Supplementary Appendix to 'Shifting Currency Mismatch Losses: Effects on Corporate Debt Overhang and Leveraged Banks'

Egle Jakucionyte*and Sweder J. G. van Wijnbergen ${ }^{\dagger \ddagger}$

February 22, 2016

Mathematical derivations

A: Financially constrained firms borrowing in foreign currency

A1: Solving the financially-constrained firms' profit maximization problem

The firm's borrowing decision depends on the firm's expected working capital needs such that in the beginning of period t the following condition holds:

$$
E_{t-1}\left\{S_{t}\right\} L_{i, t}^{*}=E_{t-1}\left\{\rho\left(Q_{t} k_{i, t}+W_{t} h_{i, t}\right)\right\}
$$

where Q_{t} is the nominal price of capital, W_{t} is the nominal wage and S_{t} is the nominal exchange rate. For further derivations we define the domestic consumer price level as P_{t}.

The firm i born in period t solves the profit maximization problem taking the loan as given. The firm maximizes the expected sum of future revenue from selling goods and depreciated capital subtracted by the second fraction of working capital expenditure together with expenses related to the debt payment. Financial flows received in period t also enter the maximization problem and be summarized as the difference between the loan plus the lump-sum equity injection from the domestic household ($Z_{i, t}$) and working capital expenditure:

[^0]\[

$$
\begin{aligned}
\max _{\left\{k_{i, t}, h_{i, t}\right\}} & E_{t} \beta \Lambda_{t, t+1}\left\{\frac{\left(P_{t+1}^{R} y_{i, t+1}^{R}+Q_{t+1}(1-\delta) k_{i, t}-(1-\rho)\left(Q_{t} k_{i, t}+W_{t} h_{i, t}\right)\right)}{P_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1}\left\{\frac{\min \left\{R_{i, t}^{* R} S_{t+1} L_{i, t}^{*}, \quad \kappa\left(P_{t+1}^{R} y_{i, t+1}^{R}+Q_{t+1}(1-\delta) k_{i, t}\right)\right\}}{P_{t+1}}\right\} \\
& +\frac{E_{t-1}\left\{S_{t}\right\} L_{i, t}^{*}-\rho\left(Q_{t} k_{i, t}+W_{t} h_{i, t}\right)+Z_{i, t}}{P_{t}}
\end{aligned}
$$
\]

s.t.

$$
E_{t-1}\left\{\frac{S_{t}}{P_{t}}\right\} L_{i, t}^{*}=E_{t-1}\left\{\rho \frac{Q_{t} k_{i, t}+W_{t} h_{i, t}}{P_{t}}\right\}
$$

$Z_{i, t}$ stands for the equity injection from the domestic household.
We introduced real variables: $p_{t+1}^{R} \equiv P_{t+1}^{R} / P_{t+1}, q_{t+1} \equiv Q_{t+1} / P_{t+1}, w_{t} \equiv W_{t} / P_{t}, L_{i, t}^{*} \equiv L_{i, t}^{*} / P_{t}^{*}$ and $\operatorname{rer}_{t} \equiv S_{t} P_{t}^{*} / P_{t}$.

This gives

$$
\begin{aligned}
\max _{\left\{k_{i, t}, h_{i, t}\right\}} & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}-(1-\rho) \frac{q_{t} k_{i, t}+w_{t} h_{i, t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1} \min \left\{\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{i, t}^{*}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\} \\
& +\frac{E_{t-1}\left\{S_{t} P_{t}^{*}\right\} l_{i, t}^{*}}{P_{t}}-\rho\left(q_{t} k_{i, t}+w_{t} h_{i, t}\right)+z_{i, t}
\end{aligned}
$$

s.t.

$$
E_{t-1}\left\{\operatorname{rer}_{t}\right\} l_{i, t}^{*}=E_{t-1}\left\{\rho\left(q_{t} k_{i, t}+w_{t} h_{i, t}\right)\right\}
$$

The corresponding first-order conditions follow:

$$
\begin{aligned}
k_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+(1-\delta) q_{t+1}-(1-\rho) \frac{q_{t}}{\pi_{t+1}}\right\} \\
& -\frac{\partial E_{t} \beta \Lambda_{t, t+1} E_{t} \min \left\{\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} r e r_{t+1} l_{i, t}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}}{\partial k_{i, t}} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{i, t}^{*}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial k_{i, t}} \\
& +\rho q_{t}
\end{aligned}
$$

$$
\begin{aligned}
h_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial h_{i, t}}-(1-\rho) \frac{w_{t}}{\pi_{t+1}}\right\} \\
& -\frac{\partial E_{t} \beta \Lambda_{t, t+1} E_{t} \min \left\{\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{i, t}^{*}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}}{\partial h_{i, t}} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{i, t}^{*}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial h_{i, t}} \\
& +\rho w_{t}
\end{aligned}
$$

If we substitute the expression for the expected value of loan repayment (see the next subsection), firstorder conditions become functions of default probabilities:

$$
\begin{aligned}
k_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+q_{t+1}(1-\delta)-(1-\rho) \frac{q_{t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+q_{t+1}(1-\delta)\right)\right\} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{i, t}^{*}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial k_{i, t}} \\
& +\rho q_{t} \\
h_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial h_{i, t}}-(1-\rho) \frac{w_{t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial h_{i, t}}\right)\right\} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} r e r_{t+1} l_{i, t}^{*}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial h_{i, t}} \\
& +\rho w_{t}
\end{aligned}
$$

where

$$
d_{2, t} \equiv \frac{E_{t} \ln \left(\kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right)-E_{t} \ln \left(\frac{R_{i, t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{i, t}^{*}\right)}{\sigma_{y}}, \quad d_{1, t}=d_{2, t}+\sigma_{y}
$$

σ_{y}^{2} is given by $\operatorname{var}\left(\pi_{t+1} \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right)$.

A2: Differentiation of the firm's payment function

We need to compute the expected value of the firm's payment function (we abstract from indices i for the sake of brevity):

$$
E_{t} \min \left\{\frac{R_{t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{t}^{*}, \quad \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+q_{t+1}(1-\delta) k_{t}\right)\right\}
$$

Then we define $\bar{y}_{t+1} \equiv \frac{\pi_{t+1}^{*}}{r e r_{t+1}} \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+q_{t+1}(1-\delta) k_{t}\right)$, where

$$
\bar{y}_{t+1} \sim \log -\operatorname{normal}\left(\mu_{\bar{y}_{t+1}}, \sigma_{y}^{2}\right)
$$

Then the payment function can be re-written as

$$
E_{t} \min \left\{R_{t}^{* R} l_{t}^{*}, \quad \bar{y}_{t+1}\right\}
$$

Further,

$$
\begin{aligned}
E_{t} \min \left\{R_{t}^{* R} l_{t}^{*}, \quad \bar{y}_{t+1}\right\} & =R_{t}^{* R} l_{t}^{*} \operatorname{Pr}\left(R_{t}^{* R} l_{t}^{*}<\bar{y}_{t+1}\right)+\left(1-\operatorname{Pr}\left(R_{t}^{* R} l_{t}^{*}<\bar{y}_{t+1}\right)\right) E_{t}\left(\bar{y}_{t+1} \mid \bar{y}_{t+1}<R_{t}^{* R} l_{t}^{*}\right) \\
& =R_{t}^{* R} l_{t}^{*} \operatorname{Pr}\left(R_{t}^{* R} l_{t}^{*}<\bar{y}_{t+1}\right)+\left(1-\operatorname{Pr}\left(R_{t}^{* R} l_{t}^{*}<\bar{y}_{t+1}\right)\right) \int_{0}^{R_{t}^{* R} l_{t}^{*}} \frac{\bar{y}_{t+1} d F\left(\bar{y}_{t+1}\right)}{1-\operatorname{Pr}\left(R_{t}^{* R} l_{t}^{*}<\bar{y}_{t+1}\right)} \\
& =R_{t}^{* R} l_{t}^{*} \operatorname{Pr}\left(R_{t}^{* R} l_{t}^{*}<\bar{y}_{t+1}\right)+\int_{0}^{R_{t}^{* R} l_{t}^{*}} \bar{y}_{t+1} d F\left(\bar{y}_{t+1}\right) \\
& =R_{t}^{* R} l_{t}^{*} \int_{R_{t}^{* R} l_{t}^{*}}^{\infty} d F\left(\bar{y}_{t+1}\right)+\int_{0}^{R_{t}^{* R} l_{t}^{*}} \bar{y}_{t+1} d F\left(\bar{y}_{t+1}\right) \\
& =R_{t}^{* R} l_{t}^{*} \int_{R_{t}^{* R} l_{t}^{*}}^{\infty} \frac{1}{\bar{y}_{t+1} \sigma_{y} \sqrt{2 \pi}} e^{\frac{-\left(l n\left(\bar{y}_{t+1}\right)-\mu_{y}\right)^{2}}{2 \sigma_{y}^{2}}} d\left(\bar{y}_{t+1}\right) \\
& +\int_{0}^{R_{t}^{* R} l_{t}^{*}} \frac{\bar{y}_{t+1}}{\left.\left.\bar{y}_{t+1} \sigma_{y} \sqrt{2 \pi} e^{\frac{-(l n}{}} \bar{y}_{t+1}\right)-\mu_{y}\right)^{2}}{ }^{2 \sigma_{y}^{2}} d\left(\bar{y}_{t+1}\right) \\
& =\left.R_{t}^{* R} l_{t}^{*} \Phi\left(\frac{\ln \left(\bar{y}_{t+1}\right)-\mu_{y}}{\sigma_{y}}\right)\right|_{R_{t}^{* R}} ^{\infty} l_{t}^{*}+\int_{0}^{R_{t}^{* R} l_{t}^{*}} \frac{1}{\sigma_{y} \sqrt{2 \pi}} e^{\frac{-\left(l n\left(\bar{y}_{t+1}\right)-\mu_{y}\right)^{2}}{2 \sigma_{y}^{2}}} d\left(\bar{y}_{t+1}\right) \\
& =R_{t}^{* R} l_{t}^{*}\left(1-\Phi\left(\frac{\ln \left(R_{t}^{* R} l_{t}^{*}\right)-\mu_{y}}{\sigma_{y}}\right)\right)-\frac{1}{2} e^{\mu_{y}+\frac{\sigma_{y}^{2}}{2}} \operatorname{erf(\frac {-\operatorname {ln}(\overline {y}_{t+1})+\mu _{y}+\sigma _{y}^{2}}{\sqrt {2}\sigma _{y}})|_{0}^{R_{t}^{*R}l_{t}^{*}}} \\
& =R_{t}^{* R} l_{t}^{*} \Phi\left(\frac{\mu_{y}-\ln \left(R_{t}^{* R} l_{t}^{*}\right)}{\sigma_{y}}\right)+\frac{1}{2} E_{t}\left(\bar{y}_{t+1}\right)\left(e r f\left(\frac{\ln \left(R_{t}^{* R} l_{t}^{*}\right)-\mu_{y}-\sigma_{y}^{2}}{\sqrt{2} \sigma_{y}}\right)+1\right) \\
& =R_{t}^{* R} l_{t}^{*} \Phi\left(\frac{\mu_{y}-\ln \left(R_{t}^{* R} l_{t}^{*}\right)}{\sigma_{y}}\right)+E_{t}\left(\bar{y}_{t+1}\right) \Phi\left(\frac{\ln \left(R_{t}^{* R} l_{t}^{*}\right)-\mu_{y}-\sigma_{y}^{2}}{\sigma_{y}}\right) \\
& =R_{t}^{* R} l_{t}^{*} \Phi\left(\frac{\mu_{y}-\ln \left(R_{t}^{* R} l_{t}^{*}\right)}{\sigma_{y}}\right)+E_{t}\left(\bar{y}_{t+1}\right)\left(1-\Phi\left(\frac{\mu_{y}-\ln \left(R_{t}^{* R} l_{t}^{*}\right)}{\sigma_{y}}+\sigma_{y}\right)\right)
\end{aligned}
$$

The expression can be simplified as

$$
E_{t} \min \left\{R_{t}^{* R} l_{t}^{*}, \quad \bar{y}_{t+1}\right\}=\left(1-\Phi\left(d_{1, t}\right)\right) E_{t}\left(\bar{y}_{t+1}\right)+\Phi\left(d_{2, t}\right) R_{t}^{* R} l_{t}^{*}
$$

where

$$
d_{2, t} \equiv \frac{\mu_{y}-\ln \left(R_{t}^{* R} l_{t}^{*}\right)}{\sigma_{y}}, \quad d_{1, t} \equiv d_{2, t}+\sigma_{y}
$$

and

$$
\mu_{y} \equiv E_{t} \ln \left(\bar{y}_{t+1}\right)
$$

Recall that $\bar{y}_{t+1} \equiv \frac{\pi_{t+1}^{*}}{r e r_{t+1}} \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+q_{t+1}(1-\delta) k_{t}\right)$ so it can be substituted back to get complete expressions.

