How Should Bank Capital Regulation Respond to Climate Change?

Martin Oehmke

7th MPPG Workshop 15 October 2024

Capital Requirements and Climate Change: Motivation

Climate change has become a major topic for financial regulators

- ECB, Bank of England have conducted climate stress tests
- Federal Reserve announced "pilot climate scenario analysis exercise"

The topic remains **controversial** (in regulatory sphere and more broadly)

Objective: Analyze capital requirements as a tool to address

- Climate-related financial risks
- Emissions (causing externalities)

Capital Requirements and Climate Change: Motivation

Climate change has become a major topic for financial regulators

- ECB, Bank of England have conducted climate stress tests
- Federal Reserve announced "pilot climate scenario analysis exercise"

The topic remains **controversial** (in regulatory sphere and more broadly)

Objective: Analyze capital requirements as a tool to address

- Climate-related financial risks
- Emissions (causing externalities)

I will build on Oehmke and Opp (2024): "Green Capital Requirements"

Climate-related financial risks can be dealt with via capital requirements

Climate-related **financial risks** can be dealt with via capital requirements

• Conceptually not different from other risks, key challenge is estimation

Climate-related financial risks can be dealt with via capital requirements

- Conceptually not different from other risks, key challenge is estimation
- Addressing financial risks ≠ lower emissions: Increases in capital requirements for dirty loans may crowd out clean lending!

Climate-related financial risks can be dealt with via capital requirements

- Conceptually not different from other risks, key challenge is estimation
- Addressing financial risks ≠ lower emissions: Increases in capital requirements for dirty loans may crowd out clean lending!

Externalities: Capital requirements are inferior to carbon taxes (even if financial regulators could perfectly measure externalities!).

Climate-related financial risks can be dealt with via capital requirements

- Conceptually not different from other risks, key challenge is estimation
- Addressing financial risks ≠ lower emissions: Increases in capital requirements for dirty loans may crowd out clean lending!

Externalities: Capital requirements are inferior to carbon taxes (even if financial regulators could perfectly measure externalities!).

• Ineffective if bank capital is ample (or firms can access public markets)

Climate-related financial risks can be dealt with via capital requirements

- Conceptually not different from other risks, key challenge is estimation
- Addressing financial risks ≠ lower emissions: Increases in capital requirements for dirty loans may crowd out clean lending!

Externalities: Capital requirements are inferior to carbon taxes (even if financial regulators could perfectly measure externalities!).

- Ineffective if bank capital is ample (or firms can access public markets)
- If impact is possible, it may require sacrificing financial stability

Climate-related financial risks can be dealt with via capital requirements

- Conceptually not different from other risks, key challenge is estimation
- Addressing financial risks ≠ lower emissions: Increases in capital requirements for dirty loans may crowd out clean lending!

Externalities: Capital requirements are inferior to carbon taxes (even if financial regulators could perfectly measure externalities!).

- Ineffective if bank capital is ample (or firms can access public markets)
- If impact is possible, it may require sacrificing financial stability
- Capital requirements may help facilitate carbon taxes if environmental regulation subject to commitment problem

A single-period model, universal risk-neutrality

A single-period model, universal risk-neutrality

Continuum of cashless, bank-dependent firms

- finite mass π_q of type $q \in \{\mathsf{C}|\mathsf{ean}, \mathsf{D}|\mathsf{irty}\}$
- invest I at t = 0, cash flow X_q at t = 1
- allow for arbitrary profitability distributions for types C and D
- type D produces higher emissions $\phi_D > \phi_C$

A single-period model, universal risk-neutrality

Continuum of cashless, bank-dependent firms

- finite mass π_q of type $q \in \{\mathsf{C}|\mathsf{ean}, \mathsf{D}|\mathsf{irty}\}$
- invest I at t = 0, cash flow X_q at t = 1
- allow for arbitrary profitability distributions for types C and D
- type D produces higher emissions $\phi_D > \phi_C$

A continuum of competitive banks

- maximize value of (fixed) equity E, raise insured deposits
- deposit insurance not perfectly priced (\Rightarrow transfer to bank)

A single-period model, universal risk-neutrality

Continuum of cashless, bank-dependent firms

- finite mass π_q of type $q \in \{\mathsf{C}|\mathsf{ean}, \mathsf{D}|\mathsf{irty}\}$
- invest I at t = 0, cash flow X_q at t = 1
- allow for arbitrary profitability distributions for types C and D
- type D produces higher emissions $\phi_D > \phi_C$

A continuum of competitive banks

- maximize value of (fixed) equity E, raise insured deposits
- deposit insurance not perfectly priced (\Rightarrow transfer to bank)

A regulator who sets capital requirements $\underline{\mathbf{e}} = \{\underline{e}_C, \underline{e}_D\}$

• lower deposit insurance put and affect mass of funded firms ω_q

Roadmap

Preliminary analysis:

Banking sector equilibrium with heterogeneous borrowers

Policy analysis:

Ad-hoc green tilts to capital requirements:

