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Bayesian Tensor Autoregressive Models 1. Preliminaries

Networks and Connectedness in Economics and Finance
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Figure: Example of a financial network in crisis and non-crisis periods.

Billio, Getmansky, Lo, Pelizzon (2012), Econometric Measures of Connectedness and Systemic Risk in the
Finance and Insurance Sectors, Journal of Financial Economics, 104, 535-559
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Bayesian Tensor Autoregressive Models 1. Preliminaries

Networks @ Ca’ Foscari
Better statistical tools to extract networks

Sparsity

e Ahelegbey, Billio, Casarin (2016a), “Bayesian Graphical Models for Structural

Vector Autoregressive Processes” Journal of Applied Econometrics, 31(2),
357-386.

e Ahelegbey, Billio, Casarin (2016b), “Sparse Graphical Vector Autoregression: A
Bayesian Approach”, Annals of Economics and Statistics, 123/124, 1-30.

e Billio, Casarin, Rossini (2019), “Bayesian nonparametric sparse VAR models”,
Journal of Econometrics, 212(1), 97-115.

Breaks and regimes
e Bianchi, Billio, Casarin, Guidolin (2019), “Modelling Systemic Risk with Markov
Switching Graphical SUR Models” Journal of Econometrics, 210(1), 58-74.

e Ahelegbey, Billio, Casarin (2021), “Modeling Turning Points in the Global Equity
Market”, Econometrics and Statistics, forthcoming.
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Bayesian Tensor Autoregressive Models 1. Preliminaries

Networks @ Ca’ Foscari

Impact of network connectivity

Impact of connectivity

e Billio, Caporin, Panzica, Pelizzon (2022), “The impact of network connectivity on

factor exposures, asset pricing, and portfolio diversification” International Review
of Economics and Finance, 84, 196-223.

e Billio, Pelizzon, Frattarolo (2022), “Networks in risk spillovers: A multivariate
GARCH perspective”, Econometrics and Statistics, forthcoming.

e Agudze, Billio, Casarin, Ravazzolo (2022), Markov Switching Panel with
Endogenous Synchronization Effects, Journal of Econometrics, 230(2), 281-298.
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Bayesian Tensor Autoregressive Models 1. Preliminaries

Networks @ Ca’ Foscari

New network connectivity and complexity measures

Entropy

e Billio, Casarin, Costola, Pasqualini (2016), “An entropy-based early warning
indicator for systemic risk” Journal of International Financial Markets, Institutions
and Money, 45, 42-59.

e Billio, Casarin, Costola, Frattarolo (2019), “Contagion dynamics on financial
networks”, in J. Chevallier, S. Goutte, D. Guerreiro, S. Saglio and B. Sanhaji
(Eds.) International Financial Markets (Vol 1), Routledge Advances in Applied
Financial Econometrics.

Opinion Dynamics
e Billio, Casarin, Costola, Frattarolo (2018), “Disagreement in Signed Financial
Networks”, in M. Corazza, M. Durban, A. Grané, C. Perna and M. Sibillo (Eds.)

Mathematical and Statistical Methods for Actuarial Sciences and Finance,
Springer Verlag.

e Billio, Casarin, Costola, Frattarolo (2019), Opinion Dynamics and Disagreements
on Financial Networks, Advances in Decision Sciences, 23(4), 1-27.
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Bayesian Tensor Autoregressive Models 1. Preliminaries

Networks @ Ca’ Foscari

From network extraction to modelling temporal sequences of networks

General research questions

Q: how to design suitable models for random networks?

Q: how to measure the impact of randomness on standard network statistics?
Q: how to model and forecast temporal networks?

Challenges
e guarantee model parsimony
e extend standard econometric models to network data (preserve interpretability)
e allow for model flexibility (exploit data structure)

develop feasible inference methods

deal with the computational cost

= New models for networks and temporal networks
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Bayesian Tensor Autoregressive Models 1. Preliminaries

Networks @ Ca’ Foscari
New models for networks and temporal networks

Matrix models

e Billio, Casarin, Costola, lacopini (2021), “"COVID-19 spreading in financial
networks: A semiparametric matrix regression model”, Econometrics and
Statistics, forthcoming

e Billio, Casarin, Costola, lacopini (2021) “A matrix-variate t model for networks",
Frontiers in Artificial Intelligence, 4, 49.

