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Abstract

DSGE models are of interest because they offer structural interpretations, but are also increasingly used for

forecasting. Estimation often proceeds by methods which involve building the likelihood by one-step ahead

(h = 1) prediction errors. However in principle this can be done using different horizons where h > 1. Using

the well-known model of Smets and Wouters (2007), for h = 1 classical ML parameter estimates are similar

to those originally reported. As h extends some estimated parameters change, but not to an economically

significant degree. Forecast performance is often improved, in several cases significantly.
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1 Introduction

Forecasting is central to macroeconomic policymaking, especially since the introduction of inflation targeting,

which has often been linked to macroeconomic forecasts.1 Often, attention is focussed on forecasts at several

horizons, typically up to two or three years.2 Policy analysis requires structural models, and the current

canonical versions of these are generally dynamic stochastic general equilibrium (DSGE) models. However, until

recently it was received wisdom that parsimonious reduced form econometric models are the most appropriate

and effective tools for carrying out forecasting, which created a practical tension. Although recent work has

suggested that DSGE models can be of use in forecasting (eg Del Negro et al. (2007) or Fawcett et al. (2015)),

the record remains mixed (Edge and Gurkaynak (2011)).

The standard approach to forecasting with DSGE models involves linearisation followed by specification in

state space form and solution. Standard techniques can be used to estimate the parameters. Subsequently,

the estimated model may be used to forecast variables of interest. So estimation is primarily oriented towards

obtaining estimates of the structural parameters. But if the aim is also to produce forecasts, a method that takes

this into account may be desirable, potentially delivering both estimates of structural parameters necessary for

policy making and inference but also good forecast performance.

∗The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England. The authors are
grateful to an anonymous referee for helpful comments. A shorter version of this paper was published in Economic Letters under
the title A New Approach to Multi-Step Forecasting using Dynamic Stochastic General Equilibrium Models
†Email: george.kapetanios@kcl.ac.uk
‡Email: simon.price@bankofengland.co.uk
§Email: konstantinos.theodoridis@bankofengland.co.uk
1See eg Svensson (2005).
2Eg, the FRB states that ‘[t]he FOMC implements monetary policy to help maintain an inflation rate of 2 percent over the

medium term.’
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One way to approach this is move away from strict maximum likelihood (ML) estimation and instead optimise

on an object that is focussed on a vector of multi-step prediction errors. This can be seen as a method of

moments (MOM) approach, somewhat akin to cross-validation, widely used in forecasting applications.

Section 2 discusses this amendment, while Section 3 presents the empirical results. Section 4 concludes.

2 Method

As observed above forecasting using DSGE models is routinely carried out with the state space representation

of the linearised model. We will focus on this, given by

yt = Hξt, t = 1, .., T

ξt = Cξt−1 + vt.

yt are the observed variables while xt is an unobserved vector of states that may be estimated using the Kalman

filter. In particular the Kalman filter can be used to provide ξ̂t|t−1 = E(ξt|Y1,t−1) and ξ̂t|t = E(ξt|Y1,t) where

Ys,t = (ys, ..., yt)
′. When the parameter matrices H and C are unknown, they can be conveniently estimated

using ML based on the prediction error decomposition. Once the parameters are obtained the state space

model can be used to produce forecast for any desired horizon. The prediction error is normally assumed to be

a one-step ahead error. However, this is not necessary, and may not be optimal when multi-step forecasts are

of interest. Consequently we consider an estimation method based on an ML objective function for a vector of

prediction errors given by υ1,h,t = (υ1,t, .., υh,t)
′ where υh,t = yt − ŷt|t−h and ŷt|t−h = E(yt|Y1,t−h).

From Hamilton (1994) we know that the h-period-ahead forecast vector using the Kalman filter is given by
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(2.1) is used to obtain an expression about the h-step ahead forecast error vector:
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Yt,t+h − Ŷ ht,t+h = (Ih+1 ⊗H ′) F̃
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)
+ ΓV. (2.2)
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This may be now used to derive the MSE

E
(
Yt,t+h − Ŷ ht,t+h

)(
Yt,t+h − Ŷ ht,t+h

)′
= (Ih+1 ⊗H ′) F̃E

(
ξt − ξ̂t/t

)(
ξt − ξ̂t/t

)′
F̃ ′ (Ih+1 ⊗H)

