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Abstract

In recent years, central banks have increasingly turned to “forward guidance” as a central

tool of monetary policy, especially as interest rates around the world have hit the zero lower

bound. Standard monetary models imply that far future forward guidance is extremely powerful:

promises about far future interest rates have huge effects on current economic outcomes, and

these effects grow with the horizon of the forward guidance. We show that the power of forward

guidance is highly sensitive to the assumption of complete markets. If agents face uninsurable

income risk and borrowing constraints, a precautionary savings effect tempers their responses

to changes in future interest rates. As a consequence, forward guidance has substantially less

power to stimulate the economy. In addition, we show that the business cycle dynamics of

our incomplete markets model differ substantially from its complete market counterpart. This

contrasts with the well-known results of Krusell and Smith (1998). We present approximate

representations that can easily be incorporated into standard business cycle models.
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1 Introduction

Forward guidance has become an increasingly important tool of monetary policy in recent years.

Gurkaynak, Sack, and Swanson (2005) show that much of the surprise news about monetary policy

at the time of FOMC announcements arises from signals about the central bank’s intentions about

future monetary policy. In many cases, changes in the current Federal Funds rate are fully expected,

and all of the news about monetary policy has to do with how the central bank is expected to set

interest rates in the future.1

Promises about future interest rates have been shown to have a powerful effect on the economy

in standard monetary models. Eggertsson and Woodford (2003) show that a shock to the natural

rate of interest that causes the economy to hit the zero lower bound on nominal interest rates

induces a powerful deflationary spiral and a crippling recession. However, the recession can be

entirely abated if the central bank commits from the outset to holding interest rates at the zero

lower bound for a few additional quarters beyond what is justified by contemporaneous economic

conditions.

Recent work argues that the magnitude of the effects of forward guidance in New Keynesian

models stretches the limits of credibility. Carlstrom, Fuerst, and Paustian (2012) show that a

promise by the central bank to peg interest rates below the natural rate of interest for roughly two

years generates explosive dynamics for inflation and output in a workhorse New Keynesian model

(the Smets and Wouters (2007) model). Del Negro, Giannoni, and Patterson (2013) refer to this

phenomenon as the forward guidance puzzle. Along the same lines, consider an experiment whereby

the central bank promises a 1 percentage point lower real interest rate for a single quarter at some

point in the future. We show that in the plain vanilla New Keynesian model, this promise has an

eighteen times greater impact on inflation when the promise pertains to interest rates 5 years in

the future than when it pertains to the current interest rate.

It may seem unintuitive that an interest rate cut far in the future has a greater effect than a

near-term one. To see why this arises in standard models, consider the response of consumption

to a decrease in the real interest rate for a single quarter 5 years in the future. The consumption

Euler equation dictates that consumption will rise immediately to a higher level and stay constant

at that higher level for 5 years before returning to its normal level.2 The cumulative response

1Campbell et al. (2012) reinforce these results using a longer sample period spanning the Great Recession.
2The response is a step function because consumption growth only deviates from normal when the real interest
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of consumption to the shock is therefore quite large and gets larger the further in the future the

interest rate shocks occurs. It is the cumulative response of consumption (with some discounting)

that determines the response of current inflation in the basic New Keynesian model. So, the further

in the future is the interest rate that the monetary authority announces it will change, the larger is

the current response of inflation. At the zero lower bound, this large effect on inflation will lower

real rates and thus create a powerful feedback loop on output.

But is it a realistic prediction of the standard model that agents increase their consumption by

the same amount in response to an interest rate cut 5 years in the future as they do to a cut in the

current interest rate? Many people face some risk of hitting a borrowing constraint over the next

five years. This effectively shortens their planning horizon since interest rate changes in states of the

world that occur after they hit a borrowing constraint are irrelevant for their current consumption

plan. In addition to this, people’s desire to maintain a buffer stock of saving for precautionary

reasons will temper their response to future interest rate shocks. Taking full advantage of the

opportunity for intertemporal substitution presented by the future interest rate change requires

people to run down their assets. This is costly since it leaves them more exposed to future income

shocks. As a consequence, people will trade off the gains from intertemporal substitution and

the costs of running down their buffer stock of savings. As the low interest rate is further in the

future, the change in assets needed to take full advantage of intertemporal substitution grows and

the countervailing precautionary savings effect therefore grows stronger, tempering the effects of

forward guidance.

To investigate the quantitative magnitude of these effects, we consider a general equilibrium

model in which agents face uninsurable, idiosyncratic income risk and borrowing constraints. In

this model, the effect of forward guidance about future interest rates on current output falls the

further out in the future the interest rate change is. For forward guidance about the interest rate

5 years in the future, the effect on output and inflation is roughly 40% as large as in the standard

model. For forward guidance about the interest rate 10 years in the future, the effect on current

output is essentially zero.

rate deviates from normal and this only occurs in the single quarter in our experiment. Another way to see this is
that the the forward guidance does not change the relative price of consumption for any two dates before the date
of the interest rate change. All these dates must therefore have the same level of consumption. The end-point of
consumption is pinned down at the old steady state by the fact that monetary shocks have no effect on real outcomes
in the long run.
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Our results indicate that forward guidance is a much less effective policy tool at the zero lower

bound in a model with a realistic degree of precautionary savings than it is in standard macro

models. We consider a shock that lowers the natural rate of interest enough that the zero lower

bound binds for 5 years and the initial fall in output is -4% in the absence of forward guidance. If

we assume markets are complete (and precautionary savings thus absent), a policy of maintaining

interest rates at zero for a little more than three quarters beyond what a strict inflation targeting

central bank would do completely eliminates the fall in output. In contrast, in our incomplete

markets model with idiosynctratic risk and borrowing constraints, the effect of this amount of

forward guidance is substantially smaller and a significant recession remains.

Movements in real interest rates play an important role in the response of the economy to a wide

variety of shocks. Moreover, forward guidance has been an important part of monetary policy in

“normal times” (i.e., away from the zero lower bound). We next explore how the reduced sensitivity

of output to real interest rates in the incomplete markets model alters the response of the economy to

a number of different business cycle shocks. Specifically, we consider productivity shocks, preference

shocks, and markup shocks, in addition to monetary shocks. We extend our model to include

these aggregate shocks and several features typically included in monetary business cycle models.

We parameterize the monetary policy rule and monetary shocks to match recent evidence from

Nakamura and Steinsson (2015).

To analyze this more complex model, we consider two approximations of the model, both

of which allow the model to be analyzed using standard techniques for solving linear rational

expectations models (e.g., Sims, 2002). First, we use the method proposed by Reiter (2009) to

create a linear representation of the model. Second, we develop a simpler version of the model in

which consumption-savings decisions of households can be represented by an Euler equation with

discounting. We refer to this version of the model as the “discounted Euler equation model.”3

We show that the business cycle dynamics in our incomplete markets model are substantially

different from those of its complete markets counterpart in response to all four of the different

shocks we consider. Our result regarding the response to productivity shocks contrasts sharply

with the results of Krusell and Smith (1998). They compare the response of an incomplete markets

3Interestingly, such a formulation of the consumption Euler equation has actually been used in policy calculations
by the Central Bank of Norway, to combat the forward guidance puzzle. We thank Oistein Roisland for pointing this
out to us.
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model with flexible prices and its complete markets counterpart to productivity shocks and find

that the two models have very similar responses. We show that the difference between our result

and theirs arises because of the New Keynesian features we incorporate into the incomplete markets

model.

One might ask how our mechanism relates to a model with hand-to-mouth consumers. Including

such consumers also reduces the response of output to interest rates. However, this set-up reduces

the sensitivity of output to interest rates by the same amount at all horizons—in this respect, it

is equivalent to reducing the intertemporal elasticity of substitution. In contrast to the hand-to-

mouth model, our incomplete markets model and the discounted Euler equation model reduce the

effect of far future interest rate changes relative interest rate changes closer to the present.

Our work builds on recent papers that incorporate market incompleteness and idiosyncratic un-

certainty into New Keynesian models starting with Guerrieri and Lorenzoni (2011) and Oh and Reis

(2012). The papers closest in spirit to ours are McKay and Reis (2014) who investigate the power of

automatic stabilizers at the zero lower bound and Gornemann, Kuester, and Nakajima (2014) who

investigate the distributional implications of monetary policy shocks. Several other recent papers

suggest “solutions” to the forward guidance puzzle. Del Negro, Giannoni, and Patterson (2013)

argue that the experiment that gives rise to the puzzle is, itself, unreasonable. They argue that it is

unreasonable to assume that the central bank really can engender substantial changes in long-term

interest rates, which are at the core of why the forward guidance puzzle arises. Carlstrom, Fuerst,

and Paustian (2012) and Kiley (2014) show that the magnitude of the forward guidance puzzle is

substantially reduced in a sticky information (as opposed to a sticky price) model. This is because

the sticky information Phillips curve is less forward looking. Our solution instead yields an Euler

equation that is less forward looking than in the standard model. Caballero and Farhi (2014) argue

that forward guidance is less effective if the reason why the zero lower bound binds is a shortage

of safe assets in the economy—a safety trap—as opposed to a deleveraging or patience shock.

The paper proceeds as follows. Section 2 explains why forward guidance is so powerful in

standard New Keynesian models. Section 3 presents our incomplete markets model featuring unin-

surable idiosyncratic income risk and borrowing constraints. Section 4 describes our results about

the reduced power of forward guidance in our incomplete markets model relative to the standard

complete markets models. Section 5 extends the model and analyzes business cycle dynamics. It
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also explains the two methods we employ to make the model tractable enough to be analyzed using

standard techniques for solving linear rational expectations models. Section 6 concludes.

2 Why Is Forward Guidance So Powerful?

It is useful to start with an explanation for why forward guidance is so powerful in standard

monetary models. Consider the basic New Keynesian model as developed, e.g., in Woodford (2003)

and Gali (2008). The implications of private sector behavior for output and inflation in this model

can be described up to a linear approximation by an intertemporal “IS” equation of the form

xt = Etxt+1 − σ(it − Etπt+1 − rnt ), (1)

and a Phillips curve of the form

πt = βEtπt+1 + κxt. (2)

Here, xt denotes the output gap—i.e., the percentage difference between actual output and the

natural rate of output that would prevail if prices were fully flexible—πt denotes inflation, it denotes

the nominal, short-term, risk-free interest rate, rnt denotes the natural real rate of interest—i.e.,

the real interest rate that would prevail if prices were fully flexible—σ denotes the intertemporal

elasticity of substitution, β denotes the subjective discount factor of households, and κ is the slope

of the Phillips curve which is determined by the degree of nominal and real rigidities in the economy.

All variables are denoted as percentage deviations from their steady state values.

Suppose for simplicity that the monetary policy of the central bank is given by an exogenous

rule for the real interest rate where the real interest rate tracks the natural real rate with some

error: rt = it − Etπt+1 = rnt + εt,t−j . Here εt,t−j denotes the shock to the short term real rate

in period t that becomes known in period t − j.4 Absent any monetary shocks, the real interest

rate will perfectly track the natural real rate and both the output gap and inflation will be zero.