- Brown penalizing factor (higher capital requirements for dirty loans)
- Green supporting factor (lower capital requirements for green loans)

Optimal prudential capital requirements:

• Considers financial stability, reacts to emerging climate risks

Welfare-optimal regulation:

• Accounts for all climate externalities, subject to regulatory constraints

Demand for bank equity (from funded loans) = **Supply** of bank equity

Demand for bank equity (from funded loans) = **Supply** of bank equity

Supply curve: Bank equity *E* (fixed)

Demand for bank equity (from funded loans) = **Supply** of bank equity

Supply curve: Bank equity *E* (fixed)

Demand curve: Maximum RoE type *q* can offer on a unit of bank equity:

Demand for bank equity (from funded loans) = **Supply** of bank equity

Supply curve: Bank equity *E* (fixed)

Demand curve: Maximum RoE type *q* can offer on a unit of bank equity:

$$r_q^{max}(\underline{e}_q) = \frac{\mathsf{NPV}_q + \mathsf{PUT}_q}{I\underline{e}_q}$$

• Numerator: bilateral surplus (cash flow and deposit insurance put)

• Denominator: amount of bank equity taken up by the loan

Equilibrium Illustration

A Smoother Version (Heterogeneous Types)

Positive Analysis: Green Tilts

For illustration:

- focus on intermediate bank equity case (most interesting)
- assume dirty loans rank above clean at initial capital requirements

Positive Analysis: Green Tilts

For illustration:

- focus on intermediate bank equity case (most interesting)
- assume dirty loans rank above clean at initial capital requirements

Study positive effects of most commonly proposed interventions

- Brown penalizing factor (BPF)
- Green supporting factor (GSF)

Positive Analysis: Green Tilts

For illustration:

- focus on intermediate bank equity case (most interesting)
- assume dirty loans rank above clean at initial capital requirements

Study **positive effects** of most commonly proposed interventions

- Brown penalizing factor (BPF)
- Green supporting factor (GSF)

For now, ad-hoc interventions (but insights relevant for optimal regulation)

Brown Penalizing Factor

Small BPF crowds out marginal loan, which can be clean

Oehmke

Brown Penalizing Factor

Small BPF crowds out marginal loan, which can be clean

Oehmke

Capital Requirements and Climate Change

Green Supporting Factor

Small GSF crowds in marginal loan (which can be dirty)

Oehmke

Green Supporting Factor

Small GSF crowds in marginal loan (which can be dirty)

Oehmke

Capital Requirements and Climate Change

Positive Analysis: Broader Takeaway

Green tilts to capital requirements have substitution and income effects:

- Substitution effect: relatively cheaper to fund clean loans
- **Income effect:** Banks can afford to fund more/less of both types GSF and BPF have different income effect sign!

General insights also apply in heterogeneous-type setting

Effect of BPF with Heterogeneous Types

- Substitution effect: improvement of ranking of clean firms
- Income effect: increase in required equity for dirty loans

Effect of BPF with Heterogeneous Types

- Substitution effect: improvement of ranking of clean firms
- Income effect: increase in required equity for dirty loans

Optimal Prudential Capital Requirements

Prudential regulator maximizes

NPV from bank loans $-\lambda$ [deposit insurance put]

Optimal Prudential Capital Requirements

Prudential regulator maximizes

NPV from bank loans $-\lambda$ [deposit insurance put]

Rewrite objective as:

$$\max_{\underline{\mathbf{e}}} \Omega_{P} = E \max_{\underline{\mathbf{e}}} \sum \tilde{\omega}_{q} (\underline{\mathbf{e}}) \operatorname{PPI}_{q}(\underline{\mathbf{e}}_{q}),$$

where $\tilde{\omega}_q$ is fraction of equity allocated to type q and

$$\mathsf{PPI}_q(\underline{e}_q) = \frac{\mathsf{NPV}_q - \lambda \cdot \mathsf{PUT}_q(\underline{e}_q)}{I\underline{e}_q}$$

Optimal Prudential Capital Requirements

Prudential regulator maximizes

NPV from bank loans $-\lambda$ [deposit insurance put]

Rewrite objective as:

$$\max_{\underline{\mathbf{e}}} \Omega_{P} = E \max_{\underline{\mathbf{e}}} \sum \tilde{\omega}_{q} \left(\underline{\mathbf{e}} \right) \mathsf{PPI}_{q}(\underline{\mathbf{e}}_{q}),$$

where $\tilde{\omega}_q$ is fraction of equity allocated to type q and

$$\mathsf{PPI}_q(\underline{e}_q) = \frac{\mathsf{NPV}_q - \lambda \cdot \mathsf{PUT}_q(\underline{e}_q)}{I\underline{e}_q}$$

Climate-related financial risk enters via NPV & deposit insurance put

Incorporating Transition Risks

Welfare-Optimal Regulation: First-Best Benchmark

Planner has carbon tax and capital requirements as policy tools

Planner prevents projects with negative social value:

- set capital requirement of 100% (no deposit insurance put distortion)
- set expected carbon tax $\overline{\tau}_q = \phi_q$ (aligning private and social value)
- assess carbon tax without causing additional bank defaults

Endogenous Prudential Mandate:

- suppose government sets optimal carbon taxes
- then a bank regulator with a prudential mandate maximizes welfare
Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Interesting case: Large externalities \implies social value is negative

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Interesting case: Large externalities \implies social value is negative

Deposit insurance distortions can be eliminated by setting $\underline{e} = 1$.

