Unemployment (Fears), Precautionary Savings, and Aggregate Demand

Wouter J. Den Haan (LSE/CEPR/CFM) Pontus Rendahl (University of Cambridge/CEPR/CFM) Markus Riegler (LSE/CFM)

November 4, 2015

What we do

Show that the interaction between

① One friction in financial markets: incomplete risk sharing

2 Two frictions in **labor markets**:

- sticky nominal wages: dW/dP < 1
- matching

can

- give rise to "aggregate demand" like propagation from supply shocks
- lead to novel policy implication regarding unemployment insurance (UI)

Interaction of two frictions key

- Complete risk sharing Sticky nominal wages dampen effect shocks
- Flexible nominal wages Incomplete risk sharing dampens effect shocks
- Both shocks magnify effect shocks

Key components behind these results

- Aggregate risk
 - UI policy implications different without aggregate risk
- Asset price volatility
- Portfolio rebalancing towards liquid/unproductive asset during recession
- Nonlinearities induced by standard matching framework

Four cases

- ① Complete markets and flexible wages
- Occupiete markets and sticky wages
- 3 Incomplete markets and flexible wages
- **Benchmark:**Incomplete markets and sticky wages

Case 1: flexible wages & complete markets

usual matching stuff:

- productivity $\downarrow \implies$
- expected future productivity $\downarrow \implies$
- job creation $\downarrow \implies$
- employment rate $\downarrow \implies$
- unemployment rate $\uparrow \implies$
- expected duration unemployment \uparrow

Case 2: Sticky nominal wages & complete markets

- productivity $\downarrow \implies$
- **Upward** pressure on prices \Longrightarrow
 - downward pressure on real wages \Longrightarrow
 - nominal wage rigidity dampens shocks!

Case 3: Flexible nominal wages & incomplete markets

- productivity $\downarrow \implies$
- investment in job creation $\downarrow \implies$
- unemployment $\uparrow \implies$
- idiosyncratic risk $\uparrow \implies$
- precautionary savings $\uparrow \implies$
- reduction in job creation is smaller \implies
- incomplete markets dampens shocks

Case 4: Sticky nominal wages & incomplete markets

- Incomplete markets: Precautionary savings \uparrow when unemp $\uparrow \Longrightarrow$
- precautionary demand for money $\uparrow \Longrightarrow$
- downward pressure on $P \Longrightarrow W/P \uparrow (sticky W) \Longrightarrow$
- job creation investment \downarrow by more not by less! \Longrightarrow
- unemployment rate $\uparrow \Longrightarrow$
- precautionary savings $\uparrow \Longrightarrow$ etc.
- \implies deflationary spiral

Risk for unemployed \implies procyclical $W/P \implies$ volatile asset prices

Main results

- Incomplete markets together with sticky wages amplify shocks, but on their own repress shocks
- **2** Increase in unemployment insurance from 50% to 55% \implies **everybody** better off
 - not true in economy without aggregate risk

Model: Key ingredients

- ① Heterogeneous households and incomplete markets
- **②** Nominal wages do not respond 1-for-1 with P
- 3 Search frictions in the labor market
- # jobs = # firms = # shares

Existing firms

- One-worker firms
- Profits are given by

$$D_t = P_t \exp(z_t) - W_t$$

$$W_t = \omega_0 \left(\frac{z_t}{\overline{z}}\right)^{\omega_z} \overline{z} \left(\frac{P_t}{\overline{P}}\right)^{\omega_P} \overline{P}$$

- Key parameter is $\omega_P \leq 1$
- Aactive firms do not make decisions

Individual households

- one-worker households
- employed workers earn nominal wage $(1 \tau_t) W_t$
- unemployed earn $\mu \left(1 au_t
 ight) W_t$ & search for jobs
- idiosyncratic risk
 - exogenous job loss probability, δ
 - lower chance of getting a job in a recession
- agents can save/invest in
 - unproductive asset: money, $M_{i,t}$
 - productive asset: equity, $q_{i,t} \ge 0$ (i.e., firm ownership/jobs)

