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Abstract

Forecasters are typically not equally interested in all possible realisations of a ran-

dom variable under scrutiny. Financial risk managers, for instance, usually put rela-

tively more weight on regions of extreme losses. In density forecast comparison, it is

common practice to use strictly proper scoring rules to rank a collection of candidate

predictive distributions. When focusing on a region of interest, however, weighted scor-

ing rules obtained via conditioning are no longer strictly proper. We develop a general

procedure for focusing, i.e., localising, scoring rules in a way that preserves their strict

propriety. Our procedure provides a myriad of strictly locally proper scoring rules be-

yond the censored likelihood score. In particular, the focusing procedure we develop

is general enough to handle both univariate and multivariate scoring rules, including

the rich class of kernel scores. The one-to-one correspondence between the censored

distribution and the original distribution on the region of interest preserves not only

strict propriety but also the optimal power properties of the Logarithmic scoring rule.

More specifically, our paper generalises the Neyman Pearson lemma, showing that the

uniformly most powerful test for a localised version of this lemma’s original hypotheses

boils down to a censored likelihood ratio test. Based on a collection of popular scor-

ing rules, including the Logarithmic, Spherical, Quadratic and Continuously Ranked

Probability Score (CRPS), Monte Carlo simulations and the results of our empirical

illustration align with the intuition that censoring bears, also in general, more de-

sirable power properties than conditioning, especially if the number of expected tail

observations is small.
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1 Introduction

Any forecasting application necessitates quantifying the relative performance of differ-

ent forecasting methods. Gneiting and Raftery (2007) motivated the use of strictly

proper scoring rules for this job, which has become the industry standard (Brehmer

and Gneiting, 2020; Patton, 2020). The reason for this is that (strictly) proper scoring

rules assign a score to the actual distribution that is (strictly) larger than the score of

any other predictive distribution. Although strictly proper scoring rules admit point

forecasts (e.g. mean squared error), we concentrate on their use in combination with

predictive distributions and densities. Forecasts in the form of predictive distributions

have gained interest in many different forecasting fields because they give a complete

picture of the stochastic nature of the variable of interest (Dawid, 1984). At the same

time, the specific characteristics of such applications encourage us to zoom in on certain

parts of this picture, i.e. to localise the original scoring rule. In this paper, we present

a general censoring-based procedure for localising scoring rules that preserves strict

propriety. Our framework nests the censored likelihood (csl) scoring rule proposed by

Diks et al. (2011) as a special case. We show that the uniformly most powerful test for

a localised hypothesis test is based on this strictly locally proper scoring rule.

Motivating examples for local scoring rules can be found in different application

areas. In risk management, for example, one is particularly interested in the left tail of

the loss distribution, largely driven by regulatory capital requirements, formulated in

terms of risk measures such as the Value-at-Risk (VaR) and Expected Shortfall (ES).

See e.g. Diks et al. (2014), Kole et al. (2017), Opschoor et al. (2017) and Diks and Fang

(2020) for applications. In macroeconomics, policymakers set – whether regulated by

law or not – targets for central variables like inflation, nominal GDP and unemployment

rates. For such clear targets, it is logical to zoom in on the part of the distribution

around the target value. We refer to Gneiting and Ranjan (2011) and Iacopini et al.

(2022) (and references therein) for interesting examples in macroeconomics.

The literature on focused scoring rules starts with the weighted likelihood score of
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Amisano and Giacomini (2007), which simply multiplies the unweighted logarithmic

scoring rule by a weight function. As independently observed by Diks et al. (2011) and

Gneiting and Ranjan (2011), this procedure produces improper scoring rules because

it favours distributions with more mass assigned to regions with higher weights, inde-

pendent of the underlying distribution. As proper alternatives, Gneiting and Ranjan

(2011) develop the weighted continuously ranked probability scoring (twCRPS) rule,

while Diks et al. (2011) propose the conditional (cl) and csl scoring rule. Holzmann

and Klar (2017, Theorem 1) observe that the procedure of the cl scoring rule can be

generalised to other scoring rules than the logarithmic scoring rule. They propose a

general procedure for focusing regular scoring rules that applies the regular scoring rule

to a weighted transformation of the original distribution. Their approach differs from

ours by the suggested transformation of the original distribution: a conditional vis-

à-vis censored distribution. The impact of this difference is that our censoring-based

mechanism is the only one guaranteed to deliver strictly locally proper scoring rules.

Interestingly, another route leading to the conditioning mechanism of Holzmann and

Klar (2017, Theorem 1) is to first generalise the weighted log-likelihood scoring rule

proposed by Amisano and Giacomini (2007) and then apply a transformation coined

properisation by Brehmer and Gneiting (2020, Theorem 1).

Our research also builds on the existing work on strictly proper scoring rules and

their associated divergence measures. Although Gneiting and Raftery (2007) are re-

sponsible for the formal definition of strict propriety, scoring rules satisfying this prop-

erty date back to at least the quadratic scoring (QS) rule proposed by Brier (1950). It

is useful to know that this research area is dichotomous in the sense that much of the

research prior to the rigorous treatment of general probability measures by Gneiting

and Raftery (2007) has been conducted relative to discrete distributions on a finite

outcome space, while more recent work more often follows the generality of Gneiting

and Raftery (2007). For instance, the introduction of the LogS (Good, 1952; Toda,

1963) and spherical scoring (SphS) rule (Roby, 1964; Good, 1971), the initial gener-

alisations of QS and SphS to the PowSα and PsSphSα families, and the axiomatic
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characterisations of the LogS, PowSα and PsSphSα rules provided by Shuford et al.

(1966), Savage (1971), Selten (1998) and Jose (2009), are all presented in a discrete

context. In our analysis, we work with the generalisations of the PowSα and PsSphSα

families advocated by Gneiting and Raftery (2007) and Ovcharov (2018).

Moreover, the expected score differences of many scoring rules are recognised as

well-known divergence measures, which reduce all together to the class of Bregman di-

vergences (Bregman, 1967) when solely considering strictly proper scoring rules (Dawid,

2007; Gneiting and Raftery, 2007; Ovcharov, 2018; Painsky and Wornell, 2019). Con-

sequently, concentrating the score divergences of strictly proper scoring rules excludes

all f -divergences except the Kullback Leibler divergence (Kullback and Leibler, 1951),

which is the unique intersection of the Bregman and f -divergence families. Due to

its favourable properties (Liese and Vajda, 2006) the Kullback Leibler divergence has

become the cornerstone in measuring the discrepancy between densities. For example,

it is the divergence that is minimised in the maximum likelihood framework (Fisher,

1922), which bears optimal properties in the context of testing and estimation. Specif-

ically, the likelihood ratio test is the most powerful test (Neyman and Pearson, 1933)

and maximum likelihood estimators are unbiased estimators reaching the Cramér–Rao

lower bound.

Pivotised sample equivalents of the expected score differences are fundamental in

hypothesis tests about the relative performance of two candidate predictive distribu-

tions. In line with the weighted applications we have in mind, we localise the simple

versus simple hypothesis of the Neyman-Pearson lemma into statements about the un-

derlying distribution on the region of interest. By doing so, the hypothesis about the

underlying distribution becomes a multiple versus multiple hypothesis, equivalent to

the hypothesis studied by Holzmann and Klar (2016). Unlike them, we are still able

to derive the uniformly most powerful test for this hypothesis. The test statistic of

this test is given by a localised likelihood ratio, where the localisation is performed by

censoring, and necessarily not by conditioning.

Power analyses based on localised scoring rules have more frequently been studied
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for the Giacomini and White (2006) test (Diks et al., 2011, 2014; Holzmann and Klar,

2016; Lerch et al., 2017). The null hypothesis of this test entails that the expected

score difference between one candidate to the actual distribution is equivalent to the

expected score difference between the other candidate and the actual distribution.

A great advantage of this test is that all choices underlying the predictor, such as

parameter uncertainty, can be seen as an integral part of the candidate, therefore also

called prediction methods. For a strictly proper scoring rule, the null implies that both

candidates are necessarily misspecified under the null, namely ‘equally misspecified’.

Yet, since which distributions are equally off from both candidates is determined by

the scoring rule, this means that the null set of the GW test is a function of the selected

candidates and the selected scoring rule, complicating comparisons between GW tests

based on different scoring rules. To illustrate this interplay, we include a parametric

example for which the conditional GW null set coincides with the full parameter space,

whereas the censored GW null is a lower-dimensional subspace of the parameter space.

We also compare the power properties of the GW test of the censored scoring rules

with their conditional counterparts and other commonly used localised scoring rules

like the twCRPS of Gneiting and Raftery (2007). In line with Diks et al. (2011), we

find that censoring often leads to higher power.

The remainder of this paper is organised as follows. Section 2 describes the fun-

damental concepts on which the subsequent chapters rely. Section 3 defines the gen-

eralised censored scoring rule and includes the assumption under which it is shown to

be strictly locally proper. This section also includes a rich collection of examples and

a randomisation procedure, called Z-Q-randomisation, equivalent to the generalised

censored scoring rule. It closes with our generalisation of the Neyman-Pearson lemma.

Section 4 compares the size and power properties of a test of equal predictive ability

of conditional and censored scoring rules. Section 6 concludes.
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2 Scoring rules

2.1 Regular scoring rules

Consider a random variable Y : Ω → Y from a complete probability space (Ω,F ,P) to

the measurable space (Y,G). The goal of a forecaster is to choose a distribution F from a

convex class of candidate distributions P on (Y,G) that minimises the score divergence

DS(P$F) := HS(P)− EPS(F, ·)

over P, where HS(P) := EPS(P, ·) is the negative entropy of P based on S. Adhering

to Gneiting and Raftery (2007), the selected scoring rule S is restricted to be strictly

proper to ensure that the forecaster truthfully reports the actual distribution P as the

best candidate from P, if P ∈ P. Definitions 1 and 2, adopted from Holzmann and

Klar (2017) and Gneiting and Raftery (2007), respectively, formalise both concepts.

Definition 1 (Scoring rule). A scoring rule is any extended real-valued (R̄ := [−∞,∞])

function S : P× Y → R̄ such that S(F, ·) is measurable with respect to G and quasi-

integrable with respect to all P ∈ P, for all F ∈ P, and for which EPS(F, ·) < ∞ and

HS(P) ∈ R, ∀P,F ∈ P.

Definition 2 ((Strictly) proper scoring rule). A scoring rule S : P × Y → R̄ is

proper relative to P if DS(P$F) ≥ 0, ∀P,F ∈ P, and strictly proper if, additionally,

DS(P$F) = 0 iff P = F, ∀P,F ∈ P.

If a scoring rule only uses the µ-densities f ∈ p of the candidates F ∈ P, it is easier

to work with the densities directly, i.e. to define S : p×Y → R̄ and adapt all definitions

in this section accordingly. Yet, this is only possible if there exists a σ-finite measure µ

on (Y,G) such that F ≪ µ, ∀F ∈ P. Furthermore, the restrictions on S in Definition 1

guarantee a meaningful comparison of the expected score of any candidate with the

negative entropy of the actual distribution, necessary for identifying (strict) propriety.

Since comparisons of candidates F ∈ P are in terms of P-expectations, the forecaster is,
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strictly speaking, only forced to report a member from the P-a.s. equivalence of P when

using a strictly proper scoring rule. For clarity, we henceforth suppress technicalities

about P-a.s. equivalence. Definition 2 additionally shows that a score divergence is

a divergence measure (see e.g. Eguchi et al. (1985)) if and only if S strictly proper.

For distributions on
!
R
d
,B

!
R
d
""
, where B(Y) denotes the Borel σ-algebra on Y, the

particular form of DS(P$F) makes it a Bregman divergence (Bregman, 1967) under the

conditions listed by Ovcharov (2018).

In their review paper, Gneiting and Raftery (2007) provide an abundant list of

strictly proper scoring rules, which can be divided into two categories: local scoring

rules and distance sensitive scoring rules (Ehm and Gneiting, 2012). We use the same

structure when discussing examples, yet allowing local scoring rules, henceforth called

semi-local, to also depend on the density via a global norm of the density. Within the

class of semi-local rules, we focus on the Logarithmic (LogS) (Good, 1952; Toda, 1963),

Quadratic (QS) (Brier, 1950) and (SphS) (Roby, 1964; Good, 1971) scoring rules as

well as their generalisations to the Power (PowSα) and PseudoSpherical (PsSphSα)

families. Our selection of distance-sensitive scoring rules fits into the family of Energy

Scores (ES), a subclass of the class of strictly proper scoring rules given by Theorem 5 of

Gneiting and Raftery (2007), nesting the real-valued Continuously Ranked Probability

Score (CRPS) (Matheson and Winkler, 1976; Hersbach, 2000) as a special case.

The inclusion of the PowSα and PsSphSα families, sharing LogS as a common

limiting case for α ↓ 1, is partly due to the connection with the expected utility

maximisation problems described by Jose et al. (2008). After all, the duality with

specific investment problems based on the one-parameter Hyperbolic Absolute Risk

Aversion (HARA) utility function family, generated by the absolute risk tolerance

function τα(x) = β + αx, with β = 1 (Merton, 1971, p. 389), gives α its interpretation

as a risk tolerance parameter. Their introduction and axiomatic characterisation are

found by Shuford et al. (1966), Savage (1971), Selten (1998) and Jose (2009), though

we work with their continuous generalisations provided by Gneiting and Raftery (2007)

and Ovcharov (2018).
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2.2 Weighted scoring rules

In many applications, particular outcomes are of particular importance. To emphasise

regions of the outcome space, a forecaster with scoring rule S is assumed to select a

weight function w ∈ W, that is, any G-measurable map w : Y → [0, 1]. The forecaster’s

weight function is zero for outcomes that are of zero interest. Hence, differences in

candidates expressed only on {w = 0} := {y ∈ Y : w(y) = 0} are ideally not accounted

for by the scoring rule. Therefore, we restrict the analysis to the class of localising

weighted scoring rules given by Definition 3, borrowed from Holzmann and Klar (2017).