Suppose we start in such a state, but then the monetary authority announces that the real interest

rate will be lower by 1% for a single quarter 5 years in the future, but maintained at the natural

4Given this specification of monetary policy, the model has a unique solution for which limj→∞ Etxt+j = 0 and
inflation is bounded. We could alternatively assume that the monetary authority sets the nominal rate according to
the following rule it = rnt + φπt + ε̃t,t−j and φ > 1. In this case, the model has a unique bounded solution (without
the additional restriction that limj→∞ Etxt+j = 0) and there exists a path for ε̃t,t−j that gives the same solution as
the model with monetary policy given by the exogenous path for the real rate we assume. We prefer to describe the
monetary policy as an exogenous rule for the real interest rate because this simplifies our exposition substantially.
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real rate of interest in all other quarters (i.e., εt+20,t = −0.01).5

Figure 1 plots the response of output to this shock (assuming for simplicity that σ = 1). Even

though the real interest rate does not change until 20 quarters later, output jumps up by a full 1%

immediately. Output then stays at this higher level for 20 quarters before falling back to steady

state in quarter 21. To understand why output responds in this way, it is important to consider

that the shock changes the relative price of consumption between quarters 20 and 21 (since it is

the real interest rate in quarter 20 that changes), but leaves the relative price of consumption for

any two dates before quarter 20 and any two dates after quarter 20 unchanged. This implies that

consumption growth can only deviate from normal in quarter 20. In other words, the response of

consumption must be a step function. In addition to this, the level of consumption (and output)

is pinned down in the long-run by the fact that monetary shocks have no effect on real outcomes

in the long run. This implies that consumption (and output) must rise by 1% immediately, so that

they can fall back to steady state in quarter 21.6

The step-function shape of the output response in Figure 1 is determined solely by the Euler

equation. The level of consumption, and therefore output, is however determined by the intertem-

poral budget constraint. In general equilibrium, income rises in response to this type of shock

because the level of production increases in response to the increase in demand. This increase in

income allows households to consume more initially without reducing consumption after period

20. We can compare this general equilibrium case to the response of a single household holding

its own income fixed and also holding the actions of all other agents in the economy fixed (call

this the partial equilibrium response). Figure A.2 in the appendix plots the partial equilibrium

response. The partial equilibrium response is also a step function, since the same Euler equation

applies. The difference is that the increase in consumption over the first 20 quarters will cause the

household to run down its wealth and imply that consumption going forward after period 20 will

be permanently lower (this effect does not occur in general equilibrium due to the offsetting income

rise). However, this difference is relatively small, even for a shock 20 quarters out. For this case,

5Conventional specifications of monetary shocks affect real rates in more than a single quarter. But in a linear
model the effects of such monetary shocks can be “decomposed” into a simple sum of the effects of changes in real
rates at each horizon. In this sense one can think of our 20-quarter experiment as one component of a more complex
monetary shock that affects real rates in many quarters.

6An alternative way to see this is to solve the intertemporal IS equation—equation (1)—forward to get xt =
−σ

∑∞
j=0 Et(it+j − Et+jπt+j+1 − rnt+j). Notice, that there is no discounting in the sum on the right hand side of this

equation. This implies that the output gap will rise immediately by 1% and will stay at that higher level for the next
five years and then fall back to zero all at once when the low interest rate period passes.
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Figure 1: Response of output to a one-quarter drop in the real interest rate 20 quarters in the

future.

the partial equilibrium response of output is 91 basis points rather than the full 100 basis points

in general equilibrium (see Figure A.2).

The logic described above for forward guidance 20 quarters in the future, applies for forward

guidance at any horizon. As a consequence, the further out in the future the forward guidance is,

the larger is the cumulative response of output. In the New Keynesian model, it is the the entire

cumulative response of the output gap (albeit with some discounting) that determines the current

response of inflation to forward guidance. To see this, it is useful to solve the Phillips curve forward

to get

πt = κ

∞∑
j=0

βjEtxt+j . (3)

This equation makes clear that the further in the future is the interest rate that the monetary

authority announces it will change, the larger is the current response of inflation. While the

response of inflation to a 1% change in the current real rate is κσ, the response of inflation to a

1% change in the real rate for one quarter in the infinite future is κσ/(1 − β). If β = 0.99, the

current response of inflation to forward guidance about a single quarter in the infinite future is 100

times larger than the response of inflation to an equally large change in the current real interest

rate. Figure 2 plots the response of inflation to forward guidance about interest rates at different
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Figure 2: Response of current inflation to forward guidance about interest rates at different horizons

relative to response to equally large change in current real interest rate.

horizons relative to the response of inflation to an equally large change in the current real interest

rate. We see that the response of inflation to forward guidance about interest rates five years in

the future is roughly 18 times larger than the response of inflation to an equally sized change in

the current real interest rate.

To build intuition, we have assumed that there is no endogenous feedback from changes in

output and inflation back onto real interest rates. Actual monetary policies are more complicated.

In normal times, forward guidance about lower real interest rates in the future may be partly

undone by higher real interest rates in the intervening period. On the other hand, when monetary

policy is constrained by the zero lower bound on short-term nominal interest rates, the higher

inflation associated with forward guidance about future interest rates will actually lower current

real interest rates and this will in turn raise current output and inflation further. In this case,

the outsized effects of forward guidance we describe above will be further reinforced by subsequent

endogenous interest rate movements.
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3 An Incomplete Markets Model with Nominal Rigidities

Section 2 shows that the huge power of far future forward guidance in standard monetary models

depends crucially on the prediction of the model that the current response of output to an expected

change in real interest rates in the far future (say 5 years in the future) is equally large as the

response of output to a change in the current real interest rate. But is this realistic? With

some probability one will hit a borrowing constraint in the next 5 years. This effectively shortens

one’s planning horizon. Also, increasing consumption today by 1% in anticipation of a 1% change

in real interest rates 5 years from today would entail a sizable run down of assets over the 5

years until the interest rate changes. Agents that face uninsurable idiosyncratic income risk and

borrowing constraints will trade off the benefits of intertemporal substitution and the costs in terms

of reduced ability to smooth consumption over time of having lower buffer stock savings. To analyze

these effects we develop a model with uninsurable idiosyncratic shocks to household productivity,

borrowing constraints, and nominal rigidities.

3.1 The Environment

The economy is populated by a unit continuum of ex ante identical households with preferences

given by

E0

∞∑
t=0

βt

[
c1−γh,t

1− γ
− �1+ψh,t

1 + ψ

]
,

where ch,t is consumption of household h at time t and �h,t is labor supply of household h at time t.

Households are endowed with stochastic idiosyncratic productivity zh,t that generates pre-tax labor

incomeWtzh,t�h,t, whereWt is the aggregate real wage. Each household’s productivity zh,t follows a

Markov chain with transition probabilities Pr(zh,t+1|zh,t). We assume that the initial cross-sectional

distribution of idiosyncratic productivities is equal to the ergodic distribution of this Markov chain.

As the the Markov chain transition matrix is constant over time, it follows that the cross-sectional

distribution of productivities is constant. We use Γz(z) to denote this distribution.

In this economy, a final good is produced from intermediate inputs according to the production

function

Yt =

(∫ 1

0
y
1/μ
j,t dj

)μ
,

where Yt denotes the quantity of the final good produced at time t and yj,t denotes the quantity of
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the intermediate good produced by firm j in period t. The intermediate goods are produced using

labor as an input according to the production function

yj,t = nj,t,

where nj,t denotes the amount of labor hired by firm j in period t.

The market structure of this model economy combines elements that are familiar from the

standard New Keynesian model with elements that are familiar from the standard incomplete

markets model (Bewley, undated; Huggett, 1993; Aiyagari, 1994). While the final good is produced

by a representative competitive firm, the intermediate goods are produced by monopolistically

competitive firms. The intermediate goods firms face frictions in adjusting their prices that imply

that they can only update their prices with probability θ per period as in Calvo (1983). These

firms are controlled by a risk-neutral manager who discounts future profits at rate β. Whatever

profits are produced are paid out immediately to the households with each household receiving an

equal share Dt. Households cannot trade their stakes in the firms.

Households trade a risk-free real bond with real interest rt between periods t and t+1. Borrowing

constraints prevent these households from taking negative bond positions. There is a stock of

government debt outstanding with real face value B. The government raises tax revenue to finance

interest payments on this debt. These taxes are collected by taxing households according to their

labor productivity zh,t. Let τtτ̄(zh,t) be the tax paid by a household h in period t. By levying the

taxes on labor productivity, which is exogenous, the tax does not distort household decisions in

the same way that a lump-sum tax does not. At the same time, the dependence of the tax on zh,t

allows us to manipulate the cross-sectional correlation of tax payments and earnings.

We assume that the government runs a balanced budget so as to maintain a stable level of debt

in each period. The government budget constraint is

B

1 + rt
+
∑
z

Γz(z)τtτ̄(z) = B. (4)

To illustrate our main results about the power of forward guidance, we will consider several mone-

tary policy experiments involving somewhat different specifications of monetary policy. These are

described in Section 4. The relationship between the real interest rate, the nominal interest rate

it, and inflation πt is given by the Fisher relation in the usual way

1 + rt =
1 + it

1 + πt+1
(5)
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where πt+1 ≡ Pt+1/Pt − 1 and Pt is the aggregate price level.

3.2 Decision Problems

The decision problem faced by the households in the economy is

Vt(bh,t, zh,t) = max
ch,t,bh,t+1,�h,t

⎧⎨
⎩
c1−γh,t

1− γ
− �1+ψh,t

1 + ψ
+ β

∑
zh,t+1

Pr(zh,t+1|zh,t)Vt+1(bh,t+1, zh,t+1)

⎫⎬
⎭

subject to

ch,t +
bh,t+1

1 + rt
= bh,t +Wtzh,t�h,t − τtτ̄(zh,t) +Dt

bh,t+1 ≥ 0.

Let ct(b, z) be the decision rule for ch,t, gt(b, z) be the decision rule for household bond holdings

bh,t+1, and �t(b, z) be the decision rule for �h,t. These policy rules vary over time in response to

aggregate events that affect current or future prices, taxes, or dividends.

The final goods producer’s cost minimization problem implies that

yj,t =

(
pj,t
Pt

)μ/(1−μ)
Yt, (6)

where pj,t is the price charged by firm j in period t and the aggregate price index is given by

Pt =

(∫ 1

0
p
1/(1−μ)
j,t dj

)1−μ
.

When an intermediate goods producer updates its price it solves

max
p∗t ,{yj,s,nj,s}∞s=t

∞∑
s=t

βs−t(1− θ)s−t
(
p∗t
Ps
yj,s −Wsnj,s

)

subject to

yj,s =

(
p∗t
Ps

)μ/(1−μ)
Ys,

yj,s = nj,s,

where p∗t is the price set by firms who are able to update their price at date t.

The solution to this problem satisfies

p∗t
Pt

=

∑∞
s=t β

s−t(1− θ)s−t
(
Pt
Ps

)μ/(1−μ)
YsμWs∑∞

s=t β
s−t(1− θ)s−t

(
Pt
Ps

)1/(1−μ)
Ys

. (7)
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3.3 Equilibrium

Let Γt(b, z) be the distribution of households over idiosyncratic states at date t. This distribution

evolves according to

Γt+1(B, z′) =
∫
{(b,z):gt(b,z)∈B}

Pr(z′|z)dΓt(b, z) (8)

for all sets B ⊂ R.