To solve for the first-order conditions, we differentiate the expected loan payment w.r.t. k_{t} :

$$
\begin{aligned}
\frac{\partial E_{t} \min \left\{R_{t}^{* R} l_{t}^{*}, \quad \bar{y}_{t+1}\right\}}{\partial k_{t}} & =\left(1-\Phi\left(d_{1, t}\right)\right) \frac{\partial E_{t} \bar{y}_{t+1}}{\partial k_{t}} \\
& -E_{t} \bar{y}_{t+1} \frac{\partial \Phi\left(d_{1, t}\right)}{\partial d_{1, t}} \frac{\partial d_{1, t}}{\partial k_{t}}+R_{t}^{* R} l_{t}^{*} \frac{\partial \Phi\left(d_{2, t}\right)}{\partial d_{2, t}} \frac{\partial d_{2, t}}{\partial k_{t}} \\
& =\left(1-\Phi\left(d_{1, t}\right)\right) \frac{\partial E_{t} \bar{y}_{t+1}}{\partial k_{t}}
\end{aligned}
$$

where the proof of the last expression comes from by using $\frac{\partial d_{1, t}}{\partial k_{t}}=\frac{\partial d_{2, t}}{\partial k_{t}}$ and computing the following:

$$
\begin{aligned}
&-E_{t}\left(\bar{y}_{t+1}\right) \Phi^{\prime}\left(d_{1, t}\right)+R_{t}^{* R} l_{t}^{*} \Phi^{\prime}\left(d_{2, t}\right) \\
&=-e^{\ln \left(E_{t} \bar{y}_{t+1}\right)} \Phi^{\prime}\left(d_{1, t}\right)+e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)} \Phi^{\prime}\left(d_{2, t}\right) \\
&=-e^{\ln \left(E_{t} \bar{y}_{t+1}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{1, t}^{2}}+e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} \\
&=-e^{\ln \left(E_{t} \bar{y}_{t+1}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(d_{2, t}^{2}+2 d_{2, t} \sigma_{y}+\sigma_{y}^{2}\right)}+e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} \\
&=-e^{\ln \left(E_{t} \bar{y}_{t+1}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} e^{-\left(d_{2, t} \sigma_{y}+\frac{1}{2} \sigma_{y}^{2}\right)}+e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} \\
&=-e^{\ln \left(E_{t} \bar{y}_{t+1}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} e^{-E_{t}\left(\ln \bar{y}_{t+1}\right)-\ln \left(R_{t}^{* R} l_{t}^{*}\right)+\frac{1}{2} \sigma_{y}^{2}}+e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} \\
&= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}}\left[-e^{\ln \left(E_{t} \bar{y}_{t+1}\right)} e^{-\left(\ln \left(E_{t} \bar{y}_{t+1}\right)-\frac{1}{2} \sigma_{y}^{2}-\ln \left(R_{t}^{* R} l_{t}^{*}\right)+\frac{1}{2} \sigma_{y}^{2}\right)}+e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)}\right] \\
&=-\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)}+e^{\ln \left(R_{t}^{* R} l_{t}^{*}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{2, t}^{2}} \\
&= 0,
\end{aligned}
$$

where such expressions are used as

$$
E_{t} \ln \left(\bar{y}_{t+1}\right)=\ln \left(E_{t} \bar{y}_{t+1}\right)-\frac{1}{2} \sigma_{y}^{2}
$$

and the definition of the variable $d_{1, t}$. Substituting a definition for \bar{y}_{t+1} back gives
$\frac{\partial E_{t} \min \left\{R_{t}^{* R} l_{t}^{*}, \quad \frac{\pi_{t+1}^{*}}{r e r_{t+1}} \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+q_{t+1}(1-\delta) k_{t}\right)\right\}}{\partial k_{t}}=\left(1-\Phi\left(d_{1, t}\right)\right) \frac{\partial E_{t}\left(\frac{\pi_{t+1}^{*}}{r e r_{t+1}} \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+q_{t+1}(1-\delta) k_{t}\right)\right)}{\partial k_{t}}$
Similarly it can be showed that
$\frac{\partial E_{t} \min \left\{R_{t}^{* R} l_{t}^{*}, \quad \frac{\pi_{t+1}^{*}}{r e r_{t+1}} \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+q_{t+1}(1-\delta) k_{t}\right)\right\}}{\partial h_{t}}=\left(1-\Phi\left(d_{1, t}\right)\right) \frac{\partial E_{t}\left(\frac{\pi_{t+1}^{*}}{r e r_{t+1}} \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+q_{t+1}(1-\delta) k_{t}\right)\right)}{\partial h_{t}}$

B: Solving banks' problem

Domestic households own all banks that operate in the domestic economy and lend to financially constrained domestic firms. We assume that there is a continuum of these banks and every period there is a probability ω that a bank continues operating. Otherwise, the net worth is transferred to the owners of the bank, domestic households. We assume that banks give foreign currency loans out of accumulated nominal equity N_{t}, nominal domestic deposits D_{t} and nominal foreign debt D_{t}^{*} that is expressed in units of foreign currency. Consequently, as long as foreign debt is larger than zero, banks are subject to currency mismatch. Lending in foreign currency hedges the open currency position: currency mismatch decreases. The balance sheet constraint of a bank j, expressed in units of domestic goods, is given by

$$
N_{j, t}+D_{j, t}+S_{t} D_{j, t}^{*}=S_{t} L_{j, t}^{*}
$$

Banks pay a nominal domestic interest rate R_{t} on deposits and a nominal foreign interest rate $R_{t}^{*} \xi_{t}$ on foreign debt. R_{t}^{*} follows a stationary $\operatorname{AR}(1)$ process. ξ_{t} denotes a premium on bank foreign debt. To ensure stationarity in the model, we assume that the premium depends on the level of foreign bank debt (as in Schmitt-Grohé and Uribe, 2003):

$$
\begin{equation*}
\xi_{t}=\exp \left(\kappa_{\xi} \frac{\left(S_{t} D_{t}^{*}-S \cdot D^{*}\right)}{S \cdot D^{*}}+\frac{\zeta_{t}-\zeta}{\zeta}\right) \tag{1}
\end{equation*}
$$

where ζ_{t} is an exogenous shock that follows a stable AR(1) process.
Banks are subject to an agency problem as in Gertler and Karadi (2011). At the end of every period every bank can divert a fraction λ^{L} of divertable assets. Creditors take this possibility into account and lend only up to the point where the continuation value of the bank is still larger or equal to what can be diverted. This condition acts as an incentive constraint for the bank and eventually limits expansion of the balance sheet.

The only asset on the banks' balance sheet is foreign currency loans to domestic financially constrained firms, thus, the expected nominal return of the bank j is defined as $R_{j, t}^{* L}$ and given by:

$$
E_{t}\left\{R_{t}^{* L} S_{t+1} L_{j, t}^{*}\right\} \equiv E_{t}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(P_{t+1}^{R} y_{j, t+1}^{R}+(1-\delta) Q_{t+1} k_{j, t}\right)+\Phi\left(d_{2, t}\right) R_{j, t}^{* R} S_{t+1} L_{j, t}^{*}\right\}
$$

Then the optimization problem of the bank j can be written as:

$$
V_{j, t}=\max _{\left\{D_{j, t}, D_{j, t}^{*}, L_{j, t}^{*}\right\}} \quad E_{t}\left[\beta \Lambda_{t, t+1}\left\{(1-\omega) \frac{N_{j, t+1}}{P_{t+1}}+\omega V_{j, t+1}\right\}\right]
$$

s.t.

$$
\begin{array}{rr}
V_{j, t} \geq \lambda^{L} \frac{S_{t} L_{j, t}^{*}}{P_{t}}, & \text { (Incentive constraint) } \\
\frac{N_{j, t}+D_{j, t}+S_{t} D_{j, t}^{*}}{P_{t}}=\frac{S_{t} L_{j, t}^{*}}{P_{t}}, & \text { (Balance sheet constraint) }
\end{array}
$$

$$
\frac{N_{j, t}}{P_{t}}=\frac{R_{j, t-1}^{* L}}{P_{t}} S_{t} L_{j, t-1}^{*}-\frac{R_{t-1}}{P_{t}} D_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{P_{t}} S_{t} D_{j, t-1}^{*}
$$

(LoM of net worth)
Define $\operatorname{rer}_{t} \equiv P_{t}^{*} S_{t} / P_{t}, d_{j, t}^{*} \equiv D_{j, t}^{*} / P_{t}^{*}, d_{j, t} \equiv D_{j, t} / P_{t}, l_{j, t}^{*} \equiv L_{j, t}^{*} / P_{t}^{*}$, and $n_{j, t} \equiv N_{j, t} / P_{t}$. It follows that

$$
V_{j, t}=\max _{\left\{d_{j, t}, d_{j, t}^{*}, l_{j, t}^{*}\right\}} \quad E_{t}\left[\beta \Lambda_{t, t+1}\left\{(1-\omega) n_{j, t+1}+\omega V_{j, t+1}\right\}\right]
$$

s.t.

$$
\begin{array}{rr}
V_{j, t} \geq \lambda^{L} \operatorname{rer}_{t} l_{j, t}^{*}, & \text { (Incentive constraint) } \\
n_{j, t}+d_{j, t}+\operatorname{rer}_{t} d_{j, t}^{*}=\operatorname{rer}_{t} l_{j, t}^{*}, & \text { (Balance sheet constraint) } \\
n_{j, t}=\frac{R_{j, t-1}^{* L}}{\pi_{t}^{*}} \operatorname{rer}_{t} l_{j, t-1}^{*}-\frac{R_{t-1}}{\pi_{t}} d_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{j, t-1}^{*} & \text { (LoM of net worth) }
\end{array}
$$

Lagrangian of the problem can be formulated as:

$$
\begin{aligned}
L= & \left(1+\nu_{1, t}\right) E_{t} \beta \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{j, t}^{* L}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{j, t}^{*}-\frac{R_{t}}{\pi_{t+1}} d_{j, t}-\frac{R_{t}^{*} \xi_{t}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} d_{j, t}^{*}\right)+\omega V_{j, t+1}\right\} \\
& -\nu_{1, t} \lambda^{L} \operatorname{rer}_{t} l_{j, t}^{*} \\
& +\nu_{2, t}\left(\frac{R_{j, t-1}^{* L}}{\pi_{t}^{*}} \operatorname{rer}_{t} l_{j, t-1}^{*}-\frac{R_{t-1}}{\pi_{t}} d_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{j, t-1}^{*}-\operatorname{rer}_{t} l_{j, t}^{*}+d_{j, t}+\operatorname{rer}_{t} d_{j, t}^{*}\right)
\end{aligned}
$$