Definition 3 (Localising weighted scoring rule). A weighted scoring rule S, that is,

a map S : P× Y × W → R̄ such that Sw(·, ·) is a scoring rule for each w ∈ W, is

localising if for any P, F ∈ P, w ∈ W, it holds that

∀E ∈ G : P({w > 0} ∩ E) = F({w > 0} ∩ E) =⇒ Sw(P, y) = Sw(F, y), ∀y ∈ Y.

Considering the indicator weight function w(y) = 1A(y), taking the value 1 if

y ∈ A, and 0 otherwise, it is obvious that a localising so-weighted scoring rule cannot

be strictly proper. Indeed, any distribution P̃ equivalent to P on A is assigned the

same score. Therefore, we instead aim for strictly locally proper weighted scoring rules,

initially defined by Holzmann and Klar (2017) and included below as Definition 4.

Definition 4 ((Strictly) locally proper scoring rule). A weighted scoring rule S : P×

Y×W → R̄ is locally proper relative to (P,W) if it is localising and Sw(·, ·) is proper for

each w ∈ W. Furthermore, it is strictly locally proper relative to(P,W) if, additionally,

P({w > 0} ∩ E) = F({w > 0} ∩ E), ∀E ∈ G ⇐⇒ EPSw(P, ·) = EPSw(F, ·), ∀w ∈ W.

Before turning to our solution to weighting scoring rules, we first recall two weight-

ing procedures contained in the literature. First, the recipe Sw(F, y;w) = w(y)S(F, y)

proposed by Amisano and Giacomini (2007) for the Logarithmic scoring rule is clearly

not strictly locally proper. Indeed, as shown by Example 1 of Diks et al. (2011), it does
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not rule out scoring rules that are completely determined by a region where one candi-

date density dominates the other, yielding a higher expected score for the dominating

one, irrespective of the actual distribution.

A second recipe failing to deliver strictly locally proper scoring rules is the condi-

tional scoring rule

S
"
w(F, y) := w(y)S(F"

w, y), dF"
w :=

1

Fw(Y)
dFw,

proposed by Holzmann and Klar (2017). This rule applies the regular scoring rule

to the conditional distribution F"
w, here defined as the weighted kernel dFw := wdF

scaled (sharpened) by a factor 1/Fw(Y). Again, this scoring rule completely ignores

outcomes in {w = 0}. Though now, the distribution is adjusted accordingly, making

the scoring rule locally proper. However, since it cannot discriminate between distri-

butions that are proportional to each other on {w > 0}, it is not strictly locally proper

(Holzmann and Klar, 2017). Figure 1a illustrates the potential consequences of this

lack of discriminative ability.

A hint from these examples is that we should not completely forget about {w = 0}

when focusing on {w > 0}. Yet, to stay localising, we can only use information about

a candidate’s distribution on {w = 0} that is implied by the information on {w > 0}.

A clear example of a non-localising weighted scoring rule is the twCRPS,

twCRPS(F, y) =

# ∞

−∞
w(s)

$
F (s)−∆y(s)

%
2

ds,

for weight functions of the kind w(y) = 1[r1,r2](y), where r1 < r2 and r1, r2 ∈ R. The

piecewise Student-t(ν1, ν2, ν3) example displayed in Figure 1b shows that the cumu-

lative character of the CDF destroys the localisation to A = [r1, r2] = [−1, 1]. Here

in particular, we selected a distracting candidate G that is similar to P outside A

in the sense that ν1G = ν1P = 3 and ν3G = ν3P = 40, but different on A, with

3 = ν2G < ν2P = 5. In contrast, ν2F = ν2P , while ν1F = ν3P and ν1F = ν3P .

The fact that DtwCRPS(P$F) > DtwCRPS(P$G), while F and P coincide on A, re-
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veals that the twCRPS is distracted by the good fit of G outside A. Since the bias

DtwCRPS(P$F)−DtwCRPS(P$G) ≈ 0.028 is the sole consequence of the weighted scoring

rule being non-localising, it is henceforth referred to as a localisation bias.

Figure 1: Non-strictly locally proper scoring rules
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(b) Piecewise Student-t

Note: (a) The densities f and g are both from the Laplace family with common scale parameter θ = 1, but

different location parameter µf = −1 and µg = 1. Since Laplace tails are known to be proportional for

members of equivalent scale, it follows that S!
w(f, y) = S!

w(g, y) on A = (−∞,−2), while f ∕= g on A.

Therefore, S!
w cannot be strictly locally proper, e.g. consider p = f . (b) f , g and p are all piece-wise

Student-t, constructed such that f = p ∕= g on A = [−1, 1]. More specifically, the density f(y;νF ) is the

normalisation of the kernel f̃(y;νF ) = q(y; ν1F )
q(−1;ν2F )
q(−1;ν1F )1y<−1 + q(y; ν2F )1−1≤y≤1 + q(y; ν3F )

q(1;ν2F )
q(1;ν3F )1y>1.

As a result of its non-locality, the twCRPS implies a score divergence indicating g to be statistically closer

to p on A than f . Since p = f ∕= g on A, the twCRPS is therefore not strictly locally proper.

3 Localising scoring rules by censoring

3.1 Censored scoring rule

To overcome issues like the non-strictness and non-locality of the weighted scoring

rules discussed above, we propose to use censoring as focusing mechanism. Censoring

(Bernoulli, 1760) is a statistical concept that is used in econometrics to model a de-

pendent variable whose value is only partially known (Tobin, 1958). More specifically,

for realisations in A
c, the complement of A, it is only known that they are not in A.

Events in A
c are hence indistinguishable after censoring and ‘Ac’ could therefore be
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viewed as a single outcome of the censored random variable. To avoid confusion, we

label observations in A
c by ‘∗’ rather than ‘Ac’ itself, which is nothing but an abstract

event for which one can alternatively read ‘NaN’. The censored random variable

Y
#
A =

&
''(

'')

Y, Y ∈ A,

∗, Y ∈ A
c
,

is defined relative to the extended measurable space (Y∗
,G∗), where Y∗ = Y ∪ {∗} and

G∗ = σ({G, ∗}), that is, the smallest σ-algebra containing the collection {G, ∗}. Similar

to the conditional distribution, we extend the definition of the distribution of Y #
A to

general weight functions w ∈ W. In particular, we define the censored distribution as

dF#
w = dFw + F̄wdδ∗, F̄w :=

#

Y
(1− w)dF, w ∈ W, F ∈ P, (1)

where δ∗ denotes the Dirac measure at ∗, i.e. δ∗(E) = 1E(∗). To make this change of

measure well-defined, we consider the original measures F ∈ P relative to the extended

measurable space (Y∗
,G∗), by defining F(∗) = 0 and taking some value for w(∗). In

case F ≪ µ, ∀F ∈ P, we are invited to work with the µ-densities f ∈ p instead, and

their associated (µ+ δ∗)-densities

f
#
w = wf1y ∕=∗ + F̄w1y=∗, w ∈ W, f ∈ p. (2)

A detailed proof of this result is deferred to the Online Appendix. Albeit restricted

to w(y) = 1A(y), Borowska et al. (2020) also work with an explicit formulation of the

censored density, coinciding with f
#
A in the context of maximum likelihood. Here f

#
A is

preferred notation for f #
1A

.

Ideally, the censored scoring rule would be given by S
#
A(F, y) = S(F#

A, y
#
A), as this

would fully respect the forecaster’s specific choice of the regular scoring rule S. The

censored scoring rule given by Definition 5 reduces to this definition for the indicator

weight function w(y) = 1A(y). The censored scoring rule is also attractive for general
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weight functions, but this will be particularly clear from the randomisation perspective

taken in Section 3.3, which yields a similar identity for general weight functions; see

Equation (4). According to Theorem 1, the censored scoring rule is strictly locally

proper. Since Theorem 1 is a corollary of Theorem 2, we have sustainably omitted a

proof for this result.

Definition 5 (Censored scoring rule). Let S : P#×Y → R̄, P# = {F#
w,F ∈ P, w ∈ W},

denote a scoring rule. Then, the corresponding censored scoring rule is given by the

map S
# : P× Y ×W → R̄,

S
#
w(F, y) := w(y)S(F#

w, y) +
!
1− w(y)

"
S(F#

w, ∗),

where the censored distribution F#
w is defined in Equation (1).

Theorem 1. Suppose that the regular scoring rule S is strictly proper relative to P
#.

Then, the censored scoring rule S
# in Definition 5 is strictly locally proper relative to

(P,W).

The assumption in Theorem 1 ensures that the scoring rule is well-defined with

respect to mixed continuous-discrete distributions on (Y∗
,G∗). We will verify that this

assumption holds in the examples discussed in Subsection 3.4.

Let us conclude this section by providing some intuition for the result of Theorem 1.

Given some weight function w ∈ W, it should be clear that censoring maintains a one-

to-one connection with the original distribution on {w > 0}. This relation can be

harmed by conditioning due to the additional normalisation of the weighted kernel.

This difference is even clearer for indicator weight functions since F#
A = F, while

F"
A ∕= F, on A. Because of this, only the censored scoring rule allows for identifying

the original distributions on {w > 0} when comparing two candidates F and G. This

additionally requires disentanglabity of the weighted kernels and discrete probabilities

in the censored measures, implied by Fw(∗) = Gw(∗) = 0. Consequently, the assumed

strict propriety of the original rule localises to {w > 0} for the censored scoring rule.
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3.2 Generalised censored scoring rule

Given the intuition at the end of the previous section, it is not entirely surprising that

one can perform other transformations to the distribution on {w > 0} as long as the

transformation is independent of the distribution and traceable when comparing two

candidate distributions. The latter requirement is formalised by Assumption 1, under

which the generalised censored scoring rule in Definition 6 is still strictly locally proper.

Appendix A.1 details a proof for this result, summarised by Theorem 2.

Definition 6 (Generalised censored scoring rule). Let S : P
# × Y → R̄ denote a

scoring rule. The associated generalised censored scoring rule is given by the map

S
# : P× Y ×W × H→ R̄,

S
#
w,H(F, y) = w(y)S(F#

w,H, y) +
!
1− w(y)

"
EHS(F

#
w,H, ·), dF#

w,H = dFw + F̄wdH,

where F#
w,H is referred to as the generalised censored distribution of F.

Assumption 1. A weight function w ∈ W and nuisance distribution H ∈ H⊆ P is

such that ∃E ∈ G : Fw(E) = 0 and H(E) > 0, ∀F ∈ P,H ∈ H.

Theorem 2. Suppose that (i) the regular scoring rule S in Definition 6 is strictly

proper relative to P, and (ii) W and H are such that Assumption 1 is satisfied. Then,

the generalised censored scoring rule S
# in Definition 6 is strictly locally proper relative

to (P,W,H).

Finally, a corollary of Lemma 3 in the proof of Theorem 2 in Appendix A.1 is that

DS!
w,H

(F$G) = DS(F
#
w,H$G#

w,H), (3)

i.e. the censored score divergence from F to G is the score divergence of the correspond-

ing censored distributions. In particular, this means that we have identified a family of

so-called localised divergence measures, satisfying the properties of a divergence mea-

sure (see Subsection 2.1) on {w > 0}. Indeed, if S is strictly proper, such that DS is a

14



divergence measure, it follows that DS!
w,H

(F$G) ≥ 0, with strict equality if and only if

F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G.

3.3 Z,Q-Randomisation

The (generalised) censored scoring rule in Definition 5 (6) of the previous section can

alternatively be formulated in terms of a randomisation procedure. This procedure

relies on an auxiliary random variable Zw, indicating, conditional on the realisation y,

whether the observation is censored or not. More specifically, we let

y
#
Zw

= ϕ(y, Zw), ϕ(y, Zw) :=

&
''(

'')

y, Zw = 1,

∗, Zw = 0,

where Zw|(Y = y) ∼ BIN
!
1, w(y)

"
. By working out the conditional expectation,

it is obvious that Y
#
w = EZw|(Y=Y )ϕ(Y, Zw) coincides with the specification of the

censored random variable in Subsection 3.1. For w(y) = 1A(y), the random variable ZA

degenerates to being one if y ∈ A and zero otherwise, so that Y #
ZA

= Y
#
A with probability

one. Correspondingly, the Z-randomisation definition of the censored scoring rule reads

S
#
w(F, y) = EZw|Y=yS(F

#
w, y

#
Zw

), (4)

undeniably equivalent to the censored scoring rule defined by Definition 5.

A similar line of reasoning holds for the generalised censored scoring rule. In addi-

tion to the auxiliary random variable Zw, we introduce an independent random variable

Q with distribution H. Rather than labelling the observation as censored, we now take

a random draw from Q if Zw = 1, i.e. we define

y
#
H,w := ϕw,H(y, Zw, Q), ϕw,H(y, Zw, Q) :=

&
''(

'')

Y, if Zw = 1,

Q, if Zw = 0.

As anticipated, the distribution of Y
#
H,w = EZw|(Y=Y ),Hϕ(Y, Zw) coincides with the
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specification of F#
w,H in Equation (1). Additionally, the generalised censored scoring

rule of Definition 6 admits the Z,Q-randomisation representation

S
#
H,w(F, y) =EZw|(Y=y),HS

!
F#
w,H, y

#
H,w

"
.