As a result of nominal rigidities, price dispersion will result in some loss of efficiency. Integrating

both sides of (6) across firms and using yj,t = nj,t yields an aggregate production function

StYt =

∫
nj,tdj ≡ Nt, (9)

where Nt is aggregate labor demand and St ≡
∫ 1
0

(
pj,t
Pt

)μ/(1−μ)
dj reflects the efficiency loss due to

price dispersion. St evolves according to

St+1 = (1− θ)St (1 + πt+1)
−μ/(1−μ) + θ

(
p∗t+1

Pt+1

)μ/(1−μ)
. (10)

Inflation can be written as a function of the relative price selected by firms that update their prices

1 + πt =

⎛
⎜⎝ 1− θ

1− θ
(
p∗t
Pt

)1/(1−μ)
⎞
⎟⎠

1−μ

. (11)

Aggregate labor supply is given by

Lt ≡
∫
z�t(b, z)dΓ(b, z). (12)

and labor market clearing requires

Lt = Nt. (13)

Bond market clearing requires

B =

∫
gt(b, z)dΓt(b, z). (14)

The aggregate dividend paid by the intermediate goods firms is

Dt = Yt −WtNt. (15)
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Table 1: Baseline Calibration

Parameter Description Value Target

β discount factor 0.986 2% annual interest rate

γ risk aversion 2

1/ψ Frisch elasticity 1/2 Chetty (2012)

B supply of assets 1.4 × annual GDP aggregate liquid assets (see text)

μ markup 1.2 Christiano, Eichenbaum, and Rebelo (2011)

θ price revision rate 0.15 Christiano, Eichenbaum, and Rebelo (2011)

Finally, integrating across the household budget constraints and using the government budget

constraint and equation (15) gives

Ct = Yt (16)

as the aggregate resource constraint, where Ct ≡
∫
ct(b, z)dΓt(b, z).

An equilibrium of this economy consists of decision rules and value functions {gt(b, z), �t(b, z),
Vt(b, z)}∞t=0 that solve the household’s problem, distributions {Γt(b, z)}∞t=0 that evolve according to

(8). In addition, an equilibrium involves sequences {Ct, Lt, Nt, Yt, Dt, it, Wt, πt, rt, p
∗
t /Pt, St,

τt}∞t=0, that satisfy the definitions of Ct and Lt and equations (4), (5), (7), (9), (10), (11), (13),

(15), (16), and a monetary policy rule as described in section 4.

The main difference between this model and the model discussed in section 2 is the fact that

markets are incomplete. If we modified this model to have complete markets and then linearized

the equilibrium conditions, we would get the model in section 2. The introduction of incomplete

markets yields a role for precautionary savings and it implies that redistribution of wealth across

agents can affect the evolution of aggregate output. The fact that the present model is not linearized

also implies that price dispersion affects equilibrium outcomes.
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3.4 Calibration

Our model period is one quarter and our calibration is summarized in Table 1. We fix the steady

state real interest rate at 2% annually and adjust the discount factor to match this.7 We set the

coefficient of risk aversion to 2. We set the Frisch elasticity of labor supply to 1/2, which is in line

with the findings of Chetty (2012). In our baseline calibration we set the supply of government

bonds, B, to match the ratio of aggregate liquid assets to GDP. We calculate liquid assets from

aggregate household balance sheets reported in the Flow of Funds Accounts and take the average

ratio over the period 1970 to 2013.8 Our choice to calibrate the aggregate supply of assets to match

liquid assets is motivated by the view that much of household net worth is illiquid and therefore not

easily used for consumption smoothing and intertemporal substitution.9 In a sensitivity analysis

we also consider a calibration in which we match aggregate household net worth, which we also

calculate from the Flow of Funds Accounts (described below).

For our choices of the desired markup of intermediate firms, μ, and probability of maintaining a

fixed price, θ, we follow Christiano, Eichenbaum, and Rebelo (2011) and set μ = 1.2 and θ = 0.15.

The implied degree of price stickiness is on the high side of values used in the business cycle

literature. This tends to reduce the size of the effects we find on inflation since it makes inflation

less sensitive to changes in current marginal costs. In the exercises we do where the zero lower

bound on nominal interest rates binds, this also tends to reduce the size of the effects on output

since the smaller effects on inflation translate into smaller effects on real interest rates (Werning,

2012).

We calibrate the idiosyncratic wage risk to the persistent component of the estimated wage

process in Floden and Lindé (2001).10 The estimates of Floden and Lindé are for an AR(1) with

annual observations of log residual wages after the effects of age, education, and occupation have

been removed. Floden and Lindé find an autoregressive coefficient of 0.9136 and an innovation

7We use the term “steady state” to refer to the stationary equilibrium in which aggregate quantities and prices
are constant and inflation is zero.

8We use the same definition of liquid assets as Guerrieri and Lorenzoni (2011). Flow of Funds Table B.100 Lines
10 (deposits), 17 (treasury securities), 18 (agency and GSE securities), 19 (municipal securities), 20 (corporate and
foreign bonds), 24 (corporate equities), 25 (mutual fund shares).

9Kaplan and Violante (2014) present a lifecycle savings model with liquid and illiquid assets and show that the
illiquidity of household net worth leads to stronger and more realistic consumption responses to transitory income
fluctuations.

10While it is common to include a transitory income shock in empirical models of wage dynamics we do not include
such transitory shocks in our analysis because their impact on the quantitative results will be small as these shocks
are easily smoothed be virtue of being transitory.
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variance of 0.0426. We convert these estimates to parameters of a quarterly AR(1) process for log

wages by simulating the quarterly process and aggregating to annual observations. We find the

parameters of the quarterly process such that estimating an AR(1) on the simulated annual data

reproduces the Floden and Lindé estimates, which results in an autoregressive coefficient of 0.966

and an innovation variance of 0.017. We discretize the resulting AR(1) process for log wages to a

three-point Markov chain using the Rouwenhorst (1995) method.11

Finally, to capture the fact that the bulk of tax payments are made by those with high earnings

we set τ̄(z) to be positive only for the highest z. Since households are hetergeneous in the incom-

plete markets model, their MPCs differ widely. Households with little wealth have high MPCs,

while households with a great deal of wealth have much lower MPCs. As a consequence, wealth

redistribution matters for aggregate consumption dynamics. For example, a reallocation of income

from high to low net worth households leads to higher consumption demand, all else equal. One

way in which this shows up in our model is that the government levies taxes to finance interest

payments on debt. A fall in interest rates, therefore, may lead to a redistribution of wealth due

to variation across households in holdings of government debt as well as tax obligations. Our (re-

alistic) assumption that taxes are paid mostly by the rich leads these tax effects to be relatively

small.

3.5 Alternative Calibrations

Our baseline calibration potentially implies too little volatility in household earnings. Guvenen,

Ozkan, and Song (2014) report the standard deviation of the distribution of five-year earnings

growth rates to be 0.73.12 Our model calibrated as described above implies this standard deviation

is only 0.53.

We therefore consider an alternative calibration in which we raise the variance of the produc-

tivity shocks in the model so that our model matches this moment of the five-year earnings growth

rate distribution. Doing so requires raising the variance of the idiosyncratic productivity innova-

tion from 0.017 to 0.033. With more risk, the larger precautionary savings motive raises the total

demand for assets by households. In this calibration we, thus, reduce the discount factor so that

11Kopecky and Suen (2010) prove that the Rouwenhorst method can match the conditional and unconditional
mean and variance, and the first-order autocorrelation of any stationary AR(1) process.

12This value is the average across years of the values reported in Table A8 of Guvenen, Ozkan, and Song (2014).
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the model is again consistent with the total supply of assets and a 2% annual interest rate. This

requires a discount factor of 0.978. We refer to this as the High Risk calibration.

We also explore the extent to which our results depend on the average level of assets in the

economy. With more assets, households will generally have more self-insurance and therefore will be

less concerned with running down their assets. To explore this possibility we consider an alternative

calibration in which we raise the supply of government debt, B, so that the average wealth in the

economy is equal to the aggregate net worth of the household sector from the Flow of Funds,

including both liquid and illiquid wealth.13 This yields a ratio of assets to annual GDP of 3.79.

With a larger supply of assets, bond market clearing requires that households are more patient so

as to increase the demand for assets at a given interest rate. In this calibration, we set the discount

factor to 0.992 to be able to match a 2% annual interest rate. We refer to this as the High Asset

calibration.

Finally we consider a case where we increase both the supply of assets and the extent of risk

that households face. In this case we match a ratio of assets to GDP of 3.79 and the standard

deviation of five-year earnings growth rates of 0.73. The discount factor needed to match a 2%

annual interest rate is 0.990. We refer to this as the High Risk and Asset calibration.

3.6 Computation

In Section 4, we compute the perfect foresight transition paths of the economy in response to

monetary policy and demand shocks. We assume that the economy begins in the steady state and

returns to steady state after 250 quarters. We begin by guessing paths for all aggregate quantities

and prices. We can then verify whether this guess is an equilibrium by checking that the definition

of an equilibrium given above is satisfied. Part of this step involves solving and simulating the

households problem at the guessed prices. We solve the household’s problem by iterating on the

Euler equation backwards through time using the endogenous gridpoint method of Carroll (2006)

to compute the policy rules for each period of the transition. We then simulate the population

of households forwards through time using a non-stochastic simulation algorithm to compute the

distribution of wealth at each date. We can then compute aggregate consumption, labor supply,

and bond holdings using the policy rules and distribution of wealth for each date. If our guess is not

13Here we use the ratio of household net worth to GDP averaged over 1970 to 2013. Household net worth is taken
from Table B.100 Line 42.
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an equilibrium we update it to a new guess that is closer to an equilibrium. We generate the new

guess of prices and aggregate quantities by making use of an auxiliary model that approximates

the aggregate behavior of the incomplete markets households and then solving for an equilibrium

under this approximating model. We perform this step using a version of Newton’s method. We

provide additional details of the computational methods in Appendix A.

4 Results

Our main result is that the power of forward guidance is substantially muted in the incomplete

markets model we present in Section 3 relative to the standard complete-markets New Keynesian

model. To illustrate this, we first consider a simple policy experiment: suppose the central bank

promises a 50 basis point (i.e., 2% annualized) decrease in the real interest rate for a single quarter

5 years in the future.14

Figure 3 plots the response of output to this shock in our incomplete markets model and, for

comparison, in the complete markets version of this model. As we discuss in section 2, the response

of output under complete markets is a step function: Output immediately jumps up by 25 basis

points and remains at that elevated level for 20 quarters before returning to steady state (recall

that the IES is 1/2). In contrast, in the incomplete markets model the initial increase in output is

only about 40% as large. Output then gradually rises as the interest rate decrease gets closer. But

even in the period right before the interest rate decrease, the increase in output is substantially

smaller than under complete markets.

There are two main reasons why the response of output is muted under incomplete markets.

First, households anticipate that with some probability they will face a sequence of idiosyncratic

shocks that leads them to hit the borrowing constraint over the next 20 quarters. Each future state

of the world in which they hit the borrowing constraint chops off a branch of their future event tree

when it comes to their current intertemporal optimization problem. The possibility of hitting the

borrowing constraint therefore shortens the households’ planning horizon and makes them respond

less strongly to opportunities to intertemporally substitute that are far in the future. Since the

probability that a household will hit the borrowing constraint grows the further they look into the

future, households respond less to far future changes in interest rates than to changes in interest

14As in Section 2, we assume here that the monetary authority sets an exogenous path for the real interest rate.
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Figure 3: Response of output to 50 basis point forward guidance about the real interest rate in

quarter 20 (with real interest rates in all other quarters unchanged).

rates that will occur sooner.

Second, households are loath to run down their assets for precautionary reasons. Suppose

a single household contemplates deviating from the path of consumption (and output) shown in

Figure 3 and instead consumes more before quarter 20 and less after quarter 20 so as to take

advantage of the opportunity for intertemporal substitution offered by the low future interest rate.