+ ΓEV V ′Γ′

E
(
Yt,t+h − Ŷ ht,t+h

)(
Yt,t+h − Ŷ ht,t+h

)′
= (Ih+1 ⊗H ′) F̃Pt/tF̃ ′ (Ih+1 ⊗H) + Γ (Ih+1 ⊗Q) Γ′ (2.3)

where ξ̂t/t and Pt/t are the updated one-step Kalman filter estimate and its covariance matrix. Given expressions

(2.1) and (2.3) the likelihood is easily derived, given a normality assumption, since

Yt,t+h ∼ N (µt,Σt) (2.4)

µt = (Ih+1 ⊗H ′) F̃ ξ̂t/t (2.5)

Σt = (Ih+1 ⊗H ′) F̃Pt/tF̃ ′ (Ih+1 ⊗H) + Γ (Ih+1 ⊗Q) Γ′. (2.6)

Thus this approach estimates parameters using a vector of prediction errors for different horizons, rather than

the standard ML built from the one-step ahead errors. As discussed in the introduction, it may be seen as a

MOM approach akin to cross-validation. Schorfheide (2005) adopts a similar approach, defining a loss function

in terms of prediction errors, in the context of parameter estimation of misspecified models.

The question is then whether this is practically useful, and in the next section we use a benchmark DSGE model

to evaluate our approach.

3 Results

3.1 The model

We apply our modified estimation method to the model described in Smets and Wouters (2007), which is an

extension of a small-scale monetary RBC model with sticky prices. It contains additional shocks and frictions,

including sticky nominal price and wage settings with backward inflation indexation, investment adjustment

costs, fixed costs in production, habit formation in consumption and capital utilisation. It features seven

exogenous shocks that drive the stochastic dynamics. The foundations are derived from the decisions of different

agents by solving intertemporal optimisation problems. Consumers supply labour, choose their consumption,

hold bonds and make investment decisions; intermediate goods producers are in a monopolistically competitive

market and cannot adjust prices at each period; and final goods producers buy intermediate goods, package them

and resell them to consumers in a perfectly competitive market. In addition, there is a labour market with a

similar structure: there are labour unions with market power that buy the homogeneous labour from households,

differentiate it, set wages and sell it to the labour packers, who package it and resell it to intermediate goods

producers in a perfectly competitive environment. Finally, there is a central bank that follows a nominal interest

rate rule, adjusting the policy instrument in response to deviations of inflation or output from their target levels

and a government that collects lump-sum taxes (or grants subsidies) which appear in the consumer’s budget

constraint and whose spending appears in the model as one of the seven exogenous shocks.

3.2 Estimates

The model is first log-linearised around its steady state and trended variables detrended with a deterministic

trend. It is estimated using seven macroeconomic quarterly time series for the United States as observables.

These variables are those used in Smets and Wouters (2007), namely output growth, consumption growth,
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investment growth, inflation, wages growth, hours and the interest rate. Similarly to Ireland (2004), Fernandez-

Villaverde and Rubio-Ramirez (2008) and Ireland (2013) (among others) all the structural parameter estimates

discussed below are obtained using only the likelihood of the model (and not the likelihood weighted by a prior

distribution of the structural parameter vector).

Although our estimation sample is five years shorter than that used by Smets and Wouters (2007) and we use

no prior information, the parameter estimates are remarkably similar to those they report.3 This is particularly

so for the parameters that govern the behaviour of the exogenous states variables and those that control the

steady-state values of inflation, hours and productivity growth. On the other hand, the parameters responsible

for the model’s endogenously generated inertia (such as habit formation, Calvo probabilities, degree of wage

indexation and investment adjustment cost) are generally somewhat larger than the estimates reported by Smets

and Wouters.

Results for all horizons are reported in Table 1. As the forecast estimation horizon increases, the shock processes’

estimated parameters remain largely constant. No obvious regularities can be seen in these variations as the

horizon increases. More variation occurs in the structural parameters although in most cases the changes are

not dramatic. Exceptions include ρga where the coefficient rises an order of magnitude at h = 7 and ιp where

it falls dramatically at the same horizon. ρR also has a low value at that horizon. As we show below, these

changes improve the model’s forecasting performance, but it is not easy to associate that improvement with

particular parameter changes.