The randomisation perspective further clarifies why S
#
H,w generalises S#

w(F, y). In-

deed, by choosing a degenerate distribution for Q at ∗, each ‘random draw’ from Q will

be precisely the censoring label ∗ of the Z-randomisation procedure. Put differently,

S
#
H,w = S

#
w(F, y) for H = δ∗.

3.4 Examples

3.4.1 Semi-local scoring rules

We will now apply our censoring framework to the regular scoring rules introduced

in Subsection 2.1. Following the classification into semi-local and distance-sensitive

scoring rules, we start with localising the former class. Together with the main char-

acteristics of the LogS, PowSα and PsSphSα families, Table 1 presents the localised

versions of these families based on conditioning, censoring and generalised censoring.

Given the strict propriety classes in Table 1, one can easily verify their strict propriety

with respect to f
#
α since $f #

w$αα ≤ 1 + $f$αα < ∞, ∀f ∈ fα, ∀w ∈ W, where α = 1

for LogS. Furthermore, the Bregman generator functions ζ(t) refer to the well-known

subclass of separable Bregman divergences, consisting of the score divergences based on

strictly proper scoring rules Sζ : p(Y,G, µ)× Y → R of the form

Sζ(p, y) = ζ ′(p(y))−
#

Y
ζ ′(p(y))p(y)− ζ(p(y))µ(dy).

Comparing the censored and conditioned versions of the rules, we notice that the

censored variants bear an isolated F̄w-dependent term, preserving the coverage proba-

bility of {w = 0}. While preserving the likelihood F̄w of being censored, Table 1 also

shows that the censored scoring rules are independent of ∗, the label of a censored
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observation. Hence, for this selection of scoring rules, one could alternatively work

with an actual number like r for the location of the residual probability F̄w. Strictly

speaking, we need to require Fw(r) = 0 in that case, to keep the censored scoring

rule strictly locally proper (see Assumption 1), but this is trivially met by restricting

to either continuous measures or weight functions satisfying w(r) = 0, or both. The

generalised censored scoring rules in Table 1 show that the invariance with respect to

the location of the discrete probability mass holds more generally. In particular, the

generalised censored scoring rules turn out to be entirely invariant to the choice of the

nuisance density on {w = 0} upon normalisation by the α-norm of h, i.e. to the class

of densities h̃ = h/$h$α , where α = 1 for LogS. Since $h$1 = 1, the latter means

that LogS is invariant to the unnormalised choice of h, as can be seen from Table 1.

Finally, Table 1 includes the localised divergence measures DS!
w
, which are all localised

Bregman divergences since all regular divergences DS in this table are Bregman.

3.4.2 Distance sensitive scoring rules

A rich class of distance-sensitive scoring rules is the Energy Score family

ESβ(F, y) =
1

2
EF$Y − Ỹ$β

2
− EF$Y − y$β

2
, β ∈ (0, 2),

known to be strictly proper to the class of Borel probability measures on R
d such that

EF $Y$β
2
< ∞ (Gneiting and Raftery, 2007). From this expression, it is immediately

clear that the corresponding censored ES family depends, in contrast to the semi-local

scoring rules, on ∗, or more particularly, the distance d(y) = $y − ∗$2. Specifically,

S
#
w,d(F,y) =

1

2
E
F!
w
$Y − Ỹ$β

2
− E

F!
w

$
w(y)$Y − y$β

2
+

!
1− w(y)

"
d(Y)β

%
.

Of course, it is not surprising that distance sensitive scoring rules are sensitive to the

location of the discrete probability F̄w. An easy way to define d(y) is to simply add

the location of F̄w by choosing ∗ ∈ R
d. It is important, however, to keep in mind

that the censored scoring rule is not invariant with respect to this additional piece of
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information. More precisely, the selected value for ∗, say r, is now not only representing

the event of being censored but also the value an observation gets after being censored.

Assuming that the weight function at hand has a finite number of pivotal points

A := {ai}na
i=1

, e.g. the edge(s) of an indicator function, the centre of a kernel, etc., we

consider the following two choices for the censored distance

(i) drand(y) =
***y − 1

na

+na
i=1

ai

***

(ii) dmin(y) = minA $y − ai$

The first suggestion is equivalent to taking r = 1

na

+na
i=1

ai, making it straightforward

to show that Theorem 1 applies. The second suggestion does not necessarily reduce to

a choice for r. Though, since this choice is in line with the assumptions of Theorem 1

of Székely and Rizzo (2005), one can still easily verify the assumption of Theorem 1.

We illustrate the role of the censored distance by two concrete examples. For the

left-tail indicator function (the same holds for the right-tail indicator), Example 1 shows

that both choices for d lead to a censored scoring rule coinciding with the twCRPS.

This is an interesting result since the twCRPS is strictly locally proper for precisely

these two types of weight functions (Holzmann and Klar, 2017, Theorem 5). Indeed,

for the centre indicator function w(y) = 1[−r,r](y), the twCRPS is knowingly failing to

be strictly locally proper since it is non-localising. The corresponding censored scoring

rules following from the censored distances in Example 2 are strictly locally proper and

hence also still localising. In sharp contrast to the twCRPS, the censoring procedure

enforces the weighted scoring rule to be localising by considering anything outside

[−r, r] as the same event. In this way, the censored rules prevent for the localisation

bias introduced in Subsection 2.2, illustrated by Figure 1b.

Example 1. Consider the CRPS, i.e. the ES1 family for d = 1 and take w(y) =

1(−∞,r)(y) as weight function. Following the examples of pivotal points of weight

functions, we let na = 1 and a1 = r. The associated censored distances become

dmin(y) = |y − r| and drand(y) = |y − r|. Hence, the choice of both censored distances
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reduce to replacing ∗ by r, leading to the scoring rule

CRPS#w,dmin
(F, y) = CRPS#w,drand

(F, y)

=
1

2
E
F!
w
|Y − Ỹ |− E

F!
w

$
w(y)|Y − y|+

!
1− w(y)

"
|Y − r|

%

= twCRPS(F, y).

Example 2. Consider the CRPS and the centre indicator function w(y) = 1[−r,r](y),

for which a1 = −r and a2 = r. The censored distances read dmin(y) = |y − r| ∧ |y + r|

and drand(y) = |y|. Both censored scoring rules do not coincide with the twCRPS, at

which one arrives if we would put observations below −r equal to −r and observations

above r to r. The latter is clearly not an example of a censored scoring rule, since it

uses information outside the region of interest that is not implied by the information

within the region of interest. The use of this additional information makes the twCRPS

non-localising and hence prone to the localisation bias illustrated by Figure 1b. The

verification of the strict propriety of the CRPS on the extended outcome space R
∗ with

censored distance dmin(y) = |y − r| ∧ |y + r| is deferred to the Online Appendix.

Expanding upon the centre indicator example discussed in Example 2, it should be

noted that the distances dmin and drand sometimes result in distances |y − ∗| that are

significantly off. For example, dmin can differ greatly from the non-censored distance

between an observation y ∈ A near −r and a censored observation located far into the

right tail of the distribution before censoring. Although these errors to some extent

cancel each other out, this observation can also serve as an inspiration for improvement.

In particular, we suggest to alternatively use the generalised censored distribution

dF#
w = dFw + F̄w

!
γdδa1 + (1− γ)dδa2

"
, a1, a2 ∈ R, γ ∈ [0, 1], (5)

distributing the residual probability F̄w over the pivotal points a1 and a2 with propor-

tions γ and 1− γ, respectively.

Unlike the twCRPS, this measure does not rely on the location of observations
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outside the region of interest, except for the fact that they are not in A. The measure is

a generalisation of the censored measure at a single critical point, and can in turn easily

be verified to na pivotal points by taking dH =
+na

i=1
γidδi as reference distribution,

with γi restricted to the unit simplex∆(n) to maintain H as a probability measure. The

choice of parameter γ depends on the specific application. For the indicator function

w(y) = 1[−r,r] in Example 2, it is appropriate to select γ = 1

2
when comparing the

predictive performance of two candidates that are both symmetric around zero.

The parameter γ depends on the application at hand. For the indicator function

w(y) = 1[−r,r] in Example 2 it makes sense to choose γ = 1

2
if one aims to compare

the predictive ability of two candidates that are both symmetric around zero. In these

types of applications, data is typically available to estimate the proportion of residual

probabilities of the candidates based on the DGP. It is important to note that using the

data instead of the candidates to estimate γ, sets a level playing field for the candidates

in terms of their performance on A. After all, this approach ensures that the relative

performance of the candidates on A is not obscured by the performance outside A (for

the part that is not entirely implied by the distribution on A).

Mathematically, we can illustrate the difference between the generalised censored

scoring rule based on the censored measure in Equation (5) and the twCRPS as follows.

For the centre indicator function w(y) = 1A(y), where A = [a1, a2], we have the

following equality

twCRPS(F, y) = CRPS(F†
w, y

†
w), dF†

w = dFw + F̄w

!
γFdδa1 + (1− γF)dδa2

"

where γF = FwL/F̄w, FwL = F(AL), A
c
L
= (−∞, a1). Furthermore, y†w = y1A(y) +

a11Ac
L
(y) + a21Ac

R
(y), with A

c
R

= (a2,∞), allowing the twCRPS to assign different

scores to observations in A
c
L
and A

c
R
. One crucial distinction between the generalised

censored measure and F†
w is that the latter candidate’s reference distribution depends

on the candidate itself, namely through the dependence of the proportion parameter

on F. In expectation, the difference between the twCRPS and the generalised censored
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scoring rule reduces to precisely this difference between γ = PwL/P̄w, where P denotes

the underlying distribution of Y , and γF. Specifically,

EPtwCRPS(F, Y ) = EPCRPS
†
w(F, Y ),

where the only difference between CRPS†w and CRPS#w is the dependence on F†
w rather

than F#
w, i.e.

CRPS†w(F, y) =

&
''(

'')

CRPS(F†
w, y), if y ∈ A

γCRPS(F†
w, a1) + (1− γ)(F†

w, a2), if y ∈ A
c
,

which, contrary to the twCRPS, does not depend on whether an observation is in AL

or AR.

For centre indicator case, for which the twCRPS is not strictly locally proper and

hence not a generalised censored scoring rule, we have now derived the alternative

(close to censoring) procedure, which is helpful in two ways. (i) By revealing the recipe

for obtaining the twCRPS, we uncovered the multivariate twCPRS for practioners

that are despite the localisation-bias still willing to use the twCRPS in a multivariate

setting. (ii) We have uncovered precisely the difference between the twCRPS and the

generalised censored scoring rule, i.e. γ versus γF in the definition of the focused

measure.

3.5 Localised Neyman–Pearson

In anticipation of our favourite applications, we now switch to an explicit time series

context. In particular, consider a stochastic process {Yt : Ω → Y}Tt=1
from a complete

probability space (Ω,F ,P) to a measurable space (YT
,GT ), where YT and GT denote

the product outcome space and σ-algebra of the individual outcome spaces Y and σ-

algebras G, respectively. The process generates the filtration {Ft}Tt=1
, in which Ft =

σ(Y1, . . . , Yt) is the information set at time t, satisfying Ft ⊆ Ft+1 ⊆ F , ∀t. We denote
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predictive distributions of Yt+1 based on Ft by Ft, predictive distribution functions

by Ft and predictive µt-densities by ft. The existence of the sequence of densities

ft is implied by the existence of a sequence of measures {µt} such that Ft ≪ µt, ∀t.

Furthermore, the regions of interest At ⊆ Y are always assumed to be Ft-measurable.

The aim of this section is to derive a uniformly most powerful (UMP) test for the

following null and alternative hypothesis

H0 : p0t1At = f0t1At , ∀t vs H1 : p1t1At = f1t1At , ∀t. (6)

Although the predictive densities fjt =
Fjt

dµt
, j ∈ {0, 1}, are assumed to be known,

the testing problem remains a multiple versus multiple hypothesis test due to the

lacking specification of the density outside the regions of interest At. Yet, since the

densities pjt must integrate to one on At ∪ A
c
t , the null hypothesis does imply that

these densities integrate to Fjt(A
c
t) on A

c
t . Therefore, the implied specification on A

c
t

can be summarised as

Fjt(A
c)

Hjt(Ac)
hjt1Ac

t
= Fjt(A

c)[hjt]
"
Ac

t
1Ac

t
, j ∈ {0, 1},

where the unknown densities hjt =
Hjt

dµt
can be seen as infinite dimensional nuisance

parameters.

Explicitising the implied assumption on A
c
t in the hypotheses and phrasing them

in terms of a statement about the whole sample distribution leads to the following

equivalent hypotheses

Hj : pj(y) =

T−1,

t=0

$
fjt(yt+1)1At(yt+1) + Fjt(A

c)[hjt]
"
Ac

t
(yt+1)1Ac

t
(yt+1)

%
, j ∈ {0, 1}.

Since the densities fjt are fixed, and the densities hjt are unrestricted under both

hypothesis, the class of densities satisfying hypothesis Hj can alternatively be written
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as

pj =

-
T−1,

t=0

$
fj(yt+1)1At(yt+1) + Fjt(A

c)[hjt]
"
Ac

t
(yt+1)1Ac

t
(yt+1)

%
, hj ∈ h

.
, j ∈ {0, 1},

in which h denotes the space of all densities on A
c =

/T−1

t=0
A

c
t .