This deviation would require the household to run down its wealth, which is costly as it leaves

the household more exposed to future idiosyncratic shocks to income. At the equilibrium, such

a deviation is not desirable because the marginal benefits of taking advantage of the opportunity

for intertemporal substitution exactly equal the marginal cost of having a smaller buffer stock of

savings and being more exposed to idiosyncratic shocks.

Under complete markets, it poses no concern for households to run down their wealth, since they

are fully insured against all shocks. As a consequence they take full advantage of opportunities to

intertemporally substitute. Under incomplete markets, however, households face a trade-off due to

the precautionary benefits of maintaining a sizable buffer stock of assets. This precautionary motive

leads the incomplete markets household to choose a more conservative consumption response to

the change in the interest rate.
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Another difference between the complete markets response and the incomplete markets response

in Figure 3 is that, after the interest rate change passes, output falls below steady state for some

time in the incomplete markets case. The reason for this is that the interest rate shock leads to

a redistribution of wealth away from households with high marginal propensities to consume and

towards households with low marginal propensities to consume (MPC). This wealth redistribution

lowers aggregate demand (and therefore output) for some time until the distribution of wealth has

had time to converge back to steady state.15

Figure 4 plots the response of inflation to this same shock. The five year output boom induced

by the forward guidance about real interest rates leads to a large inflation response in the complete

markets case. Since the output boom is much smaller in the incomplete markets model, the rise in

inflation is also much smaller. The initial response of inflation in the incomplete markets model is

again only about 40% as large as in the complete markets model.

Are these responses symmetric for interest rate increases versus decreases? Above, we consider

the response of the economy to a decrease in interest rates five years in the future. We get very

similar results if we instead consider an equally large increase in interest rates five years in the

future. The immediate effect on output is a drop of 12 basis points, while output rises by about 10

basis points in the case of a decrease (Figure 3). The immediate effect on inflation is a drop of 28

basis points, while inflation rises by about 30 basis points in the case of decrease (Figure 4).16

4.1 Dependence on Horizon of Forward Guidance

The difference between the complete and incomplete markets models grows with the horizon of the

interest rate shock. Figure 5 plots the initial response of output to 50 basis point forward guidance

about the real interest rate in a single quarter as the horizon of that single quarter changes from

15There are two reasons why the interest rate shock leads to a redistribution towards households with low MPCs
(which tend to be the high productivity households). First, the fall in interest rates implies that the the government
needs less tax revenue in period 20 to pay the interest on the debt. Since the high productivity households pay the
tax, they benefit from this fall in taxes. If these same households owned all the assets, their asset income would fall
by an equal amount. The high productivity households own most of the assets but not all. So, on net, they benefit
from the fall in interest rates. Second, the boom in output that the fall in interest rates causes leads wages to rise
more than firm dividends. Since a larger fraction of the income of high productivity households is wage income, this
also disproportionately benefits the high productivity households.

16It may seem puzzling that the absolute size of the output response is larger for the interest rate increase, but the
ranking is reversed for the inflation response. Both interest rate increases and decreases yield an increase in price
dispersion (because they both yield non-zero inflation). This implies that more labor is needed to produce the amount
of output demanded, which raises wages in both cases and pushes inflation up, reversing the relative rankings.
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Figure 4: Response of inflation to 50 basis point forward guidance about the real interest rate in

quarter 20 (with real interest rates in all other quarters unchanged).

one to 40 quarters.17

In the complete markets model, output always rises by 25 basis points, regardless of the horizon

of the forward guidance. In contrast, in the incomplete markets model, the effect is only about 20

basis points for an announcement about the real interest rate next quarter and falls monotonically

thereafter. It is roughly 10 basis points for an announcement about the real interest rate 5 years

ahead; and essentially zero for an announcement about the real interest rate 10 years ahead.

Intuitively, the probability of hitting a borrowing constraint before the interest rate change

occurs rises with the length of time until the interest rate change occurs. For this reason, the

benefit of responding falls. In addition, the cost of responding rises since the amount the household

would need to run down its assets to take full advantage of the opportunity to intertemporally

substitute gets larger and larger. Together, these forces imply that eventually the benefits from

intertemporal substitution are simply too small to make it worth it for households to incur the

costs associated with running down their buffer-stock savings.

The results for inflation are even starker. Figure 6 plots the initial response of inflation to

17For example, the points at horizon 20 in Figure 5 are the first points on each line in Figure 3. And the points at
horizon 10 in Figure 5 are the initial response of output in the two models if the central bank announces that it will
lower the real interest rate by 50 basis points for a single quarter 10 quarters in the future.
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Figure 5: Initial response of output to 50 basis point forward guidance about the real interest rate

for a single quarter at different horizons.

forward guidance about the real interest rate at different horizons. In the complete markets model,

the response of inflation rises explosively with the horizon of the forward guidance.18 In the

incomplete markets model, in contrast, the inflation response is smaller to start out with, grows

more slowly, and therefore generates very different results at long horizons.

4.2 Results for Alternative Calibrations

Table 2 presents the results of the forward guidance experiment described above for our baseline

incomplete markets model as well as for several alternative calibrations of our incomplete markets

model. We also present the results for the the complete markets version of our model, for compar-

ison. In each case, we present the initial response of output and inflation to 50 basis point forward

guidance about the real interest rate for a single quarter 5 years in the future.

18There is a powerful feedback loop in our non-linear model. High inflation leads to an increase in price dispersion,
which results in loss of efficiency. Workers must then work harder to produce the output that households demand.
To induce workers to work more, wages must rise leading to more inflation. For small amounts of inflation these
forces are not important, but if inflation remains elevated for long enough these dynamics lead to a sharp enough
increase in wages and relative prices that the model solution can no longer be computed accurately. Interestingly,
inflation itself asymptotes to a finite value because, in the non-linear New Keynesian model, no matter how high the
current desired price of adjusting firms is, inflation can only asymptote to a certain level, because demand (and the
products weight in the price index) falls with the relative price of adjusting firms. See Ascari (2004) for a very related
discussion.

21



Horizon in Quarters
0 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e 

P
oi

nt
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Inflation

Complete Markets
Incomplete Markets

Figure 6: Initial response of inflation to 50 basis point forward guidance about the real interest

rate for a single quarter at different horizons.

The High Risk calibration features greater uninsurable risk than our baseline calibration. We

roughly double the volatility of idiosyncratic productivity shocks relative to our baseline calibration,

allowing us to match recent evidence on the volatility of earnings growth from Guvenen, Ozkan,

and Song (2014). This boosts the precautionary savings motive and further reduces the power of

forward guidance relative to the complete markets benchmark. The response of output in this case

is only about 20% of the complete markets benchmark and the response of inflation only about

32% of the complete markets benchmark.

In the High Asset calibration, we set the ratio of assets to GDP in the model to be almost

three times higher than in our baseline calibration (3.79 versus 1.4). We do this to match the ratio

of total net worth in the economy to GDP (as opposed to total liquid assets as in our baseline

calibration). Increasing the quantity of available assets in the economy increases the size of the

precautionary savings buffers available to households and thus reduces their reluctance to engage

in intertemporal substitution. This change therefore moves the incomplete markets model closer

to the complete markets benchmark. The output response rises to 58% of the complete markets

benchmark, while the inflation effect rises to 49%.19

19One might ask how adding unsecured debt would affect our results. We have considered a case in which the
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Table 2: Power of 20 Quarter Ahead Forward Guidance

Initial Responses of

Output Inflation

Baseline 10.3 29.8

High Risk 4.8 23.8

High Asset 14.5 36.2

High Risk and Asset 11.6 33.8

Complete Markets 25.0 74.3

Initial response of output and inflation (in basis points) to forward guid-
ance that reduces the expected real interest rate 20 quarters ahead by 50
basis point for four different calibrations of our incomplete markets model.

We also consider a High Risk and Asset calibration with both of the above-mentioned alternative

parameter values. These two modifications largely offset each other. As a consequence, the results

lie between the two calibrations described above and close to the baseline calibration. The response

of output in this calibration is 46% of the complete markets benchmark, while the response of

inflation is 45% of the complete markets benchmark.

These alternative calibrations demonstrate that, with more risk and less self-insurance, the ef-

fects of precautionary savings and credit constraints become more pronounced. There are several

reasons to believe that our baseline calibration understates the importance of these forces. In our

baseline calibration, the fraction of agents that are constrained in steady state is 13% implying

that 87% of households have positive liquid assets. Kaplan, Violante, and Weidner (2014) present

estimates from the U.S. Survey of Consumer Finances that 75% of U.S. households have positive

liquid assets. On this metric, therefore, our baseline calibration understates the fraction of house-

holds with low liquid assets relative to the U.S. data. A related statistic is the average marginal

propensity to consume (MPC). In our baseline calibration the average MPC is only 12%, and even

in our High Risk calibration it rises only to 14%. In contrast, a substantial amount of empirical

amount of assets in the model is calibrated as in our baseline case but we relax the borrowing constraint by allowing
households to borrow up to five times average monthly labor income. Figure 2 of Kaplan, Violante, and Weidner
(2014) indicates that very few households have unsecured debt that is larger than five times monthly income. This
calibration yields results that are very similar to our baseline case (an initial output response of 10.9bp versus 10.3bp
in our baseline case).
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evidence suggests larger values for the average MPC, with many studies estimating values close

to 20%.20 On the basis of these statistics, one might argue for calibrations in which households

are more credit constrained than in the calibrations we have considered. Such a calibration would

likely further amplify the effects we emphasize regarding the differences between the complete and

incomplete markets models.

4.3 Zero Lower Bound Analysis

In recent years, risk-free nominal interest rates around the world have hit zero. At the zero lower

bound (ZLB), forward guidance has become an indispensable policy tool, since it is no longer

possible to implement monetary policy via the current policy rate. Eggertsson and Woodford

(2003) show how a persistent shock to the natural interest rate that causes the economy to hit

the ZLB can provoke a massive recession if the central bank does not engage in unconventional

monetary policy. They show, however, that the recession can be fully abated by a relatively modest

amount of forward guidance about future interest rates.

Our conclusions above suggest that forward guidance may not be as powerful at the ZLB in our

incomplete markets model. To investigate this question, we follow Eggertsson and Woodford (2003)

in assuming that the ZLB is brought on by a temporary shock to the subjective discount factor of

households in the economy that depresses the natural rate of interest below zero. In other words,

we now consider a case were the discount factor can vary over time. The specific shock we consider

is an increase in the discount factor that lasts for a known number of quarters and then reverts to

normal.21 We choose the size and persistence of the shock so that the initial output decline is 4%

and the ZLB binds for 20 quarters under a naive monetary policy (described below).22

20Parker (1999) estimates that household spend 20% of increases in disposable income when they hit the Social
Security tax cap. Johnson, Parker, and Souleles (2006) estimate that households spent 20-40% of tax rebate checks
they received in 2001, and Parker et al. (2013) estimate that households spent 12-30% of tax rebate checks they
received in 2008. These studies as well as most others on this topic consider anticipated changes in income. They
therefore provide a lower bound for responses to unanticipated changes in income. See Jappelli and Pistaferri (2010)
for an excellent recent survey of the literature on the response of consumption to changes in income.

21Our shock differs from the shock considered in Eggertsson and Woodford (2003) in that its persistence is known,
implying that agents have perfect foresight about the evolution of the aggregate economy. Eggertsson and Woodford
(2003) consider a shock that reverts back to normal with constant probability each period. Clearly, both formulations
are approximations. Eggertsson and Woodford’s formulation abstracts from time-variation in the probability of the
ZLB period ending, while our framework abstracts from uncertainty about when it will end. However, the incomplete
markets model is more difficult to solve computationally without the assumption of perfect foresight for aggregate
shocks.