Individual households

$$\max \mathbb{E}_{t} \left[\sum_{j=0}^{\infty} \beta^{j} \left(\left(\frac{c_{i,t+j}^{1-\gamma} - 1}{1-\gamma} \right) + \chi \frac{\left(\frac{M_{i,t+1+j}}{P_{t+j}} \right)^{1-\zeta} - 1}{1-\zeta} \right) \right]$$

with respect to

$$P_{t}c_{i,t} + J_{t} (q_{i,t+1} - (1 - \delta) q_{i,t}) + M_{i,t+1} = (1 - \tau_{t}) W_{t}e_{i,t} + \mu (1 - \tau_{t}) W_{t} (1 - e_{i,t}) + D_{t}q_{i,t} + M_{i,t}$$

and
 $q_{i,t+1} \ge 0$

First-order conditions

$$\frac{J_t}{P_t} = \beta \mathbb{E}_t \left[\left(\frac{c_{i,t+1}}{c_{i,t}} \right)^{-\gamma} \left(\frac{D_{t+1}}{P_{t+1}} + (1-\delta) \frac{J_{t+1}}{P_{t+1}} \right) \right]$$
$$c_{i,t}^{-\gamma} = \beta \mathbb{E}_t \left[\frac{P_t}{P_{t+1}} c_{i,t+1}^{-\gamma} \right] + \chi \left(\frac{M_{i,t}}{P_t} \right)^{-\zeta}$$

- Marked departure from literature: Individual MRS is used in **both** Euler equations
- Inequality constraints ignored here

Equity market equilibrium

$$\underbrace{ \begin{array}{l} \underset{\mathsf{Equity creation}}{h_{t}} + \int_{i \in \mathcal{A}_{-}} \underbrace{\left(\left(1 - \delta \right) q_{i} - q\left(e_{i}, q_{i}, M_{i}; s_{t} \right) \right)}_{\mathsf{Equity sold}} dF_{t} \left(e_{i}, q_{i}, M_{i} \right) \\ = \int_{i \in \mathcal{A}_{+}} \underbrace{\left(q\left(e_{i}, q_{i}, M_{i}; s_{t} \right) - \left(1 - \delta \right) q_{i} \right)}_{\mathsf{Equity bought}} dF_{t} \left(e_{i}, q_{i}, M_{i} \right),$$

with

$$\mathcal{A}_{-} = \{i : q(e_i, q_i, M_i; s_t) - (1 - \delta)q_i \le 0\},\$$

$$\mathcal{A}_{+} = \{i : q(e_i, q_i, M_i; s_t) - (1 - \delta)q_i \ge 0\},\$$

"go to equity supply derivation"

Employment

$$q_{t} = \int_{i \in \mathcal{A}_{+}} q(e_{i}, q_{i}, M_{i}; s_{t}) dF_{t}(e_{i}, q_{i}, M_{i}) + \int_{i \in \mathcal{A}_{-}} q(e_{i}, q_{i}, M_{i}; s_{t}) dF_{t}(e_{i}, q_{i}, M$$

Money market equilibrium

• Equilibrium

$$\begin{split} \int_{i \in \mathcal{B}_{-}} \underbrace{(M_{i} - M\left(e_{i}, q_{i}, M_{i}; s_{t}\right))}_{\text{Money sold}} dF_{t}\left(e_{i}, q_{i}, M_{i}\right) \\ &= \int_{i \in \mathcal{B}_{+}} \underbrace{(M\left(e_{i}, q_{i}, M_{i}; s_{t}\right) - M_{i})}_{\text{Money bought}} dF_{t}\left(e_{i}, q_{i}, M_{i}\right), \end{split}$$

• Money supply, \overline{M} , is constant in the benchmark economy.

Intro

Model

Model properties

Business Cycles

UI

Government

$$\tau_t q_t W_t = (1 - q_t) \mu (1 - \tau_t) W_t$$

$$\tau_t = \mu \frac{(1 - q_t)}{q_t + \mu (1 - q_t)}$$

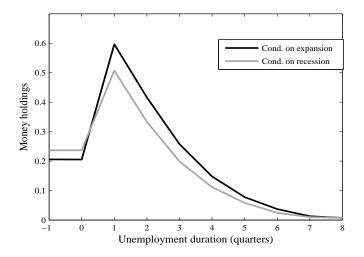
Calibration

• ω_P : range of values

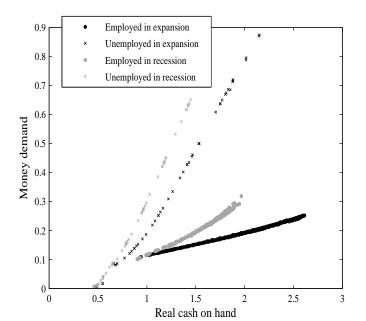
$$W_t = \omega_0 \left(\frac{z_t}{\overline{z}}\right)^{\omega_z} \overline{z} \left(\frac{P_t}{\overline{P}}\right)^{\omega_p} \overline{P}$$