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Interesting case: Large externalities \implies social value is negative

Deposit insurance distortions can be eliminated by setting $\underline{e} = 1$. Not the case for externalities!

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Interesting case: Large externalities \implies social value is negative

Deposit insurance distortions can be eliminated by setting $\underline{e} = 1$. Not the case for externalities!

The limits of green capital requirements:

• If banking sector sufficiently well capitalized, cannot prevent funding of dirty loans.

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Interesting case: Large externalities \implies social value is negative

Deposit insurance distortions can be eliminated by setting $\underline{e} = 1$. Not the case for externalities!

The limits of green capital requirements:

• If banking sector sufficiently well capitalized, cannot prevent funding of dirty loans. $r_D^{\max}(1)>0$

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Interesting case: Large externalities \implies social value is negative

Deposit insurance distortions can be eliminated by setting $\underline{e} = 1$. Not the case for externalities!

The limits of green capital requirements:

- If banking sector sufficiently well capitalized, cannot prevent funding of dirty loans. $r_D^{max}(1) > 0$
- If bank equity capital limited, can prevent the funding of dirty loans.

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans $-\lambda$ [deposit insurance put] - carbon externality

Interesting case: Large externalities \implies social value is negative

Deposit insurance distortions can be eliminated by setting $\underline{e} = 1$. Not the case for externalities!

The limits of green capital requirements:

- If banking sector sufficiently well capitalized, cannot prevent funding of dirty loans. $r_D^{max}(1) > 0$
- If bank equity capital limited, can prevent the funding of dirty loans.
 BUT may have to reduce the capital requirement for clean loans below prudentially optimal level.

Oehmke

Suppose **carbon taxes absent** (e.g., political economy frictions) and we asked **bank regulator to maximize welfare**:

NPV from bank loans – λ [deposit insurance put] – carbon externality

Interesting case: Large externalities \implies social value is negative

Deposit insurance distortions can be eliminated by setting $\underline{e} = 1$. Not the case for externalities!

The limits of green capital requirements:

- If banking sector sufficiently well capitalized, cannot prevent funding of dirty loans. $r_D^{max}(1) > 0$
- If bank equity capital limited, can prevent the funding of dirty loans. **BUT** may have to reduce the capital requirement for clean loans below prudentially optimal level. **IC constraint:** $r_C^{max}(\underline{e}_C) \ge r_D^{max}(1)$

Carbon taxes may be absent due to government commitment problem:

- government fears carbon tax imposes significant losses on banking sector (stranded asset risk)
- given this, stranded asset risk will not materialize and optimal prudential requirements are "low"
- $ullet \Rightarrow$ inefficient "brown" equilibrium

Carbon taxes may be absent due to government commitment problem:

- government fears carbon tax imposes significant losses on banking sector (stranded asset risk)
- given this, stranded asset risk will not materialize and optimal prudential requirements are "low"
- $ullet \Rightarrow$ inefficient "brown" equilibrium

Capital requirements can break this loop:

• stricter capital requirements provide **cushion against losses** from stranded assets

Carbon taxes may be absent due to government commitment problem:

- government fears carbon tax imposes significant losses on banking sector (stranded asset risk)
- given this, stranded asset risk will not materialize and optimal prudential requirements are "low"
- $ullet \Rightarrow$ inefficient "brown" equilibrium

Capital requirements can break this loop:

- stricter capital requirements provide **cushion against losses** from stranded assets
- higher carbon taxes become credible

Higher capital requirements can help facilitate optimal carbon taxes

Carbon taxes may be absent due to government commitment problem:

- government fears carbon tax imposes significant losses on banking sector (stranded asset risk)
- given this, stranded asset risk will not materialize and optimal prudential requirements are "low"
- $ullet \Rightarrow$ inefficient "brown" equilibrium

Capital requirements can break this loop:

- stricter capital requirements provide **cushion against losses** from stranded assets
- higher carbon taxes become credible

Higher **capital requirements** can help **facilitate optimal carbon taxes NB:** specific conditions needed, no blank cheque for intervention

Summary

Flexible framework to study **green capital requirements** under varying assumptions about the severity of climate risks and objective functions.

Positive analysis: brown penalizing factor can crowd out clean loans **Normative analysis**:

- **Prudential regulation** can deal with climate-related financial risks and is **welfare-maximizing in presence of optimal carbon tax**
- In absence of optimal carbon tax, reducing pollution via capital requirements not always possible and can require sacrificing financial stability
- Capital requirements can reduce stranded asset risk and facilitate carbon tax