22Hitting these targets requires slightly different calibrations of the discount factor shock in the complete versus
the incomplete markets model: it corresponds to a decline in the natural rate of 16.4 basis points in the incomplete
markets model, but only 14.8 basis points in the complete markets model. In each case, the duration of the shock is
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Figure 7: Response of output to the ZLB shock.

We consider two alternative monetary policies. First, we consider a policy where the central

bank sets the nominal interest rate equal to a simplified Taylor rule whenever this yields an interest

rate greater than zero, and, otherwise, sets the nominal rate to zero: it = max[0, r̄ + φπt], where

φ = 1.5 and r̄ is the steady state real interest rate. We refer to this policy as the “naive” policy.

We also consider an “extended” policy whereby the central bank sets the nominal rate to zero for

several additional quarters beyond what is implied by the naive policy and then reverts back to the

policy rule. We choose the length of the additional monetary stimulus to fully eliminate the initial

fall in output in the complete markets model.

Figure 7 shows that forward guidance is substantially less powerful at the ZLB in the incomplete

markets model than in the standard New Keynesian model. The bottom two lines show the path

of output under the naive monetary policy for the complete and incomplete markets cases; while

the top two lines show the effects of the extended monetary policy in these two cases. While the

extended monetary policy fully eliminates the recession in the complete markets case, a substantial

recession remains in the incomplete markets model. Figure 8 shows the implications for inflation:

the extended policy is much more successful in preventing deflation in the complete markets model

33 quarters.
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Figure 8: Response of inflation to the ZLB shock.

versus the incomplete markets model. While the initial deflation is only about 30 basis points in

the complete markets case, it is more than 100 basis points in the incomplete markets case. The

fact that inflation is lower in the incomplete markets case implies that real interest rates are higher

(since nominal rates are stuck at zero). This contributes to the larger fall in output.

Figure 9 plots the implications of the naive and extended monetary policies for the nominal

interest rate. Under the naive policy the ZLB binds for 20 quarters and then rises gradually to its

steady state value of 50 basis points. Under the extended policy, the nominal interest rate remains

at zero for 23 quarters (an additional 3 quarters), and interest rates are somewhat lower in quarter

24 than the naive policy implies (this partial stimulus in the 24th quarter is what is needed to

exactly eliminate the initial fall in output due to the shock). The difference between the dashed

and solid lines, thus, indicates the amount of additional stimulus provided by the extended policy.

5 Business Cycle Analysis

We have argued that market incompleteness affects the response of the economy to changes in real

interest rates especially when those changes occur in the future. As the real interest rate is an

important price in most macro models, we now explore how these effects of market incompleteness
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Figure 9: Response of nominal interest rate to the ZLB shock.

alter the dynamics of the business cycle for a variety of alternative shocks. This analysis is related

to the influential work of Krusell and Smith (1998) who ask a related question in the context of

a flexible price economy. As we will show, their findings on the limited importance of market

incompleteness for aggregate dynamics do not carry over to our New Keynesian environment. We

also consider an empirically estimated specification of the monetary policy shock—which illustrates

that forward guidance is important even away from the zero lower bound.

5.1 An Extended Model for Business Cycle Analysis

We now extend our model to include a set of aggregate shocks and several features typically included

in monetary business cycle models. These features modify the Phillips curve and monetary policy

rule of the model to generate more empirically realistic responses to shocks. It is important to note,

however, that none of these modifications affect the response of consumers to a shock to the real

interest rate—hence, the results of the main experiment in section 4 for output are unchanged.

Specifically, we make the following four changes to the “supply side” of the model presented in

section 3. First, we follow Kimball (1995) in adopting a production function for final goods that

implies that the elasticity of demand for each intermediate good falls as the relative quantity used
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of that intermediate good rises. This makes the pricing decisions of the intermediate goods firms

strategic complements. Second, we follow Christiano, Eichenbaum, and Evans (2005) in assuming

that intermediate goods prices that are not re-optimized in a particular period are indexed to

lagged inflation. This generates inflation inertia, which is needed to fit the empirical response of

inflation to monetary shocks. Third, we assume that the production function of intermediate goods

is subject to aggregate productivity shocks and therefore given by yj,t = Atnj,t, where logAt follows

an AR(1) process. Fourth, we assume that the production function for final goods is subject to

shocks that lead to variation in the elasticity of demand for each intermediate good even conditional

on the relative price of these goods. We refer to these shocks as “markup shocks” and assume that

they follow and AR(1) process.

Under these assumptions, we derive the following log-linearized Phillips curve

πt − πt−1 = βEt [πt+1 − πt] + κξ
(
Ŵt − Ât

)
+ μ̂t, (17)

where hats denote log deviations from steady state. The parameter κ = (θ(1− β(1− θ)))/(1− θ)

governs the degree of nominal rigidity, while the parameter ξ = 1/(1 + μΩ/(μ − 1)) governs the

degree of “real rigidity” (i.e., strategic complementarity in price setting). The parameter Ω governs

the rate at which the elasticity of demand for a particular intermediate good changes with the

relative price of that good. See appendix B for a detailed derivation of equation (17).

The only change we make to the household’s problem relative to the model presented in section

3 is that we assume that households are affected by an aggregate shock to their time-preference.

Specifically, we assume that the discount rate between period t and t + 1 is β × exp{qt} where qt

follows an AR(1) process.

In earlier sections of the paper, we considered rather stylized representations of monetary shocks.

We did so for illustrative purposes. A natural question, though, is how incomplete markets affect

the response of the economy to the types of monetary shocks that have been estimated in the

literature. To answer this question, we now assume that the monetary authority varies the nominal

interest rates according to the following relatively standard feedback rule

it = ρiit−1 + (1− ρi)(r̄ + φπt) + εt, (18)

where ρi is the degree of interest rate smoothing and εt is a monetary policy shock that follows and

AR(1) process.
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Figure 10: Response of the real interest rate to a monetary shock.

The calibration of the parameters of the monetary policy rule as well as the degree of real rigidity

is designed to match estimates of the response of real interest rates and inflation to monetary policy

shocks from Nakamura and Steinsson (2015). Specifically, the autocorrelation of the monetary

shocks εt is set equal to its estimated value of 0.74 from Nakamura and Steinsson (2015). The

degree of interest rate smoothing is set to ρi = 0.954 to match the response of the real rate at

a 10-year horizon. We set the real rigidity parameter Ω equal to 56.5 to match the response of

inflation at a five-year horizon to a monetary shock estimated by Nakamura and Steinsson (2015).

As before, we set φ to 1.5. Figure 10 shows that this calibration does a good job of matching the

path of the response of the real interest rate to the monetary shocks identified by Nakamura and

Steinsson (2015). Finally, we set the autocorrelation of the productivity shocks to 0.95, and the

autocorrelation of the preference shocks and markup shocks to 0.8.

5.2 Two Methods for Analyzing Business Cycle Dynamics

There are well-known challenges involved in solving incomplete markets models in the presence of

aggregate uncertainty (Krusell and Smith, 1998). We now present two methods that can be used

to analyze our extended model. Both of the methods are premised on building an approximate
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representation of household behavior that can be linearized and analyzed with standard techniques

for linear rational expectations models.

5.2.1 Linearizing the Full Model

First, we use the method proposed by Reiter (2009) to create a linear representation of the dynam-

ics of the incomplete markets model. We approximate the distribution of wealth with a histogram.

The mass of households in each bin then becomes a state variable of the model. We also approx-

imate the household decision rules with a discrete approximation (i.e. splines). In this way, the

model’s household block is represented with a large, but finite, number of variables and an equal

number of equations. These equations replace the Euler equation and the labor supply rule in the

representative agent model and we combine them with the other equations of the model such as

the Phillips curve and monetary policy rule. We then linearize the model with respect to aggregate

states, and solve for the dynamics of the economy as a perturbation around the stationary equi-

librium without aggregate shocks using a standard linear rational expectations algorithm (Sims,

2002). The resulting solution is non-linear with respect to the idiosyncratic state variables, but

linear with respect to the aggregate states. Appendix A contains more details.

Since this method involves solving the aggregate dynamics using a perturbation approach, it

is easy to allow for many aggregate state variables. This implies that, using Reiter’s method, we

are able to extend the incomplete markets model to incorporate many of the features found in

workhorse monetary models (see also McKay and Reis, 2014).

This method has been shown to provide an accurate approximation to heterogeneous agent

models. We have verified that this algorithm yields a solution that is very similar to our fully non-

linear solution for the response to anticipated monetary shocks. In addition, appendix A presents

an error analysis based on Euler equation errors.

5.2.2 Discounted Euler Equation

We next develop a simpler version of our model that we refer to as the “discounted Euler equation

model,” which yields a single equation replacement for the standard consumption Euler equation.

This is a version of our main model in which idiosyncratic productivity is i.i.d. and takes one of

two values each period, which we refer to as employed (z = 1) and unemployed (z = 0). The only
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income of the unemployed comes from home production in amount Atm, where m is a parameter

that determines productivity at home. Furthermore, we assume that there are no assets available

(B = 0).23

We show in appendix C that under these assumptions we can derive the following log-linearized

consumption Euler equation24

Ĉt = αEtĈt+1 − γ−1(it − Etπt+1 − rnt ). (19)

This equation differs from the standard consumption Euler equation because of the parameter

α < 1. Solving this equation forward yields

Ĉt = −γ−1
Et

∞∑
j=0

αj(it+j − Et+jπt+j+1 − rnt+j). (20)

Notice that the effect of interest rates j periods in the future on current consumption is discounted

by a factor αj . For this reason, we refer to equation (19) as the “discounted Euler equation.” The

presence of α < 1 implies that far future interest rate changes have much smaller effects on current

consumption than near term interest rate changes.

In this version of the model, the unemployed households are liquidity constrained, while the

employed households are not. The presence of α in equation (19) results from the fact that with

some probability the currently employed households will be unemployed next period and next

period’s expected marginal utility is therefore partly determined by the exogenous marginal utility

in the unemployed state.25

In the incomplete markets model, the response of output to real interest rate changes differs

from the response for the complete markets model both because the response declines with the

horizon of forward guidance and also because the response to contemporaneous changes in the real

rate is smaller. The discounted Euler equation can match the first of these differences with an

23Krusell, Mukoyama, and Smith (2011) and Ravn and Sterk (2013) have also used this approach to formulate
tractable incomplete markets models.

24For simplicity, we present the discounted Euler equation for the case without technology shocks. Appendix C
extends the analysis to include those shocks.

25Piergallini (2006) and Nistico (2012) provide an alternative micro-foundation for discounting in the Euler equation
based on mortality shocks as in Blanchard’s (1985) perpetual-youth model. In their formulation, discounting only
arises from aggregation over different generations, and to generate a quantitatively important deviation from the
standard Euler equation, these authors assume counter-factually high death rates. Our approach rationalizes why
long-lived consumers can have short planning horizons. Moreover, in Piergallini and Nistico’s formulation, the
discounting in the Euler equation is larger the larger is the amount of financial wealth in the economy and disappears
when financial wealth is in zero-net supply. In contrast, in our full model, agents discount the future more when they
have little liquid financial wealth to buffer shocks to income.
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Figure 11: Response of output to a 50 basis point change in the expected real interest rate in

quarter 20 in the incomplete markets model and in the discounted Euler equation model.

appropriate value for α. To match the second of these differences we can change the value of the

intertemporal elasticity of substitution, 1/γ, in the discounted Euler equation.