Let φ : YT → [0, 1] denote a test function determining which values should be

included in the critical region. In terms of the index set of all observations I =

{1, . . . , T}, this space can also be denoted as Y(I) =
/

t∈I Yt. The aim of this section

is to find a uniformly most powerful (UMP) test φ∗ of size α for testing problem (6),

i.e. a solution to the maximisation problem

max
φ∈Φ(α)

Ep1φ, Φ(α) = {φ : sup
p0∈p0

Ep0φ ≤ α}. (7)

As a first step toward the solution, given by Theorem 3, let us fix an h1 ∈ h so that

the distribution under the alternative is completely known. Given the fact that the

hypotheses are, in the end, silent about the shape of the density on A
c, we conjecture

that a UMP test neglects the information about the shape of the density on A
c. If

T = 2, for example, and we consider the optimal test on A1 ×A
c
2
, our intuition is that

an optimal test does not care about the shape of [h2]
"
A2

c , that is, the specific values

[h2]
"
A2

c(y2) for all y2 ∈ A2
c, but just about the total probability of an outcome falling

into A
c
2
. In other words, we expect that a solution to problem (7) has integrated out

the dependence on the nuisance densities.

Although it is obvious that marginalising out the still assumed to be fixed density

h1 ∈ h is harmless in terms of power, it is non-trivial that this is an affordable strategy

in terms of size for all h0 ∈ h. Lemma 1 and its proof show that the subclass of tests

disregarding information about the shape of h1 is guaranteed to be size correct. In our

search for the UMP test, Corollary 1 then formalises the idea that we can restrict our

attention to tests of the conjectured kind.

Lemma 1. Consider testing problem (6) and suppose that the outcomes (yt)t∈IA are
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in At, and the remaining n − k, with k = |IA|, observations (yt)t∈IAc in A
c
t . For an

arbitrary but fixed density h1 ∈ h, the test

ψh1
: YT → [0, 1], ψh1

=

#

Y(IAc )

φ∗
h1

,

t∈IAc

[h1t]
"
Ac

t
1Ac

t
dµt

where φ∗
h1

denotes a solution to problem (7), is such that ψh1
∈ Φ(α).

Corollary 1. Consider testing problem (6) and suppose that the outcomes (yt)t∈IA

are in At, and the remaining T − k, with k = |IA|, observations (yt)t∈IAc in A
c
t . Let

Ψ(α) ⊆ Φ(α) denote the class of size α tests on YT that are constant in arguments

varying in Y(IAc). Then,

max
φ∈Φ(α)

Ep1φ = max
ψ∈Ψ(α)

Ep1ψ, ∀h1 ∈ h.

For any fixed h1 ∈ h, the reduced optimisation problem resulting from Corol-

lary 1, simplifies to a simple versus simple hypothesis in terms of the censored mea-

sures d[Fjt]
#
At

= 1AtdFjt+Fjt(A
c
t)dδ∗, enabling us to formalise a localised version of the

Fundamental Lemma of Neyman and Pearson (1933), included below as Theorem 3.

Theorem 3 (Localised Neyman-Pearson). The UMP test for testing problem (6) is

given by

φ#
A(y) =

&
''''''(

'''''')

1, if λ(y) > c

γ if λ(y) = c

0, if λ(y) < c

λ(y) =
[f1]

#
A(y)

[f0]#A(y)
, [fj ]

#
A(y) =

T−1,

t=0

[fjt]
#
At
(yt+1),

where j ∈ {0, 1} and c is the largest constant such that [F0]
#
A

!
λ(y) ≥ c

"
≥ α and

[F0]
#
A

!
λ(y) ≤ c

"
≥ 1 − α, and γ ∈ [0, 1] is such that α = [F0]

#
A

!
λ(y) > c

"
+

γ[F0]
#
A

!
λ(y) = c

"
.

It is worth emphasising that the obtained equivalence between testing problem (6)
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and Hj : pj = [fj ]
#
At
, j ∈ {0, 1}, is a priori unobvious, since

pj =
$
fj1A + Fj(A

c)[hj ]
"
Ac1Ac

%
=⇒ pj = [fj ]

#
A,

but not the other way around. Formulated differently,

Hj : [pj ]
#
A = [fj ]

#
A

is a multiple versus multiple hypothesis about pj (for example satisfied if pj = [fj ]
#
A),

but a simple versus simple hypothesis about [pj ]
#
A. Furthermore, we have included an

example for the special case that T = 1 in the Online Appendix, showing that we arrive

at the same solution as Holzmann and Klar (2016) for this special case.

We close this section with two corollaries of Theorem 3, the proofs of which are

deferred to the Online Appendix. Corollary 2 reveals that, unsurprisingly, the localised

NP test given by Theorem 3 can alternatively be formulated by the censored likelihood

score of Diks et al. (2011). Corollary 3 ensures that the conditional operator does

not bear a UMP test too, making the censored operator strictly preferred over the

conditional one in the current setting.

Corollary 2. Another formulation of the UMP test for testing problem (6) is given

by the test defined in Theorem 3, with λ(y) replaced by λ̃(y) =
+T−1

t=0

!
S
csl
At
(f1t, yt+1)−

S
csl
At
(f0t, yt+1)

"
, where S

csl
At

denotes the censored likelihood score (csl) proposed by Diks

et al. (2011).

Corollary 3. For testing problem (6), the test

φ"
A(y) =

&
''''''(

'''''')

1, if λ"(y) > c

γ if λ"(y) = c

0, if λ"(y) < c

λ"
A(y) =

[f1]
"
A(y)

[f0]
"
A(y)

1A(y), [fj ]
"
A(y) =

T,

t=1

[fjt]
"
At
(yt),

where j ∈ {0, 1} and c is the largest constant such that [F0]
#
A

!
λ(y) ≥ c

"
≥ α and
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[F0]
#
A

!
λ(y) ≤ c

"
≥ 1 − α, and γ ∈ [0, 1] is such that α = [F0]

#
A

!
λ(y) > c

"
+

γ[F0]
#
A

!
λ(y) = c

"
, is not UMP.
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Ḡ

α
−
1

w
' $f

w
$α α

+
F̄

α w

(1 α
−

!
f
w
g
α
−

1
w

d
µ
+
F̄

w
Ḡ
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4 Monte Carlo simulation

In this section, we compare the size and power properties of the conditional and cen-

sored scoring rules of a selection of regular scoring rules. The selected simulation design

is similar to the ones conducted by Diks et al. (2011), Lerch et al. (2017) and Holzmann

and Klar (2016). In particular, we use the score difference series of two candidates F

and G, that is, realisations of D = S(F, Y ) − S(G, Y ) to employ the Giacomini and

White (2006) test, for the null hypothesis

H0 : EPS(F, Y ) = EPS(G, Y ),

by means of the Diebold Mariano-type statistic tT =
1

T

!T
t=1

dt√
σ̂2

t /T
, where σ̂t should be

a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator in non-

i.i.d. settings. This null hypothesis, which is equivalent to H0 : DS(P$F) = DS(F$G),

is rejected if it is unlikely enough that quoting F instead of P leads to the same

information loss as quoting G instead of P.

A natural conjecture is that strictly locally proper scoring rules generally lead to

higher power since they are sensible with respect to all measurable aspects of the

distribution. When comparing conditional and censored scoring rules, we thus expect

the censored scoring rules to have more power. Though, it is worth mentioning that

the simulation study of Diks et al. (2011) already presents some examples in which the

conditional scoring rule indicates higher power. This can be explained by understanding

that some candidates do not have aspects for which the conditional scoring rule has

a blind spot. In such cases, the conditioning transformation can either enhance or

alleviate the discriminative ability of the scoring rule when compared to censoring.

4.1 Size

As carefully explained by Diks et al. (2011), the null hypothesis of the GW test forces a

particularly symmetric design. We adopt the design of Diks et al. (2011), using a centre-
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Figure 2: Size properties GW test
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indicator weight function w(y) = 1[−r,r](y) combined with and i.i.d. standard normal

DGP and normal candidates with unit variance and means µf = −0.2 and µg = 0.2.

Due to the symmetry, the norms and F̄w-probabilities of the candidates are equivalent,

leading to coinciding DM statistics based on QS and SphS scoring rules. Additionally,

the equal norms and discrete probabilities also imply the censoring and conditioning

rules to be equivalent within a semi-local scoring rule family since observations outside

the region of interest obtain the same scores under both candidates in this case.

Figure 2 displays the rejection rates for rejection the null of equal predictive ability

against the one-sided alternative that candidate f is statistically closer to p than g.

The rejection rates are given at nominal significance levels of 0.01, 0.05 and 0.10, for

focused versions of the LogS, SphS and CRPS scoring rules, based on 10,000 sim-

ulations. Given the discussion above, this gives a complete picture of the selection

{LogS, SphS,QS,CRPS}× {-, .}. The twCRPS is added since it will also be included

as benchmark in the power studies based on weight functions for which the censored

CRPS variants do not reduce to the twCRPS (see Example 2). None of the displayed

rejection rates give reason to doubt the size correctness of the tests.
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4.2 Power

4.2.1 Laplace tails

Our first experiment studies the consequences of the lack of the conditional rule to

disentangle two proportional tails when using the left tail indicator function w(y) =

1(−∞,r)(y). In particular, we follow up on the Laplace example given by Figure 1a

in Subsection 2.2, analysing two Laplace candidates with different location µf = −1

and µg = 1 but equivalent scale θf = θg = 1. Interestingly, even if µp → µf , the

conditional scoring rule does not have any power against the null of the candidates

being statically equally far away from p, that is, for thresholds r < µf , for which the

conditional distributions on (−∞, r) coincide. Since movements of p in terms of µp are

invisible through the lens of a conditional score divergence, this is essentially not a lack

of power against H0, which is based on the conditional scoring rule. Yet, it is a lack

of power against the distributions being statistically equally far away from the actual

density on {w > 0} through the lens of the regular score divergence and, therefore, still

a lack of local discriminative ability. More fundamentally, the GW test degenerates in

this case, as the score differences are exactly zero.

Leaving this extreme case, we analyse what happens if the scale parameters are not

exactly the same, but close. Specifically, we let θf = 1 and θg = 1.1. Figure 3 shows

the rejection rates of the GW test if the DGP is f (left-hand side) or g (right-hand

side) in favour of f (top) or g (bottom). Since both candidates are now also different

through the lens of the conditional rule, the subfigures on the diagonal display actual

power while the off-diagonal ones show spurious power. Concerning the selection of

scoring rules, it is good to remember that both censored CRPS rules (based on dmin

and drand) coincide with each other and with the twCRPS, see Example 1 for details.

Three observations strike us. First of all, the increase in power from the conditional

operator to the censoring operator is immense for all four scoring rules and thresholds

r < µf . The difference decreases over the interval r ∈ (µf , µg), after which both

conditioning and censoring have close to unit power. This observation is in line with the
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Figure 3: Laplace experiment (c = 20)
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One-sided rejection rates of the GW-test of equal predictive ability of the candidates ft (Laplace(−1, 1) and

gt (Laplace(1, 1.1)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either

ft (left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1(−∞,r)(y)

and the number of expected observations in the region of interest is kept constant at c = 20.

lack of discriminative ability of proportional and apparently close to proportional tails.

Second, there is a clear difference in spurious power between the focusing operators:

The censoring operator does seemingly not suffer from spurious power at all, whereas

the conditional rules have spurious power up to 0.10 for thresholds smaller than µf =

−1. Third, we note that the censored likelihood score dominates the other scoring

rules in terms of power.
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Figure 4: N (0, 1) versus Student-t(5): Left-tail (c = 20)
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One-sided rejection rates of the GW-test of equal predictive ability of the candidates ft (standard normal)

and gt (Student-t(5)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either

ft (left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1(−∞,r)(y)

and the number of expected observations in the region of interest is kept constant at c = 20.

4.2.2 N (0, 1) versus Student-t(5): Left-tail

Figure 4 shows the rejection rates of the GW test, where f is standard normal and

g Student-t(5). Again, we consider the left-tail indicator function w(y) = 1(−∞,r)(y)

for varying values of r. The combination of the selected candidates and the left-tail

region of interest make the current setting particularly interesting for financial risk

management applications. As revealed by the figure, the rejection rate plots are now
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less monotonic, intersecting the graph of the competing focusing operator rejection

rates. The latter occurs by construction since the densities of the candidates intersect

as well, see Diks et al. (2011) for a discussion. Starting with the clearest differences,

we note the spurious power humps of the conditional rules if the Student-t(5) distri-

bution is the DGP. In contrast, the censored scoring rules have almost no spurious

power. Staying in the right column of Figure 4, the rejection rates in the bottom row

reveal a clear preference for the censoring operator. Indeed, the exceptions of higher

conditional power are rather weak, while the difference between the rejection rates

(far) into the left-tail is particularly large for the Logarithmic and Spherical scoring

rule. On the other hand, if the standard normal distribution is the DGP, then there

is hardly (a difference in) spurious power. The differences between the rejection rates

representing power are more extreme when the data is generated from the standard

Normal distribution, yet so is their drop between r = −2 and r = −1, clouding a clear

preference for one of the focusing operators for these intermediate tail values of r.

4.2.3 N (0, 1) versus Student-t(5): Centre

In our third Monte Carlo experiment, we focus on the centre of the candidate distri-

butions by implementing the weight function w(y) = 1[−r,r](y). Figure 5 displays the

rejection rates for the same selection of regular scoring rules as in the previous ex-

periments. Based on Figure 5, the added value of censoring relative to conditioning is

overwhelming: Censoring leads to higher power and lower spurious power, in particular

for values smaller than r = 1, which are of particular interest in applications.