One possible concern is that we are finding local optima. Our ML approach might be loosely interpreted as

estimation under a flat prior distribution. We have noted that the estimates are similar to the Bayes estimates

under the informative prior used by Smets and Wouters (2007). Nevertheless, Del Negro and Schorfheide (2013)

illustrate that changing the prior for the steady state inflation rate from Smets and Wouters’ to one more diffuse

leads to a substantially larger estimate of π∗ and a significant deterioration of the forecast performance. Herbst

and Schorfheide (2014) estimate the model under a more diffuse, albeit not flat prior, and show that the posterior

distribution becomes multi-modal. So it may be that the likelihood has several modes, some quite different

from the Smets and Wouter estimates.

In order to examine this, we estimated the model with two sets of starting points. If the results are affected by

these choices, then we may be concerned that we are finding local minima. Our estimates reported in table 1

are based on 100 estimations of the model starting from a different point each time and from these 100 report

the results that correspond to the highest maximum. But as a check we also carried out the same exercise for

just 10 starting values, and therefore 10 estimations) from which we pick the highest maximum. The rational

is that a small set of starting values will expose problems of local minima. In fact, the forecast results from

this exercise (not reported but available on request) are almost identical. Table 2 report the set of parameter

estimates, and comparison of the two tables reveals that most of the estimates are very similar. There are

however a few exceptions, such as the time discount parameter transformation and the investment adjustment

cost, the latter apparently varying between about 6 and 12 at different horizons. But these changes do not

have an effect on the forecasting performance of the model. This is easy to understand, as the changes are not

economically significant. For example, the time discount parameter transform estimates imply that β varies

trivially, from 0.9960 to 0.9996 between Tables 1 and 2, so it is unsurprising that these changes have a minimal

impact on the forecast. Similarly, an investment adjustment cost greater than 5 implies that investment does

not respond to Tobin’s Q, so it makes almost no difference (especially in the forecasting performance of the

model) if it is 6 or 12.

3Fernandez-Villaverde and Rubio-Ramirez (2008) observe that flat and informative priors have little impact on estimates in
their baseline model.
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Table 1: DSGE Parameter Estimates Using Different Estimation Horizon: Sample 1954Q3 − 1997Q4: (Based
on 100 Different Starting Values

Mnemonic Description Forecast Estimation Horizon
1 2 3 4 5 6 7 8

σa STD Productivity Shock 0.46 0.47 0.49 0.47 0.46 0.47 0.47 0.48
σb STD Preference Shock 0.26 0.27 0.25 0.23 0.27 0.27 0.28 0.28
σg STD Government Spending Shock 0.55 0.54 0.54 0.58 0.54 0.54 0.54 0.54
σq STD Investment Specific Shock 0.49 0.52 0.54 0.58 0.50 0.52 0.50 0.52
σR STD Monetary Policy Shock 0.25 0.23 0.23 0.23 0.23 0.23 0.24 0.23
σp STD Price Markup Shock 0.15 0.16 0.17 0.17 0.16 0.17 0.18 0.17
σw STD Wage Markup Shock 0.15 0.19 0.19 0.19 0.20 0.19 0.19 0.20
ρa Persistence Productivity Shock 0.96 0.98 0.98 0.98 0.99 0.98 0.98 0.98
ρb Persistence Preference Shock 0.35 0.22 0.32 0.45 0.26 0.26 0.22 0.26
ρg Persistence Government Spending Shock 0.91 0.97 0.97 0.90 0.93 0.95 0.94 0.95
ρq Persistence Investment Specific Shock 0.61 0.56 0.53 0.50 0.58 0.58 0.58 0.54
ρR Persistence Monetary Policy Shock 0.30 0.10 0.10 0.11 0.09 0.08 0.09 0.03
ρp Persistence Price Markup Shock 0.87 0.96 0.98 0.92 0.95 0.98 0.99 0.98
ρw Persistence Wage Markup Shock 0.94 0.96 0.95 0.98 0.98 0.95 0.97 0.98
θp MA Coefficient Price Markup Shock 0.77 0.88 0.92 0.84 0.87 0.91 0.93 0.91
θw MA Coefficient Wage Markup Shock 0.83 0.93 0.92 0.94 0.95 0.92 0.93 0.96
S′ Investment Adjustment Cost 6.11 9.12 9.03 8.40 11.80 8.59 10.49 10.49
σC Intertemporal Substitution Elasticity 1.03 1.37 1.36 1.14 1.14 1.29 1.16 1.15
h Habit Formation 0.82 0.80 0.79 0.84 0.88 0.82 0.86 0.86
ξw Probability of Resetting Wage 0.84 0.90 0.89 0.83 0.85 0.89 0.85 0.90
σL Labour Supply Elasticity 2.45 2.84 1.42 1.87 2.44 2.32 1.70 3.47
ξp Probability of Resetting Price 0.79 0.74 0.74 0.75 0.72 0.71 0.71 0.72
ιw Wage Indexation 0.44 0.32 0.33 0.32 0.41 0.37 0.30 0.43
ιp Price Indexation 0.28 0.04 0.05 0.08 0.08 0.05 0.04 0.03
ψ Utilisation Adjustment Cost 0.22 0.20 0.10 0.21 0.32 0.21 0.19 0.11
Φ Production Fixed Cost 1.81 1.80 1.67 1.94 1.95 1.77 1.77 1.67
γπ Inflation Policy Reaction 1.76 1.93 2.23 2.21 2.38 2.21 1.97 2.12
γR Interest Policy Smoothing 0.81 0.85 0.87 0.86 0.87 0.87 0.84 0.87
γy Output Gap Policy Reaction 0.11 0.08 0.13 0.14 0.12 0.12 0.08 0.11
γ∆y Output Gap Growth Policy Reaction 0.22 0.17 0.19 0.16 0.18 0.18 0.18 0.18
π̄ Steady State Inflation 0.77 0.93 0.82 0.91 0.91 0.91 0.93 0.92
100