Figure 11 shows that the discounted Euler equation with α = 0.97 and 1/γ = 3/8 provides

a good approximation to the response of output to a real interest rate shock 20 quarters in the

future in the baseline incomplete markets model analyzed in sections 3 and 4. The approximation is

nearly perfect up until the time that the interest rate changes. What the discounted Euler equation

misses is the fall in consumption after the interest rate shock. This fall is due to redistribution of

wealth in the incomplete markets model (from households with high MPCs to households with low

MPCs), which the discounted Euler equation does not capture.

In the discounted Euler equation model, the distribution of wealth is degenerate and the equi-

librium conditions of the economy can be expressed using a small number of equations that can be

analyzed with standard linearization techniques. However, the discounted Euler equation model

does not incorporate distributional effects or the dynamics of the distribution of wealth. Neverthe-

less, we show below that the discounted Euler equation also provides a good approximation to the

full incomplete markets model for a range of standard business cycle shocks.
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Figure 12: Impulse responses to a monetary shock.

5.3 Results

We first consider the response of the economy to the monetary shock estimated by Nakamura and

Steinsson (2015) and discussed above. Figure 12 plots the response of output, inflation, nominal

and real interest rates to this monetary shock for three models: (1) the incomplete markets model

described in section 5.1, (2) a complete markets version of that same model, and (3) a version of this

model where household behavior is governed by the discounted Euler equation. Under complete

markets, there is a large decline in output. A substantial part of this decline is driven by changes

in real interest rates several years in the future. As the incomplete markets model responds less

strongly to all changes in real interest rates and especially those at longer horizons, we find that

under incomplete markets the initial decline in output is only 60 percent as large as under complete

markets. The smaller decline in output translates into a smaller change in inflation. The figure also

shows that the discounted Euler equation model yields a good approximation to the full incomplete

markets model for this monetary shock.

Until now, we have focused on analyzing the response of the incomplete markets model to mon-

33



Table 3: Relative Volatility in Incomplete Markets Model

Output Inflation

Monetary Pref. Markup Tech. Monetary Pref. Markup Tech.

Baseline 0.62 0.78 0.64 1.21 0.86 0.79 1.35 1.08

Discounted Euler 0.61 0.69 0.62 1.28 0.92 0.92 1.38 1.00

Flexible prices – – 0.92 0.97 – – – –

The table lists the standard deviation of output and inflation in the incomplete markets model as a fraction of
the same standard deviation in the corresponding complete markets model. The results in the first row are for the
incomplete markets model described in section 5.1, while the results in the second row are for a version of that model
where household behavior is governed by the discounted Euler equation. When prices are flexible, demand shocks
(monetary and preference) do not affect equilibrium output under complete markets although there are some small
effects in the incomplete markets that result from redistribution due to changes in real interest rates.

etary policy shocks. However, the arguments we have made apply to all shocks that yield variation

in real interest rates. To illustrate this, Table 3 compares the response of the incomplete mar-

kets model and the complete markets model to preference shocks, markup shocks, and technology

shocks, in addition to the monetary shocks we consider above. For a given shock, say a technology

shock, we simulate a time series for the shock and then compute the response of the incomplete

markets model as well as the response of the complete markets version of the model to this series of

shocks. We then report the standard deviation of output and inflation for the incomplete markets

model relative to the complete markets model. Since our approximate solutions are all linear in

the shocks, the scale of the shock is irrelevant to this calculation.

The results of these calculations are reported in the first row of Table 3. Just as one would

expect from Figure 12, the volatility of output that arises from monetary shocks is only 62% of

its level under complete markets and this implies that the volatility of inflation is only 86% of

its level under complete markets. We obtain similar results for the preference shock we consider.

Households in the incomplete markets model respond less strongly to changes in the discount rate—

recall that our preference shock is a shock to the discount rate—just as they respond less strongly

to changes in real interest rates. This implies that the volatility of output and inflation is smaller

under incomplete markets than complete markets in response to preference shocks.

Both monetary shocks and discount-rate shocks represent shocks to demand. The remaining
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two shocks we consider are supply shocks. There are also considerable differences between the

incomplete and complete markets models in response to these shocks. Consider first the markup,

or “cost-push,” shock. The direct effect of this shock is to raise inflation. The central bank reacts to

this by raising real interest rates. In the incomplete markets model, the central bank’s efforts will

be less effective since households will react less strongly to the increase in interest rates. Output

will therefore react by less, and a larger share of the initial upward pressure on inflation will remain.

This is exactly what Table 3 shows.

In contrast to the other three shocks, when we consider technology shocks the volatility of

output is substantially larger under incomplete markets than under complete markets. This results

from the fact that the marginal propensity to consume extra income is substantially higher under

incomplete markets than complete markets. A positive technology shocks results in an increase in

household income. The demand of households in the incomplete markets model rises by more in

response to this rise in income, which raises wages and results in even higher income, amplifying

the response of output to the shock.

The large differences between the incomplete markets and complete markets models that we

document in Table 3 stand in stark contrast to the results of Krusell and Smith (1998). Krusell and

Smith compare the response of a complete markets and incomplete markets model to a productivity

shock and find that the difference is very small. While our model differs in several ways from theirs,

we now demonstrate that a crucial difference is that we incorporate nominal and real rigidities.

The last row of Table 3 presents results for a flexible price version of our model (we analyze only

markup and technology shocks here because monetary and preference shocks have no effect in the

complete markets model when prices are flexible).26 Specifically, we compare a flexible price version

of our incomplete markets model with a flexible price version of its complete markets counterpart.

In this case, the volatility of output is almost identical under incomplete markets and complete

markets.

The much larger difference between the complete and incomplete markets models in the sticky

price case has to do with the sluggish movements of real interest rates when prices are sticky. The

partial equilibrium response of output to both shocks to income and relative prices is quite different

26Recall that there is no way for agents to save on aggregate in our model. For this reason, discount rate shocks have
no impact with flexible prices in the complete markets models. These shocks do affect prices and have distributional
consequences that lead to some small movements in quantities when markets are incomplete.
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under incomplete markets than complete markets. When prices are flexible, these differences are

largely undone in general equilibrium by changes in real interest rates. These general equilibrium

responses of real interest rates are key to Krusell and Smith’s (1998) near equivalence result.

However, when prices are sticky, the behavior of real interest rates is governed by monetary policy.

If monetary policy follows a conventional Taylor-type rule and the response of inflation is small,

the response of real interest rates will be muted.

In the case of the productivity shock, the fact that agents in the incomplete markets model have

higher marginal propensities to consume out of increased income than under complete markets

implies that demand increases more in the incomplete markets model. If prices are sticky, this

increase in demand will translate into an increase in output. If, however, prices are flexible, real

interest rates will increase, putting downward pressure on aggregate consumption so that, in the

end, output responds almost identically to the complete markets model.

The second row of Table 3 shows that the discounted Euler equation model yields a reasonably

good approximation to the full incomplete markets for all four of the business cycle shocks that we

have considered. This is useful because it helps us develop intuition for these results. One way in

which the discounted Euler equation model differs from the full incomplete markets model is that it

does not incorporate redistributional effects. The fact that it yields such a good approximation to

the full incomplete markets model sheds some light on the (lack of) importance of redistributional

effects for our results.

6 Conclusion

We study the effects of forward guidance about monetary policy. We do this in a standard New

Keynesian model augmented with uninsurable income risk and borrowing constraints. Our main

finding is that allowing for uninsurable income risk and borrowing constraints substantially de-

creases the power of forward guidance relative to a New Keynesian model with complete markets.

In the standard New Keynesian model with complete markets, an announcement about interest

rates has the same effect on current consumption whether it pertains to the current short rate or

the short rate 5 years in the future. In contrast, when markets are incomplete the effect of such

an announcement on current consumption declines with with the horizon of the announcement.

Forward guidance about interest rates 5 years in the future has only about 40% as large an effect
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on current consumption as in the complete markets case, while forward guidance about interest

rates 10 years in the future has essentially no effect on current consumption. Intuitively, in the

incomplete markets model, a precautionary savings effect counteracts the standard intertemporal

substitution motive.

We develop two approximations to our model that allow us to analyze it using standard methods

for solving linear rational expectations models. We then augment the model with several features

typically included in monetary business cycle models and analyze the response of this augmented

model to four different types of business cycle shocks. We show that the business cycle dynamics

in the incomplete markets model differ substantially from those in its complete markets counter-

part. This result contrasts with the influential results of Krusell and Smith (1998). We show that

this arises as a consequence of the New Keynesian features we incorporate into the model, which

fundamentally change the determination of the real interest rate.
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A Computational Methods

A.1 Methods for Section 4

Here we describe the procedure used to find an equilibrium path of the heterogeneous agent model

along a perfect foresight transition for the zero-lower-bound episode considered in Section 4.3. The

algorithm used to compute the results for a one-time change in the real interest rate is closely

related to what we present here.

Writing the firm’s first order condition recursively. For the numerical analysis it is conve-

nient to rewrite equation (7) recursively. Define

PAt ≡
∞∑
s=t

βs−t(1− θ)s−t
(
Pt
Ps

)μ/(1−μ)
YsμWs (21)

PBt ≡
∞∑
s=t

βs−t(1− θ)s−t
(
Pt
Ps

)1/(1−μ)
Ys. (22)

then equation (7) becomes

p∗t
Pt

=
PAt
PBt

. (23)

Equations (21) and (22) can be written recursively

PAt = μWtYt + (1− θ)βEt(1 + πt+1)
−μ/(1−μ)PAt+1 (24)

PBt = Yt + β(1− θ)Et(1 + πt+1)
−1/(1−μ)PBt+1. (25)

Initial guess. We assume that the economy has returned to steady state after T = 250 periods

and look for equilibrium values for endogenous variables between dates t = 0 to T . In this explana-

tion of our methods we use variables without subscripts to represent sequences from 0 to T . Let X

denote a path for all endogenous aggregate variables from date 0 to date T. These variables include

aggregate quantities and prices

X ≡ {Ct, Lt, Nt, Yt, Dt, it,Wt, πt, rt, p
∗
t /Pt, St, τt, P

A
t , P

B
t }Tt=0.

The dimension of X is given by 14 variables for each date and 251 dates. We require an initial

guess X0. In most cases we found it sufficient to guess that the economy remains in steady state.
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Solving the household’s problem. The household’s decision problem depends on X through

r, W , τ , and D. For a given Xi we solve the household’s problem using the endogenous grid

point method (Carroll, 2006). We approximate the household consumption function c(b, z) with a

shape-preserving cubic spline with 200 unequally-spaced knot points for each value of z with more

knots placed at low asset levels where the consumption function exhibits more curvature. Given

the consumption function we calculate labor supply from the household’s intratemporal optimality

condition and savings from the budget constraint.

Simulating the population of households. We simulate the population of households in order

to compute aggregate consumption and aggregate labor supply. We use a non-stochastic simulation

method. We approximate the distribution of wealth with a histogram with 1000 unequally-spaced

bins for each value of z again placing more bins at low asset levels. We then update the distribution

of wealth according to the household savings policies and the exogenous transitions across z. When

households choose levels of savings between the center of two bins, we allocate these households

to the adjacent bins in a way that preserves total savings. See Young (2010) for a description of

non-stochastic simulation in this manner.

Checking the equilibrium conditions. An equilibrium value of X must satisfy equations

(4), (5), (9), (10), (11), (13), (15), (16), (23), (24), and (25) and the monetary policy rule it =

max[0, r̄+φ∗πt+εt], where εt is the exogenous deviation from the Taylor rule that takes a negative

value under our “extended” policy. Call these 12 equations the “analytical” equilibrium conditions.

