed portfolio decisions.

A final relevant literature connection is that to Piketty’s r−g theory: our framework can be interpreted

as giving support to an elaborate version of this theory. The elaboration involves (i) negligible emphasis

on g; (ii) the interpretation of r as net of taxes; and (iii) the (crucial) recognition that r is heterogeneous

across households and systematically different for different wealth levels, both because of progressive

taxation and portfolio heterogeneity. It must be emphasized, however, that this theory primarily works

for the right tail of the wealth distribution; for understanding the rest, the kind of analysis pursued by

Kaymak & Poschke (2016) as well as that herein, seems necessary.

3 Measuring wealth inequality over time

Over the last century, the distribution of wealth in the United States has undergone drastic changes and

we very briefly review data from some key studies here. Throughout the time period considered, wealth

was heavily concentrated at the top. Figure 1 shows the evolution of the share of total wealth held by

the top 1% and the top 0.1%, as measured using different estimation methods.16 Considering all three

methods jointly, top wealth inequality exhibits a U-shaped pattern in the twentieth century. Yet, the

magnitude of the increase in wealth concentration in the last thirty years differs substantially among

estimation methodologies. We will calibrate the initial steady state of our model to the wealth shares

estimated by Saez & Zucman (2016) and consequently compare the model transition to their estimates.

Their estimates are especially useful for us as they allow for considering a group as small as the top

0.01%. Furthermore, they cover a long time period. While the capitalization method that they use to

back out wealth estimates does not suffer from the shortcomings of the SCF data (such as concerns about

response-rate bias and exclusion of the Forbes 400), it is an indirect way of measuring wealth and as such

has other drawbacks. For example, the tax data allows only for a coarse partitioning of capital income

in asset classes and within each class returns are effectively assumed to be homogeneous. Since recent

evidence based on both Norwegian and Swedish data (Fagereng et al. (2015) and Bach et al. (2015),

respectively) shows significantly higher returns for the high-wealth groups, the capitalization method

suggests an over-prediction of wealth levels for the richest group. Therefore, we will in addition contrast

our findings to estimates from the Survey of Consumer Finances.17

Another takeaway from Figure 1 is that the wealth distribution was quite stable in the 1950s and

16In Figure 1, the lines labelled “SCF” display findings from the Survey of Consumer Finances, as reported in Saez &
Zucman (2016). The lines labelled “Capitalization” display findings from Saez & Zucman (2016), who back out the stock of
wealth held by a tax unit from observed capital income tax data. Finally, the lines labelled “Estate tax multiplier” display
findings from Kopczuk & Saez (2004), who use observed estate tax data to make inferences about the distribution of wealth.
See Kopczuk (2015) for a detailed comparison of the different measurement methods.

17Bricker et al. (2016) make adjustments to the SCF data, including incorporating the Forbes 400. For the top 0.1% wealth
shares these adjustments roughly cancel. For the top 1% shares these adjustments shift the corresponding line in Figure 1
down by approximately 2 to 3 percentage points.
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Figure 1: Top wealth share measurements over time

1960s. As, in addition, some of the time series estimates we feed into our model start in 1967, we take

this year as the initial steady state in our model.

4 Model framework

What are the determinants of long-run wealth inequality, and what affects its dynamics? The present

paper has particular emphasis on the dynamics, but in order to understand the dynamics, one also needs

a view on the longer-run drivers of wealth inequality. In particular, the framework we use for analyzing

long-run inequality has important implications for dynamics, as we shall explain. As a background, let

us first—in Section 4.1—very briefly recall some basic predictions for equilibrium wealth inequality from

a set of standard models. In the subsequent sections, we will draw on these insights when formulating

and interpreting the specific model we employ in our paper.

4.1 Long-run wealth inequality: a primer

Let us focus mostly on the predictions for inequality using dynastic models, i.e., frameworks where

agents put value on their offspring and are altruistic in that respect. At the very end, we will briefly

make comments on alternative assumptions in this regard. We will, for simplicity, also abstract from

age dependence of either preferences or income streams and simply regard household i’s present-value

utility as being E0
∑∞

t=0 β
t
iui(cit) and its income stream as a stationary process. Let us also consider a

neoclassical production function F (Kt, L), no technological change, and geometric depreciation of capital
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at rate δ.18 That is, we have a standard optimizing growth model with more than one agent.

The permanent-income model Let us first consider a constant endowment stream. The consumer’s

budget constraint in our simplest setting is then cit + ki,t+1 = ωiwt + (1 + rt)kit, where wt and Rt

are the marginal products of labor and capital based on F (Kt, L), and rt = Rt − δ; ωi is agent i’s

endowment of labor in efficiency units. Let us also for illustration consider only two kinds of agents,

A and B, with masses µA and µB, respectively. The key observation here is that if βA = βB, then

any wealth distribution (kA, kB) is a steady state, so long as µAkA + µBkB = K?, where K? satisfies

β(1 +F1(K
?, µAωA +µBωB)− δ) = 1, and neither ωAw+ (1/β− 1)kA nor ωBw+ (1/β− 1)kB is negative

(which ensures non-negative consumption for both agents). That is, given the unique level of capital

consistent with steady state, any distribution of this capital will be a constant equilibrium where each

individual just consumes the wage plus the interest on the capital. This case, including the associated

transitional dynamics, is discussed in detail in Chatterjee (1994).19 This model has no predictions for

long-run wealth inequality, other than to perpetuate whatever inequality initially prevails. This result is

robust to adding a proportional tax on capital income (with lump-sum rebates).

Heterogenity in critical places In contrast, assume that βA > βB. Then there is no steady state, but

asymptotically there is extreme wealth inequality: agent A owns the entire capital stock plus a claim on

agent B such that the latter has zero consumption. Intuitively, the relatively impatient agent B borrows

early on and then pays back later. Now, the model has predictions, and they are stark. The same stark

outcome would hold asymptotically if the two agents had the same discount factors but different returns

on their capital: rA > rB; we can assume that this is achieved by means of a proportional tax on agent

B’s capital income and lump-sum transfers of the proceeds. Again, agent A would hold all the wealth

asymptotically.

Consider yet another case, where βA = βB and rA = rB but where there is a progressive tax rate on

capital income. Assume first that this rate is strictly increasing in capital income. Then there is again a

sharp prediction, but one with full inequality: the only situation in which both agents’ Euler equations

can hold is that where they both have the same capital income and, therefore, the same levels of capital. A

second case of interest obtains when the tax rate is weakly increasing in capital income, with flat sections.

Then long-run inequality involves a unique total capital stock in steady state but a range of distributions

of this stock—such that both agents remain within the same tax bracket.

Risk Relative to these results, let us consider stochastic earnings. First, consider the case where the

total effective amount of labor is always constant but where all of the A agents receive the same shock

and all of the B agents receive another shock; thus, by construction, there is perfect negative correlation

between the shocks of the two agents. Under complete markets, i.e., when agents can fully insure, we

18The consideration of technological change gives slightly different results but does not materially affect the key discussion
in what follows.

19Notice that uA need not equal uB for this result to hold.
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obtain the same predictions for wealth inequality as above—in all the different subcases. In other words,

random incomes do not matter per se.

However, when earnings are not fully insured, this result no longer holds. In particular, in the

Bewley-Aiyagari-Huggett settings, there is only one asset and a constraint on borrowing and hence perfect

consumption smoothing is not possible; there is, instead, “precautionary saving”. Moreover, in all the

cases discussed above—no heterogeneity, different discount factors, different returns, progressive income

taxation—the model typically has a sharp long-run prediction: there is a unique, and non-degenerate,

steady-state wealth distribution. Intuitively, given that future earnings are random and cannot be traded

away unrestrictedly early on, relatively impatient consumers cannot end up in eternal poverty because

their wage income will always bounce back, hence eliminating the extreme wealth inequality predicted

under complete insurance/no earnings risk. Similar intuition applies in the other cases.

In the case with idiosyncratic, uninsurable risks, notice that partial-equilibrium analysis too becomes

interesting. For example, a lowering of the risk-free interest rate at which agents save will have smooth

effects on the average long-run wealth level held by a household, as well as on its ergodic distribution of

wealth more generally. This contrasts the “infinitely elastic” supply of household saving under complete

markets/no earnings risk around the point where the interest rate equals the discount rate (where the

long-run saving is zero (infinity) if the interest rate is lower (higher) than the discount rate by ever so

little).

Comparative statics under idiosyncratic risk and incomplete markets A key purpose of the

present subsection is to illustrate, with some examples, how the variance of earnings shocks can influence

steady-state inequality in the incomplete-markets settings. In later sections, we will also comment on

other types of comparative statics (e.g., with regard to the randomness in returns or in discount factors).

Suppose one departs from the case with a zero earnings variance and then increases it infinitesimally.

How will steady-state wealth inequality then be affected? Under homogeneity in preferences and returns,

long-run wealth inequality can go either up or down—depending on its starting position. If the starting

position is the case with full equality, earnings volatility will necessarily increase wealth inequality in the

long run, but if the starting position is at one of the extremes, wealth inequality will necessarily fall.

In the cases with either different discount factors or different person-specific returns, an increase in

earnings volatility above zero must decrease wealth inequality in the long run. The result that more

earnings risk can lower wealth inequality is perhaps not intuitive at first but with more risk one is

further from the frictionless outcome, which is always extreme inequality in these cases.20 Of course,

higher earnings inequality can also increase long-run wealth inequality in these models, mechanically or

due to the presence of progressive taxes (where absent shocks there is long-run equality). Kaymak &

Poschke (2016) do report this finding and their framework is precisely one without return or discount-rate

heterogeneity.

20As an example, Krusell et al. (2009) shows that the removal of aggregate risk, which also involves a lowering of idiosyn-
cratic risk, raises long-run wealth inequality quite significantly (since in that framework different households have different
discount factors, so that the removal of idiosyncratic risks took us closer to the no-risk, extreme long-run inequality outcome).
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Non-dynastic households Finally, let us comment on how departures from dynastic models affect

long-run inequality. The general answer is that it depends on what the bequest function looks like. If

households derive utility from bequeathing, then if the associated function happens to look exactly like the

value function in the associated dynastic household case—which would require it to also depend on any

current idiosyncratic shock—then we have the same predictions as above, except insofar as we perform

comparative statics.21 If the bequest function, instead, is more or less curved than the associated value

function, one would (heuristically) obtain less or more wealth inequality to be passed on from generation

to generation; if the bequest function does not take the earnings state into account one would limit

precautionary saving (to within one’s own life). Absent definitive microeconomic estimates of bequest

functions, we consider the dynastic structure a reasonable middle ground.

In the next sections, we describe our model economy. As advertised, the basic building block is

the framework in Aiyagari (1994), on top of which we add several layers of complexity to account for the

empirical evidence on earnings and return heterogeneity. The earnings process centers around a persistent

and temporary component, augmented by a Pareto tail. The return on capital is stochastic. Both the

mean and the dispersion of returns depend on the level of accumulated assets, a specification that can be

interpreted as the reduced form of a full portfolio choice model. Furthermore, the benchmark model also

features stochastic discount rates. Let us now describe each component separately.