(
β−1 − 1

)
Time Discount 0.40 0.06 0.04 0.10 0.08 0.07 0.06 0.07

L̄ Steady State Hours 1.02 1.04 1.19 0.53 0.52 0.82 0.71 0.48
γ̄ Productivity Growth 0.46 0.50 0.50 0.42 0.44 0.49 0.50 0.49
ρga Government Spending and 0.05 0.53 0.55 0.11 0.51 0.58 0.58 0.55

Productivity Correlation

α Capital Production Share 0.22 0.21 0.20 0.18 0.21 0.21 0.20 0.19
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Table 2: DSGE Parameter Estimates Using Different Estimation Horizon: Sample 1954Q3 − 1997Q4: (Based
on 10 Different Starting Values

Mnemonic Description Forecast Estimation Horizon
1 2 3 4 5 6 7 8

σa STD Productivity Shock 0.48 0.47 0.47 0.47 0.46 0.45 0.47 0.50
σb STD Preference Shock 0.28 0.26 0.23 0.28 0.24 0.23 0.26 0.25
σg STD Government Spending Shock 0.57 0.56 0.59 0.56 0.58 0.59 0.54 0.59
σq STD Investment Specific Shock 0.51 0.49 0.47 0.51 0.42 0.49 0.51 0.46
σR STD Monetary Policy Shock 0.26 0.23 0.24 0.25 0.24 0.22 0.24 0.24
σp STD Price Markup Shock 0.14 0.15 0.15 0.15 0.16 0.18 0.18 0.15
σw STD Wage Markup Shock 0.14 0.19 0.18 0.15 0.17 0.17 0.19 0.19
ρa Persistence Productivity Shock 0.96 0.98 0.97 0.96 0.98 0.98 0.98 0.98
ρb Persistence Preference Shock 0.36 0.30 0.42 0.35 0.41 0.39 0.29 0.35
ρg Persistence Government Spending Shock 0.91 0.94 0.93 0.92 0.94 0.92 0.94 0.93
ρq Persistence Investment Specific Shock 0.60 0.59 0.63 0.58 0.69 0.56 0.56 0.61
ρR Persistence Monetary Policy Shock 0.29 0.14 0.29 0.27 0.24 0.21 0.09 0.16
ρp Persistence Price Markup Shock 0.88 0.96 0.90 0.90 0.92 0.88 0.99 0.91
ρw Persistence Wage Markup Shock 0.94 0.96 0.92 0.95 0.95 0.96 0.97 0.97
θp MA Coefficient Price Markup Shock 0.75 0.88 0.81 0.81 0.85 0.81 0.93 0.81
θw MA Coefficient Wage Markup Shock 0.82 0.92 0.84 0.84 0.88 0.88 0.94 0.91
S′ Investment Adjustment Cost 6.18 9.99 6.78 6.64 7.46 9.39 10.86 9.24
σC Intertemporal Substitution Elasticity 1.03 1.27 1.19 0.97 1.16 1.17 1.20 1.15
h Habit Formation 0.81 0.84 0.79 0.81 0.82 0.86 0.85 0.84
ξw Probability of Resetting Wage 0.84 0.86 0.82 0.82 0.81 0.83 0.86 0.85
σL Labour Supply Elasticity 2.42 2.15 2.05 2.84 1.78 3.01 1.58 2.53
ξp Probability of Resetting Price 0.79 0.70 0.80 0.77 0.77 0.81 0.70 0.77
ιw Wage Indexation 0.43 0.31 0.46 0.43 0.52 0.37 0.29 0.40
ιp Price Indexation 0.28 0.10 0.17 0.28 0.19 0.13 0.04 0.13
ψ Utilisation Adjustment Cost 0.22 0.21 0.19 0.30 0.23 0.23 0.20 0.16
Φ Production Fixed Cost 1.78 2.12 1.88 1.82 2.03 2.13 1.78 1.82
γπ Inflation Policy Reaction 1.74 1.88 1.88 1.88 1.86 1.63 1.86 1.99
γR Interest Policy Smoothing 0.81 0.85 0.83 0.82 0.83 0.86 0.84 0.85
γy Output Gap Policy Reaction 0.11 0.08 0.10 0.12 0.10 0.09 0.09 0.10
γ∆y Output Gap Growth Policy Reaction 0.21 0.17 0.15 0.21 0.18 0.13 0.17 0.17
π̄ Steady State Inflation 0.77 1.13 0.95 0.76 0.89 0.89 0.99 0.90
100