As discussed in Example 2, the variants of the censored CRPS no longer coincide

with each other, nor with the twCRPS. The CRPS#w displayed in the Figure 5 is the

generalised censored scoring rule based on the generalised censored measure in Equa-

tion (5). Due to the symmetry of the set up, there is visually no difference between

using the suggested value γ = 1

2
or the estimated proportion γ̂. We have also calcu-

lated the CRPS†(F, y) introduced in Subsection 3.4.2, which visually coincides with

the twCRPS in this case. As can be seen from Figure 6, the alternative-distance based
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Figure 5: N (0, 1) versus Student-t(5): Centre (c = 200)
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One-sided rejection rates of the GW-test of equal predictive ability of the candidates ft (standard normal)

and gt (Student-t(5)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either

ft (left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1(−r,r)(y)

and the number of expected observations in the region of interest is kept constant at c = 200.

CRPS variants do not coincide with the generalised censored CRPS, but lead to lower

power than the generalised censored CRPS. Reconsidering the discussion of Subsec-

tion 3.4.2, this is unsurprising, since the generalised censored scoring rule incorporates

more of the available information.
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Figure 6: N (0, 1) versus Student-t(5): Centre (c = 200)
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One-sided rejection rates of the GW test of equal predictive ability of the candidates ft (standard normal)

and gt (Student-t(5)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either

ft (left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1[−r,r](y)

and the number of expected observations in the region of interest is kept constant at c = 200.
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4.2.4 N (−0.2, 1) versus N (−0.2, 1): Centre (c = 200) [γF ∕= γP]

Figure 7: N (−0.2, 1) versus N (−0.2, 1): Centre (c = 200)
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One-sided rejection rates of the GW test of equal predictive ability of the candidates ft (N (−0.2, 1)) and gt

(N (0.2, 1)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either ft

(left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1[−r,r](y)

and the number of expected observations in the region of interest is kept constant at c = 200.
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Figure 8: N (−0.2, 1) versus N (−0.2, 1): Centre (c = 200)
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One-sided rejection rates of the GW test of equal predictive ability of the candidates ft (N (−0.2, 1)) and gt

(N (0.2, 1)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either ft

(left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1[−r,r](y)

and the number of expected observations in the region of interest is kept constant at c = 200.
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4.2.5 N (−1, 1) versus N (−1, 1): Centre (c = 200) [γF ∕= γP]

Figure 9: N (−0.2, 1) versus N (−0.2, 1): Centre (c = 200)
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One-sided rejection rates of the GW test of equal predictive ability of the candidates ft (N (−1, 1)) and gt

(N (1, 1)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either ft

(left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1[−r,r](y)

and the number of expected observations in the region of interest is kept constant at c = 200.
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Figure 10: N (−1, 1) versus N (−1, 1): Centre (c = 200)
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One-sided rejection rates of the GW test of equal predictive ability of the candidates ft (N (−1, 1)) and gt

(N (1, 1)) at a nominal significance level of 0.05 based on 10,000 simulations. The DGP is either ft

(left-hand side) or gt (right-hand side). Moreover, rejections in the top panels are in favour of ft, while

rejections in the bottom panels are in favour of gt. The incorporated weight function is w(y) = 1[−r,r](y)

and the number of expected observations in the region of interest is kept constant at c = 200.
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5 Empirical Application

5.1 Risk management

Evaluating the downside risk of asset returns is a crucial task in risk management, par-

ticularly for meeting regulatory requirements related to risk measures like the Value-at-

Risk (VaRq

f̂t
), which represents the q-th quantile of the model-based estimated density

forecast f̂t and the more recently required Expected Shortfall ESq
f̂t
, being the expected

loss conditional on the the loss being below its VaRq

f̂t
. To fulfil this objective, we opt

for a weight function of wt(yt) = 1(−∞,rqt ]
(yt), and choose for the variable of interest

yt the log-returns of the S&P500, that is, yt = log(Pt/Pt−1), where Pt is the adjusted

closing price on day t. The dataset used for this study consists of 6,777 observations in

total, spanning from January 2, 1996, to December 30, 2022, and obtained from Yahoo

Finance.

Each of our selected forecast methods can be represented as

Yt|Ft−1 ∼ D(µ,σ2

t ,ϑ),

where D(µ,σ2
t ,ϑ) denotes a parametric family of distributions with mean µ, variance

σ2
t and other parameters ϑ. We have also considered AR(1) and AR(5) models for

the specification of the conditional mean, but did not find substantial improvements

relative to the constant mean specification. In our analysis, we consider two conditional

variance models: the GARCH(1,1) model proposed by Bollerslev (1987) and defined

by the equation

σ2

t = ω + α(yt − µ)2 + βσ2

t−1,
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and the RGARCH(1,1) model proposed by Hansen et al. (2012), which is given by

σ2

t = ω + αxt−1 + βσ2

t−1,

xt = ξ + φσ2

t + τzt + κ(z2t − 1) + ut,

where xt represents the realised measure, zt = (yt − µ)/σt and ut denotes a white

noise process with variance σ2
u. The realised measure is downloaded from the Risklab

page of Dacheng Xiu’s website: https://dachxiu.chicagobooth.edu/#risklab. No-

tably, the equation for the realised measure is necessary for predictions beyond one step

ahead, and the term τzt + κ(z2t − 1) captures the leverage effect. Furthermore, we use

either a normal distribution or a Student-t distribution with ν degrees of freedom.

Although the heavy tails of the Student-t distribution have proven useful for daily

stock return data, the normal distribution remains a common choice. We estimate

the parameters using full-fledged maximum likelihood estimation, based on a rolling

estimation window of length Test.

5.1.1 Statistical comparison

As an empirical extension of our power analysis from Chapter 4, we compare the

relative performance of the forecasting methods via the Model Confidence Set (MCS),

as described by Hansen et al. (2011). The MCS procedure expands the GW hypothesis

to larger sets of H0-equivalent methods, employing an iterative elimination procedure

based on the equivalence tests Tmaxk or TRk, with k indicating the block length of

the block bootstrap required for estimating the non-standard asymptotic distribution

of these test statistics. Optimal power properties of censoring in the GW environment

intuitively accelerate elimination in the MCS procedure, resulting in smaller MCS p-

values and consequently, lower MCS cardinality.

Table 2 delineates the MCS p-values and the deduced MCS0.90 and MCS0.75 for

the six previously mentioned forecast methods, based on their 1-step and 5-step ahead

density forecasts. We present the outcomes for q ∈ {0.01, 0.1, 0.2}, using the TR20
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statistic with a block bootstrap size of B = 10, 000 and an estimation window of

Test = 1, 000, and later validate the stability of these findings. When examining the

censored (.) and conditional (-) columns, the reported results overwhelmingly support

enhanced power via censoring. The cardinality of the censored MCS never surpasses

its conditional counterpart, the censored MCS often being a (strict) subset of the

conditional MCS. Notable differences, especially for MCS0.75 of QS or CRPS at q =

0.10, underline the overall relative increase in cardinality of MCS0.90 (MCS0.75) by

78% (75%) when opting for conditioning over censoring. The significance of these

reductions is further emphasised by the fact that the resulting MCS encompass more

complex model specifications, which would be the optimal choices in the absence of

parameter and forecasting uncertainty.

For h = 5, reductions through censoring also occur, albeit less frequently. Excluding

the CRPS rule, the table suggests that censoring leads to a smaller MCS0.90 (MCS0.75)

3.0 (1.7) times more often. With the CRPS inclusion, this frequency equilibrates due to

the stronger eliminative capacity of the conditional CRPS. Again, the differences can

become quite sizeable, here on average leading to a relative increase of cardinality of

31% (41%), or even 50% (62%) excluding the CRPS, when using conditioning instead.

To ascertain the robustness of our findings, we expand our study across differ-

ent estimation window lengths Test, block lengths k, and the Tmax statistics for a

more comprehensive set of quantiles, also including q = 0.05, 0.15 and 0.25. Table 3

highlights the consistency of these results, revealing only one occurrence of increased

MCS#-cardinality at both confidence levels and even no exception for the average rel-

ative increase of the size of from MCS# to MCS". These findings align with reported

differences between forecasting horizons in Table 2, more generally influenced by the

relatively strong performance of the CRPS" rule on h = 5 outcomes. Furthermore,

the first row of Table 3 extends the results from Table 2 to all quantiles, showing that

censoring typically reduces MCS cardinality 71% of the time and only infrequently,

4% of the time, increases it. The TR statistic typically intensifies elimination, bearing

smaller MCS p-values, translating into movements outside the MCS0.90 or MCS0.75 for
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the censored scoring rules, where MCS p-values were typically closer to the bound-

aries. Differences in outcomes due to varying block lengths (k = 20 and k = 100) are

minor, and the influence of the estimation window lengths on the MCS p-values is not

substantial.

5.1.2 Backtesting

Beyond the statistical assessment of forecast methods, we compute their 1- and 5-

step ahead Value at Risk (VaRq

f̂t
) and Expected Shortfall (ESq

f̂t
). These measures

provide only partial insight into the forecasts, since the tail component of the density

forecast carries more comprehensive information than a single quantile (VaRq

f̂t
) or

conditional moment ESq
f̂t

= Ef̂t

$
Yt+h|Yt+h ≤ VaRq

f̂t

%
. Notably, the conditioning in

ESq
f̂t
is a quantile of the density forecast itself rather than r̂

q
t , a.s. implying a discrepancy

between the operational region of ESq
f̂t

and the focused scoring rules introduced above.

Additionally, if the VaRq

f̂t
is quite off, then the ‘risk’ indicated by ESq

f̂t
can become

quite detached from the true risk ESqp, where p denotes the density of the DGP. Hence,

the ESq
f̂t

is (particularly) useful when the VaRq

f̂t
is accurate, i.e. we preferably have a

good fit for the pair (VaRq

f̂t
,ESq

f̂t
), rather than just ESq

f̂t
itself.

We highlight a corollary before discussing results. Given a fixed level q, let r be

such that VaRq

f̂t
∨ VaRpq ≤ r. A property of the censored scoring rule is its ability to

render the true (VaRq
p,ES

q
p) pair, since

DS!
w
(p$f) = 0 =⇒ (VaRq

p,ES
q
p) = (VaRq

f̂t
,ESq

f̂t
), (8)

where w(y) = 1(−∞,r)(y). This is a direct consequence of (3), i.e. another corollary

of Lemma 2, and holds also more generally for any functional on distributions on

{w > 0}. In (sharp) contrast, D
S"
w
(p$f) = 0 implies that p ∝ f on (−∞, r) and hence

(VaRq
p,ES

q
p) ∕= (VaRq

f̂t
,ESq

f̂t
), unless F̄w = P̄w. Therefore, model selection based on

censored scoring rules aligns more effectively with backtesting of functionals of the

distribution compared to model selection based on conditional scoring rules.
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Table 2 reports the backtesting results, demonstrating a consistent preference for

Student-tν models by Expected Shortfall (ES) measures, with VaR’s top models fluc-

tuating between Student-tν and Normal. Interestingly, at q = 0.10 for h = 1, there’s a

significant discrepancy in methods preferred by the risk measures. The MCS accommo-

dates this by retaining at least one model from both camps, the censored MCS favouring

accurate VaRq

f̂t
coverage slightly more than conditional ones. Table 3 supports this,

revealing that censoring typically leads to greater alignment with the scoring rule in

the VaR column, while conditioning excels in the ES column. Notably, these outcomes

are often reached with smaller MCS under censoring. Hence, the small percentages of

mismatches particularly underscore the usefulness of censoring, as it frequently identi-

fies a compact set of models yielding reliable risk measures. For h = 5, the percentages

are generally smaller. However, this is not because forecasting risk measures further

into the future is easier. On the contrary, the MCS are less reduced for h = 5, likely

due to the greater difficulty in distinguishing between models as a result of increased

forecasting noise.

As discussed earlier, it is sensible to examine the pair (VaRq

f̂t
,ESq

f̂t
) rather than

ESq
f̂t

in isolation. Moreover, Equation (8) suggests that censoring may generate Model

Confidence Sets (MCS) containing forecast models that produce (VaRq

f̂t
,ESq

f̂t
) pairs

closer to the true pair. Support for this conjecture is found in Table 3. Despite often

being smaller, the censored MCS contains well-fitted (VaRq

f̂t
,ESq

f̂t
) pairs, defined as 0%

mismatches for both VaR and ES, more than twice as often (9 versus 4). If we accept up

to 4% mismatches, the comparison remains favourable: 14 versus 6, endorsing censored

MCS as a superior selection mechanism prior to VaR and ES calculations.
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Table 2: Evaluating forecast methods in the left-tail

LogS QS SphS CRPS Backtesting

q Method & % & % & % & % hitrate ES

h = 1

0.01 RGARCH-tν 1.00 0.60 0.45 0.95 0.65 0.88 0.73 0.97 0.016 0.002∗

TGARCH-tν 0.99 1.00 0.63 1.00 0.88 1.00 0.81 1.00 0.014 0.008∗

GARCH-tν 0.53 0.69 0.34 0.84 0.65 0.88 0.81 0.91 0.015 0.044∗

RGARCH-N 0.09 0.19 1.00 0.95 1.00 0.66 0.81 0.97 0.020 0.221
TGARCH-N 0.03 0.09 0.63 0.95 0.88 0.38 1.00 0.97 0.021 0.257
GARCH-N 0.01 0.09 0.45 0.84 0.65 0.45 0.81 0.64 0.023 0.294

0.10 RGARCH-tν 1.00 0.73 1.00 0.70 0.35 0.88 0.12 0.74 0.115 0.074∗

TGARCH-tν 0.05 1.00 0.16 1.00 0.02 1.00 0.05 1.00 0.113 0.045∗

GARCH-tν 0.00 0.40 0.01 0.43 0.00 0.37 0.01 0.20 0.118 0.048∗

RGARCH-N 0.05 0.03 0.49 0.70 1.00 0.21 1.00 0.74 0.103∗ 0.160
TGARCH-N 0.00 0.01 0.06 0.39 0.00 0.03 0.12 0.04 0.100∗ 0.168
GARCH-N 0.00 0.00 0.00 0.06 0.00 0.01 0.03 0.01 0.103∗ 0.206