e Billio, Casarin, Costola, lacopini (2022), “Matrix-variate Smooth Transition

Models for Temporal Networks”, Innovations in Multivariate Statistical Modeling,
Springer, 1, 137-167

Tensor models

In this presentation

e Billio, Casarin, lacopini, Kaufmann (2023), “Bayesian Dynamic Tensor Regression”
Journal of Business and Economic Statistics, 41(2), 429-439.

e Billio, Casarin, lacopini (2023), “Bayesian Markov switching Tensor regression for
time-varying networks” Journal of the American Statistical Association (Theory &
Methods), forthcoming
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Bayesian Tensor Autoregressive Models 2. Introduction

Introduction

By array data we mean data occurring in the shape of matrices or multi-dimensional
arrays (i.e. tensors).

Networks
A network (or graph) G = (V/, E) is given by a set of vertices, V, and a collection of
edges, E, between them.

= may represent the dependence between random variables (vertices).

Array and network data:

e high dimensionality

meaningful and complex structure

e dynamic structure

multiple layers

e time-varying sparse topologies
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Bayesian Tensor Autoregressive Models 2. Introduction

New time varying dynamic networks

Contributions

» methods & models = array data

» application = network data

Proposals for dynamic network modelling of edge information:

e [BDTR] Billio, Casarin, lacopini, Kaufmann (2022), “Bayesian Dynamic Tensor
Regression” (this talk)

= multi-layer networks with dynamic, real-valued edges
= smooth dynamics

e [BMSTR] Billio, Casarin, lacopini (2022), “Bayesian Markov Switching Tensor
Regression for Time Varying Networks"

= multi-layer networks with dynamic, binary edges
= discrete switching dynamics
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Bayesian Tensor Autoregressive Models 2. Introduction

Questions and aims

Research questions:
Q: possible to exploit information from the structure of data?
Q: how to model a time series of tensor data?

Q: more data, few relevant = how to account for sparsity?

Goals:
(i) propose dynamic models for tensors of data
(ii) account for different types of data and dynamics

(iii) explore dynamics of shock propagation (impulse-response) on real-valued networks

Our proposal:
1) use tensors = operations and representations

2) use global-local hierarchical prior distributions = sharing of information and
sparsity recovery
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Bayesian Tensor Autoregressive Models

2. Introduction

Motivation

Q: why not vectorize?

X estimation is infeasible
X requires unclear restrictions on coefficients

X disregards topological information in the structure of data

Q: why use tensors?

v/ estimation is feasible
v preserve and exploit data structure information

v/ powerful decompositions and operators

General model formulation and parametrisation allows:

e generalisation of linear regression models to tensor framework
e parsimonious model specification
e learn sparsity patterns from data

e allows for flexible prior definition and efficient posterior computation

12-13 June 2023 Billio
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Bayesian Tensor Autoregressive Models

2. Introduction

BDTR paper — Motivation

Research questions:
Q: how to exploit data structure information?
Q: how to model a time series of array data?

Q: more data, few relevant = how to account for sparsity?

Goals:
(i) provide a model able to deal with array data
(ii) explore dynamic process of real-valued networks/graphs

(iii) analyse shock propagation through time and space

12-13 June 2023 Billio
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Bayesian Tensor Autoregressive Models

2. Introduction

BDTR paper — Methods

» Methods:

[ Yit = Bi Xpy1 vec(X:) + €

4

yt =B XD+1 vec(Xt) aF gt

e linear regression model for tensor time series data
e generalization of multivariate linear regression

tensor-valued impulse response analysis

PARAFAC tensor decomposition = parsimony

hierarchical global-local shrinkage prior = sparse coefficients

» Application:

e 2-layer network, international trade + capital flow
e analysis of edge-shock propagation

12-13 June 2023 Billio

12



Bayesian Tensor Autoregressive Models

2. Introduction

BMSTR paper — Motivation

Research questions:
Q: how to model a time series of binary networks?
Q: how to study structural breaks in network structure?

Q: hot to account for different sparsity patterns?