(
β−1 − 1

)
Time Discount 0.40 0.12 0.17 0.45 0.19 0.17 0.06 0.16

L̄ Steady State Hours 1.00 0.55 0.58 1.36 0.76 1.07 0.33 0.84
γ̄ Productivity Growth 0.46 0.45 0.46 0.46 0.45 0.45 0.48 0.45
ρga Government Spending 0.05 0.17 0.07 0.05 0.08 0.07 0.52 0.09

Productivity Correlation

α Capital Production Share 0.22 0.21 0.18 0.22 0.18 0.19 0.20 0.18
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3.3 Forecasts

We then carry out three forecasting exercises. In the first, the model is estimated over 1954Q3-1997Q4 and

forecasts are produced over 1998Q1-2007Q4. For the second, we consider a period that includes the financial

crisis and so estimate over 1954Q3-2000Q4; forecasts are produced over 2001Q1-2010Q2. Finally, we consider

a recursive rolling-sample forecasting exercise where we first produce forecasts at 1998Q1 having estimated

the model over 1954Q3-1997Q4, and then sequentially advance the estimation in one-period steps and produce

successive forecasts to 2010Q2.

We use RMSFE and two-sided Diebold-Mariano tests (Diebold and Mariano, 1995) with p-value = 0.05 to

evaluate forecasting performance compared to a standard DSGE forecast as a benchmark. The charts report

performance for each of the seven variables relative to the benchmark where the multi-step horizon h is in the

range 2 to 8. The criteria are unity for the RMSFE charts (so that numbers below one favour the multi-step

method) and the critical values from the DM tests (so that outcomes below the lower negative value reject

equality in favour of the multi-step method and that above the positive value in favour of the benchmark).

These are evaluated at forecast horizons h = 1, 2, 4, 8 and 12.

For the pre-crisis period (Figures 1 and 2) the multi-step forecast outperforms the benchmark in most cases, even

for forecast horizon h = 1, and in many cases by large margins. Moreover, and unusually for empirical contests

such as this, a high proportion of the outcomes are significant. For the period including the crisis (Figures 3

and 4), the results are more mixed and there are fewer significant outcomes, but the multi-step method remains

the best performer. For the rolling forecast (Figures 5 and 6), the multi-step forecast again tends to outperform

the benchmark, but significantly so in fewer cases. It might be hypothesised that performance at horizon h

would be best if the same horizon h were used when optimising, but in fact this is not the case.

These improved results raise the question of why the method outperforms the standard approach. The immediate

answer is that as discussed above we have effectively introduced a moment which introduces a multi-step cross-

validation element. But from an accounting point of view, the parameter estimates show no special regularities

that might help us.4

The other way in which performance may improve is from an improved estimate of the state. Intuitively, the

quality of the Kalman smoother estimates of the current state increase as the forecast horizon increases as

this is associated with a larger number of cross-equation restrictions from the model. A simple Monte Carlo

experiment supports this intuition. We carry out the following exercise:

• 200 data points are simulated from the true data generation process.