0.20 RGARCH-tν 1.00 1.00 1.00 0.40 1.00 0.26 0.10 0.42 0.203∗ 0.111
TGARCH-tν 0.02 0.23 0.10 0.06 0.02 0.02 0.01 0.14 0.204∗ 0.076
GARCH-tν 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.01 0.210∗ 0.084
RGARCH-N 0.01 0.04 0.00 1.00 0.02 1.00 1.00 1.00 0.183 0.144
TGARCH-N 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.09 0.180 0.134
GARCH-N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.186 0.152

h = 5

0.01 RGARCH-tν 0.37 0.87 0.12 1.00 0.24 1.00 0.57 1.00 0.015 0.227
TGARCH-tν 0.83 1.00 0.86 0.45 1.00 0.40 0.65 0.63 0.017 0.128∗

GARCH-tν 1.00 0.96 0.17 0.38 0.47 0.40 0.65 0.44 0.017 0.054∗

RGARCH-N 0.01 0.05 0.12 0.81 0.18 0.40 0.57 0.18 0.019 0.521
TGARCH-N 0.01 0.05 1.00 0.75 1.00 0.23 1.00 0.16 0.022 0.461
GARCH-N 0.01 0.04 0.17 0.75 0.41 0.27 0.65 0.09 0.022 0.480

0.10 RGARCH-tν 0.46 0.15 0.35 0.16 0.55 0.11 0.47 0.43 0.100∗ 0.156
TGARCH-tν 1.00 0.36 1.00 1.00 1.00 0.41 1.00 1.00 0.108 0.096
GARCH-tν 0.56 1.00 0.35 0.70 0.55 1.00 0.60 0.43 0.113 0.075∗

RGARCH-N 0.00 0.00 0.01 0.16 0.26 0.03 0.53 0.01 0.090 0.242
TGARCH-N 0.00 0.00 0.01 0.16 0.21 0.00 0.60 0.00 0.095∗ 0.242
GARCH-N 0.00 0.00 0.01 0.16 0.20 0.00 0.46 0.00 0.099∗ 0.247

0.20 RGARCH-tν 0.15 0.36 0.00 0.89 0.02 0.97 0.37 0.67 0.175 0.155
TGARCH-tν 1.00 0.36 0.77 1.00 1.00 0.97 1.00 1.00 0.192∗ 0.114
GARCH-tν 0.78 1.00 1.00 0.89 0.50 0.97 0.37 0.67 0.201∗ 0.086∗

RGARCH-N 0.00 0.00 0.00 0.89 0.00 1.00 0.32 0.67 0.160 0.193
TGARCH-N 0.00 0.00 0.00 0.79 0.00 0.90 0.37 0.02 0.172 0.167
GARCH-N 0.00 0.00 0.00 0.79 0.00 0.76 0.23 0.01 0.176 0.185

Note: Columns titled by scoring rules present MCS p-values for assessing predictive equality of the forecast
methods listed, h-steps ahead, based on LogS, QS, SphS and CRPS scoring rule variants, both censored (&)
and conditional (%). The emphasis is on the left-tail, incorporated by weight function wt(yt) = 1(−∞,rqt ]

(yt),
for various q values. Bold (underlined) p-values signify the forecast method’s inclusion in MCS0.75
(MCS0.90). All MCS p-values utilise the TR20 statistic, implementing B = 10, 000 block bootstrap

simulations with blocklength k = 20. The estimation window is Test = 1, 000. The backtesting columns
present the hit rate, instances beneath a method’s VaR at level q, and the absolute difference between
actual and density forecast-implied expected shortfall at level q. The top three models are bolded; an

asterisk denotes non-rejection of null for correct coverage (hit rate) or difference (ES) at a 0.05 significance
level.

45



Table 3: Overview and robustness of left-tail application

MCS0.90 MCS0.75

|MCS| VaR ES |MCS| VaR ES

Test Stat. < > % . - . - < > % . - . -

h = 1

1000 TR20 71 4 128 17 17 17 8 63 8 104 17 21 25 13
TR100 71 4 130 17 17 17 8 63 8 104 17 17 17 0
Tmax20 46 13 58 0 13 4 4 71 8 107 4 13 17 4
Tmax100 46 13 48 0 13 4 4 67 13 102 4 13 17 4

750 TR20 54 13 81 13 25 13 13 50 13 80 13 29 29 17
Tmax20 33 29 19 0 17 4 4 63 17 100 4 17 21 8

1250 TR100 63 8 122 17 17 17 0 50 4 99 17 17 21 17
Tmax20 58 17 74 8 8 13 0 50 17 83 8 13 21 17

h = 5

1000 TR20 38 25 69 17 0 4 0 50 42 72 17 21 4 0
TR100 38 25 69 17 0 4 0 50 42 66 17 21 4 0
Tmax20 42 25 43 0 0 0 0 50 42 59 0 17 0 0
Tmax100 38 17 44 0 0 0 0 46 38 59 0 17 0 0

750 TR100 33 46 44 0 8 0 0 33 50 54 0 25 0 0
Tmax20 29 25 53 0 4 0 0 42 38 53 0 17 0 0

1250 TR20 38 33 61 4 4 0 0 50 33 61 8 25 0 0
Tmax20 42 29 46 0 4 0 0 46 42 46 4 17 0 0

Note: The table summarises MCS and backtesting results using varying values for estimation window Test,

equivalence test statistics TRk and Tmaxk, blocklength k across forecast horizons h = 1 and h = 5, based

on B = 10, 000 bootstrap replications. All values are percentages. Columns labelled with |MCS| refer to
MCS cardinality. Across 24 combinations of q ∈ {0.01, 0.05, 0.10, 0.15, 0.20, 0.25} and

S ∈ {LogS,QS, SphS,CRPS}, the < (>)-column displays the frequency of |MCS$1−α| < (>)|MCS!1−α| and
the %-column indicates average relative cardinality increase from MCS!1−α to MCS$1−α. The VaR (ES)

column shows the frequency of the MCS1−α containing one of the top three models based on VaR (ES)

backtesting results. Bolded numbers indicate strictly more smaller (<) or larger (>) MCS$1−α as well as

strictly less times the MCS1−α contains a top 3 VaR or ES method.
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6 Conclusion

In many applications, forecasters are not equally interested in all possible outcomes of

the random variable of interest. For such cases, we have motivated the use of censoring

as focusing device. In particular, we have shown that focusing scoring rules by applying

them to censored distributions leads to strictly locally proper scoring rules. To the best

of our knowledge, we are first in deriving a transformation of the original scoring rule

that preserves strict propriety.

Our approach offers considerable flexibility in terms of the original scoring rule, the

weight function, and the outcome space. For specific choices, the (generalised) censored

scoring rule delivers intuitively sound scoring rules that can easily be implemented by

practitioners. When applied to the logarithmic scoring rule, our focusing technique

produces the well-established censored likelihood score. Our framework also facilitates

the derivation of weighted versions of the Energy Score family, which can be considered

the multivariate equivalent of the twCRPS for left- or right-tail indicator functions.

For other weight functions, the censored CRPS rule is strictly locally proper, while the

twCRPS is not. By uncovering a procedure close to censoring, we established to clarify

the localisation bias of the twCRPS and how one can derive a multivariate version of

the twCRPS for the centre indicator function.

The censored likelihood score also appears in a second important result of this pa-

per. In particular, we have shown that the UMP test for a localised version of the

standard simple versus simple Neyman Pearson testing problem is based on the cen-

sored likelihood ratio. Furthermore, the results of our Monte Carlo study suggest that

our theoretical findings spill over to the finite sample properties of other forecast eval-

uation tests. In our experiments, striking differences in power almost always favour

censoring. In the empirical application, we identified an enhanced elimination of poorly

performing models during the MCS process when using censoring instead of condition-

ing. Moreover, models that resulted in superior VaR and ES backtesting outcomes

were more frequently incorporated in the MCS process when based on censoring.

47



Appendix

A Proofs

A.1 Proof Theorem 2

For clarity of exposition, we first prove the main ingredients of the proof via two isolated

lemmas and a corollary.

Lemma 2. Consider the censored scoring rule defined in Definition 6. ∀w ∈ W and

H ∈ H, the following identity holds
0
Y S

#
w,H(F, y)P(dy) =

0
Y S(F#

w,H, y)P
#
w,H(dy).

Proof.

#

Y
S
#
w,H(F, y)P(dy) =

#

Y

$
w(y)S(F#

w,H, y) +
!
1− w(y)

" #

Y
S(F#

w,H, q)H(dq)
%
P(dy),

=

#

Y
w(y)S(F#

w,H, y)P(dy) +

#

Y
S(F#

w,H, q)

#

Y

!
1− w(y)

"
P(dy)H(dq),

=

#

Y
S(F#

w,H, y)Pw(dy) +

#

Y
S(F#

w,H, y)P̄wH(dy),

=

#

Y
S(F#

w,H, y)
!
Pw(dy) + P̄wH(dy)

"
,

=

#

Y
S(F#

w,H, y)P
#
w,H(dy).

Lemma 3. Consider two distributions P and F on the same measurable space (Y,G).

On the same space, let their censored counterparts P#
w,H and F#

w,H be given by Defini-

tion 6. Then,

F#
w,H(E) = G#

w,H(E), ∀E ∈ G ⇐⇒ F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G.

Proof. “ =⇒ ” We start with the most challenging direction, for which Assumption 1
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is of critical importance. First, note that

F#
w,H(E) = G#

w,H(E), ∀E ∈ G

=⇒ F#
w,H(E ∩ {w = c}) = G#

w,H(E ∩ {w = c}), ∀E ∈ G

=⇒
#

Y
(1− w)dFH(E ∩ {w = c}) =

#

Y
(1− w)dGH(E ∩ {w = c}), ∀E ∈ G

=⇒
#

Y
(1− w)dFH({w = c}) =

#

Y
(1− w)dGH({w = c}),

=⇒
#

Y
(1− w)dF =

#

Y
(1− w)dG,

where c denotes a constant such that Assumption 1 is satisfied. Then, exploit this

equality to conclude

F#
w,H(E) = G#

w,H(E), ∀E ∈ G

=⇒
#

Y
w(y)1y∈EF(dy) =

#

Y
w(y)1y∈EG(dy), ∀E ∈ G

=⇒ F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G.

“ ⇐= ” The other direction is somewhat trivial. Indeed,

F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G

=⇒
#

Y
w(y)1y∈EF(dy) =

#

Y
w(y)1y∈EG(dy), ∀E ∈ G

=⇒
#

Y
(1− w)dF =

#

Y
(1− w)dG,

and the two implied results jointly imply F#
w,H(E) = G#

w,H(E), ∀E ∈ G, ∀H ∈ H.

Corollary 4. The censored scoring rule defined in Definition 6 is localising ∀H ∈ H.

Proof. Suppose that F(E ∩ {w > 0}) = G(E ∩ {w > 0}), ∀E ∈ G. Then, by Lemma 3,

F#
w,H(E) = G#

w,H(E), ∀E ∈ G, whence it follows that S
#
w,H(P, y) = S

#
w,H(F, y), ∀y ∈

Y.

We now turn to the main body of the proof. The definition of a strictly locally
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proper scoring rule (Definition 4) and the definitions on which this definition is built,

that is, the definition of a locally proper scoring rule (Definition 4) and a localising

weighted scoring rule (Definition 3), reveal that we need to prove a list of three things

∀H ∈ H: (i) S#
w,H(P, y) must be localising relative to W, (ii) S#

w,H(P, y) must be proper

relative to P, ∀w ∈ W and (iii) the if and only if statement in Definition 4. We prove

them one by one.

(i) S#
w,H(P, y) is localising relative to W, ∀H ∈ H, by Corollary 4.

(ii) Fix an arbitrary w ∈ W and H ∈ H. Since P
#
w,H ⊆ P

#, S is strictly proper

relative to P
#
w,H, i.e.

#

Y
S(P#

w,H, y)P
#
w,H(dy) ≥

#

Y
S(F#

w,H, y)P
#
w,H(dy), ∀P#

w,H,F
#
w,H ∈ P

#
w,H, (A.1)

which is by definition of the class P#
w,H ≡ {[P]#w,H,P ∈ P} equivalent to

#

Y
S([P]#w,H, y)[P]

#
w,H(dy) ≥

#

Y
S([F]#w,H, y)[P]

#
w,H(dy), ∀P,F ∈ P, (A.2)

and hence, by Lemma 2, also

#

Y
S
#
w,H(P, y)P(dy) ≥

#

Y
S
#
w,H(F, y)P(dy), ∀P,F ∈ P. (A.3)

Therefore, S#
w,H(P, y) is proper relative to P by Definition 2.

(iii) Since S is strictly proper relative to P
# and hence P

#
w,H, it also follows that,

∀w ∈ W and H ∈ H,

#

Y
S(P#

w,H, y)P
#
w,H(dy) =

#

Y
S(F#

w,H, y)P
#
w,H(dy) ⇐⇒ P#

w,H = F#
w,H,

and thus, by Lemma 3,

#

Y
S(P#

w,H, y)P
#
w(dy) =

#

Y
S(F#

w,H, y)P
#
w,H(dy) ⇐⇒ P(E ∩ {w > 0}) = F(E ∩ {w > 0}),
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∀E ∈ G, and hence, by Lemma 2, also

#

Y
S
#
w,H(P, y)P(dy) =

#

Y
S
#
w,H(F, y)P(dy) ⇐⇒ P(E ∩ {w > 0}) = F(E ∩ {w > 0}),

which is the desired if and only if statement of Definition 4.