Goals:
(i) provide model for time varying binary graphs
(i) infer regimes driving the graphical structure

(iii) uncover role of economic variables in affecting edge probability

12-13 June 2023 Billio
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Bayesian Tensor Autoregressive Models 2. Introduction
BMSTR paper — Methods
» Methods:

Xijk,t|pt; Giji (t) ~ p(t)dg0} (Xiji,e) + (1 — p(t))Bern(xiji¢|ijk,¢)
bine = exp{Z;giik(t)}
T 1+ exp{Zigin ()}

zero-inflated logit for each entry

Markov switching dynamics for parameters

Bayesian inference via Pélya-Gamma data augmentation

PARAFAC tensor decomposition = parsimony

hierarchical global-local shrinkage prior = sparse coefficients

» Application:
e financial network EU institutions

e impact of risk factors and network topology on edge probability
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Bayesian Tensor Autoregressive Models 1. Introduction

Motivation
Availability of data:

(i) increasing size = high dimensionality
(i) multiple data sources = multiple “layers” (e.g., cross section, time, space, ...)

= gathered or meaningfully rearranged into multidimensional arrays (tensors).

ST [

Tensor-valued data:
e multi-country panel: m variables, n countries, t times — 3-order tensor (e.g.,

Hoff (2015), Canova and Ciccarelli (2004)).

e temporal networks: relations between n subjects, observed t times — 3-order
tensor (e.g., financial networks Billio et al. (2012)).

o medical data: sequence of n x m brain images — 3-order tensor (e.g., Zhou
et al. (2013), Li and Zhang (2017)).

o multi-layer networks: relations between n subjects, d attributes, observed t
times — 4-order tensor (e.g., social networks Hoff et al. (2002), Hoff (2011),
Hoff (2015))
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1. Introduction

Bayesian Tensor Autoregressive Models

Motivation: COMTRADE & BIS Multi-Layer Networks
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Figure: International trade and financial networks. Nodes: countries. Edges: flows.
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Introduction

1.

Bayesian Tensor Autoregressive Models

COMTRADE & BIS Multi-Layer Networks

Motivation
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Figure: International trade and financial temporal networks. Nodes: countries. Edges: flows.
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Bayesian Tensor Autoregressive Models 1. Introduction

Questions and Aims

Research questions:
Q: how to model a time series of tensor-valued data?
Q: many variables, few relevant = how to account for sparsity?

Q: possible to exploit information from the structure of the data?

Goals:

G: provide a dynamic model for tensor-valued data

G: explore dynamics of (shock propagation) on tensors

Our contribution:

C1: use tensors algebra (spaces, operations and representations)
C2: use global-local hierarchical prior distributions (information sharing, sparsity)

C3: extend to tensor dynamic models the impulse response analysis

12-13 June 2023 Billio 14



Bayesian Tensor Autoregressive Models 1. Introduction

Tensors

Definition 1 (Tensor).

A real valued order-D tensor is an array X € R/,

Horizontal Slices Lateral Slices Frontal Slices

Column (Mode-1) Row (Mode-2)  Tube (Mode-3)
Fibers Fibers Fibers

x: 1,

1.3

X3

>

X.31

v/ Tensor algebra generalizes matrix algebra to multiple dimensions
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 2 (Matricisation).

Let X € Rh%xIv be a3 order-N tensor. The mode-k matricisation maty is the

operator defined as:
matk : RIIX~~-XIN N lexl_k

which maps a tensor X’ of dimensions (/1, ..., Iy) into a matrix X of size (I, x I_x),
where I =T, . Ij.

Remarks:

» ‘“cut” the tensor into slices of Iy rows — stack slices horizontally

> vec(X) = maty«(X), with " =T[; J;
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 3 (Mode-n product).
Let X € Rh*-*Iv pe 3 order-N tensor, A € R?>*h and v € R,
The mode-n product X, is defined as follows:

(XX”A)i17~~-,in71aj7in+1,- i T Zx’h wsinseesin @ in
in=1
In

(KX)o i =Y X i i Vi
in=1

Idea: compute the inner product of each mode-n fiber with the matrix/vector.
Effect: change n-th dimension of the tensor or reduces its order by one.

e Some operations performed in usual way (e.g., inner/Hadamard product, ... - see
also Kolda and Bader (2009), Cichocki et al. (2016))
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 4 (Contracted product).