4.2 Consumers

Time is discrete and there is a continuum of infinitely lived, ex ante identical consumers (dynasties).22

Preferences are defined over infinite streams of consumption with von Neumann-Morgenstern utility in

constant relative risk aversion (CRRA) form:

u(c) =
c1−γ

1− γ
. (1)

In period t, a consumer discounts the future with an idiosyncratic stochastic factor βt that is the realization

of a Markov process characterized by the conditional distribution Γβ(βt+1|βt), giving rise to the following

objective:

max
(ct)∞t=0

{
u(c0) + E0

[ ∞∑
t=1

t−1∏
s=0

βsu(ct)

]}
. (2)

Labor supply is exogenous. Each period t, a consumer supplies a stochastic amount lt = lt(pt, νt) of

efficiency units of labor to the market that depends on a persistent component pt ∼ Γp(pt|pt−1) and a

transitory component νt ∼ Γν(νt). Taking as given a competitive wage rate wt, her earnings are wtlt.

Asset markets are incomplete, consumers cannot fully insure against idiosyncratic shocks. In the

21The bequest function not depending on the current idiosyncratic shock amounts to not letting bequests be influenced by
the future income (shocks) faced by the offspring.

22To save on notation, we drop household subscripts from now on.
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model, the only endogenous choice is the overall level of savings at. The gross return on it is

1 + rt + rXt (at) + σX(at)ηt, (3)

where rt is an aggregate return component, rXt (·) and σX(·) are functions that control mean and standard

deviation of excess returns, and ηt is an i.i.d. standard normal idiosyncratic shock. The excess return

schedule should be viewed as the reduced form of an implicit portfolio choice model, where the optimal

choice is allowed to depend on the overall wealth level, albeit not on other persistent state variables.

In addition to heterogeneity, this specification allows for a limited amount of return persistence: in the

cross-section of all agents in this economy, returns are persistent because wealth is, but conditional on

the level of wealth, returns are uncorrelated over time.23

The decision problem of the consumer can be stated in recursive form as follows:

Vt(xt, pt, βt) = max
at+1≥a

{u(xt − at+1) + βtE [Vt+1(xt+1, pt+1, βt+1)|pt, βt]} (4)

subject to xt+1 = at+1 + yt+1 − τt+1(yt+1) + (1− τ̃t+1)ỹt+1 + Tt+1 (5)

yt+1 =
(
rt+1 + rXt+1(at+1)

)
at+1 + wt+1lt+1(pt+1, νt+1) (6)

ỹt+1 = σX(at+1)ηt+1at+1 (7)

Given cash-on-hand xt (all resources available in period t), the optimal savings decision and the

resulting value function depend solely on the persistent component of the earnings process pt and the

current discount factor βt. Conditional on (pt, βt), the expectation is taken over (pt+1, βt+1) as well as

the transitory shocks to earnings νt+1 and the return on capital ηt+1. Ordinary gross income yt is subject

to a non-linear income tax τt(·), while there is a flat (capital gains) tax τ̃t on the mean-zero idiosyncratic

return component.24 Each consumer receives a uniform lump-sum transfer Tt.

4.3 Production, government, and equilibrium

Firms are perfectly competitive and can be described by an aggregate constant returns to scale production

function F (Kt, L) that yields a wage rate per efficiency unit of labor wt = ∂F (Kt,L)
∂L as well as an (average)

market return on capital rt = ∂F (Kt,L)
∂K − δ, where δ ∈ (0, 1) is the depreciation rate. Aggregate labor

supply L is normalized to one throughout.

As in Aiyagari (1994), aggregate capital Kt equals the average of consumers’ asset holdings at in equi-

librium. Thus, the production side is rather standard, and aggregate capital income, net of depreciation,

is rtKt. However, in case there is a non-trivial excess return schedule rXt (·), individual capital income is

23Fagereng et al. (2015) and Bach et al. (2015) find not only heterogeneity but persistence in idiosyncratic asset returns.
However, especially Bach et al. (2015) find that a good portion of this persistence stems from richer consumers bearing more
aggregate risk, which we do not model here. Furthermore, we find below that we can replicate the wealth distribution in
1967, even in its remotest tails, quite accurately without genuine persistence in idiosyncratic returns.

24In the presence of a progressive income tax, sophisticated agents would seek to smooth capital income over time. For
tractability reasons, instead we impose a flat tax on the mean-zero stochastic capital income component.
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not proportional to asset holdings (i.e., not even the expectation of it). Thus, in order for capital market

clearing, a second condition has to hold, namely that aggregate capital income equals the average over

individual capital income. Both rXt (·) and σX(·) are treated as exogenous objects (that will be taken

from the data), thus the scalar rt is the second aggregate equilibrium object, beside Kt. Note that rt is

not solely a function of Kt, but depends on the asset distribution as well.

The government redistributes aggregate income by means of a uniform lump-sum payment, which

amounts to a constant fraction λ ∈ [0, 1] of aggregate tax revenues. The remainder is spent in a way such

that marginal utilities of agents are not affected. Since revenues from the flat capital gains tax net out

to zero in the aggregate, we omit them from the government budget constraint for simplicity.

Given time-invariant excess return schedules rX(·) and σX(·), a steady-state equilibrium of this econ-

omy is characterized by a market clearing level of capital K?, an aggregate return component r?, and a

lump-sum transfer T ? such that:

(i) factor prices are given by their respective marginal products w? = ∂F (K?,1)
∂L and r? = ∂F (K?,1)

∂K − δ;

(ii) given r?, w?, and T ?, consumers solve the stationary version of their decision problem, giving rise

to an invariant distribution Γ(a, p, β, ν, η);

(iii) the government redistributes a fraction λ of total tax revenues, i.e.,

T ? = λ

∫
τ(
(
r? + rX(a)

)
a+ w?l(p, ν))dΓ(a, p, β, ν, η);

(iv) and capital markets clear, i.e.,

K? =

∫
adΓ(a, p, β, ν, η), and

r?K? =

∫ (
r? + rX(a) + σX(a)η

)
adΓ(a, p, β, ν, η).

In the benchmark perfect-foresight transition experiment, we start the economy in period t0 in some

initial steady state, described by a parameter vector θ? and by the equilibrium objects (K?, r?, T ?). The

vector θ? parametrizes the tax schedule, the excess return schedule, and the earnings process. Agents

are fully surprised and learn about a new exogenous environment (θt)
t1
t=t0+1 that will prevail over some

transition period t = t0 + 1, t0 + 2, ..., t1. From t1 onwards, the exogenous environment will once again

be constant and equal to θt1 . In a perfect-foresight equilibrium, agents are fully informed about future

equilibrium objects (Kt, rt, Tt)
∞
t=t0+1 too and optimize accordingly. Capital markets clear and the fraction

of tax revenues λ that is redistributed is fixed.

In an alternative myopic transition experiment, agents are surprised about the new exogenous envi-

ronment and equilibrium prices every period. That is, in period t = t0, t0+1, ..., t1−1, given a distribution

Γt(xt, pt, βt), they choose a savings decision rule, at+1 = gt(xt, pt, βt), assuming that both θt and (rt, wt, Tt)

will prevail forever. In period t+ 1, they are accordingly surprised that: one, the exogenous environment

has changed to θt+1; and, two, that equilibrium factor returns (rt+1, wt+1) and transfers Tt+1 result from
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capital-market clearing and government-budget balance in period t+ 1.25 These two informational struc-

tures are, of course, extreme. We chose them because we expect them to bracket a range of informational

assumptions. Given that the results, as will be reported below, turn out to be very similar across the two

structures, we are confident that our findings are robust to other variations in this dimension.

5 The right tail of the wealth distribution: approximately Pareto

In this section, we briefly explain the main mechanism that leads to a “fat” Pareto-shaped right tail in

the wealth distribution. The same mechanism is at play in the much simpler stochastic-β model originally

proposed in Krusell & Smith (1998).

Formally, we make use of a mathematical result on random growth by Kesten (1973): consider a

stochastic process

at = stat−1 + εt, (8)

where st and εt are (for our purposes positive) i.i.d. random variables. If there exists some ζ > 0 such

that E[sζ ] = 1 as well as E[εζ ] <∞, then at converges in probability to a random variable A that satisfies

lima→∞ Prob(A > a) ∝ a−ζ , i.e., the right tail of the stationary distribution has a Pareto shape.26

In a setup like ours, it turns out—as we discuss in some more detail below—that s is the asymptotic

marginal propensity to save out of initial-period asset holdings. Moreover, this propensity is random,

whence it obtains a time subscript. In a basic model with only discount-factor randomness, s varies

precisely with β; this turns out to be a property already of the model in Krusell & Smith (1998) designed

to match the wealth distribution, though the β distribution there is quite stripped down. In the present

somewhat augmented model, st also varies with the idiosyncratic return to wealth, ηt. Random earnings

appear in the linear approximation through the error term εt. Crucially, in this class of models, optimal

saving decisions are asymptotically, with increasing wealth, linear in economies with idiosyncratic risk

and incomplete markets.27

Assuming a fixed discount rate, Carroll & Kimball (1996) prove in a finite-horizon setting that the

consumption function is concave under hyperbolic absolute risk version, which comprises most commonly

25That is, (rt+1, wt+1) are the marginal products of the net production function F (Kt+1, 1)− δKt+1, where

Kt+1 =

∫
gt(xt, pt, βt)dΓt(at, pt, βt, νt, ηt),

rt+1 is given by

rt+1 = rt+1 −
1

Kt+1

∫ (
rXt+1(at+1) + σX(at+1)ηt+1

)
at+1dΓt+1(at+1, pt+1, βt+1, νt+1, ηt+1),

and

Tt+1 = λ

∫
τt+1

((
rt+1 + rXt+1(at+1)

)
at+1 + wt+1lt+1(pt+1, νt+1)

)
dΓt+1(at+1, pt+1, βt+1, νt+1, ηt+1),

where Γt+1 is the distribution in period t+ 1 generated by the period-t distribution Γt and the decision rule gt.
26The exact conditions as well as a very accessible treatment can be found in Gabaix (2009).
27In fact, the decision rules are almost linear for all but the very poorest agents, i.e., those close to the borrowing constraint.

For this reason, approximate aggregation as introduced in Krusell & Smith (1998) typically works very well.
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used utility functions (e.g., CRRA). Hence, the savings rule is convex. However, as household wealth

increases, the convexity in the savings rule becomes weaker and weaker.28 Intuitively, as wealth grows

large consumers can smooth consumption more and more effectively. Moreover, with CRRA preferences

decisions rules are exactly linear in the absence of risk (or with complete markets against such risk).

The slope is then larger (smaller) than one as the discount rate is smaller (larger) than the interest rate.