But then, as we have verified each of the listed conditions (i) to (iii), we have shown

that S#
w,H(P, y) is strictly locally proper relative to (P,W), ∀H ∈ H.

A.2 Proof Lemma 1

Due to the integral over Y(IAc), any test ψh1
is constant in arguments varying in

Y(IAc). We can use this observation to simplify the size of a test ψh1
. In particular,

∀h1 ∈ h, we have that

sup
p0∈p0

Ep0ψh1
=

1

2
,

t∈IAc

F0(A
c
t)

3

4 sup
h0∈h

#

YT

ψh1

,

t∈IA

f0t1At

,

t∈IAc

[h0t]
"
Ac

t
1Ac

t
dµt

=

1

2
,

t∈IAc

F0(A
c
t)

3

4
#

Y(IA)

ψh1

,

t∈IA

f0t1Atdµt

=

1

2
,

t∈IAc

F0(A
c
t)

3

4
#

YT

φ∗
h1

,

t∈IAc

[h1t]
"
Ac

t
1Ac

t
dµt

,

t∈IA

f0t1Atdµt

≤

1

2
,

t∈IAc

F0(A
c
t)

3

4 sup
h0∈h

#

YT

φ∗
h1

,

t∈IAc

[h0t]
"
Ac

t
1Ac

t
dµt

,

t∈IA

f0t1Atdµt

= sup
p0∈p0

Ep0φ
∗
h1

≤ α,

since φ∗
h1

∈ Φ(α). Hence, ψh1
∈ Φ(α).

A.3 Proof Corollary 1

Fix an arbitrary h1 ∈ h. Since Ψ(α) ⊆ Φ(α), we trivially have that maxφ∈Φ(α) Ep1φ ≥

maxψ∈Ψ(α) Ep1ψ. Now suppose that maxφ∈Φ(α) Ep1φ < maxψ∈Ψ(α) Ep1ψ. Then, we can

always define the test ψ̃ =
0
Y(IAc )

φ∗/
t∈IAc

[h1t]
"
Ac

t
1Ac

t
dµt, with φ∗ ∈ argmaxφ∈Φ(α) Ep1φ,
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satisfying Ep1φ
∗ = Ep1ψ̃. But, by Lemma 1, ψ̃ ∈ Ψ(α), in which case maxφ∈Φ(α) Ep1φ =

maxψ∈Ψ(α) Ep1ψ̃, contradicting the assumed strict inequality.

A.4 Proof Theorem 3

For any fixed h1 ∈ h, the most powerful test of size α is a solution to the following

restricted maximisation problem

max
φ∈Φ(α)

Ep1φ = max
α∈∆T̄ (α)

T5

k=0

(Tk)5

s=1

max
φk,s∈Φ(αk,s)

Ep1 (φk,s|yt ∈ At, ∀i ∈ IA(k, s) ∧ yt ∈ A
c
t , ∀i ∈ IAc(k, s))

= max
α∈∆T̄ (α)

T5

k=0

(Tk)5

s=1

max
φk,s∈Ψ(αk,s)

Ep1 (φk,s|yt ∈ At, ∀i ∈ IA(k, s) ∧ yt ∈ A
c
t , ∀i ∈ IAc(k, s))

= max
α∈∆T̄ (α)

T5

k=0

(Tk)5

s=1

max
φk,s∈Ψ(αk,s)

1

2
,

t∈IAc

F1(A
c
t)

3

4
#

Y(IA)

φk,s

,

t∈IA

f1t1Atdµt

= max
α∈∆T̄ (α)

T5

k=0

(Tk)5

s=1

max
φk,s∈Ψ(αk,s)

#

YT

φk,s

T−1,

t=0

d[Ft]
#
At

= max
α∈∆T̄ (α)

T5

k=0

(Tk)5

s=1

max
φk,s∈Φ(αk,s)

#

YT

φk,s

T−1,

t=0

d[Ft]
#
At
,

where T̄ =
+T

k=0

!
T
k

"
and ∆T̄ (α0) = {α0 ∈ [0,α0]

T̄ : ι′
T̄
α0 = α0}, with ιT̄ denoting

column vector of ones of length T̄ . The first equality exploits that the test function

can be decomposed into test functions operating on a single part of the partitioning

of the outcome space YT , in which case the maximisation problem can be split into

finding an optimal test on each of the partitioned parts conditional on the amount of

size spent on each part and the optimal distribution of size over the partition of the

outcome space.

The second equality holds by Corollary 1, the third equality uses that the optimal

test is constant in arguments varying in A
c, the fourth equality holds by definition of

the censored measure and the fifth equality uses that all tests that are non-constant in

arguments varying in A
c map under the censored measure onto tests that are constant

in arguments varying in A
c.
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Finally, the result follows by observing that the final maximisation problem is equiv-

alent to finding the optimal test φ#
A for the testing problem Hj : pj =

/T−1

t=0
[fj ]

#
At
,

j ∈ {0, 1}, for which φ#
A is the UMP test by the Fundamental Lemma of Neyman and

Pearson (1933). By the equivalence, φ#
A is, for any h1 ∈ h, also the most powerful test

for testing problem (6). But, since the test φ# is independent of h1, it is the UMP test

for testing problem (6).
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A Additional Proofs

A.1 Proof censored density

We defined the measures µ and F to the extended measurable space (Y∗,G∗
) by putting

µ∗
(E) = µ(E\{∗}), if ∗ ∈ E and µ∗

(E) = µ(E), otherwise, ∀E ∈ G∗
. To simplify the

notation, we drop the subscript ∗ in the notation of the extended measures, while still

considering all measures with respect to the extended measurable space (Y∗,G∗
)

Since (µ+δ∗)(E) = 0 implies that both µ(E) = 0 and δ∗(E) = 0, ∀E ∈ G∗
, we have

that both µ ≪ µ+ δ∗ and δ∗ ≪ µ+ δ∗. As a consequence,

f "
w,h :=

dF
"
w

d(µ+ δ∗)
= w

dF

d(µ+ δ∗)
+ F̄w

dδ∗
d(µ+ δ∗)

is the censored (µ+ δ∗)-density of F
"
w.

We can simplify this density as follows. Understanding that

dF

d(µ+ δ∗)
=

dF

dµ

dµ

d(µ+ δ∗)
,

we recall from the Radon-Nikodym theorem that
dµ

d(µ+δ∗)
is the solution of

!

Y
1Edµ =

!

Y
1E

dµ

d(µ+ δ∗)
d(µ+ δ∗) =

!

Y
1E

dµ

d(µ+ δ∗)
dµ+

!

Y
1E

dµ

d(µ+ δ∗)
dδ∗.

By the same theorem, the solution of this equation is guaranteed to exist uniquely.

A glance at this equation reveals that a reasonable candidate is 1 µ-a.e. and 0 δ∗-

a.s. We conclude that
dµ

d(µ+δ∗)
= 1Y\{∗} is the unique solution for the Radon-Nikodym

derivative. By the same token, we conclude from

!

Y
1Edδ∗ =

!

Y
1E

dδ∗
d(µ+ δ∗)

d(µ+ δ∗) =

!

Y
1E

dδ∗
d(µ+ δ∗)

dµ+

!

Y
1E

dδ∗
d(µ+ δ∗)

dδ∗.

that a reasonable candidate for
dδ∗

d(µ+δ∗)
is 0 µ-a.e. and 1 δ∗-a.s. More specifically, we

deduce that
dδ∗

d(µ+δ∗)
= 1∗ is the unique solution for the Radon-Nikodym derivative.
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Put together, we arrive at

f "
w,h(y) = w(y)

dF

dµ
(y)1Y\{∗}(y) + F̄w1∗(y) = w(y)f(y)1y ∕=∗ + F̄w1y=∗, y ∈ Y,

where f denotes the µ-density of F.

A.2 Proof Corollary 2

The test based on λ̃(y) is equivalent to the UMP test in Theorem 3, since

λ̃(y) =

T−1"

t=0

#
Scsl
At
(f1t, yt+1)− Scsl

At
(f0t, yt+1)

$

=

T−1"

t=0

%
log

&
[f1t]

"
At
(yt+1)

'
− log

&
[f0t]

"
At
(yt+1)

'(

= log λ(y)

and hence λ(y)
>
=
<
c ⇐⇒ λ̃(y)

>
=
<
c̃, with c̃ = log c.

A.3 Proof Corollary 3

We show that φ$
A is not UMP by a specific counterexample in which the power of φ$

A is

strictly smaller than the power of φ"
A. In particular, suppose that T = 1 and consider

two densities f0 and f1 that are different on A = [r,∞), for some constant r > 0.

Furthermore, assume that

! ∞

{y:λ(y)>r}
F0(dy) > α, λ(y) =

f1(y)

f0(y)
. (A.1)

For T = 1, the likelihood ratios of the conditional and censored test simplify to

λ$
A(y) =

[f1]
$
A(y)

[f0]
$
A(y)

=

f1(y)
F1(A)

f0(y)
F0(A)

1A(y) =
F0(A

c
)

F1(Ac)

f1(y)

f0(y)
1A(y)

λ"
A(y) =

[f1]
"
A(y)

[f0]"A(y)
=

f1(y)

f0(y)
1A(y) +

F1(A
c
)

F0(Ac)
1Ac(y).
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Due to restriction (A.1), the corresponding critical regions C$
=

)
c$,∞

$
and C"

=

)
c",∞

$
are both contained in A. Hence, an example in which % has higher power than

&, would not only be a counterexample to Theorem 3 but also to the fundamental

lemma of Neyman and Pearson (1933).

There exist many examples for which the power of the censored test is strictly

larger than the power of the conditional test. For instance, suppose that y ∼ Exp(θj),

j ∈ {0, 1}, with θ0 > θ1. Then, the critical regions follow from the equation

α =

! ∞

{y:λ(y)>c∗}
θ0e

−θ0ydy =

! ∞

{y:a∗
!

θ1
θ0

"
e−(θ1−θ0)y>c∗}

θ0e
−θ0ydy = 1− F0

%
1

θ0 − θ1
log

%
θ0
θ1

(
c∗

a∗

(
,

where a$ = 1−F0(r)
1−F1(r)

= e
−(θ0−θ1)r and a" = 1. Isolating c∗, gives

c∗ = ba∗, b =
θ0
θ1

e
(θ0−θ1)F

−1
0 (1−α) > 0.

Now, the power of the conditional test is only weakly larger than the power of the

censored test, if

! ∞

{y:λ(y)>c"}
θ1e

−θ1ydy ≥
! ∞

{y:λ(y)>c#}
θ1e

−θ1ydy ⇐⇒ c$ ≥ c" ⇐⇒ (θ0 − θ1)r ≤ 0.

But then, as θ0 > θ1 and r > 0, it follows that the power of the conditional test is always

strictly smaller than the power of the censored test. Consequently, the conditional test

φ$
A is not UMP.

B Derivations Table 1

The results in Table 1 hold under the assumption that all F ∈ P are Borel measures

on Rd
satisfying F(r) = 0, with r ∈ Rd

. Furthermore, the assumption on h and w in

the generalised censored scoring rule examples can predominantly be simplified due to

the observation that w(y)h(y) = 0, ∀y ∈ Y and fw(y) = 0, ∀y ∈ {w = 0}.
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B.1 LogS

LogS(f̃ , ỹ) = log f̃(ỹ) = log f(y)− log |b| eqv.= log f(y).

LogS
$
w(f, y) = w(y) log

%
w(y)f(y)

1− F̄w

(

eqv.
= w(y) log

%
f(y)

1− F̄w

(

= Scl
w(f, y),

LogS
"
w(f, y) = w(y) log

#
w(y)f(y)1y ∕=r + F̄w1y=r

$
+ (1− w(y)

$
log F̄w

µ-a.e.
= w(y) log

#
w(y)f(y)

$
+ (1− w(y)

$
log F̄w

eqv.
= w(y) log

#
f(y)

$
+ (1− w(y)

$
log F̄w

= Scsl
w (f, y).

LogS
"
w,h(f, y) = w(y) log f "

w,h(y) +
#
1− w(y)

$ !

Y
log f "

w,h(q)h(q)dq,

= w(y)
&
log

#
fw(y)

$
1w>0 + log

#
F̄wh(y)

$
1w=0

'

+
#
1− w(y)

$ !

{w=0}

&
log

#
fw(q)

$
1w>0 + log

#
F̄wh(q)

$
1w=0

'
h(q)dq,

= w(y) log fw(y) +
#
1− w(y)

$ !

{w=0}
log

#
F̄wh(q)

$
h(q)dq,

eqv.
= w(y) log f(y) +

#
1− w(y)

$
log F̄w,

= Scsl
(f, y).

B.2 PsSphSα

PsSphSα(f̃ , ỹ) =
f̃(ỹ)

,f̃,α−1
α

=

&
1
|b|

'α−1
f(y)α−1

&
1
|b|

' (α−1)2

α ,f,α−1
α

=

%
1

|b|

(α−1
α

PsSphSα(f, y).