The remaining two equilibrium conditions that pin down X are that C and L are consistent with

household optimization and the dynamics of the distribution of wealth given the prices. Call these

the “computational” equilibrium conditions.

To check whether a given X represents an equilibrium of the model is straightforward. We can

easily verify whether the analytical equilibrium conditions hold at X. In addition, we can solve the

household problem and simulate the population of households to verify that aggregated choices for

consumption and labor supply of the heterogeneous households match with the values of C and L

that appear in X.
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Updating Xi The difficult part of the solution method arises when Xi is not an equilibrium. In

this case we need to find a new guess Xi+1 that moves us towards an equilibrium. To do this, we

construct an auxiliary model by replacing the computational equilibrium conditions with additional

analytical equilibrium conditions that approximate the behavior of the population of heterogeneous

households but are easier to analyze. Specifically we use the equations

C−γ
t = η1t β(1 + rt)C

−γ
t+1 (26)

C−γ
t Wt = η2tL

ψ
t . (27)

where η1 and η2 are treated as parameters of the auxiliary model. For a givenXi, we have computed

C and L from the computational equilibrium conditions. We then calibrate η1 and η2 from (26)

and (27). We then solve for a new value of X from the 12 analytical equilibrium conditions and (26)

and (27). This is a problem of solving for 14 unknowns at each date from 14 non-linear equations

at each date for a total of 3514 unknowns and 3514 non-linear equations. We solve this system

using the method described by Juillard (1996) for computing perfect foresight transition paths for

non-linear models. This method is a variant of Newton’s method that exploits the sparsity of the

Jacobian matrix. Call this solution Xi′. We then form Xi+1 by updating partially from Xi towards

Xi′. We iterate until Xi satisfies the equilibrium conditions within a tolerance of 5× 10−6.

A.2 Methods for Section 5

Solving for the household’s decision rules without aggregate shocks. For each level of

idiosyncratic productivity, z, we solve for the asset level, b, at which the household chooses to

leave the period without savings, b′ = 0, and is therefore just on the threshold of being borrowing

constrained. Call this level of assets b(z). We create a grid of 100 unevenly spaced points with the

first grid point equal to b(z). We then solve for the household’s savings at each of these points.

Constructing the grid in this fashion allows for a more accurate solution because we know the

savings policy rule is constant at b′ = 0 for all b < b(z) and we do not interpolate across the

kink in the policy rule where the borrowing constraint stops binding. We also fix a grid of 100

points and solve for labor supply at each of these points. Between the grid points we interpolate

the savings and labor supply policies linearly. We solve for the household’s savings and labor

supply policies jointly using Broyden’s (1965) method by imposing that the Euler equation and

labor supply condition hold with equality at the grid points. Notice that the household policy rule
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for savings is parameterized by 300 variables (three levels of z and 100 grid points for each) and

similarly the household labor supply policy rule is parameterized by another 300 variables.

Finding the stationary equilibrium. This part of the algorithm is similar in spirit to Aiyagari

(1994). We assume the stationary equilibrium interest rate is 2 percent annually and we search for

the value of β for which this is an equilibrium. We find it also useful to guess values of equilibrium

output and dividends. So we search over values of β, Y , and D such that aggregate asset demand

by households matches the supply of government bonds, the labor market clears and the dividend

is equal to Y −WN . We perform this search using Broyden’s method. To simulate the stationary

distribution of wealth, we use non-stochastic simulation as described above.

Solving for aggregate dynamics Here we follow Reiter (2009). Our non-stochastic simulation

algorithm tracks the distribution of wealth using a histogram. We consider the mass in each of

these bins to be a variable. We have three skill levels and 250 bins for each. In total there are 749

variables because the distribution must sum to one. For a given set of household policy rules, an

idiosyncratic shock process, and prices we can formulate an equal number of equations that dictate

how the distribution of wealth updates across these bins.

The 300 variables that parameterize the household savings policy and the 300 variables that

parameterize the household labor supply policy are unknowns that depend on the aggregate state.

As the aggregate state changes, we require that these variables satisfy the Euler equation and labor

supply first-order condition on the grids described above, which yields another 600 equations in

total.

Next we have a small number of aggregate variables and “aggregate” equations. The variables

are Y , L, C, π, W , i, R, τ and the four aggregate shocks. We then impose equations (4), (5),

(9), (13), (14), (17), (18), Ct ≡
∫
ct(b, z)dΓt(b, z), and the four AR(1) stochastic processes for the

aggregate shocks. These are 12 additional equations and 12 additional variables.

At this stage, we have a large system of non-linear equations that the discretized model must

satisfy. We follow Reiter (2009) in linearizing this system around the stationary equilibrium using

automatic differentiation and then solving the linearized system as a linear rational expectations

model using the algorithm from Sims (2002). The results take the form of a VAR(1) representation

of the discretized model, but crucially, the solution is non-linear with respect to idiosyncratic states.
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We use this linear system to compute impulse responses and simulate it to compute covariances of

aggregate quantities and prices.

Accuracy check: Euler equation errors. In our calculations for Section 5 there are two

sources of errors both of which commonly arise in related algorithms. First, there are errors in the

household decision rules between the grid points. These errors are present even in the stationary

equilibrium. Away from the stationary equilibrium (the point around which we linearize) there

are errors due to non-linear responses to aggregate states as is the case with other applications

of perturbation methods. The procedure that follows assesses both of these types of errors by

using a finer grid and by checking the error in the non-linear equations away from the stationary

equilibrium.

To assess the accuracy of our solution, we calculate unit-free Euler equation errors.27 We use

a test grid over asset holdings that is finer than the grid on which we solve for household decision

rules.28 For a given state of the economy, Xt, the distribution of bond holdings at the start of the

period and exogenous variables are predetermined. In addition, the interest rate paid on current

bond holdings, rt−1, is also predetermined.29 We then use the approximate model solution to

determine Wt, Rt, and the household savings and labor supply rules. We then use the non-linear,

static relationships, market clearing conditions, and budget constraints to determine τt, Lt, Nt,

Yt, Dt, and the distribution of wealth at the start of the next period. In this step, all budget

constraints and market-clearing conditions are forced to hold.

From these calculations and a given set of aggregate shocks we can compute the next state of

the economy, Xt+1, and repeat these calculations to findWt+1 and so on. To compute expectations,

we use Gaussian quadrature over the four aggregate shocks using a grid that has seven nodes in

each dimension. For a household with particular idiosyncratic states, (b, z), we can compute the

level of consumption implied by the right-hand side of the Euler equation as

ĉt(b, z) ≡
{
β(1 + rt)Et

[
ct+1(b

′, z′)−γ
]}−γ

, (28)

where the expectation is over aggregate and idiosyncratic shocks and b′ is computed using the

27See Judd (1992) for an explanation of this accuracy check and the interpretation of the errors in terms of bounded
rationality.

28Specifically, we use the same 250 point grid that we use to approximate the distribution of wealth.
29In our calculations we track the distribution of the wealth at the start of the period when idiosyncratic shocks

have been realized but before interest has been paid.
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approximate solution for the policy rule. The unit-free Euler equation error for a given type of

household is then ĉt(b, z)/ct(b, z) − 1, where ct(b, z) is the level of consumption implied by the

approximated decision rules.30 Using the steps above, we can compute the Euler equation error for

each type of household.

We can also assess the errors in household labor supply decision rules. Using the approximate

solution for the policy rules and the wage we can compute

n̂(b, z) ≡ [Wc(b, z)−γ
]1/ψ

We can then compare this value to the approximate solution for the labor supply rule. We express

the error in this equation in unit-free terms as n̂(b, z)/n(b, z)− 1.

In order to assess the errors due to non-linearities we must take a stand on the magnitude of

the shocks hitting the economy. We target a standard deviation of log output of 0.0154, which is

the observed value for HP filtered data from 1960 to 2011. We assume that each shock accounts

for a quarter of the variance of log output.

The Euler equation and labor supply errors vary over the state space. We randomly draw points

in the state space by simulating the model for 100,000 periods and we compute the errors every

1,000 simulated periods. We describe the distribution of errors across the 100 resulting points by

reporting the largest absolute error and the mean absolute error for different types of households

as defined by assets and productivity. Figure A.1 plots the mean and maximum absolute errors

across the 100 aggregate states for both the Euler equation and the labor supply rule. The errors

rarely exceed 0.01 and are generally on the order of 0.001 or below. An error of 0.001, means that

a household following our approximate policy rule makes an error of $1 per $1,000 spent.

B Model with Inflation Inertia and Real Rigidities

B.1 Final Goods Producers

Following Kimball (1995), we adopt a setup where the elasticity of demand for a particular inter-

mediate good j by final goods producer falls as the relative quantity used of that intermediate good

30We approximate the policy rules for savings as opposed to consumption so ct(b, z) is computed from the budget
constraint and depends on the approximate policy rule for labor supply and the market-clearing prices.
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Figure A.1: Mean and maximum Euler equation and labor supply equation errors (log base 10).

The mean and maximum are taken over 100 randomly selected points in the aggregate state space.

The three lines in each figure correspond to idiosyncratic productivities (dark = low-skill, dashed

= medium-skill, grey = high-skill). Assets are relative to average quarterly income.

rises. The final goods producer minimizes costs

∫ 1

0
pj,tyj,tdj

subject to the implicit production function

∫ 1

0
D

(
yj,t
Yt

)
dj = 1, (29)

where following Dotsey and King (2005) we adopt the function form

D(x) =
μt

1 + η
[(1 + η)x− η]1/μt + 1− μt

1 + η
.

This function is increasing and strictly concave in x and satisfies D(1) = 1. Furthermore, with

η = 0 it reduces to the constant elasticity of substitution aggregator we use in section 3. Notice

that we allow μt to vary over time. We refer to variation in μt as markup shocks.

Cost minimization by final producers yields

yj,t
Yt

=
1

1 + η

[(
pj,t

P̃t

)μt/(1−μt)
+ η

]
. (30)
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where

P̃t =

[∫ 1

0
p
1/(1−μt)
j,t dj

]1−μt
.

Starting from the definition of the price index, we can use equation (30) to see that

1 =

∫ 1

0

pj,tyj,t
PtYt

dj

=

∫ 1

0

pj,t
Pt

(
pj,t
Pt

Pt

P̃t

)μt/(1−μt)
+ η

1 + η
dj

=
1

1 + η

(
Pt

P̃t

)μt/(1−μt) ∫ 1

0

(
pj,t
Pt

)1/(1−μt)
dj +

η

1 + η

∫ 1

0

pj,t
Pt
dj

=
1

1 + η

(
Pt

P̃t

)μt/(1−μt)( P̃t
Pt

)1/(1−μt)
+

η

1 + η

∫ 1

0

pj,t
Pt
dj

=
1

1 + η

P̃t
Pt

+
η

1 + η

∫ 1

0

pj,t
Pt
dj

Pt =
1

1 + η
P̃t +

η

1 + η
P̄t, (31)

where we have defined P̄t ≡
∫ 1
0 pj,tdj. In other words, the price index is a convex combination of a

CES aggregator and a linear aggregator.

B.2 Intermediate Goods Producers

We assume prices that are not re-optimized are adjusted with lagged inflation. The evolution of

inflation can be defined in terms of the change in the CES and linear aggregators. The two price

aggregators evolve according to(
P̃t

P̃t−1

)1/(1−μt)
=

(1− θ)(1 + πt−1)
1/(1−μt)

1− θ
(
p∗t
P̃t

)1/(1−μt) (32)

P̄t = (1− θ)P̄t−1(1 + πt−1) + θp∗t , (33)

where 1 + πt ≡ Pt/Pt−1.