In the recent literature on the Pareto tail in the wealth distribution, either saving rates or returns to

capital (or both, as in this paper) are assumed to vary randomly across consumers. Saving rules are then

asymptotically linear with random coefficients: Benhabib et al. (2015b) show analytically that in this

case the unique ergodic wealth distribution has a Pareto distribution in its right tail.

Figure 2 shows the marginal propensity to save out of capital holdings (denoted k in the figure)

arising from the stochastic-β model under study in the present paper.29 As discussed above, the marginal

propensity to save increases in wealth, holding earnings constant, and asymptotes to a constant that

depends on the consumer’s discount factor. Figure 3 displays the tail behavior of the stationary wealth

distribution. In line with the theoretical results in Benhabib et al. (2015b), the logarithm of its counter-

cumulative distribution function becomes linear in the logarithm of assets as assets grow large, indicating

that the right tail of the distribution follows a Pareto distribution.
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Figure 2: Asymptotic marginal propensity to save

In light of this result, it is worth noting that the model in Castañeda et al. (2003)—which generates

substantial wealth inequality using an earnings process featuring a low-probability but transient very-

high-earnings state—does not deliver a Pareto tail in wealth. In this model, in which consumers have

a common discount rate, marginal propensities to save do not vary but instead converge to the same

28A direct proof for a two-period problem can be found in Krusell & Smith (2006); Carroll (2012) proves the asymptotic
linearity of the savings rule in a finite-horizon problem as the horizon grows large.

29The graphs in this section are derived from a simplified model with a flat tax, to focus on the main mechanism.
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Figure 3: Pareto tail of the wealth distribution

constant, independently of the level of earnings and as a result the steady-state distribution of wealth

does not feature a Pareto tail. This model can deliver such a Pareto tail, however, if the earning process

itself has a Pareto tail. In the absence of randomness in either discount rates or returns, however,

the wealth distribution inherits not only the Pareto tail of the earnings distribution but also its Pareto

coefficient. Because earnings are considerably less concentrated than wealth, the resulting tail in wealth

is too thin to match the data in such an alternative model.

6 Calibration

In this section, we describe how we calibrate our model economy. As indicated in Figure 1, the U.S. wealth

distribution was roughly stable in the 1950s and 1960s, as was tax progressivity. This, together with the

fact that some of our time series estimates start in 1967, make this year a natural initial steady state. We

set the model period to a year to conform to the tax system. Overall, the strategy is to use observables to

select the structural model parameters to the largest extent possible; the key observables are the earnings

process, the tax system, and the households’ portfolio and return structures. To the extent not all the

wealth inequality can be accounted for this way, we then calibrate the discount factor process to match

the 1967 wealth distribution as completely as possible (given the parsimonious process for discount factors

and the multidimensionality of the wealth distribution, a full match is of course not feasible). As we shall

see, we present two main cases, in one of which there is no discount-factor heterogeneity at all (and the

main results differ only marginally between these two cases).
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Figure 4: Earnings process ingredients

6.1 Basic parameters

We parameterize the production technology and utility function using standard functional forms and

parameters. The (gross) production function is given by F (K,L) = KαL1−α. The capital share is set

to α = 0.36 and depreciation to δ = 0.048 annually. In an extension (see Section 9.1), we check the

sensitivity of our results to using a constant-elasticity-of-substitution production function with (gross)

elasticity greater than one. The coefficient of relative risk aversion, γ, is set to 1.5.

6.2 The earnings process

The earnings process is based on the traditional log-normal framework with lt(pt, νt) = exp(pt + νt).

That is, we assume that the persistent component pt of the earnings process follows a Gaussian AR(1)

process with parameters (ρP , σPt ). The autocorrelation coefficient, ρP , is fixed over time, while the

innovation standard deviation varies. Likewise, the transitory component νt is also assumed to be normally

distributed with standard deviation σTt . We use estimates by Heathcote et al. (2010) that span the period

1967–2000 and assume that the time-varying variances of the innovations are constant thereafter. The

left panel of Figure 4 displays the resulting cross-sectional dispersion. The estimates show a significant

increase in earnings risk for both components.

As is well known, the resulting log-normal cross-sectional distribution of earnings understates the

concentration of top labor income quite severely. Because the observed increase in top labor income

shares is potentially an important explanation for the observed increase in wealth inequality at the top,

we augment the framework for the top 10% earners in such a way that we can directly match the fraction

of labor income going to the top 10%, top 1%, top 0.1% and top 0.01%. In concrete terms, we posit

18



1970 1980 1990 2000 2010

25

30

35

top 10% share

model
data

1970 1980 1990 2000 2010

6

8

10

12

14
top 1% share

1970 1980 1990 2000 2010

1

2

3

4

5

top 0.1% share

1970 1980 1990 2000 2010

0.5

1

1.5

2

top 0.01% share

Figure 5: Top labor income shares in %

lt(pt, νt) = ψt(pt) exp(νt), where

ψt(pt) =

exp(pt) if Fpt(pt) ≤ 0.9,

F−1Pareto(κt)

(
Fpt (pt)−0.9

1−0.9

)
if Fpt(pt) > 0.9.

(9)

Fpt(·) is the cdf of pt and F−1Pareto(κt)
(·) the inverse cdf for a Pareto distribution with lower bound F−1pt (0.9)

and shape coefficient κt. Effectively, we thus assume that top earnings are spread out according to a

(scaled) Pareto distribution, while earnings for the majority of workers are distributed according to a log-

normal distribution. The Pareto tail coefficient on labor income κt is then one additional free parameter

to calibrate in each year year. We use estimates on top wage shares from an updated series by Piketty &

Saez (2003) spanning 1967–2011 as calibration targets. The right panel of Figure 4 displays the calibrated

Pareto tail coefficient κt and Figure 5 displays the resulting top labor income shares. That we can match

top labor income shares very well using just a single parameter in each year (i.e., the tail coefficient)

simply reflects the fact that the Pareto distribution is a very good description of the cross-sectional

earnings distribution at the top.

We do not explicitly model unemployment, nor voluntary non-employment or retirement. We do,

however, introduce a zero-earnings state, occurring with probability χ = 0.075 independently of (pt, νt)

and over time, reflecting both long-term unemployment and shocks that trigger temporary exit from the
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Figure 6: Imputed marginal tax rates for selected total income levels

labor force. This probability is calibrated, together with a borrowing constraint amounting to roughly

one yearly lump-sum transfer, so that the initial steady-state wealth distribution matches both the share

of wealth held by the bottom 50% and the fraction of the population with negative net wealth.

6.3 Tax system

The progressivity of the U.S. tax system has decreased substantially over the model period. To account

for these changes, we use estimates on federal effective tax rates by Piketty & Saez (2007) for the period

1967–2000, keeping them constant thereafter. These comprise the four major federal taxes: individual

income, corporate income, estate and gift, and payroll taxes.30 Piketty & Saez (2007) calculate effective

average tax rates for eleven income brackets, with a particularly detailed decomposition for top income

groups (up to the top 0.01%). We translate this data to our model by means of a step-wise tax function

τt(·) with eleven steps. For each bracket, the threshold is set to match its income share in the data and

the marginal tax rate such that the resulting average tax rate aligns with the data. Figure 6 shows that

the U.S. tax system has indeed become much less progressive over the model period.

In our model, taxes τt(yt) are a function of total ordinary income yt, defined as the sum of labor

income and the deterministic part of capital income. A weakness of our calibration is that we do not

have separate tax rates for different sources of income, but a strength is that we use effective tax rates,

30Given that our model abstracts from the life cycle, it is appropriate to include the estate tax in the tax on total income,
thus effectively smoothing out the incidence of this tax over the life cycle. Ignoring the estate tax would mean omitting a
major source of decreasing tax progressivity. Piketty & Saez (2007) assume further that the corporate income tax burden falls
entirely (and uniformly) on capital income. They argue that this is a middle-ground assumption (regarding the resulting tax
progressivity) between assuming that the tax falls solely on shareholders at one extreme and assuming that it is effectively
born by labor income at the other extreme.
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thereby accounting for tax avoidance and changing portfolio composition to the extent that these vary

systematically with income.

The stochastic part of capital income is uncorrelated over time, and equals zero in expectation for

every agent. Especially at the top end of the (capital) income distribution, with sizable return risk and

thus sizable year-to-year capital income fluctuations, agents have strong incentives to smooth reported

capital income over time if the tax function is progressive. To avoid dealing with this issue in full detail,

we use a time-varying flat tax τ̃t for this part of capital income. In particular, we use an annual time

series on the average effective capital gains tax.31

To account for government transfers, we introduce a social safety net in the simplest possible way

by assuming that each agent receives an (untaxed) lump-sum transfer Tt every period, its size being a

constant fraction λ = 0.6 of tax revenues.32

Note that the income tax does not distort labor supply in our setting, since we assume the latter is

exogenous. This simplification is obviously not a good one for understanding the welfare consequences of

changes in tax rates, but because our current focus is on wealth accumulation and its distribution in the

population we do not think that it is a major shortcoming.

6.4 Idiosyncratic returns to capital

The idiosyncratic return component depends on the overall wealth level at. In recent work based on

Swedish, respectively Norwegian administrative data, both Bach et al. (2015) and Fagereng et al. (2015)

document a strong relation between a household’s overall wealth and return characteristics. These papers

disagree somewhat in their conclusions as to whether differential returns can be fully explained by differ-

ential portfolio choice. The possibility that different households have different skills at return finding (an

interpretation made in Fagereng et al. (2015)) is particularly radical relative to the traditional finance

literature. Although we do not want to rule out that this hypothesis is true, our calibration strategy is

following the work of Bach et al. (2015). In particular, we calibrate the schedules of mean excess returns

rXt (at) and return dispersions σX(at) such that they represent an approximation to the reduced form of

an underlying portfolio choice model.33

The mean excess return schedule is computed as

rXt (at) =
∑
c∈C

wc(at)
(
r̄c,t + r̃Xc (at)

)
, (10)

where wc(at) is the portfolio weight on asset class c, r̄c,t is the aggregate excess return on asset class c, and

31The time series is published in U.S. Department of the Treasury (2016). This is a slight approximation to the actual,
historical, U.S. tax schedule for capital gains, which features rates that vary across asset categories, amount of time the asset
was held, and also overall income. The capital gains tax schedule has been slightly progressive as well, though much less so
than the one on ordinary income.

32About 60% of total federal outlays are mandatory spending, the bulk of it on Social Security, Medicare, Medicaid, and
income security programs (CBO, 2015). The remainder is spent on the Department of Defense and other government agencies
as well as on interest payments.