This gives the first-order conditions:

$$
\begin{gathered}
l_{j, t}^{*}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{j, t}^{* L}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1}\right)+\omega \frac{\partial V(.)}{\partial l_{j, t}^{*}}\right\}=\lambda^{L} \nu_{1, t} \operatorname{rer}_{t}+\nu_{2, t} \operatorname{rer}_{t} \\
d_{j, t}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{t}}{\pi_{t+1}}\right)-\omega \frac{\partial V(.)}{\partial d_{j, t}}\right\}=\nu_{2, t} \\
d_{j, t}^{*}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{t}^{*} \xi_{t}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1}\right)-\omega \frac{\partial V(.)}{\partial d_{j, t}^{*}}\right\}=\nu_{2, t} \operatorname{rer}_{t}
\end{gathered}
$$

with complementary slackness conditions:

$$
\begin{gathered}
\nu_{1, t}: \quad \nu_{1, t}\left(V_{j, t}-\lambda^{L} \operatorname{rer}_{t} l_{j, t}^{*}\right)=0 \\
\nu_{2, t}: \quad \nu_{2, t}\left(\frac{R_{j, t-1}^{* L}}{\pi_{t}^{*}} \operatorname{rer}_{t} l_{j, t-1}^{*}-\frac{R_{t-1}}{\pi_{t}} d_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{j, t-1}^{*}-\operatorname{rer}_{t} l_{j, t}^{*}+d_{j, t}+\operatorname{rer}_{t} d_{j, t}^{*}\right)=0
\end{gathered}
$$

Further, the first-order conditions can be expressed as

$$
l_{j, t}^{*}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{j, t}^{* L}}{\pi_{t+1}^{*}} \frac{\operatorname{rer}_{t+1}}{\operatorname{rer}_{t}}\right)=\lambda^{L} \nu_{1, t}+\nu_{2, t}
$$

$$
\begin{gathered}
d_{j, t}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{t}}{\pi_{t+1}}\right)=\nu_{2, t} \\
d_{j, t}^{*}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{t}^{*} \xi_{t}}{\pi_{t+1}^{*}} \frac{r e r_{t+1}}{r e r_{t}}\right)=\nu_{2, t}
\end{gathered}
$$

Besides these first-order conditions, the set of equilibrium conditions includes the law of motion for aggregate net worth of banks and the bank incentive constraint. First, we formulate the law of motion for aggregate net worth. We assume that aggregate net worth consists of the net worth of non-bankrupted banks and the new worth of new banks. The new equity is injected by domestic households and is assumed to be of the size ιn. Then

$$
n_{t}=\omega\left(\frac{R_{j, t-1}^{* L}}{\pi_{t}^{*}} \operatorname{rer}_{t} l_{t-1}^{*}-\frac{R_{t-1}}{\pi_{t}} d_{t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{t-1}^{*}\right)+\iota n
$$

To include the incentive constraint in the equilibrium conditions, we have to redefine it by using the value of marginal utility from increasing assets by one unit and the value of marginal disutility from increasing debt by one unit. It follows from the previously derived results that the value of the bank j can also be defined as:

$$
\begin{aligned}
V_{j, t}= & \left(\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}}+\frac{\nu_{2, t}}{1+\nu_{1, t}}\right) \operatorname{rer}_{t} l_{j, t}^{*}-\frac{\nu_{2, t}}{1+\nu_{1, t}} d_{j, t}-\frac{\nu_{2, t}}{1+\nu_{1, t}} \operatorname{rer}_{t} d_{j, t}^{*} \\
& =\frac{\nu_{2, t}}{1+\nu_{1, t}}\left(\operatorname{rer}_{t} l_{j, t}^{*}-d_{j, t}-\operatorname{rer}_{t} d_{j, t}^{*}\right)+\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}} \operatorname{rer}_{t} l_{j, t}^{*} \\
& \Rightarrow \quad V_{j, t}=\frac{\nu_{2, t}}{1+\nu_{1, t}} n_{j, t}+\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}} \operatorname{rer}_{t} l_{j, t}^{*}
\end{aligned}
$$

Then we can modify the incentive constraint as

$$
\begin{gathered}
\frac{\nu_{2, t}}{1+\nu_{1, t}} n_{j, t}+\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}} \operatorname{rer}_{t} l_{j, t}^{*} \geq \lambda^{L} \operatorname{rer}_{t} l_{j, t}^{*} \\
\Rightarrow \quad \nu_{2, t} n_{j, t} \geq \lambda^{L} \operatorname{rer}_{t} l_{j, t}^{*}
\end{gathered}
$$

C: Retail firms

Retail firms constitute a continuum of mass one. They buy homogenous goods y_{t}^{R} at the market price P_{t}^{R} and use them in the production of differentiated goods $y_{t}^{H}(j)$. Differentiated goods are sold in a monopolistically competitive market subject to the demand of the domestic final goods producer.

Domestic retail firms are subject to sticky prices (Calvo, 1983), so every period ($1-\omega^{H}$) of them adjust prices to the optimal reset price $P_{t}^{\#}(j)$. Then the profit of a retail firm j that is allowed to adjust its price in period t is thus given by $\left(P_{t}^{\#}(j)-P_{t}^{R}\right) y_{t}^{H}(j)$. The fraction ω^{H} of remaining firms adjust past prices by the rate $\pi_{t}^{a d j}=\pi$.

Then the aggregate price level of domestic retail goods is

$$
P_{t}^{H}=\left(\left(1-\omega^{H}\right)\left(P_{t}^{\#}\right)^{1-\epsilon_{H}}+\omega^{H}\left(P_{t-1}^{H} \pi_{t}^{a d j}\right)^{1-\epsilon_{H}}\right)^{1 /\left(1-\epsilon_{H}\right)}
$$

Define

$$
\begin{equation*}
\tilde{p}_{t}^{H} \equiv \frac{P_{t}^{\#}}{P_{t}^{H}} \tag{B.1}
\end{equation*}
$$

It follows that

$$
\Rightarrow \quad 1=\left(1-\omega^{H}\right)\left(\tilde{p}_{t}^{H}\right)^{1-\epsilon_{H}}+\omega^{H}\left(\frac{P_{t-1}^{H} \pi_{t}^{a d j}}{P_{t}^{H}}\right)^{1-\epsilon_{H}}
$$

Re-writing in terms of relative prices with respect to the price level of domestic final goods P_{t} such that $p_{t}^{H} \equiv P_{t}^{H} / P_{t}$ gives

$$
\Rightarrow \quad 1=\left(1-\omega^{H}\right)\left(\tilde{p}_{t}^{H}\right)^{1-\epsilon_{H}}+\omega^{H}\left(\frac{p_{t-1}^{H} \pi_{t}^{a d j}}{\pi_{t} p_{t}^{H}}\right)^{1-\epsilon_{H}}
$$

As a result, a domestic retail firm j solves the problem how to set the optimal price $P_{t}^{\#}(j)$ conditional on not changing it in the future:

$$
\max _{P_{t}^{\#}(j)} E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s} \frac{\left(P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)-P_{t+s}^{R}\right)}{P_{t+s}} y_{t+s}^{H}(j)
$$

s.t. the demand for domestic retail goods (equation (3))

$$
y_{t}^{H}(j)=\left(\frac{P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t}^{H}}\right)^{-\epsilon_{H}} y_{t}^{H}
$$

Define $p_{t}^{R} \equiv \frac{P_{t}^{R}}{P_{t}}$:

$$
\max _{P_{t}^{\#}(j)} E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(\frac{P_{t}^{\#}(j)}{P_{t+s}}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)-p_{t+s}^{R}\right) y_{t+s}^{H}(j)
$$

s.t. the demand for domestic retail goods

$$
\begin{gathered}
y_{t}^{H}(j)=\left(\frac{P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t}^{H}}\right)^{-\epsilon_{H}} y_{t}^{H} \\
\Rightarrow \max _{P_{t}^{\#}(j)} E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(\frac{P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t+s}}\left(\frac{P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t+s}^{H}}\right)^{-\epsilon_{H}} y_{t+s}^{H}-p_{t+s}^{R}\left(\frac{P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t+s}^{H}}\right)^{-\epsilon_{H}} y_{t+s}^{H}\right) \\
\Rightarrow \max _{P_{t}^{\#}(j)} E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{H}\left(\frac{P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t+s}^{H}}\right)^{1-\epsilon_{H}} y_{t+s}^{H}-p_{t+s}^{R}\left(\frac{P_{t}^{\#}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t+s}^{H}}\right)^{-\epsilon_{H}} y_{t+s}^{H}\right)
\end{gathered}
$$

We take a derivative w.r.t. $P_{t}^{\#}(j)$ and rearrange terms:

$$
\begin{gathered}
E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(\left(1-\epsilon_{H}\right) p_{t+s}^{H}\left(P_{t}^{\#}(j)\right)^{-\epsilon_{H}}\left(\frac{\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}}{P_{t+s}^{H}}\right)^{1-\epsilon_{H}}-\epsilon_{H} p_{t+s}^{R}\left(P_{t}^{\#}(j)\right)^{-\epsilon_{H}-1}\left(\frac{\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}}{P_{t+s}^{H}}\right)^{-\epsilon_{H}}\right)^{y_{t+s}^{H}} \\
\Rightarrow E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(\left(1-\epsilon_{H}\right) p_{t+s}^{H} P_{t}^{\#}(j)\left(P_{t+s}^{H}\right)^{\epsilon_{H}-1}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{1-\epsilon_{H}}-\epsilon_{H} p_{t+s}^{R}\left(P_{t+s}^{H}\right)^{\epsilon_{H}}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{-\epsilon_{H}}\right) y_{t+s}^{H}=0 \\
\Rightarrow P_{t}^{\#}(j)=\frac{\epsilon_{H}}{\left(\epsilon_{H}-1\right)} \frac{E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{R}\left(P_{t+s}^{H}\right)^{\epsilon_{H}}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{-\epsilon_{H}} y_{t+s}^{H}\right)}{E_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{H}\left(P_{t+s}^{H}\right)^{\epsilon_{H}-1}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{1-\epsilon_{H}} y_{t+s}^{H}\right)}=0 \\
\Rightarrow \frac{P_{t}^{\#}(j)}{P_{t}^{H}}=\frac{\epsilon_{H}}{\left(\epsilon_{H}-1\right)} \frac{E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{R}\left(\frac{P_{t+s}^{H}}{P_{t}^{H}}\right)^{\epsilon_{H}}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{-\epsilon_{H}} y_{t+s}^{H}\right)}{E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{H}\left(\frac{P_{t+s}^{H}}{P_{t}^{H}}\right)^{\epsilon_{H}-1}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{1-\epsilon_{H}} y_{t+s}^{H}\right)}
\end{gathered}
$$

Since $\tilde{p}_{t}^{H} \equiv P_{t}^{\#} / P_{t}^{H}$,

$$
\begin{gathered}
\tilde{p}_{t}^{H}=\frac{\epsilon_{H}}{\left(\epsilon_{H}-1\right)} \frac{E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{R}\left(\frac{P_{t+s}^{H}}{P_{t}^{H}}\right)^{\epsilon_{H}}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{-\epsilon_{H}} y_{t+s}^{H}\right)}{E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{H}\left(\frac{P_{t+s}^{H}}{P_{t}^{H}}\right)^{\epsilon_{H}-1}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{1-\epsilon_{H}} y_{t+s}^{H}\right)} \\
\Rightarrow \tilde{p}_{t}^{H}=\frac{\epsilon_{H}}{\left(\epsilon_{H}-1\right)} \frac{E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{R}\left(\frac{p_{t+s}^{H} \pi_{t+s}}{p_{t}^{H}}\right)^{\epsilon_{H}}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{-\epsilon_{H}} y_{t+s}^{H}\right)}{E_{t} \sum_{s=0}^{\infty}\left(\omega^{H}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{H}\left(\frac{p_{t+s}^{H} \pi_{t+s}}{p_{t}^{H}}\right)^{\epsilon_{H}-1}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{1-\epsilon_{H}} y_{t+s}^{H}\right)} \\
\Rightarrow \tilde{p}_{t}^{H}=\frac{\epsilon_{H}}{\left(\epsilon_{H}-1\right)} \frac{F_{1, t}^{H}}{F_{2, t}^{H}}
\end{gathered}
$$

where

$$
F_{1, t}^{H}=p_{t}^{R} y_{t}^{H}+E_{t} \omega^{H} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{H} \pi_{t+1}}{p_{t}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{H}} F_{1, t+1}^{H}
$$

and

$$
F_{2, t}^{H}=p_{t}^{H} y_{t}^{H}+E_{t} \omega^{H} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{H} \pi_{t+1}}{p_{t}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{H}-1} F_{2, t+1}^{H}
$$

D: Importers

We assume that there is a continuum of monopolistically competitive importers. They buy a variety j of foreign goods $y_{t}^{F}(j)$ at the foreign price P_{t}^{*} and sell it to the final goods producer at a nominal price $P_{t}^{F}(j)$, expressed in domestic currency.