• Some noise is added to the observed variables (we examine noise to signal ratios of 0.5, 1.0 and 2.0).

• We obtain an estimate of the state vector of the economy via the Kalman smoother for one, four and eight

steps ahead.

• The Mean Square Forecast Error (between the actual state observations and the smoothed estimates) is

calculated for the last 50 periods.

• The exercise is repeated 1000 times.

Table 3 supports our intuition. As the forecast horizon used for estimation increases the filter obtains increasingly

and substantially better estimates of the unobserved state of the economy by exploiting the cross-equation

restrictions implied by the model. Furthermore, as the noise to signal ratio increases these restrictions become

even more important. Finally, if the evaluation is carried out for the entire sample then our procedure delivers

4Although relative to Smets and Wouters’ method with informative priors, our results using no prior information have larger
parameters related to aspects of persistence, which may aid forecasting. But as we have observed that does not systematically rise
with the horizon.
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Figure 1: Relative RMSFE over period 1998Q1-2007Q4
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The figures report the relative RMSFE compared to a standard DSGE forecast at horizons h= 1, 4, 8 and 12 for the
variables consumption dc, investment dinve, output dy, labour supply (log hours) lab, inflation pinf , wages dw and the
federal fund rate r where d indicates a log difference. The criterion lines indicate the upper or lower 95% confidence
bounds of the two-sided DM test statistic. The horizontal axis shows the value of the prediction-error horizon in the
range 2 to 8 used in the minimand MinQ.

an enormous improvement. This is because the cross-equation restrictions helps the filter to estimate the state

at the start of the sample with more precision.

Table 3: Nowcasting Evaluation

Noise to Signal Ratio Relative Mean Square Forecast Error
MSFR(h=4)
MSFR(h=1)

MSFR(h=8)
MSFR(h=1)

0.5 0.991 0.975
1.0 0.987 0.968
2.0 0.932 0.894

If we expand the evaluation periods from 50 to 200 periods the performance of our procedure increases dramat-

ically. Again, this is because these additional cross-equation restrictions are particularly useful with regard to

estimation of the initial observations of the state vector.

4 Conclusions

Evidence is mounting that DSGE models, valued for their structural interpretation, may also be useful for

forecasting. But forecast performance at policy-relevant horizons is not incorporated in estimation, except to

the extent that the one-step ahead forecast error is typically used to build the likelihood. A natural exercise

is therefore to use multi-step prediction errors in estimation. This is applied to the standard Smets and

Wouters (2007) model of the US economy. Bayesian computational methods are applied, but without using

prior information, so the results may be seen as classical in spirit, akin to a method of moments estimator. The

parameters are largely similar to those reported in Smets and Wouters (2007), despite being applied without

informative priors and over a different sample. Over both the pre-crisis and post-crisis periods and when
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Figure 2: Diebold-Mariano test statistics over period 1998Q1-2007Q4
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Notes as for Figure 1.

Figure 3: Relative RMSFE over period 2001Q1-2010Q2
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Figure 4: Diebold-Mariano test statistics over period 2001Q1-2010Q2
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Figure 5: Relative RMSFE for rolling forecasts over period 1998Q1-2010Q2

2 4 6 8

0.92

0.94

0.96

0.98

1

1.02

1.04

h = 1

RR
MS

E

MinQ
2 4 6 8

0.8

0.85

0.9

0.95

1

h = 4

RR
MS

E

MinQ
2 4 6 8

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

h = 8

RR
MS

E

MinQ

2 3 4 5 6 7 8

0.94

0.96

0.98

1

1.02

h = 12

MinQ

RR
MS

E

 

 
dc
dinve
dy
lab
pinf
dw
r
criterion

Notes as for Figure 1.

10



Figure 6: Diebold-Mariano test statistics for rolling forecasts over period 1998Q1-2010Q2
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Notes as for Figure 1.

implemented in recursive mode, the multi-step approach at horizons up to h = 8 in the majority of cases

improve RMSFE for most variables relative to the standard method (h = 1), and in many cases significantly

so. Only rarely does the standard one-step approach outperform the new approach.
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