33In a fully rational portfolio choice model, optimal allocations would depend not only on the wealth level, but also on our
other persistent states (in particular, the persistent component of earnings). The data we use does not allow for this level of
detail.
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Figure 7: Schedule of excess returns

r̃Xc (at) an idiosyncratic component that accounts for within-asset class return heterogeneity. We consider

four asset classes: a riskfree asset, public equity, private equity, and housing. The schedules for portfolio

weights wc(·) and within-asset class heterogeneity r̃Xc (·) are fixed over time. We base them on data from

Bach et al. (2015), who report a detailed breakdown up to the top 0.01%. Aggregate excess returns r̄c,t

are time-varying and based on aggregate U.S. data. In particular, for public and private equity, we use

estimates from Kartashova (2014), who documents a premium for private equity over public equity. For

housing, we model the financial return as the sum of capital gains and imputed rent. For the capital gains

term, we rely on the national Case-Shiller home price index.34 In the initial and eventual steady states,

we assume that house prices grow at the rate of overall inflation, in line with long-run evidence. We

assume that the imputed rent term is fixed over time; we set it to 5.33%, the U.S. time average reported

in Jorda et al. (2017). Note that the location of the excess return schedule rXt (·) is irrelevant, as the

endogenous aggregate return component rt adjusts for market clearing. In other words, only differences

in returns across asset classes, and within, are treated as exogenous.

The schedule of idiosyncratic return dispersion is computed as

(
σX(at)

)2
=
∑
c∈C

(
wc(at)σ̃

X
c (at)

)2
, (11)

where the idiosyncratic standard deviation of the return on asset class c, σ̃Xc (·), is fixed over time but

allowed to depend on the wealth level. For private and public equity, we again rely on Bach et al. (2015).

For housing, we set the standard deviation to 0.14 across the wealth distribution, based on the observed

volatility of individual house prices in the U.S.35

Figure 7 summarizes the excess return schedule in the 1967 steady state. Full details are relegated

to the appendix (see Table 8). As we explain below, using the unadjusted schedules results in much too

much wealth inequality at the very top. For this reason, in the benchmark model we scale down the

34The series is accessible at http://www.econ.yale.edu/~shiller/data/Fig3-1.xls.
35See Piazzesi & Schneider (2016).
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standard deviation of private equity across the board by a factor φ = 0.52. As can be seen in Figure

7, this adjustment reduces in particular the volatility of the portfolio standard deviation for the top 1%

of the wealth distribution, and consequently reduces the thickness of the extreme right tail to a level

commensurate with data.

Over time, only aggregate returns by asset class r̄c,t are varying. We use ten year moving averages of

realized aggregate returns for the transition, displayed in Figure 8. These are expressed relative to the

return on the base category, the riskfree asset.
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Figure 8: Aggregate excess returns

6.5 Idiosyncratic discount rates

We provide results for two model versions. In the first one, we do not re-scale the standard deviation

of private equity (φ = 1) and we do not allow for preference heterogeneity. We refer to this as a the

single-β model. Thus, the only two free parameters we are calibrating are then the borrowing constraint

and the probability of the zero earnings state, which are mostly affecting the bottom end of the wealth

distribution. Table 1 shows that, quite remarkably, the resulting invariant wealth distribution matches

the data in 1967 quite well.36

While the single-β model reproduces the overall amount of wealth inequality, it overstates wealth

concentration at the top end. To the extent that the wealth distribution has a Pareto tail to the right,

this coefficient is pinned down by the ratio of the top 0.01% share to the top 0.1% share, or the ratio of the

top 0.1% share to the top 1% share, both of which are roughly one-third in the data. In the single-β model,

this ratio is increasing the further one moves out in the right tail, and stabilizing at a value that is by

far too high. These findings motivate the specification of the benchmark model: a model that in addition

allows for discount factor (β) heterogeneity and re-scales the standard deviation of private equity returns

36The data on top wealth shares in Table 1 is from Saez & Zucman (2016), who use a capitalization method to calculate
them. Because this method is unreliable for a breakdown of the bottom 90%, the other data moments are based on survey
data (SCF and precursors); see Kennickell (2011).

23



Table 1: Matching the 1967 wealth distribution as a steady state

Parameter ρβ σβ φ a χ

Single-β Model n.a. (0.0) (1.0) -0.26 7.5%
Benchmark Model 0.992 0.0006 0.52 -0.22 7.5%

Target Top 10% Top 1% Top 0.1% Top 0.01% Bottom 50% Fraction a < 0

Data 70.8% 27.8% 9.4% 3.1% 4.0% 8.0%
Single-β Model 66.6% 23.7% 11.2% 7.2% 3.5% 7.3%
Benchmark Model 73.8% 27.4% 8.4% 3.2% 3.0% 6.6%

by a factor φ. Intuitively, the discount-factor distribution affects the entire asset distribution, including

the Pareto tail coefficient. More heterogeneity creates more wealth inequality. The standard deviation of

private equity returns, on the other hand, mostly affects the very right tail, and thus the tail coefficient.

We use an AR(1) structure for the discount factor. Thus, from the perspective of dispersion in the

benchmark model we have three parameters to calibrate: the variance and persistence of β and the scaling

factor φ. First, we select the persistence of the β process based on what seems a priori reasonable given a

generational structure. Second, we target two wealth-distribution statistics to obtain the remaining two

variance elements (σβ and φ): the Pareto tail coefficient and the fraction of total wealth held by the 10%

richest. This identifies our parameters. We now describe the details.

We posit that β follows a Gaussian AR(1) process:

βt = ρββt−1 + (1− ρβ)µβ + σβεβt , εβt ∼ N(0, 1).

Importantly, all these parameters are fixed over time (by varying them freely we could of course track

the evolution of the wealth distribution at will). The mean discount factor determines the equilibrium

capital-output ratio and we set it to µβ = 0.944 to match a ratio of capital to net output of about 4 in the

initial steady state. The calibrated stochastic-β parameters are ρβ = 0.992 and σβ = 0.0006, implying

that the standard deviation of the cross-sectional distribution of discount factors, which does not vary

over time, is 0.0050. Moreover, the choice of ρβ implies that roughly one third of the gap between a given

discount factor and the average discount factor is closed within a generation.

To summarize the calibration of the benchmark model, Table 1 lists the values of the five parame-

ters (persistence and standard deviation of the discount rates; standard deviation of return shocks; the

borrowing constraint; and the probability of zero income) calibrated to match six features of the initial

steady-state wealth distribution as closely as possible: the shares held by the top 10%, the top 1%, the

top 0.1%, the top 0.01%, and the bottom 50% as well as the fraction of the population with negative

net wealth. The fit is excellent at both ends of the distribution. Compared to the single-β model, the

benchmark model matches the Pareto tail coefficient in addition.

Two comments are in order. First, when solving the model numerically we truncate the β and η

distributions to ensure that the consumer’s optimization problem is well-defined (with finite present-value

utility) and that a stationary distribution of wealth emerges. Unlike in a standard Aiyagari economy
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without heterogeneity in preferences or returns, in our model some agents temporarily have discount

rates that are smaller than the rate of return, a necessary condition for generating a Pareto tail in the

wealth distribution based on discount-rate heterogeneity alone (see the discussion in Section 5). It follows

that the support of the stationary wealth distribution is not bounded from above. In practice, we use

a large enough upper bound in our numerical implementation so that the resulting truncation error is

negligible.37

Second, if our goal were solely to match the Pareto coefficient in the right tail of the wealth distribution,

it would be excessive to calibrate as many as five parameters to match features of the wealth distribution.

But the tail coefficient is not a sufficient statistic for wealth inequality unless the entire distribution is

(counterfactually) Pareto-shaped: even if, say, the top 1% of the wealth distribution can be described

exactly by a Pareto distribution, the tail coefficient determines only the distribution of wealth within

these top 1% but not the fraction of total wealth held by the top 1%.

7 Results I: steady-state wealth inequality

A first and, we believe, important contribution of the present paper is its comprehensive breakdown of

long-run wealth inequality, which will reported on in Section 7.2 below. Such a breakdown is also useful

because it will hint at what to expect from movements over time in some of the drivers of long-run wealth

inequality—the subject of Section 8. In Section 7.1, we first briefly relate to the relevant literature. Both

these sections draw on, and to some extent reiterate, the earlier discussions in Sections 2 and 4.1.

7.1 Relations to the literature on long-run wealth inequality

In the basic Aiyagari (1994) setting, where steady-state earnings inequality is calibrated as an AR(1)

process to PSID data, very little wealth inequality is generated. Intuitively, for the very highest earners,

insurance is not an issue and the interest rate is not high enough to maintain their asset levels: it is below

the discount rate, since it is depressed by the precautionary saving of less well insured households. So

they decumulate. Since then, the literature has thus had the challenge to come up with mechanisms that

generate a greater accumulation, or maintenance, of wealth by the richest. Krusell & Smith (1998) propose

discount-rate heterogeneity, so that the richest are rich because they choose to save at higher rates than

others. Castañeda et al. (2003) propose a different earnings process, whereby there are extreme right-tail

outcomes at the same time as the risk of very large drops in earnings for the extreme earners is non-

negligible. Hence, precautionary saving operates in the right tail as well. Quadrini (2000) and Cagetti &

De Nardi (2006) look at entrepreneurs (and occupational choice) specifically as a candidate richest group

and argue that the returns to saving can be higher for high wealth levels. Relatedly, Campanale (2007)

uses a return schedule that is simply increasing in wealth, motivated by the fact that wealthier households

hold more stock. Giving the bequest function a low curvature can also help (see, e.g., Cagetti & De Nardi

(2009)). More recently, idiosyncratic return heterogeneity has been explored by a number of papers, as

discussed in Section 2.

37Appendix A describes in detail our numerical procedure.
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We clearly view discount-factor heterogeneity as realistic but, since we do not have fully reliable

measurements of it, it must only play a residual role. We view the Castañeda et al. (2003) approach as

interesting but somewhat problematic because it does not rely on independent, direct measurement of

the earnings process—some features are selected to match wealth inequality—and the implied right-tail

features of the earnings distribution are, in fact, too extreme compared to data. Moreover, as already

discussed, it is not consistent with a Pareto-shaped right tail in wealth. Our Table 1 above shows

that, quite encouragingly, given the observables we use, it is no longer necessary to resort to residual

explanations (such as preference heterogeneity or a non-altruistic bequest function) to account for the

right tail of the wealth distribution.38 Moreover, the overall fit of the distribution is quite good, i.e., not

just the top part fits well.

The next section will detail how each of the factors behind long-run wealth dispersion matter, but

let us already emphasize that portfolio and return heterogeneity is key. What our present paper does

not provide is a deeper theory either of portfolio choice or of return differences across assets. The latter

have plagued the macro-finance literature since Mehra & Prescott (1985), but to understand the former

is at least as challenging. One should therefore view our encouraging results here as far from satisfactory;

rather, we now need to turn to household finance and investments as a key area for understanding long-run

wealth inequality.

7.2 Decomposing wealth inequality in the benchmark model

How much does each of the various sources of heterogeneity contribute to wealth inequality in the bench-

mark economy? To answer this question, we start from the benchmark model, shut down one channel at

a time, and report on the general equilibrium differences in Table 2. These counterfactual exercises also

give clues as to how the dynamics will work out—but of course will not help us understand the speed of

these dynamics.