- One-year post-displacement consumption drop is 34% (Kolsrud, Landais, Nilsson, & Spinnewijn 2015; Sweden)
- Expected unemployment duration 3.57 quarters

Intro


Model

Model properties

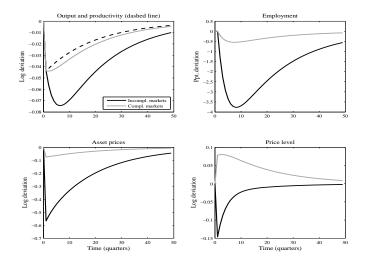

Business Cycles

MODEL PROPERTIES

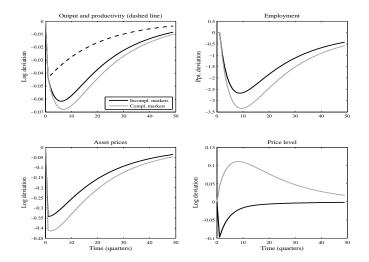
Money holdings upon displacement

Amount invested in liquid asset

Intro


Model

Model properties


Business Cycles

BUSINESS CYCLES

IRFs with sticky nominal wages

IRFs with flexible nominal wages

Intro

Model

Model properties

Business Cycles

UNEMPLOYMENT INSURANCE

Unemployment Insurance

Two unemployment insurance (UI) experiments

- ① Compare economies with different replacement rates
- Unexpectedly increase replacement rate and take into account transition

Two ways to deal with effect on wages

- ① wage rule not affected
- wage rule is adjusted to keep same implied Nash bargaining weights

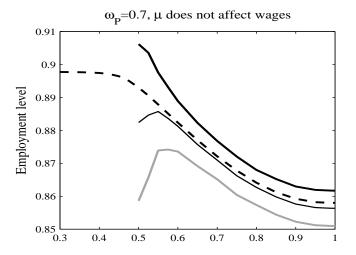
Unemployment insurance

Mechanism emphasized in the literature

Replacement rate $\uparrow \Longrightarrow$

- $\textbf{0} \text{ Agents better insured} \Longrightarrow \text{savings} \downarrow \Longrightarrow \text{employment} \downarrow$
- $\textbf{O} \ \mathsf{Through \ bargaining \ wage} \uparrow \Longrightarrow \mathsf{employment} \downarrow$

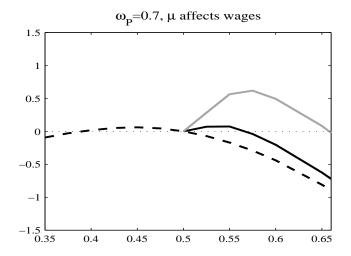
This also happens in our model too, but ...

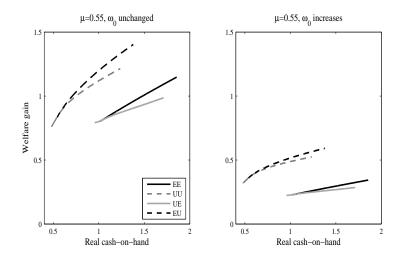

Mean employment rate and higher UI

... there is a strong countervailing effect arising from aggregate uncertainty:

Replacement rate $\uparrow \Longrightarrow$

- **②** Employment is concave in equity prices, $J \implies \mathbb{E}$ [employment] ↑ when $\mathbb{SD}[J] \downarrow$


UI and employment


Switch to alternative UI policy

- ① Replacement rate increases from 0.5 to 0.55
- **2** Switch is unexpected
- **3** Switch is permanent
- Agents take transition into account

Average welfare effect of change in UI

Who likes/dislikes higher UI?