The contracted product X' X y) between the (K + N)-order tensor
X e RJ1><...><JK><11><...><IN and the (N + M)—order tensor y c ]R/l><-~~><IN><H1><---><HM is a
(K + M)-order tensor defined as

h In
(XXNy)jl,...JK,hl,...,hM = } : o : : X.’jl:"'ajK7i1a"'7iNy’.lv‘-'yiN,hla“'th'

h=1  iy=1

e It has the mode-n product as special case when N =1and M =0 (i.e. Y =Yy).
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Bayesian Tensor Autoregressive Models

1. Introduction

Tensors Representations

Powerful tool: several tensor representations/decompositions available (Tucker,

PARAFAC, ...)

Definition 5 (PARAFAC(R) decomposition).

Let G € RhX-xIv and let R € N be the rank of G. It holds:

R

g:Zq/gr)o...o'y(A;),

r=1

+7 e RY. (1)

where o is the outer product: (v 0...0Yn)i,...iv = V1.4 "IN,y

Remark: multi-dimensional analogue of matrix low rank decomposition.

1
i 1y % %"
d 1
Y R N4 > /s
[ ] [ ] ]
= + ..+

1 2

nY o AR
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Bayesian Tensor Autoregressive Models 2. Model

A Tensor Model - Idea

Tensor Regression

For each entry of the response tensor:
Yir = B vec(Xy) + e, (2)
where i := (i1,...,iy). Compactly:

yt = /8 X N+1 vec(Xt) i St
gt ~ ./\/‘[1,“_7[,\,(0, Zl’ RN ZN)

Ve, Xt: response and regressor tensors, with possibly different order and/or size
B: coefficient tensor, with N 4 1 dimensions

&t noise, with tensor Normal distribution (see Ohlson et al. (2013))
straightforward inclusion of other regressors: scalars, vectors, matrices, ...
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Bayesian Tensor Autoregressive Models 2. Model

A Tensor Model - Idea

Tensor regression - Vectorised form

Given the tensor model

Vi = B xpni1vec(Xy) + &, Ec~ Ny y(0,X1,...,Xn) (3)
the corresponding vectorised model is
vec():) = maty41(B) vec(Xy) + vec(&r)
Sy =Byiixe+ €, €~NOIN®...®X1), (4)
where maty(-) is the mode-k matricization operator mapping to a matrix of size

dk X d_k (Where d_k = Hi;ék d,').

Remarks:
» Kronecker structure of vectorised model's covariance matrix
» parametrisation for B mapped to parametrisation for By 1
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Bayesian Tensor Autoregressive Models 2. Model

Existing Special cases

Univariate regression

If =1, Vje{l,..., N}, then model (3) reduces to:

yr = 3 vec(X;) + er = B'%x: + €4, et ~ N(0,02) (5

Multivariate regression

If ; =1, Vje{2,..., N}, then model (3) reduces to:

~—

y: = B xo vec(Xy) + € = Bx; + €, €: ~ N, (0,%) (6)

Examples:

e SUR, when X; = (I ® X) with X = [Xq,..., X,], X;i € R™%ki |y, € R™
e VAR, VECM, MAI, when X; = y; 1
e Panel VAR, when y; = [y1s, y2:] and vec(X:) = x; = g(y:-1)
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Bayesian Tensor Autoregressive Models 2. Model

New Special cases - Tensor Autoregressive

Matrix autoregressive model

A particular case of model (3) is a MAR(1), when V; € R’/ and &; = Yy
Yt = B X3 VeC( Yt—l) + Ef; Et ~ ./\/-["[(07 Z]_, 22) (7)

More generally, a MAR(p) for p € N is given by

p
Y: = ZBI x3 vec(Ye—i) + Et, E: ~ N1 4(0,X1,%5). (8)
=i

Use of matrix variate models/distributions:

state space time series models Harrison and West (1999)

Gaussian graphical models Carvalho et al. (2007)

dynamic linear models Carvalho and West (2007), Wang and West (2009)

longitudinal data classification and modelling Viroli (2011), Viroli and Anderlucci
(2013)

e matrix regression Viroli (2012), Ding and Cook (2018)
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Bayesian Tensor Autoregressive Models 2. Model

New special cases - Tensor Autoregressive

Tensor autoregressive of order 1

When ); is an order-D tensor and X} = );_1, then we get as particular case of
model (3), a tensor autoregressive model ART(1):

yt =B ><N—I—l VEC(yt_]_) ar gtv gt ~ -/\/‘Il,.A.,IN(Oa Zla ceey zN) (9

Tensor autoregressive of order p

More generally, we can define a ART(p), for p € N, as:

~—

P
Ve=> Bixnpivec(Ve i)+ &,  E~Np iy(0,%1,...,5n).  (10)
i=1
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Bayesian Tensor Autoregressive Models 2. Model

ART(p) and its properties

Proposition 1 (Properties of ART).