Every period there is a fraction $\left(1-\omega^{F}\right)$ of importers who can adjust their prices. The set of importers who can adjust the price choose it such that their profits are maximized. The fraction ω^{F} of remaining importing firms adjust past prices by the rate $\pi_{t}^{a d j}=\pi$. As a result, an importer j solves the problem how to set the optimal price $P_{t}^{\# F}(j)$ conditional on not changing it in the future:

$$
\begin{equation*}
\max _{P_{t}^{\# F}(j)} E_{t} \sum_{s=0}^{\infty}\left(\omega^{F}\right)^{s} \beta^{s} \Lambda_{t, t+s} \frac{\left(P_{t}^{\# F}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)-S_{t+s} P_{t+s}^{*}(j)\right)}{P_{t+s}} y_{t+s}^{F}(j) \tag{2}
\end{equation*}
$$

s.t.

$$
y_{t}^{F}(j)=\eta\left(\frac{P_{t}^{\# F}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t}^{F}}\right)^{-\epsilon} y_{t}^{F}
$$

Since $\operatorname{rer}_{t} \equiv S_{t} P_{t}^{*} / P_{t}$,

$$
\max _{P_{t}^{\# F}(j)} E_{t} \sum_{s=0}^{\infty}\left(\omega^{F}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(\frac{P_{t}^{\# F}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t+s}}-r e r_{t+s}\right) y_{t+s}^{F}(j)
$$

s.t.

$$
y_{t}^{F}(j)=\eta\left(\frac{P_{t}^{\# F}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t}^{F}}\right)^{-\epsilon} y_{t}^{F}
$$

In analogy to the problem of domestic retail firms, we maximize and rearrange terms. Since all importers who can adjust their price set the same optimal price, $P_{t}^{\# F}(j)=P_{t}^{\# F} \forall j$. After introducing a variable \tilde{p}_{t}^{F} which is defined as

$$
\begin{equation*}
\tilde{p}_{t}^{F} \equiv P_{t}^{\# F} / P_{t}^{F} \tag{B.2}
\end{equation*}
$$

we can show that the optimal price-setting equation follows as

$$
\begin{gathered}
\Rightarrow \tilde{p}_{t}^{F}=\frac{\epsilon_{F}}{\left(\epsilon_{F}-1\right)} \frac{E_{t} \sum_{s=0}^{\infty}\left(\omega^{F}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(\operatorname{rer}_{t+s}\left(\frac{p_{t+s}^{F} \pi_{t+s}}{p_{t}^{F}}\right)^{\epsilon_{F}}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{-\epsilon_{F}} y_{t+s}^{F}\right)}{E_{t} \sum_{s=0}^{\infty}\left(\omega^{F}\right)^{s} \beta^{s} \Lambda_{t, t+s}\left(p_{t+s}^{F}\left(\frac{p_{t+s}^{F} \pi_{t+s}}{p_{t}^{F}}\right)^{\epsilon_{F}-1}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)^{1-\epsilon_{F}} y_{t+s}^{F}\right)} \\
\Rightarrow \tilde{p}_{t}^{F}=\frac{\epsilon_{F}}{\left(\epsilon_{F}-1\right)} \frac{F_{1, t}^{F}}{F_{2, t}^{F}}
\end{gathered}
$$

where

$$
F_{1, t}^{F}=\operatorname{rer}_{t} y_{t}^{F}+E_{t} \omega^{F} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{F} \pi_{t+1}}{p_{t}^{F}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{F}} F_{1, t+1}^{F}
$$

and

$$
F_{2, t}^{F}=p_{t}^{F} y_{t}^{F}+E_{t} \omega^{F} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{F} \pi_{t+1}}{p_{t}^{F}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{F}-1} F_{2, t+1}^{F}
$$

The price index for imported goods is given by: $1=\left(1-\omega^{F}\right)\left(\tilde{p}_{t}^{F}\right)^{1-\epsilon_{F}}+\omega^{F}\left(\frac{p_{t-1}^{F} \pi_{t}^{a d j}}{p_{t}^{F} \pi_{t}}\right)^{1-\epsilon_{F}}$.

E: Price dispersion

We define the price dispersion of domestic retail goods as

$$
D_{t}^{H} \equiv \int_{0}^{1}\left(\frac{P_{t}^{H}(j)}{P_{t}^{H}}\right)^{-\epsilon_{H}} d j
$$

Noting that $\left(1-\omega^{H}\right)$ of firms will update to the same optimal price $P_{t}^{\#}$, and ω^{H} of firms will leave the last period's price gives

$$
\begin{align*}
D_{t}^{H} & =\int_{0}^{1-\omega^{H}}\left(\frac{P_{t}^{\#}}{P_{t}^{H}}\right)^{-\epsilon_{H}} d j+\int_{1-\omega^{H}}^{1}\left(\frac{P_{t-1}^{H}(j)\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t}^{H}}\right)^{-\epsilon_{H}} d j \\
& =\int_{0}^{1-\omega^{H}}\left(\frac{P_{t}^{\#}}{P_{t}^{H}}\right)^{-\epsilon_{H}} d j+\int_{1-\omega^{H}}^{1}\left(\frac{P_{t-1}^{H}(j)}{P_{t-1}^{H}}\right)^{-\epsilon_{H}}\left(\frac{P_{t-1}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t}^{H}}\right)^{-\epsilon_{H}} d j \\
& =\left(1-\omega^{H}\right)\left(\tilde{p}_{t}^{H}\right)^{-\epsilon_{H}}+\int_{1-\omega^{H}}^{1} D_{t-1}^{H}\left(\frac{P_{t-1}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{P_{t}^{H}}\right)^{-\epsilon_{H}} d j \\
& =\left(1-\omega^{H}\right)\left(\tilde{p}_{t}^{H}\right)^{-\epsilon_{H}}+\omega^{H}\left(\frac{p_{t-1}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{\pi_{t} p_{t}^{H}}\right)^{-\epsilon_{H}} D_{t-1}^{H}
\end{align*}
$$

In analogy, the price dispersion of importers' goods is given by

$$
D_{t}^{F} \equiv \int_{0}^{1}\left(\frac{P_{t}^{F}(j)}{P_{t}^{F}}\right)^{-\epsilon_{F}} d j
$$

and it follows a rule

$$
D_{t}^{F}=\left(1-\omega^{F}\right)\left(\tilde{p}_{t}^{F}\right)^{-\epsilon_{F}}+\omega^{F}\left(\frac{p_{t-1}^{F}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{\pi_{t} p_{t}^{F}}\right)^{-\epsilon_{F}} D_{t-1}^{F}
$$

F: Domestic final goods producer

The domestic final goods producer combines domestic composite goods and foreign composite goods into domestic final goods and sells them to the household, the government and capital goods producers. We define the supply of domestic final goods as y_{t}^{C}. The demanded amount of production inputs, namely, domestic composite goods and foreign composite goods, is denoted as x_{t}^{H} and x_{t}^{F} respectively.

Domestic composite goods. Domestic composite goods y_{t}^{H} result from assembling retailers' production $y_{t}^{H}(j)$ for $j \in[0,1]$, each bought at price $P_{t}^{H}(j)$, expressed in domestic currency, and with no additional costs incurred. Let the aggregate price level of retail goods be $P_{t}^{H} \equiv\left(\int_{0}^{1}\left(P_{t}^{H}(j)\right)^{1-\epsilon_{H}} d j\right)^{1 /\left(1-\epsilon_{H}\right)}$, expressed in domestic currency. Then it follows that the demand for retail goods is given as a solution to the problem

$$
\max _{y_{t}^{H}(j)}\left\{P_{t}^{H} y_{t}^{H}-\int_{0}^{1} P_{t}^{H}(j) y_{t}^{H}(j) d j\right\}
$$

subject to the assembling technology

$$
y_{t}^{H}=\left(\int_{0}^{1} y_{t}^{H}(j)^{1-\frac{1}{\epsilon_{H}}} d j\right)^{\frac{\epsilon_{H}}{\epsilon_{H}-1}}
$$

and to the market clearing constraint that says that domestic composite goods are also used to satisfy foreign demand $e x_{t}$, all expressed in units of domestic final goods:

$$
y_{t}^{H}=x_{t}^{H}+e x_{t}
$$

As a result, optimal demand for retail goods is given by

$$
\begin{equation*}
y_{t}^{H}(j)=\left(\frac{P_{t}^{H}(j)}{P_{t}^{H}}\right)^{-\epsilon_{H}} y_{t}^{H} \tag{3}
\end{equation*}
$$

and domestic demand for domestic composite goods satisfies the clearing condition $x_{t}^{H}=y_{t}^{H}-e x_{t}$.

Foreign composite goods. Foreign composite goods y_{t}^{F} result from assembling importers' production $y_{t}^{F}(j)$ for $j \in[0,1]$, each bought at price $P_{t}^{F}(j)$, expressed in domestic currency, and with no additional costs incurred. Let the aggregate price level of importers' goods be $P_{t}^{F} \equiv\left(\int_{0}^{1}\left(P_{t}^{F}(j)\right)^{1-\epsilon_{F}} d j\right)^{1 /\left(1-\epsilon_{F}\right)}$, expressed in domestic currency. Then it follows that the demand for retail goods is given as a solution to the problem

$$
\max _{y_{t}^{F}(j)}\left\{P_{t}^{F} y_{t}^{F}-\int_{0}^{1} P_{t}^{F}(j) y_{t}^{F}(j) d j\right\}
$$

subject to the assembling technology

$$
y_{t}^{F}=\left(\int_{0}^{1} y_{t}^{F}(j)^{1-\frac{1}{\epsilon_{F}}} d j\right)^{\frac{\epsilon_{F}}{\epsilon_{F}-1}}
$$

and to the market clearing constraint that says that all foreign composite goods are used to satisfy the demand of the final goods producer:

$$
y_{t}^{F}=x_{t}^{F}
$$

As a result, optimal demand for importers' production is given by

$$
\begin{equation*}
y_{t}^{F}(j)=\left(\frac{P_{t}^{F}(j)}{P_{t}^{F}}\right)^{-\epsilon_{F}} y_{t}^{F} \tag{4}
\end{equation*}
$$

and demand for foreign composite goods clears $x_{t}^{F}=y_{t}^{F}$.