The first row in the table corresponds to a counterfactual in which discount factor heterogeneity is

removed (σβ = 0). Then, e.g., the top 10% wealth share decreases from 73.8% (the value in the benchmark

model) to 65.0%. We interpret this as β-heterogeneity contributing +8.8% to the top 10% wealth share.

Overall, discount factor heterogeneity does contribute positively to wealth inequality, but it is not the

most important factor. Instead, differences in returns are crucial. Line 7 shuts down return differences

across wealth levels (rXt (·) = 0), line 8 return risk (σX(·) = 0), while 6 combines the two modifications.

Overall, differences in mean returns across wealth levels are far more important, though at the very top

idiosyncratic return risk matters equally. Note that because model moments are highly non-linear as a

function of parameters, individual modifications do not add up.

A striking feature of Table 2 is the fundamental importance of tax progressivity in keeping wealth

inequality in check. Line 5 refers to a counterfactual that replaces the progressive income tax τ(·) with

a flat tax, such that aggregate tax revenues relative to output are unchanged. Wealth inequality is

exploding. For example, the top 1% share increases from 27.4% to 89.2%. Why is tax progressivity

38One can view a departure from the dynastic structure, by “freeing up” the bequest function, as an alternative very
similar to discount-factor heterogeneity.
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Table 2: Contribution of various channels for steady state wealth inequality in the
benchmark model

# top 10% top 1% top 0.1% top 0.01% Gini

1 β-heterogeneity 8.8% 7.7% 3.8% 2.0% 0.050
2 earnings heterogeneity -27.5% -17.8% -9.5% -6.4% -0.173
3 persistent -5.0% -7.5% -4.2% -2.9% 0.009
4 transitory -11.6% -4.3% -1.7% -0.9% -0.109
5 tax progressivity -21.3% -61.8% -71.2% -67.1% -0.148
6 return heterogeneity 29.5% 18.4% 6.6% 2.8% 0.192
7 mean differences 25.8% 16.7% 6.0% 2.6% 0.174
8 return risk 0.7% 2.2% 3.3% 2.5% 0.004

so important? There are both partial- and general-equilibrium effects at work here. Starting with the

latter, as we argued in Section 4.1, it is well known in the context of complete-markets models without

return, discount-factor, or wage heterogeneity that progressivity in the tax rate on saving is a strong

force toward long-run equality, whereas mere proportional taxes are consistent with any distribution of

wealth as a steady-state equilibrium.39 The mathematical intuition behind the force of progressivity is

particularly clear in a simple case where the marginal tax rate is strictly increasing in wealth. Here,

because all consumers face the same market rate under complete markets (and have the same discount

rates and wage incomes), they also need to have the same net of tax return if their consumption levels

are all constant (or growing at a common constant rate); hence they need to have the same wealth in

the long run. This mechanism is still present in a more general model such as the present one, which

has incomplete markets and differences in wages, returns, and discount rates, though with less long-run

poignancy: a strictly increasing marginal tax rate is still consistent with long-run wealth inequality.

Turning to the partial-equilibrium analysis, note that the marginal saving propensity (out of initial-

period assets) for a well-insured consumer with power utility is approximately β(1 + r(1− τ ′(y))) raised

to a positive power, where τ ′(y) is the consumer’s current marginal tax rate.40 This tax rate varies with

the consumer’s income, y, but it is persistent over time because income is persistent. Tax progressivity,

therefore, generates persistent differences across consumers that act like persistent differences either in

the consumers’ after-tax rates-of-return, r(1 − τ ′(y)), or, equivalently, in consumers’ discount factors.

Consequently, decreases in progressivity have the same effect as increasing the dispersion in returns, a

powerful force for generating higher wealth inequality.

Lines 2–4 in Table 2 document that earnings heterogeneity reduces wealth inequality in the benchmark

model. Line 3 shuts down heterogeneity in the persistent component, line 4 likewise in the transitory

component, while line 2 removes all earnings heterogeneity. Overall, both components reduce wealth

inequality, though the strength of each of these channels depends somewhat on the particular wealth

distribution statistic one looks at. To understand this finding, note first that without return or discount

factor heterogeneity, earnings dispersion would contribute positively to wealth inequality. Then, why

39Total wealth is of course pinned down so that the return to saving equal the discount rate, abstracting from consumption
growth.

40With u(c) = c1−σ−1
1−σ , the power is 1/σ.
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is the effect reversed in the benchmark model? As also noted in Section 4.1, heterogeneity in either

discount factors (or returns) is a powerful force driving the wealth distribution apart: with permanently

different discount rates and complete markets to insure against earnings risk, the most patient household

would eventually hold all the economy’s wealth. Earnings risk, then, is a friction, or glue, that keeps the

distribution from flying apart altogether, as also in Becker (1980)’s work cited in Section 1. This risk

operates especially strongly at the low end of the wealth distribution, where poorer consumers save to

move away from borrowing constraints when earnings risk is larger.

In our model higher earnings risk also generates a thinner right tail in the wealth distribution because

the resulting increase in aggregate precautionary savings drives down the equilibrium interest rate. This

drop in the interest rate shifts the distribution of saving propensities to the left, particularly for the well-

insured wealthy consumers for whom wage risk is largely immaterial and who therefore have essentially

linear decision rules. As discussed in Section 5, the Pareto tail coefficient, ζ, is defined implicitly by the

equation E[sζ ] = 1, where s is the (asymptotic) marginal propensity to save out of wealth. As s falls for

all discount-factor types, ζ must increase to compensate, i.e., the Pareto tail becomes thinner.41

8 Results II: the evolution of the wealth distribution

In Section 7, we showed that our model framework, when properly calibrated, can replicate wealth het-

erogeneity, including the Pareto-shaped right tail, as well as other macroeconomic moments in the initial

steady state. We proceed in this section to report on our second main result: the evolution of the wealth

distribution in the benchmark model economy contrasted with the data. Subsequently, we employ coun-

terfactual analysis in order to decompose those overall changes and identify the key drivers of movements

in the wealth distribution.

8.1 Benchmark transition experiment

Figure 9 displays the evolution of top wealth shares in the model (solid blue line) compared to the data as

measured by Saez & Zucman (2016) using the capitalization method (SZ). In addition, whenever possible

the graphs are augmented by survey estimates from the SCF (dashed yellow lines). These shares display a

pronounced U-shape, reaching the trough in the late 1970s to mid 1980s, followed by a sharp subsequent

increase. The model economy matches both the initial decrease and the overall increase very well for

the top 10% and the top 1%. Further in the tail, the model continues to capture the trend, though the

increase is not quite as fast as estimated by SZ. In contrast, the model overstates the increase in wealth

concentration at the top relative to SCF data. As we discuss further in Section 9.3, the top wealth shares

in the model economy continue to increase slowly over a long transition period before reaching the new

steady state. This finding is consistent with Gabaix et al. (2016), who argue that the random growth

mechanism that drives top wealth inequality tends to produce slow transitions (especially in the tails of

the distribution).

41Nirei & Aoki (2016) observe the same effect.
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Figure 9: Top wealth shares in %, 1967–2012

Figure 10 displays the evolution of the capital-output ratio and of the bottom 50% wealth share. The

model’s implications for aggregate wealth are broadly in line with the data, thus showing a steady rise,

ignoring shorter-run movements. The bottom 50% have lost a little over two thirds of their already small

share of aggregate wealth; the model accounts for about two thirds of this decline in wealth.42
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Figure 10: Capital-output ratio and bottom 50% share (in %), 1967–2012

We also summarize the findings from our main experiment in a set of tables: Tables 3-5. Let us first

look at the top part of the distribution and compare to SCF data, which is available consistently from

1989. Table 3 reports the results. As illustrated above, the SCF shows increases in the wealth shares held

42The method of Saez & Zucman’s unfortunately does not allow for a breakdown of the bottom 90% into subgroups.
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by the top 10%, the top 1%, and the top 0.1%.

Table 3: Change in Top Wealth Shares (SCF)

Data (SCF) Model

Top 10% Top 1% Top 0.1% Top 10% Top 1% Top 0.1%

1989 67.1 30.1 10.8 69.3 24.5 7.4
2013 75.3 35.8 13.5 78.9 37.1 14.8
Change 8.2 5.7 2.7 9.5 12.6 7.4
Relative Change 12.2% 19.1% 25.4% 13.7% 51.5% 100.3%

Fraction of Rel. Change Explained by Model 112.5% 270.1% 394.5%

Survey of Consumer Finance (SCF) data as reported by Saez & Zucman (2016). Wealth shares are displayed
in percentage points. For example, the top 1% controlled 30.1% of all wealth in 1989. By 2013, they controlled
35.8% of all wealth, an increase of 5.7 percentage points or 19.1% in relative terms. In the model, their share
increased from 24.5% to 37.1%, an increase of 12.6 percentage points or 51.5%. Thus, the model explains a
fraction 51.5

19.1
= 270.1% of the cumulative increase for this group.

Here the model roughly matches the cumulated increase in inequality over the whole period for the

10% group but significantly over-predicts it for the top two groups (by a factor three to four).

Looking at the same population percentiles and comparing the model data to the Saez & Zucman

data, we can now go back and cumulate wealth increases from 1967, displayed in Table 4.

Table 4: Change in Top Wealth Shares (Saez & Zucman)

Data (Saez & Zucman) Model

Top 10% Top 1% Top 0.1% Top 10% Top 1% Top 0.1%

1967 70.8 27.8 9.4 73.8 27.4 8.4
2012 77.2 41.8 22.0 78.5 36.5 14.4
Change 6.4 14.0 12.6 4.7 9.1 6.0
Relative Change 9.0% 50.4% 134.0% 6.4% 33.2% 72.2%

Fraction of Rel. Change Explained by Model 70.8% 65.9% 53.8%

Data based on the capitalization method estimates by Saez & Zucman (2016).

Here the model under-predicts cumulative increases in top wealth shares, by about one quarter to

one half. Clearly, in terms of the model’s quantitative performance in explaining cumulated increase in

inequality, the two data sets give different answers.

Finally, looking at the very richest, and here only Saez & Zucman have data, we see in Table 5 that

the model’s performance is still qualitatively correct but now the quantitative under-prediction is more

sizable.

The model predicts an increase in the fraction of wealth held by the top 0.01% by about three quarters,

whereas in the Saez & Zucman data set the increase is even larger, by more than a factor of three.