5



Next, we show the limit. Rescaling the PsSphSα family by a factor
1

α−1 , we obtain

lim
α↓1

1

α− 1

%
f(y)

,f,α

(α−1

= lim
α↓1

(α− 1)

&
f(y)
&f&α

'α−1

(α− 1)2

= lim
α↓1

&
f(y)
&f&α

'α−1
+ (α− 1)

%
log

&
f(y)
&f&α

'
+ (α− 1)

&
f(y)
&f&α

'−1
∂
∂α

f(y)
&f&α

(&
f(y)
&f&α

'α−1

2(α− 1)

=
1

2
lim
α↓1

1

α− 1

%
f(y)

,f,α

(α−1

+
1

2
lim
α↓1

log

%
f(y)

,f,α

(%
f(y)

,f,α

(α−1

+
1

2
lim
α↓1

(α− 1)

%
f(y)

,f,α

(α−2 ∂

∂α

f(y)

,f,α
,

and hence

lim
α↓1

1

α− 1

%
f(y)

,f,α

(α−1

= log f(y), (A.2)

since ,f,1 = 1. It might be helpful to note that the second equality in the first display

follows from L’Hôpital’s rule combined with the following derivative

∂

∂α

%
f(y)

,f,α

(α−1

= log

*%
f(y)

,f,α

(
+ (α− 1)

%
f(y)

,f,α

(−1 ∂

∂α

f(y)

,f,α

+%
f(y)

,f,α

(α−1

.

For the conditional PsSphSα family, we find

PsSphS
$
α,w(f, y) = w(y)

&
fw(y)
1−F̄w

'α−1

&,
Y

&
fw

1−F̄w

'α
dµ

'α−1
α

= w(y)
fw(y)

α−1

,fw,α−1
α

= w(y)

%
fw(y)

α

,fw,αα

(α−1
α

By the close similarity with Equation (A.2), it is uncomplicated to obtain the following

6



limit

lim
α↓1

1

α− 1
PsSphS

$
α,w(f, y) = w(y) lim

α↓1

1

α− 1

%
fw(y)

,fw,α

(α−1

= w(y) log

%
fw(y)

,fw,1

(

= w(y) log f $
w(y)

= LogS
$
w(f, y),

since ,fw,1 =
,
Y wfdµ = 1 − F̄w. Clearly, this result also follows directly from the

linearity of limits, as

lim
α↓1

1

α− 1
PsSphS

$
α(f, y) = w(y) lim

α↓1

1

α− 1
PsSphSα(f

$
w, y) = w(y) log f $

w(y) = LogS
$
w(f, y).

(A.3)

Moreover, for the censored PsSphSα family, it follows that

PsSphS
"
w(f, y) =

w(y)
#
fw(y)1y ∕=r + F̄w1y=r

$α−1
+

#
1− w(y)

$
F̄α−1
w

&,
Y
#
fw(y)1y ∕=r + F̄w1y=r

$α
(µ+ δr)(dy)

'α−1
α

=
w(y)

#
fw(y)

α−11y ∕=r + F̄α−1
w 1y=r

$
+

#
1− w(y)

$
F̄α−1
w

&,
Y
#
fw(y)

$α
dy + F̄α

w

'α−1
α

µ-a.e.
=

w(y)fw(y)
α−1

+
#
1− w(y)

$
F̄α−1
w

#
,fw(y),αα + F̄α

w

$α−1
α

.

For the limit of α ↓ 1, we cannot directly apply Equation (A.2) as we did for the

7



conditional case. Nevertheless, we obtain a similarly satisfying result, namely

lim
α↓1

1

α− 1
PsSphS

"
w(f, y) = w(y) lim

α↓1

1

α− 1

-

. fw(y)
#
,fw,αα + F̄α

w

$ 1
α

/

0
α−1

+
#
1− w(y)

$
lim
α↓1

1

α− 1

-

. F̄w
#
,fw,αα + F̄α

w

$ 1
α

/

0
α−1

= w(y)

-

1. lim
α↓1

log

-

. fw(y)
#
,fw,αα + F̄α

w

$ 1
α

/

0

-

. fw(y)
#
,fw,αα + F̄α

w

$ 1
α

/

0
α−1

+ lim
α↓1

(α− 1)

-

. fw(y)
#
,fw,αα + F̄α

w

$ 1
α

/

0
α−2

∂

∂α

fw(y)
#
,fw,αα + F̄α

w

$ 1
α

/

20

+
#
1− w(y)

$
-

1. lim
α↓1

log

-

. F̄w
#
,fw,αα + F̄α

w

$ 1
α

/

0

-

. F̄w
#
,fw,αα + F̄α

w

$ 1
α

/

0
α−1

+ lim
α↓1

(α− 1)

-

. F̄w
#
,fw,αα + F̄α

w

$ 1
α

/

0
α−2

∂

∂α

F̄w
#
,fw,αα + F̄α

w

$ 1
α

/

20

= w(y) log fw(y) +
#
1− w(y)

$
log F̄w

= LogS
"
w(f, y),

where we have used that ,fw,1 + F̄w = 1− F̄w + F̄w = 1.

B.3 PowSα

PowSα(f̃ , ỹ) = α
#
f̃(ỹ)

$α−1 − (α− 1),f̃,αα

= α

%
1

|b|

(α−1

f(y)− (α− 1)

%
1

|b|

(α−1

,f,αα

=

%
1

|b|

(α−1

PowSα(f, y),
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as

,f̃,αα =

!

Ỹ
f̃(ỹ)αµ(dỹ)

=

%
1

|b|

(α−1 !

Ỹ

%
f

%
ỹ − a

b

((α
1

|b|µ(dỹ)

=

%
1

|b|

(α−1 !

Y
(f (y))α µ(dy)

=

%
1

|b|

(α−1

,f,αα.

Next, we verify the limit for the non-focused family. Specifically,

lim
α↓1

1

α− 1
PowSα = lim

α↓1

1

α− 1

#
αf(y)α−1 − (α− 1),f,αα

$

= lim
α↓1

(α− 1)αf(y)α−1

(α− 1)2
− 1

= lim
α↓1

αf(y)α−1
+ (α− 1)f(y)α−1

#
1 + α log f(y)

$

2(α− 1)
− 1

=
1

2

%
lim
α↓1

1

α− 1
αf(y)α−1 − 1

(
+

1

2

%
lim
α↓1

f(y)α−1
#
1 + α log f(y)

$
− 1

(

and hence

lim
α↓1

1

α− 1
PowSα(f, y) = log f(y).

Furthermore, the conditional version of the PowSα family displayed in Table 1 is noth-

ing but a direct application of the conditioning procedure. For the limit of the PowS
$
α,w,

we recall Equation (A.3) and immediately conclude that limα↓1
1

α−1PowS
$
α,w(f, y) =

LogS
$
w(f, y).

Turning to the censored focusing method, we recall from the analysis in Appendix B.2

that ,f "
w,αα = ,fw(y),αα + F̄α

w . Using this result, we obtain

PowS
"
α,w(f, y) = w(y)α

#
fw(y)1y ∕=r + F̄w1y=c

$α−1
+
#
1− w(y)

$
αF̄α−1

w − (α− 1),f "
w,αα

µ-a.e.
= w(y)αfw(y)

α−1
+

#
1− w(y)

$
αF̄α−1

w − (α− 1)
#
,fw,αα + F̄α

w

$
,
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which bears the following limit

lim
α↓1

1

α− 1
PowS

"
α,w(f, y) = w(y) lim

α↓1

(α− 1)αfw(y)
α−1

(α− 1)2
+

#
1− w(y)

$
lim
α↓1

(α− 1)αF̄α−1
w

(α− 1)2
− 1

=
1

2
lim
α↓1

%
w(y)

%
1

α− 1
αfw(y)

α−1 − 1

(
+

#
1− w(y)

$% 1

α− 1
αF̄α−1

w − 1

((

+
1

2
lim
α↓1

*
w(y)

%
fw(y)

α−1
#
1 + α log fw(y)

$
− 1

(

+
#
1− w(y)

$%
F̄α−1
w

#
1 + α log F̄w

$
− 1

(+
.

Therefore,

lim
α↓1

1

α− 1
PowS

"
α,w(f, y) = w(y) log fw(y) +

#
1− w(y)

$
log F̄w = LogS

"
w(f, y).

C Examples

C.1 Propriety CRPS∗ for Example 2

The extended metric d∗ : R ∪ {∗}× R ∪ {∗} → R is given by

d∗(x, y) =

3
44444444445

44444444446

|x− y|, if x ∈ R, y ∈ R

d(x), if x ∈ R, y = ∗

d(y), if x = ∗, y ∈ R

0, if x = y = ∗.

It is worth mentioning that Theorem 1 of Székely and Rizzo (2005) does not require

d(y) to be a metric. In particular, the triangle inequality does not need to hold.

Therefore, the selected distance d∗(y) = |y− r1|∨ |y− r2|, as this implies a continuous

d∗(x"w, y
"
w) on {w > 0} ∪ {∗} × {w > 0} ∪ {∗}. Indeed, for any x < r, it follows

that limy↓r1 d(x, y) = |x − r1| = limy→∗ d(x, y), while for any x > r, it follows that

limy↑r2 d(x, y) = |x − r2| = limy→∗ d(x, y). Furthermore, let x1, . . . , xn be n distinct

but arbitrary outcomes in {w > 0}. Consider the case, where one outcome is ∗, wlog

10



the last one. Then

n"

i=1

n"

j=1

aiajd
∗
(xi, xj) =

n"

i=1

n"

j=1

aiajd(x̃i, x̃j) ≤ 0, x̃i = xi1{w>0}(xi) + rk1{∗},

with strict equality if and only if ai = 0, ∀i since d is a strictly negative definite

kernel on R × R and x1, . . . , xn−1, rk|xi ∈ {w > 0} ∀i is a particular set of outcomes

in R, ∀k ∈ {1, 2}. If none of the outcomes is ∗, we can borrow the strictly negative

definiteness of d on R×R in a similar way, by understanding that any set of arbitrary

outcomes in {w > 0} is a particular set of arbitrary outcomes in R. But then, Theorem

1 of Székely and Rizzo (2005) applies, whence the CRPS is also proper with respect to

(R∗, d∗).

C.2 Localised NP for T = 1

Consider the special case T = 1. For one observation, it is straightforward to derive

a most powerful test on Ac
. For any h1 ∈ h, the relevant maximisation problem

simplifies to

max
φ∈Φ(α)

Ep1φ(y) = max
φ∈Φ(α)

7
Ef1φA(y) + F1(A

c
)E

[h1]
"
Ac

φAc(y)
8

= max
αA≤α

9
max

φA∈ΦA(αA)
{Ef1φA(y)}+ F1(A

c
) max
φAc∈ΦAc (α−αA)

7
E
[h1]

"
Ac

φAc(y)
8:

= max
αA≤α

9
max

φA∈ΦA(αA)
{Ef1φA(y)}+ F1(A

c
)
α− αA

F0(Ac)
1Ac

:
.

After all, rejecting with probability
α−αA
F0(Ac) if y ∈ Ac

is optimal since this is size correct

and any more complicated test function φAc has lower power. This can be verified as

follows. For all level α− αA tests φAc , i.e. φAc ∈ ΦAc(α− αA), we have that

F1(A
c
)E

[h1]
"
Ac

φAc(y) ≤ F1(A
c
) sup

h1∈h
{E

[h1]
"
Ac

φAc(y)}

= F1(A
c
) sup

h0∈h
{E

[h0]
"
Ac

φAc(y)}

≤ F1(A
c
)
α− αA

F0(Ac)
.
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Consequently, the test

φ∗
Ac(y) =

α− αA

F0(Ac)
, y ∈ Ac,

is most powerful against any other test φ∗
Ac(y) of size α− αA.

This solution, also documented by Holzmann and Klar (2016), coincides with the

UMP test given by Theorem 3. Indeed, suppose that the size α is such that
F1(Ac)
F0(Ac) = c,

i.e. not all of the size is spent on A, then the randomisation probability γ in Theorem

3 is such that

α = αA + γF0

%
λ(y) =

F1(A
c
)

F0(Ac)

(
= αA + γF0 (A

c
) =⇒ γ =

α− αA

F0(Ac)
.

C.3 CRPS

CRPS
"
w1
(F, y) = w1(y)CRPS(F

"
w1
, y) +

#
1− w1(y)

$
CRPS(F

"
w1
, r)

= 1(−∞,r)(y)

%! r

−∞

#
F (s)−∆y(s)

$2
ds+

! ∞

r
(1− 1)

2
ds

(

+
#
1− 1(−∞,r)(y)

$%! r

−∞

#
F (s)−∆r(s)

$2
ds+

! ∞

r
(1− 1)

2
ds

(

= 1(−∞,r)(y)

%! r

−∞

#
F (s)−∆y(s)

$2
ds+

! ∞

r
(1− 1)

2
ds

(

+
#
1− 1(−∞,r)(y)

$%! r

−∞

#
F (s)−∆y(s)

$2
ds+

! ∞

r
(1− 1)

2
ds

(

=

! ∞

−∞
w1(s)

#
F (s)−∆y(s)

$2
ds
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CRPS
"
w2
(F, y) = w2(y)CRPS(F

"
w2
, y) +

#
1− w2(y)

$
CRPS(F

"
w2
, r)

= 1(r,∞)(y)

%! r

−∞
(0− 0)

2
ds+

! ∞

r

#
F (s)−∆y(s)

$2
ds

(

+
#
1− 1(r,∞)(y)

$%! r

−∞
(0− 0)

2
ds+

! ∞

r

#
F (s)−∆r(s)

$2
ds

(

= 1(r,∞)(y)

%! r

−∞
(0− 0)

2
ds+

! ∞

r

#
F (s)−∆y(s)

$2
ds

(

+
#
1− 1(r,∞)(y)

$%! r

−∞
(0− 0)

2
ds+

! ∞

r

#
F (s)−∆y(s)

$2
ds

(

=

! ∞

−∞
w2(s)

#
F (s)−∆y(s)

$2
ds
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