Domestic final goods. Given inputs x_{t}^{H} and x_{t}^{F}, domestic final goods are assembled with the aggregation technology

$$
\begin{equation*}
y_{t}^{C} \equiv\left[(1-\eta)^{\frac{1}{\epsilon}}\left(x_{t}^{H}\right)^{\frac{\epsilon-1}{\epsilon}}+\eta^{\frac{1}{\epsilon}}\left(x_{t}^{F}\right)^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}} \tag{5}
\end{equation*}
$$

where ϵ stands for elasticity of substitution between domestically produced goods and imported goods.
The domestic final goods producer operates in a perfectly competitive market, so she maximizes profits $P_{t} y_{t}^{C}-P_{t}^{H} x_{t}^{H}-P_{t}^{F} x_{t}^{F}$ subject to the technology (5). This boils down to two demand conditions:

$$
x_{t}^{H}=(1-\eta)\left(\frac{P_{t}^{H}}{P_{t}}\right)^{-\epsilon} y_{t}^{C}
$$

and

$$
x_{t}^{F}=\eta\left(\frac{P_{t}^{F}}{P_{t}}\right)^{-\epsilon} y_{t}^{C}
$$

where a parameter η proxies for openness of the home economy. Further, we introduce relative prices $p_{t}^{H} \equiv P_{t}^{H} / P_{t}$ and $p_{t}^{F} \equiv P_{t}^{F} / P_{t}$ and get

$$
\begin{equation*}
x_{t}^{H}=(1-\eta)\left(p_{t}^{H}\right)^{-\epsilon} y_{t}^{C} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{t}^{F}=\eta\left(p_{t}^{F}\right)^{-\epsilon} y_{t}^{C} \tag{7}
\end{equation*}
$$

G: Capital producers

Capital producers operate the technology that allows them to combine depreciated capital with investment i_{t} and increase the capital stock. They sell capital at the nominal competitive price Q_{t} to risky firms. Capital producers maximize profits, expressed in units of domestic final goods, subject to the production technology by choosing an optimal level of investment. The technology is given by

$$
\begin{equation*}
k_{t}=(1-\delta) k_{t-1}+\left(1-\Gamma\left(\frac{i_{t}}{i_{t-1}}\right)\right) i_{t} \tag{8}
\end{equation*}
$$

where

$$
\Gamma\left(\frac{i_{t}}{i_{t-1}}\right)=\frac{\gamma}{2}\left(\frac{i_{t}}{i_{t-1}}-1\right)^{2}
$$

are investment adjustment costs. Profit maximization problem can be written in units of domestic final goods as

$$
\begin{equation*}
\max _{i_{t}}\left\{q_{t} k_{t}-q_{t}(1-\delta) k_{t-1}-i_{t}\right\} \tag{9}
\end{equation*}
$$

s.t.

$$
\begin{equation*}
k_{t}=(1-\delta) k_{t-1}+\left(1-\Gamma\left(\frac{i_{t}}{i_{t-1}}\right)\right) i_{t} \tag{10}
\end{equation*}
$$

Optimizing gives the demand function for investment:

$$
\begin{equation*}
\frac{1}{q_{t}}=1-\frac{\kappa}{2}\left(\frac{i_{t}}{i_{t-1}}-1\right)^{2}-\kappa\left(\frac{i_{t}}{i_{t-1}}-1\right) \frac{i_{t}}{i_{t-1}}+\kappa \beta E_{t} \Lambda_{t, t+1} \frac{q_{t+1}}{q_{t}}\left(\frac{i_{t+1}}{i_{t}}-1\right)\left(\frac{i_{t+1}}{i_{t}}\right)^{2} \tag{11}
\end{equation*}
$$

H: Exporters

We assume that all economies are identical: foreign economies also do assemble goods with the very same technologies and no additional costs incurred (no trade barriers in the model). Hence, the rest of the world demands $e x_{t}$ units of domestic composite goods at a price $P_{t}^{H *}=P_{t}^{H} / S_{t}$, which is the price of domestic composite goods expressed in units of foreign currency. Demand for exports can be solved from the foreign household's problem, where the foreign household chooses between goods produced in the home economy $e x_{t}$ and other goods y_{t}^{*} :

$$
\begin{aligned}
& \max _{e x_{t}}\left\{P_{t}^{*} y_{t}^{*}-P_{t}^{H *} e x_{t}\right\} \\
& \max _{e x_{t}}\left\{P_{t}^{*} y_{t}^{*}-\frac{P_{t}^{H}}{S_{t}} e x_{t}\right\}
\end{aligned}
$$

The share of goods produced in the home economy in total foreign consumption is described by two new parameters: η^{*} proxies for preferences of the foreign household for goods produced in the home economy and ϵ_{*} stands for elasticity of substitution between goods produced in the home economy and other goods. Also we define the foreign demand for goods other than goods produced in the home economy as an exogenous variable $x^{* o t h e r}$. Then total demand in the rest of the world is given by

$$
\begin{equation*}
y_{t}^{*} \equiv\left[\left(1-\eta^{*}\right)^{\frac{1}{\epsilon_{*}}}\left(x_{t}^{* o t h e r}\right)^{\frac{\epsilon_{*}-1}{\epsilon_{*}}}+\left(\eta^{*}\right)^{\frac{1}{\epsilon_{*}}}\left(e x_{t}\right)^{\frac{\epsilon_{*}-1}{\epsilon_{*}}}\right]^{\frac{\epsilon_{*}}{\epsilon_{*}-1}} \tag{12}
\end{equation*}
$$

Maximizing profits $P_{t}^{*} y_{t}^{*}-P_{t}^{H *} e x_{t}$, expressed in units of foreign currency, subject to the aggregation technology (12) boils down to the foreign demand condition for goods produced in the home economy:

$$
e x_{t}=\eta^{*}\left(\frac{P_{t}^{H}}{S_{t} P_{t}^{*}}\right)^{-\epsilon_{*}} y_{t}^{*}
$$

Since $\operatorname{rer}_{t} \equiv S_{t} P_{t}^{*} / P_{t}$,

$$
e x_{t}=\eta^{*}\left(\frac{p_{t}^{H}}{r e r_{t}}\right)^{-\epsilon_{*}} y_{t}^{*}
$$

I: Government

The government collects lump-sum taxes T_{t} from the household and issues domestic bonds B_{t} to finance a stochastic stream of nominal government expenditure, G_{t}. Therefore, it satisfies the budget constraint:

$$
\begin{equation*}
G_{t}+R_{t-1} B_{t-1}=T_{t}+B_{t} \tag{13}
\end{equation*}
$$

which, given $g_{t} \equiv G_{t} / P_{t}, b_{t} \equiv B_{t} / P_{t}$ and $t_{t} \equiv T_{t} / P_{t}$, can be expressed in units of domestic final goods as

$$
\begin{equation*}
g_{t}+\frac{R_{t-1}}{\pi_{t}} b_{t-1}=t_{t}+b_{t} \tag{14}
\end{equation*}
$$

Taxes in units of domestic final goods are assumed to follow this tax rule:

$$
\begin{equation*}
t_{t}=\bar{t}+\kappa_{b}\left(b_{t-1}-\bar{b}\right)+\tau_{t}, \quad \tau_{t} \sim N I D\left(0, \sigma_{\tau}^{2}\right) \tag{15}
\end{equation*}
$$

J: Current account and its components

First, we derive an expression for aggregate nominal imports M_{t} in units of domestic currency. We aggregate importers' demand $y_{t}^{F}(j)$ that is priced at P_{t}^{*} and express the sum in units of domestic currency:

$$
M_{t}=\int_{0}^{1} S_{t} P_{t}^{*} y_{t}^{F}(j) d j
$$

Further we use the derived demand function (4) to get

$$
M_{t}=\int_{0}^{1} S_{t} P_{t}^{*}\left(\frac{P_{t}^{F}(j)}{P_{t}^{F}}\right)^{-\epsilon_{F}} y_{t}^{F}
$$

Define the price dispersion of importers' goods as $D_{t}^{F} \equiv \int_{0}^{1}\left(\frac{P_{t}^{F}(j)}{P_{t}^{F}}\right)^{-\epsilon_{F}} d j$ (more details on the price dispersion are in Appendix B2). Then

$$
\begin{equation*}
M_{t}=S_{t} P_{t}^{*} D_{t}^{F} y_{t}^{F} \tag{16}
\end{equation*}
$$

which in units of domestic final goods is given by

$$
\begin{equation*}
m_{t} \equiv \frac{M_{t}}{P_{t}}=\operatorname{rer}_{t} D_{t}^{F} y_{t}^{F} \tag{17}
\end{equation*}
$$

Second, we define nominal exports $E X_{t}$, expressed in units of domestic currency. Since exports are purchased at the price $P_{t}^{H *}$, expressed in foreign currency, nominal exports $E X_{t}$, expressed in units of domestic currency, is given by

$$
\begin{equation*}
E X_{t}=S_{t} P_{t}^{H *} e x_{t}=P_{t}^{H} e x_{t} \tag{18}
\end{equation*}
$$

The trade balance $T B_{t}$ in nominal domestic terms evolves as

$$
T B_{t}=E X_{t}-M_{t}
$$

Recall definitions for nominal exports and nominal imports in units of domestic currency (equations (18) and (16)). Then the trade balance in units of domestic final goods can be expressed as

$$
\begin{aligned}
t b_{t} & \equiv \frac{T B_{t}}{P_{t}}=\frac{P_{t}^{H} e x_{t}}{P_{t}}-\frac{S_{t} P_{t}^{*} D_{t}^{F} y_{t}^{F}}{P_{t}} \\
\Rightarrow \quad t b_{t} & =p_{t}^{H} e x_{t}-r e r_{t} D_{t}^{F} y_{t}^{F}
\end{aligned}
$$

Since $m_{t} \equiv \operatorname{rer}_{t} D_{t}^{F} y_{t}^{F}$,

$$
t b_{t}=p_{t}^{H} e x_{t}-m_{t}
$$

The domestic household owns banks that borrow from the foreign household. As a result, a current account in nominal domestic terms is given by the sum of nominal trade balance and nominal net income from abroad, both expressed in domestic currency:

$$
\begin{equation*}
C A_{t}=T B_{t}+N I_{t} \tag{19}
\end{equation*}
$$

In our case nominal net income from abroad is negative and equal to minus payments on bank foreign debt:

$$
N I_{t}=-\left(R_{t-1}^{*} \xi_{t-1}-1\right) S_{t} D_{t-1}^{*}
$$

Substituting the last expression in equation (19) gives a more detailed expression for the nominal current account:

$$
C A_{t}=T B_{t}-\left(R_{t-1}^{*} \xi_{t-1}-1\right) S_{t} D_{t-1}^{*}
$$

Further, we express the current account in units of domestic final goods as cat $\left(c a_{t} \equiv C A_{t} / P_{t}\right)$:

$$
\begin{gather*}
c a_{t}=t b_{t}-\left(R_{t-1}^{*} \xi_{t-1}-1\right) \frac{S_{t} D_{t-1}^{*}}{P_{t}} \\
\Rightarrow \quad c a_{t}=t b_{t}-\left(R_{t-1}^{*} \xi_{t-1}-1\right) r e r_{t} \frac{d_{t-1}^{*}}{\pi_{t}^{*}} \tag{20}
\end{gather*}
$$