We assume the intermediate goods firm produces according to

yj,t = Atnj,t (34)

so real marginal cost is Mt = Wt/At, where Wt is the wage per efficiency unit of labor. The price

setting problem is then

max
p∗t

∞∑
s=t

βs−t(1− θ)s−t
[
p∗t
Ps

Ps−1

Pt−1
−Ms

]
yj,s
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where yj,s is given by

yj,s =

(
pj,t
P̃s

Ps−1

Pt−1

)μt/(1−μt)
+ η

1 + η
Ys.

In the objective function, the term Ps−1/Pt−1 reflects the indexation to lagged inflation. For the

sake of the algebra that follows we call this ratio Zs. The first order condition is

∞∑
s=t

βs−t(1−θ)s−tYs

⎧⎪⎨
⎪⎩

1

Ps
Zs

(
p∗t
P̃s
Zs

)μt/(1−μt)
+ η

1 + η
+

[
p∗t
Ps
Zs −Ms

]
μt

1− μt

(
p∗t
P̃s
Zs

)μt/(1−μt)−1

1 + η

1

P̃s
Zs

⎫⎪⎬
⎪⎭ = 0.

Some manipulation of this equation yields

∞∑
s=t

βs−t(1−θ)s−tYs p
∗
t

Ps
Zs

{(
p∗t
P̃s
Zs

)μt/(1−μt)
+ η(1− μt)

}
=

∞∑
s=t

βs−t(1−θ)s−tYsMsμt

(
p∗t
P̃s
Zs

)μt/(1−μt)

To calculate the efficiency loss from price dispersion, combine the demand curve for intermediate

products—equation (30)—the production function—equation (34)—and Nt ≡
∫ 1
0 nj,tdj to arrive at

AtNt =
1

1 + η

[∫ 1

0

(
pj,t

P̃t

)μt/(1−μt)
dj + η

]
Yt.

Defining St ≡
∫ 1
0

(
pj,t
P̃t

)μt/(1−μt)
dj we have

AtNt =
1

1 + η
[St + η]Yt

and St evolves according to

St = θ

(
p∗t
P̃t

)μt/(1−μt)
+ (1− θ)St−1(1 + πt−1)

μt/(1−μt)
(
P̃t−1

P̃t

)μt/(1−μt)
(35)

B.3 Log-Linearization

We use hats to denote log deviations. We log-linearize around a steady state in which P = P̃ =

P̄ = p∗ and π = 0. Log-linearizing (31), (32), and (33) yields

P̂t =
1

1 + η
ˆ̃Pt +

η

1 + η
ˆ̄Pt (36)

ˆ̃Pt − ˆ̃Pt−1 =
θ

1− θ

(
p̂∗t − ˆ̃Pt

)
+ πt−1 (37)

ˆ̄Pt − ˆ̄Pt−1 =
θ

1− θ

(
p̂∗t − ˆ̄Pt

)
+ πt−1, (38)
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where we have abused notation to write log(1 + πt−1) = πt−1. Combining these yields

πt =
θ

1− θ

(
p̂∗t − P̂t

)
+ πt−1 (39)

(37)-(39) show that to a first-order approximation P̃t, P̄t, and Pt evolve in the same way.

Log-linearization of the firm’s price-setting first order condition yields

p̂∗t = (1− β(1− θ))
∞∑
s=t

βs−t(1− θ)s−t
[
1 + (1− μ)η

1 + η
M̂s + μ̂t + P̂s − Ẑs

]
(40)

where we use the fact that in steady state μM = 1+(1−μ)η and the definition of Ẑs = P̂s−1−P̂t−1.

We also define

μ̂t =

⎡
⎣1 + η + μ2η

(1−μ)2
1 + (1− μ)η

⎤
⎦ log(μt

μ

)
.

We can now rewrite this last expression recursively as

p̂∗t = (1− β(1− θ))

[
1 + (1− μ)η

1 + η
M̂t + μ̂t + P̂t

]
+ β(1− θ)

(
Et

[
p̂∗t+1

]− (P̂t − P̂t−1

))

p̂∗t − P̂t = (1− β(1− θ))
1 + (1− μ)η

1 + η
M̂t + μ̂t + β(1− θ)Et

[
p̂∗t+1 − P̂t −

(
P̂t − P̂t−1

)]

p̂∗t − P̂t = (1− β(1− θ))
1 + (1− μ)η

1 + η
M̂t + μ̂t + β(1− θ)Et

[
p̂∗t+1 − P̂t+1 + πt+1 − πt

]
.

Combining this last expression with equation (39) yields

(πt − πt−1) =
θ(1− β(1− θ))

1− θ

1 + (1− μ)η

1 + η
M̂t + μ̂t + βEt [πt+1 − πt] . (41)

If we define Ω = (μ − 1)η/(1 − (μ − 1)η), and notice that M̂t = Ŵt − Ât up to a first order

approximation, we have equation (17) in the text.

Just as in the standard case, there is no efficiency loss from price dispersion to a first-order

approximation. To see this, log-linearize (35)

Ŝt = θ
μ

1− μ

(
p̂∗t − ˆ̃Pt

)
+ (1− θ)

[
Ŝt−1 +

μ

1− μ

(
πt−1 +

ˆ̃Pt−1 − ˆ̃Pt

)]

and substitute for ˆ̃Pt−1 − ˆ̃Pt using (37) to arrive at

Ŝt = (1− θ)Ŝt−1.
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C A Simple Incomplete Markets Model

The discounted Euler equation (19) can be micro-founded with a simplified version of the model

we present in Section 3 in which:

1. The idiosyncratic productivity shock takes just two values, which we will call employed (z = 1)

and unemployed (z = 0).

2. Idiosyncratic productivity is i.i.d. across time: Pr(z′|z) = Pr(z′).

3. The supply of government debt is zero: B = 0.

4. Unemployed agents have access to a home production technology that produces final goods

in amount Atm.

5. Firm dividends Dt are distributed only to the employed households.

This version of our model is analytically tractable because there is no wealth in the economy and

there is a strict borrowing constraint, b′ ≥ 0. As the gross supply of assets is zero, there is no

possibility of saving in equilibrium and so the distribution of wealth remains degenerate at zero.

As individual assets are constant at zero, it follows that all households of a given employment

status must choose the same consumption. Let ce,t be the consumption of the employed and cu,t

be the consumption of the unemployed agents. Moreover, the absence of opportunities to borrow

and save implies that consumption must be equal to income for all individuals. The unemployed

will therefore consume mAt and the employed will consume

ce,t =Wt�t +Dt/(1− u),

where �t is labor supply per employed household, Dt is per capita dividends paid by firms, and u

is the fraction of the population that is unemployed.

The Euler equation for employed agents is

c−γe,t ≥ βeqtRtEt

[
(1− u)c−γe,t+1 + u (mAt+1)

−γ
]

(42)

and the Euler equation for an unemployed agent is

(mAt)
−γ ≥ βeqtRtEt

[
(1− u)c−γe,t+1 + u (mAt+1)

−γ
]
.
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Notice that the right hand side of the Euler equation is independent of employment status as

employment is i.i.d. across time. Therefore, if mAt < ce,t the unemployed households must be

constrained and their Euler equation will not hold with equality. We assume that m is low enough

that mAt < ce,t for all t.
31

Following Krusell, Mukoyama, and Smith (2011) and Ravn and Sterk (2013), we will focus on

the equilibrium of this economy in which the Euler equation of the employed holds with equality in

all periods. In this equilibrium, the employed households choose zero savings and are therefore up

against their constraint. But the constraint does not bind in the sense that they would not strictly

prefer to borrow more if allowed. There are other equilibria of this economy in which the Euler

equation for the employed household holds with inequality (implying that the employed households

would strictly prefer to borrow if allowed). We focus on the equilibrium in which the employed

households’ Euler equation holds with equality for the following reason. In the more realistic case in

which the supply of government debt is positive (B > 0) there is a unique equilibrium in which the

employed households’ Euler equation holds with equality. Consider a sequence of such economies

with smaller and smaller amounts of government debt. The equilibrium we focus on is the unique

equilibrium of the limiting economy for which the supply of government bonds goes to zero.32

We assume that home production is not measured as part of GDP. Therefore measured aggregate

consumption is

Ct = (1− u)ce,t (43)

and measured aggregate output is

Yt = (1− u)At�t.

31It is easy to relax the assumption that idiosyncratic productivity is i.i.d., however, with i.i.d. productivity it is
especially easy to see that the unemployed will be constrained if m is low enough.

32Suppose the outstanding supply of government debt is positive (B = ε > 0). In this case, bond market clearing
requires some household to hold this debt at the prevailing interest rate (which is set by the monetary authority). This
household must be indifferent at the margin regarding how much they hold of the debt (i.e., their Euler equation must
hold with equality). If instead the Euler equation of all households held with strict inequality, no household would
want to hold the outstanding bonds. There would be excess supply of bonds and excess demand for consumption
goods. Since firms must meet demand at posted prices, they would produce more, which would increase income and
consumption and lead marginal utility of consumption to fall. This process would continue until the agents with the
lowest marginal utility of consumption—the employed agents—were willing to hold the bonds. Thus, for any positive
ε the Euler equation of the employed households will hold with equality in equilibrium and the equilibrium we focus
on is the limit of these equilibria as ε goes to zero.
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From the budget constraint of the employed we have Ct = Yt. Substituting into the employed Euler

equation we have

(Ct/(1− u))−γ = βeqtRtEt
[
(1− u)(Ct+1/(1− u))−γ + u (mAt+1)

−γ] (44)

Log-linearizing this equation and using the Fisher equation yields

Ĉt = −1

γ
[it − Eπt+1 − rnt ] + αE

[
Ĉt+1

]
+ (1− α)E

[
Ât+1

]
, (45)

where

α ≡ 1

1 + u
1−u
(
c̄e
mĀ

)γ , (46)

rnt ≡ −qt, (47)

and bars denote steady state values and hats denote log deviations from steady state. Notice that

α is decreasing in the probability of becoming unemployed, u, and the consumption impact of

unemployment, c̄e/(Ām).

The labor supply condition for the employed is

c−γe,tWt = �ψt .

Using the fact that aggregate labor supply is Lt = (1−u)�t and aggregate consumption is given by

equation (43), this last expression can be rewritten as

(1− u)γ+ψ C−γ
t Wt = Lψt .

Log-linearizing this equation and using Ct = Yt and Lt = Yt/At yields

Ŵt = (ψ + γ)Ŷt − (ψ + 1)Ât.

Finally, market incompleteness does not change the relationship between inflation and marginal

cost so we can write the Phillips curve as

πt − πt−1 = βEt [πt+1 − πt] + κξ
[
(ψ + γ)Ŷt − (ψ + 1)Ât

]
+ μ̂t, (48)

Figure 11 shows that α = 0.97 and 1/γ = 3/8 provides a close fit to the response of the incomplete

markets model in the 20-quarter-ahead forward guidance experiment. As our focus is on the Euler

equation, we recalibrate ψ and Ω, which determines ξ, so the coefficients on Ŷ and Â in the Phillips

curve are unaffected when we change γ. This requires ψ = 4 and Ω = 94.4.
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Figure A.2: General and partial equilibrium response to a one percentage point reduction in real

interest rates in period 20 with a unit intertemporal elasticity of substitution.
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