Multistep prediction error decomposition in DSGE models: estimation and forecast performance

George Kapetanios, Simon Price and Konstantinos Theodoridis

Motivation

- Policy relevant forecasts commonly required at quarterly horizons from 1 - 12
- Policy analysis requires structural models often DSGE models
- DSGE Models estimated by ML or Bayesian methods - in both cases using one-step prediction errors to build likelihood
- ▶ Might *h* > 1-step forecast errors
 - produce sensible estimates?
 - improve forecast performance?

Method

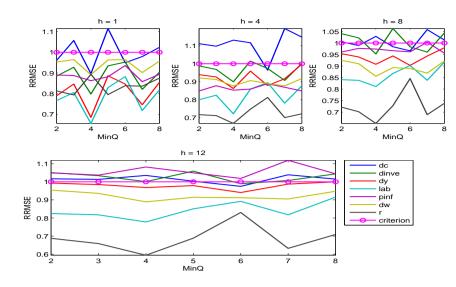
State space representation of the linearised DSGE model

> $y_t = H\xi_t, \quad t = 1, ..., T$ $\xi_t = C\xi_{t-1} + \mathbf{v}_t.$

- y_t observed variables, x_t unobserved vector of states that may be estimated using the Kalman filter to provide $\hat{\xi}_{t|t-1} = E(\xi_t|Y_{1,t-1})$ and $\hat{\xi}_{t|t} = E(\xi_t|Y_{1,t})$ where $Y_{s,t} = (y_s, ..., y_t)'$
- ► As parameter matrices *H* and *C* are unknown, can be conveniently estimated using ML based on the prediction error decomposition
- ▶ Normally uses a 1-step error to do so, but can equally use h-step where h > 1, thus using a vector of errors
- Might be interpreted as a MOM approach akin to cross-validation
- ▶ Precursor: Frank Schorfheide JoE 2005 VAR forecasting under misspecification, who specifies a loss function in terms of prediction errors

RMSFE 1998Q1-2007Q4

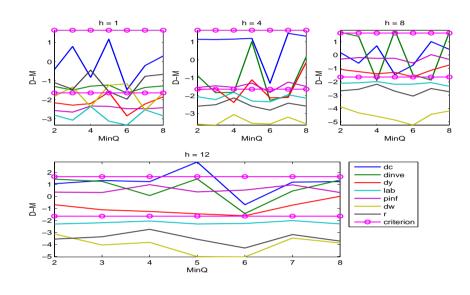
Multi-step outperforms benchmark in most cases, some cases by large margins



Might hypothesise that forecast performance at *h* optimised using *h*-step errors; but not so

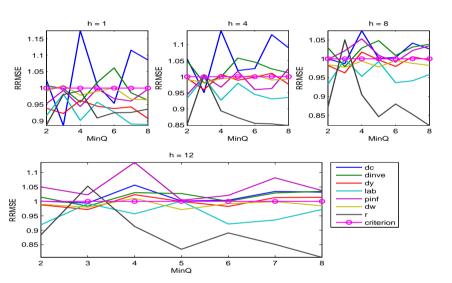
DM stats 1998Q1-2007Q4

Also significantly better in many cases



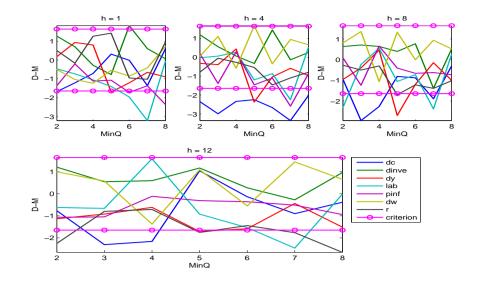
RMSFE 2001Q1-2010Q2

► Less good post-crisis but multi-step still better



DM stats rolling 1998Q1-2010Q2

Rather less significant cases



Why does this work?

- In general, introducing additional moment conditions
- ► As parameter estimates largely unchanged, we hypothesise improvement due partly to improved estimate of the state

Monte Carlo

- 200 data points are simulated from true DGP
- Add noise to the observed variables (noise to signal ratios of 0.5, 1.0 and 2.0)
- Estimate the state vector for h = 1, 4 and 8
- ► Calculate MSFE (between the actual state observations and the smoothed estimates) for last 50 periods and repeat 1000 times

Noise to	Noise to Relative Mean	
Signal Ratio	Square Forecast Error	
	MSFR(h=4)	MSFR(h=8)
	$\overline{\textit{MSFR}(h=1)}$	$\overline{\textit{MSFR}(h=1)}$
0.5	0.991	0.975
1.0	0.987	0.968

Model

- ▶ Use Smets and Wouters 2007
- Seven macro series output, consumption and investment growth, inflation, wage growth, hours, interest rate
- Estimate by maximising likelihood (as in eg Ireland JEEA 2013)
- ▶ S&W 1966Q1-2004Q4: we use 1954Q3-1997Q4 to use earlier data while still retaining observations for forecast evaluation
- ► Despite shorter and overlapping sample, results similar to S&W

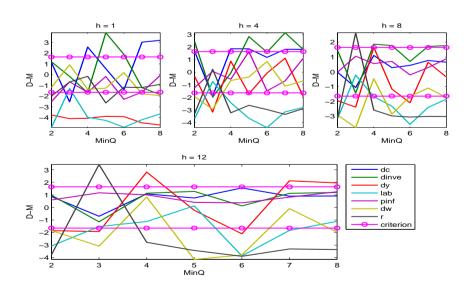
Global optimum?

- Core results outcome of maxima from 100 starting points
- ► To check robustness, compared to results from only 10 starting points
- Most estimates similar
- ▶ Where there appear to be large differences, in fact not economically significant (as in insensitive parts of the parameter space)

Forecasts

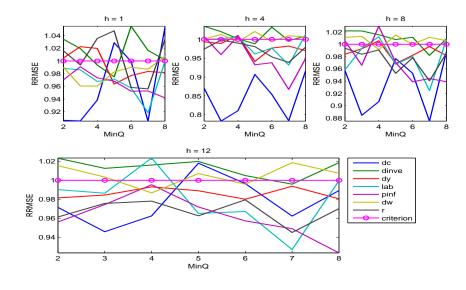
- Sample 1954Q3-1997Q4 evaluated 1998Q1-2007Q4 to exclude crisis
- Sample 1954Q3-200Q4Q4 evaluated 2001Q1-2010Q2 to include crisis
- Recursive estimates starting 1954Q3-1997Q4 recursively evaluated 1998Q1-2010Q2

DM stats 2001Q1-2010Q2



RMSFE rolling 1998Q1-2010Q2

Again multi-step best performer



- ► As *h* rises estimates improve due to cross-equation restrictions
- As the noise to signal ratio increases these restrictions become more important
- Expanding evaluation period from 50 to 200 performance increases dramatically - evaluation over entire sample even more so
- ► The additional cross-equation restrictions particularly useful for estimation of initial values of state vector

Paper and code

- Published in Economic Letters as A New Approach to Multi-Step Forecasting using Dynamic Stochastic General Equilibrium *Models* - longer version in BoE WP series
- ► Code available from Kostas' site:

https://sites.google.com/site/konstantinostheodoridis/publications

Conclusions

- ▶ If concerned with forecasts as well as structure, may help to optimise over predictive power
- ▶ Turns out to improve forecasts with minimal changes to structure
- ► In most cases RRMSFE improved, in many cases significantly

Kings College London, Essex Business School and Bank of England - June 2016 ECB 9th Forecasting Workshop