In equilibrium the current account has to equal the capital account balance $C P_{t}$. In our case the capital account balance is given by the change in stocks of bank foreign debt:

$$
C P_{t}=-\left(S_{t} D_{t}^{*}-S_{t} D_{t-1}^{*}\right)
$$

We express the capital account balance in units of domestic final goods as $c p_{t}\left(c p_{t} \equiv C P_{t} / P_{t}\right)$:

$$
c p_{t}=-\left(\operatorname{rer}_{t} d_{t}^{*}-\operatorname{rer}_{t} \frac{d_{t-1}^{*}}{\pi_{t}^{*}}\right)
$$

Then, next to the current account definition (20), we impose an additional restriction that enters the set of equilibrium equations:

$$
\begin{equation*}
c a_{t}=-\left(\operatorname{rer}_{t} d_{t}^{*}-\operatorname{rer}_{t} \frac{d_{t-1}^{*}}{\pi_{t}^{*}}\right) \tag{21}
\end{equation*}
$$

K: Model with domestic currency loans

K1: Financially constrained firms

The first difference from the main model occurs in the firm's loan demand function. The firm's borrowing decision depends on the firm's expected working capital needs such that in the beginning of period t the following condition holds:

$$
L_{i, t}=E_{t-1}\left\{\rho\left(Q_{t} k_{i, t}+W_{t} h_{i, t}\right)\right\}
$$

where Q_{t} is the nominal price of capital and W_{t} is the nominal wage.
Let the matured nominal loan in units of domestic currency be $R_{i, t}^{R} L_{i, t}$, where $R_{i, t}^{R}$ is the nominal interest rate on the loan. The contracted collateral is a share $\kappa(0<\kappa \leq 1)$ of firms' revenue from selling goods and depreciated capital in the next period, $P_{t+1}^{R} y_{i, t+1}^{R}+Q_{t+1}(1-\delta) k_{i, t} . P M_{i, t+1}$ stands for a default decision of the financially constrained firm i born in period t :

$$
P M_{i, t+1}=\min \left\{R_{i, t}^{R} L_{i, t}, \quad \kappa\left(P_{t+1}^{R} y_{i, t+1}^{R}+Q_{t+1}(1-\delta) k_{i, t}\right)\right\}
$$

where $P_{t+1}^{R} y_{i, t+1}^{R}=P_{t+1}^{R} A_{t+1} \theta_{i, t+1} k_{i, t}^{\alpha} h_{i, t}^{1-\alpha}$.
Therefore, after shocks take place, the generation of firms t will solve the same profit maximization prob-
lem taking the loan as given:

$$
\begin{aligned}
\max _{\left\{k_{i, t}, h_{i, t}\right\}} & E_{t} \beta \Lambda_{t, t+1}\left\{\frac{\left(P_{t+1}^{R} y_{i, t+1}^{R}+Q_{t+1}(1-\delta) k_{i, t}-P M_{i, t+1}-(1-\rho)\left(Q_{t} k_{i, t}+W_{t} h_{i, t}\right)\right)}{P_{t+1}}\right\} \\
& +\frac{L_{i, t}-\rho\left(Q_{t} k_{i, t}+W_{t} h_{i, t}\right)+Z_{i, t}}{P_{t}}
\end{aligned}
$$

$Z_{i, t}$ stands for the equity injection from the domestic household.
Define $p_{t+1}^{R} \equiv P_{t+1}^{R} / P_{t+1}, q_{t+1} \equiv Q_{t+1} / P_{t+1}, w_{t} \equiv W_{t} / P_{t}$ and $l_{i, t} \equiv L_{i, t} / P_{t}$.
This, after substituting for $P M_{i, t+1}$, gives

$$
\begin{aligned}
\max _{\left\{k_{i, t}, h_{i, t}\right\}} & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}-(1-\rho) \frac{q_{t} k_{i, t}+w_{t} h_{i, t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1} \min \left\{\frac{R_{i, t}^{R}}{\pi_{t+1}} l_{i, t}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\} \\
& +l_{i, t}-\rho\left(q_{t} k_{i, t}+w_{t} h_{i, t}\right)+z_{i, t}
\end{aligned}
$$

s.t.

$$
l_{i, t}=E_{t-1}\left\{\rho\left(q_{t} k_{i, t}+w_{t} h_{i, t}\right)\right\}
$$

The corresponding first-order conditions:

$$
\begin{aligned}
k_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+(1-\delta) q_{t+1}-(1-\rho) \frac{q_{t}}{\pi_{t+1}}\right\} \\
& -\frac{\partial E_{t} \beta \Lambda_{t, t+1} E_{t} \min \left\{\frac{R_{i, t}^{R}}{\pi_{t+1}} l_{i, t}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}}{\partial k_{i, t}} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{R} l_{i, t}}{\pi_{t+1}}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial k_{i, t}} \\
& +\rho q_{t} \\
h_{i, t}: \quad & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial h_{i, t}}-(1-\rho) \frac{w_{t}}{\pi_{t+1}}\right\} \\
& -\frac{\partial E_{t} \beta \Lambda_{t, t+1} E_{t} \min \left\{\frac{R_{i, t}^{R}}{\pi_{t+1}} l_{i, t}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}}{\partial h_{i, t}} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{R} l_{i, t}}{\pi_{t+1}}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial h_{i, t}} \\
& +\rho w_{t}
\end{aligned}
$$

If we substitute the expression for the expected value of loan repayment, we get:

$$
\begin{aligned}
k_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+q_{t+1}(1-\delta)-(1-\rho) \frac{q_{t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+q_{t+1}(1-\delta)\right)\right\} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{R} l_{i, t}}{\pi_{t+1}}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial k_{i, t}} \\
& +\rho q_{t} \\
h_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial h_{i, t}}-(1-\rho) \frac{w_{t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial h_{i, t}}\right)\right\} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{R} l_{i, t}}{\pi_{t+1}}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial h_{i, t}} \\
& +\rho w_{t}
\end{aligned}
$$

where

$$
d_{2, t} \equiv \frac{E_{t} \ln \left(\kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right)-E_{t} \ln \left(\frac{R_{i, t}^{R}}{\pi_{t+1}} l_{i, t}\right)}{\sigma_{y}}, \quad d_{1, t}=d_{2, t}+\sigma_{y}
$$

σ_{y}^{2} is given by $\operatorname{var}\left(\pi_{t+1} \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right)$.
The first-order conditions w.r.t. capital, labour demand and the postulated loan demand enter the set of equilibrium equations.

K2: Banks

We assume that banks give domestic currency loans out of accumulated equity N_{t}, domestic deposits D_{t} and foreign debt D_{t}^{*}. The balance sheet constraint of a bank j, expressed in units of domestic currency, is given by

$$
N_{j, t}+D_{j, t}+S_{t} D_{j, t}^{*}=L_{j, t}
$$

where S_{t} is the nominal exchange rate. Banks are subject to an agency problem as in Gertler and Karadi (2011). At the end of every period every bank can divert a share λ^{L} of their divertable assets. Creditors take this possibility into account and lend only up to the point where the continuation value of the bank is still larger or equal to what can be diverted. This condition acts as an incentive constraint for the bank and eventually limits expansion of the balance sheet.

The only asset on the banks' balance sheet is domestic currency loans to domestic financially constrained
firms, thus, the nominal expected return of the bank j is defined as $R_{j, t}^{L}$ and given by:

$$
E_{t}\left\{R_{t}^{L} L_{j, t}\right\} \equiv E_{t}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(P_{t+1}^{R} y_{j, t+1}^{R}+(1-\delta) Q_{t+1} k_{j, t}\right)+\Phi\left(d_{2, t}\right) R_{j, t}^{R} L_{j, t}\right\}
$$

Then the optimization problem of the bank j can be written as:

$$
V_{j, t}=\max _{\left\{D_{j, t}, D_{j, t}^{*}, L_{j, t}\right\}} \quad E_{t}\left[\beta \Lambda_{t, t+1}\left\{(1-\omega) \frac{N_{j, t+1}}{P_{t+1}}+\omega V_{j, t+1}\right\}\right]
$$

s.t.

$$
\begin{array}{cr}
V_{j, t} \geq \lambda^{L} \frac{L_{j, t}}{P_{t}}, & \text { (Incentive constraint) } \\
\frac{N_{j, t}+D_{j, t}+S_{t} D_{j, t}^{*}}{P_{t}}=\frac{L_{j, t}}{P_{t}}, & \text { (Balance sheet constraint) } \\
\frac{N_{j, t}}{P_{t}}=\frac{R_{j, t-1}^{L}}{P_{t}} L_{j, t-1}-\frac{R_{t-1}}{P_{t}} D_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{P_{t}} S_{t} D_{j, t-1}^{*} & \text { (LoM of net worth) }
\end{array}
$$

Define $\operatorname{rer}_{t} \equiv P_{t}^{*} S_{t} / P_{t}, d_{j, t}^{*} \equiv D_{j, t}^{*} / P_{t}^{*}, d_{j, t} \equiv D_{j, t} / P_{t}, l_{j, t} \equiv L_{j, t} / P_{t}$, and $n_{j, t} \equiv N_{j, t} / P_{t}$. It follows that

$$
V_{j, t}=\max _{\left\{d_{j, t}, d_{j, t}^{*}, l_{j, t}\right\}} \quad E_{t}\left[\beta \Lambda_{t, t+1}\left\{(1-\omega) n_{j, t+1}+\omega V_{j, t+1}\right\}\right]
$$

s.t.

$$
\begin{array}{rr}
V_{j, t} \geq \lambda^{L} l_{j, t}, & \text { (Incentive constraint) } \\
n_{j, t}+d_{j, t}+\operatorname{rer}_{t} d_{j, t}^{*}=l_{j, t}, & \text { (Balance sheet constraint) } \\
n_{j, t}=\frac{R_{j, t-1}^{L}}{\pi_{t}} l_{j, t-1}-\frac{R_{t-1}}{\pi_{t}} d_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{j, t-1}^{*} & \text { (LoM of net worth) }
\end{array}
$$

Lagrangian of the problem can be formulated as:

$$
\begin{aligned}
L= & \left(1+\nu_{1, t}\right) E_{t} \beta \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{j, t}^{L}}{\pi_{t+1}} l_{j, t}-\frac{R_{t}}{\pi_{t+1}} d_{j, t}-\frac{R_{t}^{*} \xi_{t}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} d_{j, t}^{*}\right)+\omega V_{j, t+1}\right\} \\
& -\nu_{1, t} \lambda^{L} l_{j, t} \\
& +\nu_{2, t}\left(\frac{R_{j, t-1}^{L}}{\pi_{t}} l_{j, t-1}-\frac{R_{t-1}}{\pi_{t}} d_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{j, t-1}^{*}-l_{j, t}+d_{j, t}+\operatorname{rer}_{t} d_{j, t}^{*}\right)
\end{aligned}
$$

This gives the first-order conditions:

$$
\begin{gathered}
l_{j, t}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{j, t}^{L}}{\pi_{t+1}}\right)+\omega \frac{\partial V(.)}{\partial l_{j, t}}\right\}=\lambda^{L} \nu_{1, t}+\nu_{2, t} \\
d_{j, t}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{t}}{\pi_{t+1}}\right)-\omega \frac{\partial V(.)}{\partial d_{j, t}}\right\}=\nu_{2, t} \\
d_{j, t}^{*}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)\left(\frac{R_{t}^{*} \xi_{t}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1}\right)-\omega \frac{\partial V(.)}{\partial d_{j, t}^{*}}\right\}=\nu_{2, t} r e r_{t}
\end{gathered}
$$

with complementary slackness conditions:

$$
\begin{gathered}
\nu_{1, t}: \quad \nu_{1, t}\left(V_{j, t}-\lambda^{L} l_{j, t}\right)=0 \\
\nu_{2, t}: \quad \nu_{2, t}\left(\frac{R_{j, t-1}^{L}}{\pi_{t}} l_{j, t-1}-\frac{R_{t-1}}{\pi_{t}} d_{j, t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{j, t-1}^{*}-l_{j, t}+d_{j, t}+r e r_{t} d_{j, t}^{*}\right)=0
\end{gathered}
$$