Clearly, although—as suggested above—the capitalization method underlying the data may exaggerate

the increases in wealth for the richest, this discrepancy is a major one unlikely to be solely due to

mismeasurement and it does not appear like the present model is fully adequate for capturing the bulk of

30



Table 5: Change in Top 0.01% Wealth Share

Data (Saez & Zucman) Model

1967 3.1 3.2
2012 11.2 5.6
Change 8.1 2.4
Relative Change 261.3% 75.4%

Fraction Explained 28.9%

how much the richest have gained. There is an obvious remaining candidate explanation: the idiosyncratic

return volatility has gone up over time. The measures of idiosyncratic return volatilities (across wealth

classes) only cover a short period of time, so we have no direct measure here to rely on. A phenomenon

that may be linked to a positive time trend of idiosyncratic return volatility is the increasing share of

private equity in household portfolios—a flipside of which is a smaller and smaller share in publicly traded

stock. Moreover, in Campbell et al. (2001), there is evidence of an increased volatility of individual stock

returns (by about a factor two increase in its standard deviation), so that if households held similarly

undiversified portfolios throughout the period, their portfolio returns would indeed display increasing

idiosyncratic volatility. We have not systematically examined this channel, as it involves much guesswork,

but we have arbitrarily run an experiment where this volatility is doubled over the period and it indeed

increases top wealth inequality by the end period quite significantly to levels comparable to those in the

data. This is all suggestive but much more worked is needed on this point.

8.2 Counterfactuals

Changes in four structural factors—earnings risk, top earnings inequality, tax progressivity, and excess

returns—drive the transitional as well as long-run dynamics in the model economy. To assess which of

these is the most important quantitatively, we conducted four experiments in which only one of the four

structural factors is allowed to change, the other three being held constant instead at their 1967 values.

Which of these changes is the main driver of increases in wealth inequality, particularly in the upper

reaches of the distribution? As we shall see, the main driver of changes in the right tail of the wealth

distribution is changes in taxes. Increases in earnings risk, on the other hand, reduce top wealth inequality,

other things equal. Changes in return premia account in particular for the shorter-run dynamics.

Table 6 summarizes the results of the four experiments, quantifying how much each of the factors

contributes to the changes in the wealth shares over the time period 1967–2012.43

To understand the numbers in the table, focus on the share of total wealth held by the richest

percentile. Saez & Zucman (2016) measure an increase in this share from 27.8% to 41.8% from 1967

to 2012. Over the same time period, allowing for changes only in earnings risk and keeping all other

parameters fixed at their initial steady-state values, the model predicts a decrease from 27.4% to 25.2%.

Changes in earnings risk therefore explain a fraction 24.5−27.4
27.4 /41.8−27.827.8 = −0.21 of the actual change.44

43The dynamics are graphed in Figures 12 and 13 in the appendix.
44Note that the fractions generally do not add up to the fraction explained when feeding in all observed changes at the
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Table 6: Fraction of change in wealth shares explained by model: decomposition by
channel

Bottom 50% Top 10% Top 1% Top 0.1% Top 0.01%

Taxes 0.49 1.57 1.15 0.72 0.36
Top Earnings Inequality 0.42 0.44 0.14 0.10 0.06
Earnings Risk -0.04 -0.84 -0.21 -0.09 -0.05
Return Premia -0.03 -0.58 -0.28 -0.13 -0.08

Combined 0.76 0.71 0.66 0.54 0.29

Again, the observed increases in earnings risk reduce inequality, moving it in the opposite direction from

the observed changes! (Separate increases in either the persistent or transitory components of earnings

risk also reduce inequality.) Instead, as can be seen for all the different distributional statistics, the main

driver of the surge in wealth concentration is the changing U.S. tax system. The increase in top earnings

inequality (parameterized by changes over time in the the Pareto tail coefficient κt on labor income) has

worked in the same direction, although the effect of this channel is much smaller. Changes in return

premia have also dampened the increase in wealth concentration on net, in particular explaining the

initial dip.

Why does an increase in earnings risk reduce wealth inequality? As explained in Sections 4.1 and

7.2, in the presence of return or discount factor heterogeneity, earnings risk can be viewed as the friction

that prevents the wealth distribution from exploding. Facing higher earnings risk, consumers seek to

increase precautionary savings, more so at the lower end of the wealth distribution. In addition, in

general equilibrium the interest rate decreases, slowing down wealth accumulation at the top.

Why have changes in the tax system induced such large changes in wealth inequality? Note first that

the average tax rate (i.e., aggregate tax revenues as a fraction of net output) in our model increases from

0.23 to 0.27 over the period 1967–2012. An increase in average taxes tends to reduce effective earnings risk

(because the tax is multiplicative), increasing inequality for the same reason (but in the opposite direction)

that the observed increases in (pre-tax) earnings risk reduce inequality. This effect, however, is a small one

unless the average tax rate changes dramatically. Much more important quantitatively is the dramatic

decrease in tax progressivity, where even small changes have large effects on inequality, especially at the

high end of the wealth distribution. As explained when discussing steady state inequality, tax progressivity

effectively reduces dispersion in returns or discount factors, two powerful forces for driving the wealth

distribution apart. Consequently, the observed decrease in progressivity triggered a large increase in

wealth concentration. In Figure 14 in the appendix we break down the effects of progressivity into a

direct effect—the return differences implied by changed progressivity—and that on behavior—marginal

saving propensities excluding the return effect—by showing the effects of the latter only and the effects

of the former only, along with the full equilibrium response. Clearly, the former is most important for the

very richest and hence for changes in top wealth inequality.

Changes in return premia are key to explain the U-shape of wealth shares. In particular, the time

same time, as in our benchmark experiment. The remainder is due to interaction effects in general equilibrium.
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series of private equity, primarily important for the rich, exhibits a pronounced U-shape (displayed earlier

in Figure 8). Likewise, the average return on the U.S. stock market was quite low in the 1970s and

2000s. In contrast, house prices, particularly important for the middle class, have boomed until the

Great Recession. Overall, changes in asset returns have reduced wealth inequality until about 1990, while

contributing positively to increasing concentration subsequently.

In sum, among the different drivers of wealth inequality considered in the benchmark experiment it

is clear that decreasing tax progressivity is key: it spreads out the resources available to consume and

invest and it increases the relative return of the rich on any given saving.

In a representative-agent model the increase in average taxes would lead to a decrease in the capital-

to-output ratio in equilibrium, but it does not in our heterogeneous-agent model for three reasons. First,

the (smallish) increase in average taxes does not offset the even larger increase in the riskiness of pre-tax

earnings, leading to more precautionary savings in the aggregate. Second, decreasing tax progressivity

increases the returns to saving, a particularly powerful force for the rich. Third, the increasingly “thick”

right tail in earnings provides the rich (who tend to be those with high earnings) with additional resources

for saving. These three forces combine to generate a fairly large increase in the ratio of capital to net

output over the period 1967–2012.

If one looks at the wealth holdings of the bottom 50% of the population, the bulk of the decrease is

again accounted for by the decrease in tax progressivity, as well as increases in top earnings inequality,

while the movements in the aggregate capital-output ratio are mostly accounted for by the increase in

earnings risk.45 However, different measures can tell different stories. If one looks at the Gini coefficient

for wealth within the bottom 50% or even within the bottom 90%, we find that the rise in earnings risk

in our model does contribute positively to the increase in wealth inequality within this subgroup.

Let us now, finally, briefly compare our results to those in Kaymak & Poschke (2016). Their study

emphasizes an increase in earnings inequality as a main driver of the increase in wealth inequality, but

also finds the decline in tax progressivity to be important. As for their main finding, the effect of the

increase in earnings inequality in their model only appears after 1980, and after 1980 they only consider

an increase in “top earnings” inequality—which is roughly similar to the top earnings inequality in our

paper. Prior to 1980, they do not break down the effects on top wealth shares into a part that is due to

changes in top earnings inequality and a part that is due to changes in earnings risk in the rest of the

distribution, but we conjecture that they go in different directions, just like in the present paper. Had

we only considered an increase in top earnings inequality after 1980, we would have obtained a positive

effect of earnings inequality—as in their paper. Hence, overall, our models have similar predictions, with

slightly different drivers, explaining the discrepancies in emphasis. As an important last remark, Kaymak

& Poschke (2016) do not obtain the kind of U-shape in the evolution of inequality that we (and they)

observe in the data; they do not consider the portfolio heterogeneity channel.

45Figure 13 in the appendix displays these results.

33



9 Extensions

We now look at a number of robustness exercises and extensions. First, we look at an aggregate production

function with a non-unitary elasticity of substitution between capital and labor; our benchmark Cobb-

Douglas (the unitary case) function does take a particular stand on the dynamics of the returns to capital.

We find that this mechanisms does not appear very promising for understanding the data at hand.

We then weaken the consumers’ ability to predict changes in their environment. In particular, in

our benchmark experiment we assume that consumers in 1967 could predict the future paths of the tax

schedule, the degree of idiosyncratic earnings risk, and even the return premia. These are of course strong

assumptions, so it is interesting to compare this case to one with more limited abilities to predict. Here,

our finding is that a model with entirely myopic expectations (the current policy/risk environment is

expected to last forever) behaves almost like our benchmark environment.

Finally, we conclude the section with a cautious prediction for the long-run. Barring any future

changes, the main message is that the adjustment process of the economy to the new steady state is far

from over.

9.1 Robustness to the elasticity of substitution in production

The stability of the fraction of income accruing to labor, for a long time a central pillar of macroeconomic

models, has recently been questioned. Karabarbounis & Neiman (2014b), among others, document a

visible (though not large) decline in the labor share. Using a production function with a constant elasticity

of substitution (CES), they estimate an elasticity of substitution between capital and labor of 1.25. To

look into the possibility of a falling labor share, we use a standard CES production function,

FCES(Kt, L) = ACES

(
αCESK

σ−1
σ

t + (1− αCES)L
σ−1
σ

) σ
σ−1

, (12)

where ACES and αCES are chosen such that the initial steady state is identical to the Cobb-Douglas

benchmark. Over time, there is capital deepening, leading to a lower labor share because the elasticity of

substitution is above one. We find, however, only very small differences as compared to the Cobb-Douglas

benchmark (see Table 7).46

Capital deepening leads to a smaller reaction of the interest rate, so the rise in the capital-output ratio

is slightly larger in equilibrium and the Gini coefficient on gross income increases a small amount more

(relative to the benchmark).47 At the same time, we find that top wealth shares increase more slowly;

unlike for the decline in tax progressivity, higher equilibrium interest rates induce more savings across the

whole wealth distribution. In other words, at least over the time frame considered, the saving of the poor

tends to be more elastic with respect to the interest rate than the saving of the rich. Overall, though, the

message here is that the quantitative effects of considering a different elasticity of substitution are very

46Figure 15 in the appendix shows the time series.
47In addition, the gross labor share falls by about one percentage point over the period 1967–2012 in our model, though

the net labor share actually rises a little. Karabarbounis & Neiman (2014a) report that since 1975 the gross labor share in
the U.S. has fallen by about five percentage points and the net labor share by about two-and-a-half.
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Table 7: Robustness to the input substitution elasticity and to myopia

Top 10% Top 1% Top 0.1% Top 0.01% Bottom 50% K
Y r

1967 73.8 27.4 8.4 3.2 3.0 4.00 5.93

2013

Benchmark 78.9 37.1 14.8 5.8 1.3 4.40 5.11
CES 78.6 36.7 14.6 5.7 1.3 4.45 5.20
Myopia 76.9 34.9 14.1 5.7 1.4 4.42 5.07

Wealth shares and the interest rate r are reported in %. This table compares various statistics from the benchmark
model transition to alternatives. In the benchmark transition experiment, the production technology is assumed to
be Cobb-Douglas and agents have perfect foresight. The row labeled ’CES’ reports results from a model with CES
production technology. The row labeled ’Myopia’ reports results from a transition experiment in which agents are
completely myopic about the future, assuming present prices, returns, as well as the parameters of the earnings
process and the tax schedule, will prevail.

small.