Intro

Concluding comments

- With incomplete markets **and** sticky nominal wages, a decline in productivity sets off a self-reinforcing aggregate demand effect
- This happens despite the fact that both incomplete markets as well as sticky nominal wages in isolation repress propagation.
- One of the core components of this mechanism is the missing market for unemployment insurance.
- A rise in UI generosity can therefore increase average employment and raise welfare for all agents – even the asset-rich employed

Creation of new jobs/firms/equity

• number of new firms created:

$$h_t = \psi v_t^\eta u_t^{1-\eta}$$

• vacancy yield:

$$\frac{h_t}{v_t} = \psi \left(\frac{v_t}{u_t}\right)^{\eta - 1}$$

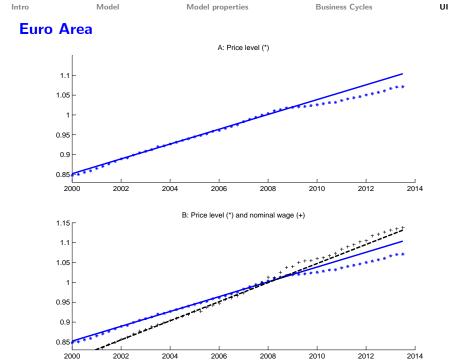
 \Rightarrow

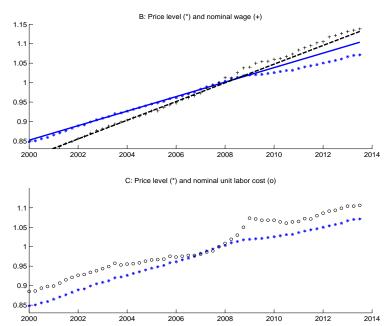
Supply of new equity

- Matching function
- zero-profit condition

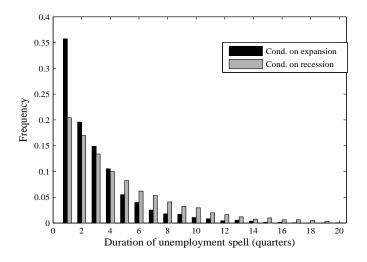
$$h_t = \psi \left(\frac{\psi}{\kappa} \frac{J_t}{P_t}\right)^{\eta/(1-\eta)} u_t$$

Creation of new jobs/firms/equity

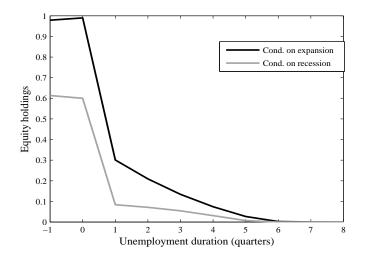

• zero-profit condition \implies vacancies as a function of J_t/P_t :


$$\kappa = \psi \left(\frac{v_t}{u_t}\right)^{\eta - 1} \frac{J_t}{P_t}$$

• supply of *new* equity (job/firm creation):

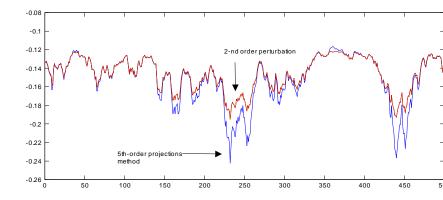

$$h_t = \psi \left(\frac{\psi}{\kappa} \frac{J_t}{P_t}\right)^{\eta/(1-\eta)} u_t$$

"back to main"




Unemployment duration

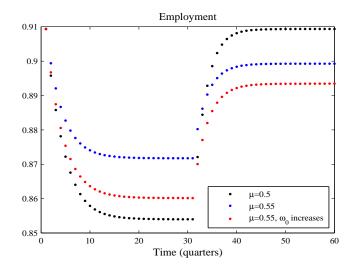
Equity holdings upon displacement


Portfolio choice: fraction in liquid asset

Technical challenges

- Even rep-agent version not trivial to solve accurately
 - non-linearity matching function matters
 - sufficiently volatile employment \Longrightarrow
 - volatile surplus
 - volatile equity prices
 - "go to accuracy graph rep-agent model"
- Adding moderate aggregate uncertainty to model is *not* a small change
 - substantial changes in means
 - volatile surplus and asset prices
 - multiplicity

Log employment level



"back to main"

Increase in UI & transition dynamics

- Increase in UI first period of recession
- No change in wage rule \Longrightarrow
 - equity less risky \Longrightarrow average employment \uparrow
 - less deflationary spiral \implies recession less deep \implies employment \uparrow
- Change in wage rule \Longrightarrow
 - $\bullet\,$ the same as above $+\,$
 - profits $\downarrow \Longrightarrow$ average employment \downarrow

Switch to higher level of unemployment benefits