Further, the first-order conditions can be expressed as

$$
\begin{gathered}
l_{j, t}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{j, t}^{L}}{\pi_{t+1}}\right)=\nu_{1, t} \lambda^{L}+\nu_{2, t} \\
d_{j, t}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{t}}{\pi_{t+1}}\right)=\nu_{2, t} \\
d_{j, t}^{*}: \quad\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{t}^{*} \xi_{t}}{\pi_{t+1}^{*}} \frac{\operatorname{rer}_{t+1}}{r_{e r}}\right)=\nu_{2, t}
\end{gathered}
$$

Besides these first-order conditions, the set of equilibrium conditions would include the law of motion for aggregate net worth of banks and the incentive constraint. First, we formulate the law of motion for aggregate net worth. We assume that aggregate net worth consists of the net worth of non-bankrupted banks and the new worth of new banks. The new equity is injected by domestic households and is assumed to be of the size ın. Then

$$
n_{t}=\omega\left(\frac{R_{j, t-1}^{L}}{\pi_{t}} l_{t-1}-\frac{R_{t-1}}{\pi_{t}} d_{t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{t-1}^{*}\right)+\iota n
$$

To include the incentive constraint in the equilibrium conditions, we have to redefine it by using the value of marginal utility from increasing assets by one unit and the value of marginal disutility from increasing debt by one unit. It follows from the previously derived results that the value of the bank j can also be defined as:

$$
\begin{gathered}
V_{j, t}=\left(\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}}+\frac{\nu_{2, t}}{1+\nu_{1, t}}\right) l_{j, t}-\frac{\nu_{2, t}}{1+\lambda_{1, t}} d_{j, t}-\frac{\nu_{2, t}}{1+\nu_{1, t}} \operatorname{rer}_{t} d_{j, t}^{*} \\
=\frac{\nu_{2, t}}{1+\nu_{1, t}}\left(l_{j, t}-d_{j, t}-\operatorname{rer}_{t} d_{j, t}^{*}\right)+\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}} l_{j, t} \\
\quad \Rightarrow \quad V_{j, t}=\frac{\nu_{2, t}}{1+\nu_{1, t}} n_{j, t}+\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}} l_{j, t}
\end{gathered}
$$

Then we can modify the incentive constraint as

$$
\begin{gathered}
\frac{\nu_{2, t}}{1+\nu_{1, t}} n_{j, t}+\lambda^{L} \frac{\nu_{1, t}}{1+\nu_{1, t}} l_{j, t} \geq \lambda^{L}\left(l_{j, t}-\lambda^{D} d_{j, t}\right) \\
\Rightarrow \quad \nu_{2, t} n_{j, t} \geq \lambda^{L} l_{j, t}
\end{gathered}
$$

L: Model with flexible labour demand

This model differs from the main model in two main ways. First, the only input for financially constrained firms' production is capital. Second, there emerges a new layer of production firms that combine financially constrained firms' production with labour and sell goods to domestic retail firms. The latter type of firms is not subject to financial frictions.

Then, in case of domestic currency loans, the financially constrained firm's problem changes accordingly. The firm's borrowing decision depends on the firm's expected working capital needs such that in the beginning of period t the following condition holds:

$$
L_{i, t}=E_{t-1}\left\{\rho\left(Q_{t} k_{i, t}\right)\right\}
$$

where Q_{t} is the nominal price of capital. Definition of $P_{t+1}^{R} y_{i, t+1}^{R}$ changes in the following way: $P_{t+1}^{R} y_{i, t+1}^{R}=$ $P_{t+1}^{R} A_{t+1} \theta_{i, t+1} k_{i, t}$.

After shocks take place, the generation of firms t will solve the same profit maximization problem taking the loan as given:

$$
\begin{aligned}
\max _{\left\{k_{i, t}, h_{i, t}\right\}} & E_{t} \beta \Lambda_{t, t+1}\left\{\frac{\left(P_{t+1}^{R} y_{i, t+1}^{R}+Q_{t+1}(1-\delta) k_{i, t}-P M_{i, t+1}-(1-\rho)\left(Q_{t} k_{i, t}\right)\right)}{P_{t+1}}\right\} \\
& +\frac{L_{i, t}-\rho\left(Q_{t} k_{i, t}\right)+Z_{i, t}}{P_{t}}
\end{aligned}
$$

$Z_{i, t}$ stands for the equity injection from the domestic household.
Define $p_{t+1}^{R} \equiv P_{t+1}^{R} / P_{t+1}, q_{t+1} \equiv Q_{t+1} / P_{t+1}$ and $l_{i, t} \equiv L_{i, t} / P_{t}$.
This, after substituting for $P M_{i, t+1}$, gives

$$
\begin{aligned}
\max _{\left\{k_{i, t}, h_{i, t}\right\}} & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}-(1-\rho) \frac{q_{t} k_{i, t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1} \min \left\{\frac{R_{i, t}^{R}}{\pi_{t+1}} l_{i, t}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\} \\
& +l_{i, t}-\rho\left(q_{t} k_{i, t}\right)+z_{i, t}
\end{aligned}
$$

s.t.

$$
l_{i, t}=E_{t-1}\left\{\rho\left(q_{t} k_{i, t}\right)\right\}
$$

The corresponding first-order condition is:

$$
\begin{aligned}
k_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+(1-\delta) q_{t+1}-(1-\rho) \frac{q_{t}}{\pi_{t+1}}\right\} \\
& -\frac{\partial E_{t} \beta \Lambda_{t, t+1} E_{t} \min \left\{\frac{R_{i, t}^{R}}{\pi_{t+1}} l_{i, t}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}}{\partial k_{i, t}} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{R} l_{i, t}}{\pi_{t+1}}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial k_{i, t}} \\
& +\rho q_{t}
\end{aligned}
$$

If we substitute the expression for the expected value of loan repayment, we get:

$$
\begin{aligned}
k_{i, t}: & E_{t} \beta \Lambda_{t, t+1}\left\{p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+q_{t+1}(1-\delta)-(1-\rho) \frac{q_{t}}{\pi_{t+1}}\right\} \\
& -E_{t} \beta \Lambda_{t, t+1}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(p_{t+1}^{R} \frac{\partial y_{i, t+1}^{R}}{\partial k_{i, t}}+q_{t+1}(1-\delta)\right)\right\} \\
& =\frac{\partial \operatorname{cov}\left(\beta \Lambda_{t, t+1}, \quad \min \left\{\frac{R_{i, t}^{R} l_{i, t}}{\pi_{t+1}}, \quad \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right\}\right)}{\partial k_{i, t}} \\
& +\rho q_{t}
\end{aligned}
$$

where

$$
d_{2, t} \equiv \frac{E_{t} \ln \left(\kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right)-E_{t} \ln \left(\frac{R_{i, t}^{R}}{\pi_{t+1}} l_{i, t}\right)}{\sigma_{y}}, \quad d_{1, t}=d_{2, t}+\sigma_{y}
$$

σ_{y}^{2} is given by $\operatorname{var}\left(\pi_{t+1} \kappa\left(p_{t+1}^{R} y_{i, t+1}^{R}+q_{t+1}(1-\delta) k_{i, t}\right)\right)$.
Homogenous goods produced by financially constrained firms are purchased as inputs by a new layer of competitive producers, called intermediate producers. Intermediate producers hire labour and combine it with homogenous goods produced by financially constrained firms by using the following technology:

$$
y_{t}^{I}=\left(y_{t}^{R}\right)^{\alpha} h_{t}^{1-\alpha}
$$

Recall that financially constrained firms' aggregate production function now is given by: $y_{t}^{R}=A_{t} k_{t-1}$. Produced goods are sold to domestic retail firms at the nominal price P_{t}^{I} immediately after production takes place. This gives two equilibrium conditions that can be derived from profit maximization with respect to inputs::

$$
\begin{array}{ll}
y_{t}^{R}: \quad p_{t}^{R}=p_{t}^{I} \alpha\left(y_{t}^{R}\right)^{\alpha-1} h_{t}^{1-\alpha} \\
h_{t}: \quad w_{t}=p_{t}^{I}(1-\alpha)\left(y_{t}^{R}\right)^{\alpha} h_{t}^{-\alpha}
\end{array}
$$

In derivations we defined the following relative prices: $p_{t}^{I} \equiv P_{t}^{I} / P_{t}, p_{t}^{R} \equiv P_{t}^{R} / P_{t}$ and $w_{t} \equiv W_{t} / P_{t}$.
Marginal costs of the domestic retail firms changes from being the price of financially constrained firms' production to the price of intermediate goods' production.

M: Equilibrium equations of the main model with foreign currency debt

The model for the case with fixed exchange rate regime is described by 45 endogenous variables:

$$
\begin{aligned}
& \left\{\lambda_{t}, c_{t}, h_{t}, w_{t}, R_{t}, d_{1, t}, d_{2, t}, R_{t}^{* R}, l_{t}^{*}, \pi_{t}, \Lambda_{t, t+1}, p_{t}^{R}, k_{t}, i_{t}, q_{t}, p_{t}^{H}, \tilde{p}_{t}^{H}, D_{t}^{H}, y_{t}^{H}, x_{t}^{H}, F_{1, t}^{H}, F_{2, t}^{H},\right. \\
& \left.y_{t}^{C}, p_{t}^{F}, y_{t}^{F}, x_{t}^{F}, m_{t}, e x_{t}, \tilde{p}_{t}^{F}, D_{t}^{F}, F_{1, t}^{F}, F_{2, t}^{F}, R_{t}^{* L}, d_{t}^{*}, d_{t}, n_{t}, \nu_{1, t}, \nu_{2, t}, t_{t}, b_{t}, r e r_{t}, S_{t}, t b_{t}, c a_{t}, \xi_{t}\right\}
\end{aligned}
$$

They are given by 45 equilibrium equations below.
Households

$$
\begin{gather*}
\lambda_{t}=\left(c_{t}-\frac{\chi\left(h_{t}\right)^{1+\varphi}}{1+\varphi}\right)^{-\gamma} \tag{E.1}\\
w_{t}=\chi\left(h_{t}\right)^{\varphi} \tag{E.2}\\
\Lambda_{t, t+1} \equiv \frac{\lambda_{t+1}}{\lambda_{t}} \tag{E.3}\\
1=E_{t} \beta \Lambda_{t, t+1} \frac{R_{t}}{\pi_{t+1}} \tag{E.4}
\end{gather*}
$$

Financially constrained firms

$$
\begin{gather*}
E_{t} \beta \Lambda_{t, t+1}\left\{\left(1-\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\right)\left(\alpha p_{t+1}^{R} A_{t+1} k_{t}^{\alpha-1} h_{t}^{1-\alpha}+q_{t+1}(1-\delta)\right)-(1-\rho) \frac{q_{t}}{\pi_{t+1}}\right\}=\rho q_{t} \tag{E.5}\\
E_{t} \beta \Lambda_{t, t+1}\left\{\left(1-\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\right)(1-\alpha) p_{t+1}^{R} A_{t+1} k_{t}^{\alpha} h_{t}^{-\alpha}-(1-\rho) \frac{w_{t}}{\pi_{t+1}}\right\}=\rho w_{t} \tag{E.6}\\
E_{t-1}\left\{r e r_{t}\right\} l_{t}^{*}=E_{t-1}\left\{\rho\left(q_{t} k_{t}+w_{t} h_{t}\right)\right\} \tag{E.7}\\
d_{2, t} \equiv \frac{E_{t} \ln \left(\frac{\pi_{t+1}^{*}}{r e r_{t+1}}\left(p_{t+1}^{R} A_{t+1} k_{t}^{\alpha} h_{t}^{1-\alpha}+q_{t+1}(1-\delta)\right)\right)-\ln \left(R_{t}^{* R} l_{t}^{*}\right)}{\sigma_{y}} \tag{E.8}\\
d_{1, t} \equiv d_{2, t}+\sigma_{y} \tag{E.9}
\end{gather*}
$$