9.2 Robustness to agents’ abilities to predict policy, risk, and returns

It is surely bold to assume that agents have perfect foresight on the entire path of the tax schedule,

the parameters governing the earnings process, excess returns, and the resulting equilibrium prices. To

gauge the sensitivity of our findings to this assumption, we computed the transitional dynamics under

complete myopia, i.e., a polar opposite case in terms of agents’ ability to predict. That is, in every period

agents believe that the current environment will prevail forever and, accordingly, they are surprised to

learn about their forecasting mistake in the subsequent period.48 Table 7 shows the effects of myopia in

the last row. Clearly, the differences are small. We conclude that the perfect-foresight assumption is not

critically driving the results in the benchmark experiment. What is the reason for these results? One

would perhaps particularly have guessed that being able to predict return movements would give rise to

very different behaviors. Recall, however, that portfolio shares are hardwired and hence the household’s

ability to act on the foreseen changes in returns is limited. The same goes for the other factors: any

changes need to go through changes in saving rates, and these are rather robust.

9.3 The long run

We have focused so far on the transitional dynamics of the wealth distribution over the period 1967–2012,

but what are the longer-run implications of the changes in earnings risk and, especially, tax progressivity

that have occurred over this time period? In the calculations underlying these results, we have assumed

no further changes in either earnings risk, taxes, or return premia after 2012.

Figure 11 illustrates a striking prediction: the model suggests that the adjustment to the new fun-

damentals is far from completion and that wealth inequality is likely to rise even more. As pointed out

before, the wealth distribution is a slow-moving object, especially in a setting with random growth in

which the right tail of the wealth distribution is Pareto-shaped. Changes in fundamentals (such as the

structure of taxes) that influence the consumption-savings decision differently for consumers with differ-

48See Section 4.3 for an exact description of how this experiment is conducted.
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Figure 11: Top wealth shares in %, long run

ent wealth levels are bound, then, to have long-lasting effects. The contrast between the behavior of the

wealth distribution over the transitional period and the eventual long-run steady-state wealth distribution

(assuming an unchanged environment going forward) underscores the hazards of looking solely at steady

states when attempting to quantify how fundamentals affect wealth inequality.

Of course, we urge caution in interpreting Figure 11 as a plain prediction for the future, because no

doubt the economic environment will not remain unchanged going forward. Various exogenous impulses

are possible (e.g., external forces affecting the U.S. interest rate, changes in demographics, and further

change in earnings inequality). In addition, the model abstracts from plausible feedback mechanisms. For

example, changes in wealth inequality could themselves, via the political process, lead to changes in the

structure of taxes. Notwithstanding these points, the long-run analysis contained here does emphasize

how powerfully tax progressivity can shape the wealth distribution, particularly in its right tail.

10 Concluding remarks

The determinants of wealth inequality, in particular its developments over the last half a century, are

much-discussed recently and a number of new hypotheses have been put forth. This paper takes a “first-

thing-first” perspective and asks what established quantitative theory predicts based on the behavior

of a number of plausible, and observable, factors over the same period. We thus use a macroeconomic

general-equilibrium model with heterogeneous agents—the Bewley-Huggett-Aiyagari setting—to more

closely examine a set of candidate explanations for the increase in U.S. wealth inequality over the last
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30 or so years. The method we follow is thus to (i) independently measure changes in the environment,

such as in the tax code, the earnings processes facing individuals, and their portfolio returns; (ii) feed

these into the model assuming that the economy is in a steady state in 1967; (iii) examine the resulting

wealth distribution path; and (iv) conduct counterfactuals. We find that the model generates a path for

inequality that is quite close to that observed, the main exception being that the rise in inequality at

the very top of the distribution is under-predicted if one takes the Saez-Zucman capitalization method as

providing the right characterization of how the top wealth shares have evolved; if we use SCF measures,

we instead over-predict the changes. The satisfactory performance of the model in predicting the overall

path for wealth inequality notwithstanding, the first main contribution is the conclusion that the most

important factor—by far—behind the long-run developments is the significant decline in tax progressivity

that began in the late 1970s.

Declining tax progressivity, together with increasing earnings risk and higher earnings inequality

amongst top earnings, can also account for the rise in the capital-to-net-output ratio and at least some

of the decline in the (gross) labor share when the elasticity of substitution between capital and labor is

larger than one as in Karabarbounis & Neiman (2014b). Our model thus provides an alternative to the

central mechanism—declining growth rates—to which Piketty (2014) draws attention in attempting to

connect these macroeconomic trends to rising inequality.

Our second major finding is that the key mechanism accounting for dynamics lies in heterogeneous

portfolios across and within wealth groups, along with systematic return movements in the data.

Our third major finding, which is the one we discussed first in the paper, is the observation that in

order to match wealth inequality in the beginning of the sample—which we do taking this year to represent

a steady state—it is not necessary to add a “mop-up” explanation such as heterogeneous discount rates.

Return heterogeneity is crucial here, giving a Pareto shape for the right wealth-distribution tail that

significantly exceeds that for earnings.

Our findings merit several remarks. Although we find that tax progressivity has played a central role

in increasing inequality, our model is designed primarily as a positive rather than a normative tool. To

evaluate the pros and cons of, say, reversing the changes in tax progressivity, it is important to account

for the distortions created by labor taxation; in the present setting, labor earnings are exogenous and

taxation is levied jointly on all incomes. We do not think that the introduction of distortionary labor

taxation would change the model’s predictions for wealth inequality measurably, but it would be central for

understanding the welfare consequences of tax changes. Further research contrasting the larger distortions

of increased tax progressivity with the accompanying reductions in inequality seems very promising.

Our emphasis on differences in portfolios and portfolio returns between households is reminiscent of

Piketty’s stylized r − g theory emphasizing the rate of return on assets, r, as an important determinant

of the relative growth rates of wealth (including human wealth which grows at rate g) of the rich and the

poor. The elaboration of this theory that we essentially propose is to attach less weight on g, to think of

r as an after-tax return, and to recognize how r depends on household wealth (due to portfolio choice as

well as progressive taxes) and also has an idiosyncratic component. This theory, moreover, mostly applies

for the very richest; to understand the bulk and other side of the wealth distribution we side with Kaymak
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& Poschke (2016), who emphasize an increase in earnings inequality as a main driver of the increase in

wealth inequality, but who also find the decline in tax progressivity to be important.

Regardless of one’s normative views on wealth inequality, there are many reasons to care about its

future course, as there are now many research contributions suggesting that the macroeconomy works

quite differently when there is significant heterogeneity among consumers. This goes for fiscal as well

as monetary policy; for examples, see Heathcote (2005), McKay & Reis (2016), and Brinca et al. (2016)

for fiscal policy, and Auclert (2017), McKay et al. (2016), and Kaplan et al. (2018) for monetary policy.

The prediction from the present paper is that, barring reverses in the tax code, wealth inequality will go

up even further, thus potentially strengthening the case for further research on the heterogeneous-agent

approach to macroeconomics.

Finally, since so many of our findings rely on portfolio heterogeneity, we conclude by reiterating what

we have stated repeatedly throughout the text: next, we need to understand households’ portfolio choices

better!

38



A Computational appendix

A.1 Dynamic programming problem

The consumers’ dynamic programming problem is solved by value-function iteration using Carroll (2006)’s

endogenous grid-point method (EGM) on a grid for cash-on-hand and the persistent idiosyncratic shocks

(β, p).

Unlike in the plain Aiyagari (1994) model, the support of the ergodic wealth distribution is unbounded

in this framework. We use a log-spaced grid with 100 points for cash-on-hand (xi)
100
i=1 with a very large

upper bound (one million times average wealth) to minimize the truncation error.49 Cubic splines are

used to interpolate the value function along the wealth dimension.

The grid for the persistent component of individual productivity (pj)
17
j=1 is chosen to account for the

long right tail in earnings. First, we chose the grid points as the 0.0001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9,

0.925, 0.95, 0.975, 0.99, 0.999, ..., and 0.99999999 quantiles of the unconditional (i.e., cross-sectional)

p-distribution (which is a normal). Second, we compute the corresponding grid in actual efficiency units

of labor (ψ(p1), ..., ψ(p17)). Third, given that in the current period p = pj for j = 1, ..., 17, we use Gauss-

Hermite quadrature to integrate over p′|p, the value of idiosyncratic productivity in the next period, when

updating the value function. In doing so, we use linear interpolation in ψ(p)-space to evaluate the value

function off the grid (the value function is much more non-linear in p-space than in ψ(p)-space).50

Regarding the discount factor, we choose the grid points (βm)15m=1 as the Gauss-Hermite quadrature

points of the unconditional (i.e., cross-sectional) β-distribution (this will turn out to be useful when

integrating over the joint distribution to compute aggregate wealth). Again, when updating the value

function, we integrate over β′|β using Gauss-Hermite quadrature and linear interpolation in β-space.

In addition to the these three state variables, the setup requires numerical integration over the two

idiosyncratic i.i.d. shocks to earnings ν ′ and capital returns η′ (as they affect next period’s cash-on-hand

x′). As both shocks are normally distributed, we use Gauss-Hermite quadrature once again.

A.2 Computing the ergodic distribution

The focus on tiny population groups such as the top 0.01% of the wealth distribution implies that solving

for the ergodic distribution directly is more efficient than simulating a large number of agents and applying

the ergodic theorem. In doing so, simulation error is eliminated; instead one can directly control the

numerical error by updating the distribution until convergence is reached.

Specifically, note that the EGM entails using a grid for assets (ai)
100
i=1. Given pj and βm, saving ai is

49Alternatively, given that the Pareto tail has stabilized at some x̄, one could in principle also impute the distribution for
x > x̄. However, this did not turn out to be necessary as the log-spaced grid—which works well as the curvature of the
value function is high only close to the borrowing constraint—allows for selecting a very large upper bound while keeping
the number of grid points computationally feasible.

50Note that these linear interpolation coefficients can be pre-computed, resulting in a 17× 17 - matrix wp, where wpj,· are
the integration weights for evaluating next period’s value function on (p1, ..., p17) given that in the current period p = pj .
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optimal with cash-on-hand x(ai; pj , βm) that solves

∂u(x(ai; pj , βm)− ai)
∂c

= βmE
[(

1 +
∂y′

∂a′

(
1− ∂τ(y′)

∂y

)
+
∂ỹ′

∂a′
(1− τ̃)

)
∂V (x′, p′, β′)

∂x
|pj , βm

]
,

where x′ = ai + y′ − τ(y′) + (1− τ̃)ỹ′ + T,

and
∂y′

∂a′
=

(
r + rX(ai) +

∂rX(ai)

∂a
ai

)
,

and
∂ỹ′

∂a′
=

(
σX(ai)η

′ +
∂σX(ai)

∂a
η′ai

)
.

While the main advantage of the EGM is efficiency (x(ai; pj , βm) can be found without maximizing

the right-hand side of the Bellman equation), it is also convenient that the savings function is already

inverted. First, for all pj , βm, νq, ηh and for all ai, i = 1, ..., 100, there exists a unique level of asset holdings

a = s−1(ai; pj , βm, νq, ηh) such that saving ai is optimal.51 Second, we define a finer grid for asset holdings

(ki)
1000
i=1 and interpolate (using a cubic spline) to find the inverse savings function s−1(ki; pj , βm, νq, ηh).

Note that the borrowing constraint is binding for all k ≤ s−1(k1; pj , βm, νq, ηh). Finally, we can solve for

the ergodic distribution G(ki; pj , βm) ≡ Prob(k ≤ ki|p = pj , β = βm) at the grid points (ki)
1000
i=1 , (pj)

17
j=1

and (βm)15m=1. To simplify notation, we will denote by Gj,m(ki) this conditional cdf evaluated at grid

points (pj , βm). This distribution has to satisfy

Gj,m(ki) =

∫
p

∫
β

∫
ν

∫
η
G(s−1(ki; p, β, ν, η); p, β)dΓη(η)dΓν(ν)dΓβ(β|βm)dΓp(p|pj). (13)

Note that pj and βm are the realizations of the shock in period t + 1 and the integration is over the

shock values in period t. Nevertheless, e.g., Γβ(β|βm) is the correct distribution as for any stationary

Gaussian AR(1) process zt the conditional random variables zt|zt+1 and zt+1|zt have the same distribu-

tion.52 Starting from some initial distribution G0
j,m(ki) and using the short-hand notation s−1j,m,q,h(ki) =

s−1(ki; pj , βm, νq, ηh), we update until convergence according to

G1
j′,m′(ki) =

∑
j

wpj′,j

∑
m

wβm′,m

∑
q

wνq
∑
h

wηhĜ
0
j,m(s−1j,m,q,h(ki)). (14)

In (14), wνq and wηh are the Gauss-Hermite quadrature weights for the transitory shocks ν and η (normalized

to sum to one). The construction of the integration weights for the persistent shocks p and β is based

on linear interpolation in ψ(p)- and β-space, respectively (see details below). Ĝ0
j,m(·) linearly interpolates

G0
j,m(ki) off the grid in the k-dimension.

Integration weights wpj,′j and wβm′,m. Consider the persistent earnings shock p. Conditional on its

value in the next period being p′ = pj′ for some fixed j′ ∈ {1, ..., 17}, the integration over the current

51s−1(ai; pj , βm, νq, ηh) is defined as the unique a that solves

x(ai; pj , βm) = a+ y − τ(y) + (1− τ̃)ỹ + T,

where y = (r + rX(a))a+ wl(pj , νq) and ỹ = σX(a)ηha.
52That is, the densities satisfy fzt|zt+1

(x|y) = fzt+1|zt(x|y).
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period value p is with respect to the distribution of p, conditional on p′, where p|p′ ∼ N(ρP p′ + (1 −
ρP )µP , σP ). Gauss-Hermite quadrature, here with ten sample points, entails evaluating the function of

interest G(s−1(ki; p, β, ν, η); p, β) at (p̃n)10n=1, where p̃n = ρP p′+(1−ρP )µP +
√

2σP x̃n and (x̃n)10n=1 are the

roots of the Hermite polynomial, and approximating the integral using the associated weights (w̃n)10n=1 as

≈ 1√
π

10∑
n=1

w̃nG(s−1(ki; p̃n, β, ν, η); p̃n, β).

Of course, p̃n will in general not lie on the pj-grid, where the function value is known. Hence, we have

to interpolate. Using linear interpolation, we can pre-compute the integration weights (wpj′,j)
17
j=1 we

put on evaluating the function of interest at (G(s−1(ki; pj , β, ν, η); pj , β))17j=1 in an efficient manner: for

n = 1, ..., 10, locate j(n) such that pj(n) ≤ p̃n ≤ pj(n)+1 and compute the linear interpolation coefficient

in ψ(p)-space λn as

λn =
ψ(p̃n)− ψ(pj(n))

ψ(pj(n)+1)− ψ(pj(n))
.

Then, looping over n = 1, ..., 10, add (1−λn) 1√
π
w̃n to wpj′,j(n) and λn

1√
π
w̃n to wpj′,j(n)+1. The construction

of the integration weights for β is analogous, except that linear interpolation can be performed directly

in β-space.

Computing moments of the distribution. For example, aggregate wealth is given by

K =

∫
p

∫
β

(∫
k
kdG(k|p, β)

)
fp(p)fβ(β)dpdβ,

where fp(·) and fβ(·) are the unconditional (i.e., cross-sectional) normal densities of the persistent shocks

p and β. We integrate numerically according to

K̂ =

17∑
j=1

w̄pj

15∑
m=1

w̄βm

(
k1Gj,m(k1) +

1000∑
i=2

ki−1 + ki
2

(Gj,m(ki)−Gj,m(ki−1))

)
. (15)

As the discount factor grid (βm)15m=1 was chosen as the Gauss-Hermite sample points, we set (w̄βm)15m=1

to be the associated Gauss-Hermite quadrature weights. Recall that the Pareto tail transformation of

the persistent earnings component p prompted us to define a grid (pj)
17
j=1 with a particular emphasis on

the right tail. Hence, we (pre-)compute the integration weights (w̄pj )
17
j=1 manually: (i) define a very fine

equally spaced grid (p̂n)Nn=1 (if, say, N = 100, 000, this has to be carried out only once) that covers the

coarser grid (pj)
17
j=1; (ii) for all n = 1, ..., N , locate j(n) and compute λn as above; (iii) looping over

n = 1, ..., N , add (1 − λn)fp(p̂n) to w̄pj(n) and λnfp(p̂n) to w̄pj(n)+1 (fp(·) is the pdf of p ∼ N(µP , σP )
1−ρP );

and (iv) finally, normalize such that
∑17

j=1 w̄
p
j = 1.53

53Of course one could also use Gauss-Hermite quadrature here, as the corresponding weights and results coincide for all
practical purposes.
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A.3 Transition experiments

The perfect-foresight transition experiment is computationally straightforward. Given the calibrated

initial steady state (K?, r?, T ?), the new steady state (K??, r??, T ??) is computed under the new exogenous

environment. We then search for a fixed point in (Kt, rt, Tt)
t1
t=t0+1-space where t1 − t0 is chosen to be

large enough that (Kt1 , rt1 , Tt1) ≈ (K??, r??, T ??). For each iteration, we first solve for the value functions

and corresponding (inverse) savings decisions backwards and subsequently roll the distribution forward,

as described in the previous sections for the steady state. Note that now the grids and integration weights

for the earnings process components are time-varying.54

The myopic transition experiment is conceptually very different. Given a period t distribution Gtj,m(ki)

and savings decisions stj,m,q,h(k) (reflecting factor prices rt, wt, transfers Tt and exogenous environment

θt, all naively assumed to persist forever), Gt+1
j,m(ki) is obtained as in (14).55 In turn, Gt+1

j,m(ki) and θt+1

determine Kt+1 (thus wt+1), rt+1, and Tt+1. The surprised agents expect this new endogenous and

exogenous environment to prevail forever and hence we solve the dynamic programming problem given

this environment and accordingly obtain st+1
j,m,q,h(k). Note that no fixed point problem has to be solved

and the capital stock converges to the same new steady state as under perfect foresight. Theoretically,

this strategy could give rise to oscillatory paths of capital. However, this turns out not to be the case in

our application.

54In particular, as the variance of the innovation term of the persistent earnings component σPt is time-varying, pt|t+1 is
no longer equal to pt+1|t in distribution (but still normal); hence the integration weights for the decision problem (forward-
looking) and the cross-sectional distribution (backward-looking) differ.

55Again, the grids and integration weights for the earnings process components are time-varying.
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B Additional figures

This section contains additional figures and results referred to in the main text.
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Figure 12: Counterfactual top wealth shares in %, 1967–2012
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Figure 13: Counterfactual capital-output ratio and bottom 50% share (in %), 1967–2012
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Figure 14: Tax-change decomposition: top wealth shares
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Figure 15: Robustness to myopia and CES production function with elasticity σ = 1.25
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C Excess return schedule details

Table 8: Details of excess return schedule

P0-P40 P40-P50 P50-P60 P60-P70 P70-P80 P80-P90 P90-P95 P95-P97.5 P97.5-P99 P99-P99.5 P99.5-P99.9 P99.9-P99.99 Top 0.01%

fixed portfolio weights

riskfree 0.722 0.412 0.248 0.182 0.156 0.134 0.115 0.102 0.090 0.079 0.071 0.051 0.029
housing 0.162 0.394 0.580 0.662 0.678 0.674 0.658 0.626 0.572 0.482 0.363 0.253 0.155
public equity 0.113 0.189 0.165 0.147 0.153 0.170 0.189 0.207 0.219 0.232 0.230 0.185 0.179
private equity 0.002 0.005 0.007 0.009 0.013 0.021 0.038 0.065 0.118 0.207 0.336 0.511 0.637

difference from aggregate return on asset class

riskfree 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
housing 0.000 0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.011 0.010 0.010 0.011
public equity 0.000 0.000 0.001 0.002 0.003 0.005 0.008 0.012 0.014 0.015 0.016 0.016 0.016
private equity 0.000 0.000 -0.019 -0.030 -0.054 -0.055 -0.049 -0.066 -0.064 -0.063 -0.063 -0.059 -0.060

standard deviation of return on asset class

riskfree 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
housing 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140
public equity 0.035 0.035 0.031 0.031 0.031 0.031 0.032 0.033 0.035 0.038 0.042 0.046 0.053
private equity 0.664 0.664 0.621 0.595 0.544 0.525 0.518 0.480 0.474 0.470 0.474 0.492 0.443
private equity (re-scaled) 0.345 0.345 0.323 0.309 0.283 0.273 0.269 0.249 0.246 0.245 0.246 0.256 0.230

excess return schedule in 1967

mean excess return 0.000 0.011 0.017 0.020 0.022 0.026 0.031 0.035 0.041 0.050 0.062 0.079 0.091
standard deviation 0.023 0.056 0.081 0.093 0.095 0.095 0.094 0.093 0.098 0.119 0.167 0.254 0.283
st. dev. (priv.equ. re-scaled) 0.023 0.056 0.081 0.093 0.095 0.095 0.093 0.089 0.086 0.085 0.098 0.136 0.149
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