Capital producers

$$
\begin{gather*}
k_{t}=(1-\delta) k_{t-1}+\left(1-\Gamma\left(\frac{i_{t}}{i_{t-1}}\right)\right) i_{t} \tag{E.10}\\
\frac{1}{q_{t}}=1-\frac{\kappa}{2}\left(\frac{i_{t}}{i_{t-1}}-1\right)^{2}-\kappa\left(\frac{i_{t}}{i_{t-1}}-1\right) \frac{i_{t}}{i_{t-1}}+\kappa \beta E_{t} \Lambda_{t, t+1} \frac{q_{t+1}}{q_{t}}\left(\frac{i_{t+1}}{i_{t}}-1\right)\left(\frac{i_{t+1}}{i_{t}}\right)^{2} \tag{E.11}
\end{gather*}
$$

Retail firms

$$
\begin{gather*}
1=\left(1-\omega^{H}\right)\left(\tilde{p}_{t}^{H}\right)^{1-\epsilon_{H}}+\omega^{H}\left(\frac{p_{t-1}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{p_{t}^{H} \pi_{t}}\right)^{1-\epsilon_{H}} \tag{E.12}\\
D_{t}^{H}=\left(1-\omega^{H}\right)\left(\tilde{p}_{t}^{H}\right)^{-\epsilon_{H}}+\omega^{H}\left(\frac{p_{t-1}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{p_{t}^{H} \pi_{t}}\right)^{-\epsilon_{H}} D_{t-1}^{H} \tag{E.13}\\
\tilde{p}_{t}^{H}=\frac{\epsilon_{H}}{\left(\epsilon_{H}-1\right)} \frac{F_{1, t}^{H}}{F_{2, t}^{H}} \tag{E.14}\\
F_{1, t}^{H}=p_{t}^{R} y_{t}^{H}+E_{t} \omega^{H} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{H} \pi_{t+1}}{p_{t}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{H}} F_{1, t+1}^{H} \tag{E.15}\\
F_{2, t}^{H}=p_{t}^{H} y_{t}^{H}+E_{t} \omega^{H} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{H} \pi_{t+1}}{p_{t}^{H}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{H}-1} F_{2, t+1}^{H} \tag{E.16}\\
D_{t}^{H} y_{t}^{H}=A_{t} \theta_{t} F\left(k_{t-1}, n_{t-1}\right) \tag{E.17}
\end{gather*}
$$

Final goods producer

$$
\begin{gather*}
y_{t}^{C} \equiv\left[(1-\eta)^{\frac{1}{\epsilon}}\left(x_{t}^{H}\right)^{\frac{\epsilon-1}{\epsilon}}+\eta^{\frac{1}{\epsilon}}\left(x_{t}^{F}\right)^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}} \tag{E.18}\\
x_{t}^{H}=(1-\eta)\left(p_{t}^{H}\right)^{-\epsilon} y_{t}^{C} \tag{E.19}\\
x_{t}^{F}=\eta\left(p_{t}^{F}\right)^{-\epsilon} y_{t}^{C} \tag{E.20}
\end{gather*}
$$

Exporters

$$
\begin{equation*}
e x_{t}=\eta^{*}\left(\frac{p_{t}^{H}}{r e r_{t}}\right)^{-\epsilon_{*}} y_{t}^{*} \tag{E.21}
\end{equation*}
$$

Definition of the real exchange rate

$$
\begin{equation*}
\frac{\operatorname{rer}_{t}}{r e r_{t-1}}=\frac{S_{t}}{S_{t-1}} \frac{\pi_{t}^{*}}{\pi_{t}} \tag{E.22}
\end{equation*}
$$

Importers

$$
\begin{gather*}
1=\left(1-\omega^{F}\right)\left(\tilde{p}_{t}^{F}\right)^{1-\epsilon_{F}}+\omega^{F}\left(\frac{p_{t-1}^{F}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{p_{t}^{F} \pi_{t}}\right)^{1-\epsilon_{F}} \tag{E.23}\\
D_{t}^{F}=\left(1-\omega^{F}\right)\left(\tilde{p}_{t}^{F}\right)^{-\epsilon_{F}}+\omega^{F}\left(\frac{p_{t-1}^{F}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}{\pi_{t} p_{t}^{F}}\right)^{-\epsilon_{F}} D_{t-1}^{F} \tag{E.24}\\
\tilde{p}_{t}^{F}=\frac{\epsilon_{F}}{\left(\epsilon_{F}-1\right)} \frac{F_{1, t}^{F}}{F_{2, t}^{F}} \tag{E.25}\\
F_{1, t}^{F}=\operatorname{rer}_{t} y_{t}^{F}+E_{t} \omega^{F} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{F} \pi_{t+1}}{p_{t}^{F}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{F}} F_{1, t+1}^{F} \tag{E.26}
\end{gather*}
$$

$$
\begin{gather*}
F_{2, t}^{F}=p_{t}^{F} y_{t}^{F}+E_{t} \omega^{F} \beta \Lambda_{t, t+1}\left(\frac{p_{t+1}^{F} \pi_{t+1}}{p_{t}^{F}\left(\prod_{j=1}^{j=s} \pi_{t+j}^{a d j}\right)}\right)^{\epsilon_{F}-1} F_{2, t+1}^{F} \tag{E.27}\\
m_{t}=\operatorname{rer}_{t} D_{t}^{F} y_{t}^{F} \tag{E.28}
\end{gather*}
$$

Banks

$$
\begin{equation*}
E_{t}\left\{\frac{R_{t}^{* L}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{t}^{*}\right\} \equiv E_{t}\left\{\left(1-\Phi\left(d_{1, t}\right)\right) \kappa\left(p_{t+1}^{R} y_{t+1}^{R}+(1-\delta) q_{t+1} k_{t}\right)+\Phi\left(d_{2, t}\right) \frac{R_{j, t}^{* R}}{\pi_{t+1}^{*}} \operatorname{rer}_{t+1} l_{t}^{*}\right\} \tag{E.29}
\end{equation*}
$$

$$
\begin{equation*}
\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{t}^{* L}}{\pi_{t+1}^{*}} \frac{\operatorname{rer}_{t+1}}{\operatorname{rer}_{t}}\right)=\lambda^{L} \nu_{1, t}+\nu_{2, t} \tag{E.30}
\end{equation*}
$$

$$
\begin{equation*}
\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{t}}{\pi_{t+1}}\right)=\nu_{2, t} \tag{E.31}
\end{equation*}
$$

$$
\begin{equation*}
\left(1+\nu_{1, t}\right) \beta E_{t} \Lambda_{t, t+1}\left\{(1-\omega)+\omega \nu_{2, t+1}\right\}\left(\frac{R_{t}^{*} \xi_{t}}{\pi_{t+1}^{*}} \frac{\text { rer }_{t+1}}{r_{e r}}\right)=\nu_{2, t} \tag{E.32}
\end{equation*}
$$

$$
\begin{equation*}
n_{t}=\omega\left(\frac{R_{j, t-1}^{* L}}{\pi_{t}^{*}} \operatorname{rer}_{t} l_{t-1}^{*}-\frac{R_{t-1}}{\pi_{t}} d_{t-1}-\frac{R_{t-1}^{*} \xi_{t-1}}{\pi_{t}^{*}} \operatorname{rer}_{t} d_{t-1}^{*}\right)+\iota n \tag{E.33}
\end{equation*}
$$

$$
\begin{equation*}
\nu_{2, t} n_{t} \geq \lambda^{L} r e r_{t} l_{t}^{*} \tag{E.34}
\end{equation*}
$$

$$
\begin{equation*}
n_{t}+d_{t}+\operatorname{rer}_{t} d_{t}^{*}=\operatorname{rer}_{t} l_{t}^{*} \tag{E.35}
\end{equation*}
$$

Monetary policy

$$
\begin{equation*}
\frac{R_{t}}{\bar{R}}=\left(\frac{R_{t-1}}{\bar{R}}\right)^{\gamma_{R}}\left(\frac{y_{t}^{H}}{y^{H}}\right)^{\left(1-\gamma_{R}\right) \gamma_{Y}}\left(\frac{p_{t}^{H} / p_{t-1}^{H} \pi_{t}}{\bar{\pi}}\right)^{\left(1-\gamma_{R}\right) \gamma_{\pi}} \exp \left(m p_{t}\right) \tag{E.36}
\end{equation*}
$$

Government

$$
\begin{gather*}
g_{t}+\frac{R_{t-1}}{\pi_{t}} b_{t-1}=t_{t}+b_{t} \tag{E.37}\\
t_{t}=\bar{t}+\kappa_{b}\left(b_{t-1}-\bar{b}\right)+\tau_{t} \tag{E.38}
\end{gather*}
$$

Aggregate domestic demand has to equal aggregate supply of domestic final goods

$$
\begin{equation*}
y_{t}^{C}=c_{t}+i_{t}+g_{t} \tag{E.39}
\end{equation*}
$$

Aggregate demand for domestic composite goods and demand for exports clears with production of domestic
composite goods

$$
\begin{equation*}
y_{t}^{H}=x_{t}^{H}+e x_{t} \tag{E.40}
\end{equation*}
$$

Aggregate domestic demand for foreign composite goods clears with imports

$$
\begin{equation*}
y_{t}^{F}=x_{t}^{F} \tag{E.41}
\end{equation*}
$$

Trade balance

$$
\begin{equation*}
t b_{t}=p_{t}^{H} e x_{t}-m_{t} \tag{E.42}
\end{equation*}
$$

Current account

$$
\begin{gather*}
c a_{t}=t b_{t}-\left(R_{t-1}^{*} \xi_{t-1}-1\right) r e r_{t} \frac{d_{t-1}^{*}}{\pi_{t}^{*}} \tag{E.43}\\
c a_{t}=-\left(\operatorname{rer}_{t} d_{t}^{*}-\operatorname{rer}_{t} \frac{d_{t-1}^{*}}{\pi_{t}^{*}}\right) \tag{E.44}\\
\xi_{t}=\exp \left(\phi \frac{\left(\operatorname{rer}_{t} d_{t}^{*}-r e r \cdot d^{*}\right)}{r e r \cdot b^{*}}+\frac{\zeta_{t}-\zeta}{\zeta}\right) \tag{E.45}
\end{gather*}
$$

There are 10 exogenous variables:

$$
\left\{A_{t}, \theta_{t}, \pi_{t}^{*}, R_{t}^{*}, \zeta_{t}, y_{t}^{*}, m p_{t}, g_{t}, \tau_{t}\right\}
$$

[^0]: *Tinbergen Institute and the University of Amsterdam, the Netherlands.
 ${ }^{\dagger}$ Tinbergen Institute and the University of Amsterdam, the Netherlands.
 \ddagger Corresponding author. Address: Roetersstraat 11, 1018 WB Amsterdam. Email address: s.j.g.vanwijnbergen@uva.nl (S.J.G. van Wijnbergen)