The following properties of the ART(p) process in Eq. 10 can be proved (see main
paper)

(1) it has an equivalent representation in terms of the contracted product
(2) it has an equivalent representation as a state-augmented ART(1) process

(3) under mild conditions on the coefficient tensor, the process is weakly stationary and

has an infinite moving average representation

(4) a sufficient condition for weak stationarity can be tested on the associated VAR

model
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Bayesian Tensor Autoregressive Models 2. Model
Properties of ART(1)

For studying the stability of the process, we use an equivalent compact representation
of the multilinear system obtained through the contracted product that provides a
natural setting for multilinear forms, decompositions and inversions:

p
Ve=Ao+ Y ARXnVeoj+ BXyXe + &,
j=1

iid
gt ~ Ml,...,/N(O7 Zla v 7ZN)7

where >_<a’b_is a shorthand notation for the contracted product Xilf...aer and X,
stands for X, .

Proposition 2 (Stationarity).

If p(ﬂl) < 1 and the process X; is weakly stationary, then the ART process in
eq. (11), with p =1, is weakly stationary and admits the representation

oo o0
Ve=(T-A) ' RyAo+ Y AFXNBXMXoic+ Y AFRXNE i
k=0 k=0
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Bayesian Tensor Autoregressive Models 2. Model

Properties of ART(1)

By vectorising the ART(1) in (9), we get the equivalent VAR representation
vec(Ve) = Biyy vec(Ve_1) +vec(€r), vec(€) SN+ (0, T30 T ® %) (12)

The VAR(1) in eq. (12) is weakly stationary if and only if the ART(1) in eq. (11) is
weakly stationary. An equivalent result holds for any p > 1.
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Bayesian Tensor Autoregressive Models 2. Model

Proposed Parametrization

Parsimonious Parametrization of the

unrestricted VAR(1) ART(1)
N+1 1 N N N+1 1 N
IT65+5IT6IT (s +1) IT6+35> 60+
Jj= j=1 j=1 j=1 i=1
N~ -~ 4 N~ /
coeff covariance coeff covariance

Parsimonious Parametrization of the

PARAFAC(R) decomposition for B
B:Zﬁgr)o...o,@%)
r=1

Restricted ART(1): R MM+ Y, fi(lj+1)/2 =  estimation feasible
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Bayesian Tensor Autoregressive Models 2. Model

Proposed Parametrization

12000

. . . . Unrestricted
Parsimonious Parametrization =

10000

unrestricted VAR(1)

N+1 N
Sill

8000 -

N
I1 4+ 5I15I1 G+ )
j= j=1 j=1

Number of parameters

4000 -

ART (1) with PARAFAC(R)

2000 -

N+1

N
1
R;u+5210(0+1) -
J= J=

Figure: parameter reduction.
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Bayesian Tensor Autoregressive Models 2. Model

Parametrization Issues
Q: Identification of PARAFAC marginals Bff) ?

(i) scale invariance

Alrﬁgr) 0...0 )‘NrIB(r) = IBJ(r) ° ﬁgr)a v )‘jr : H )\jr =1
J

(ii) permutation invariance
Bf(r) 0...0 Bxl(r) = ,BY) 0...0 ,6%), V permutation 7(-)

(i) (if N = 2) invariance up to multiplication by orthonormal vectors

(B}r)cl> ° (Bf”c’) = ,BJ(-r) ) Bgr), VceRY :dc=1

Remark 1 (PARAFAC Parametrisation).

» reduces the size of parameter space
» coefficient tensor B always identified

» no interest in marginals ,BJ(-r)
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Bayesian Tensor Autoregressive Models 3. Example

Example - matrix autoregressive MAR(1)

Vectorised MAR(1) with PARAFAC(R) parametrisation

The vectorised form of the MAR(1) model (7) with a PARAFAC(R) decomposition on the
tensor coefficient B is equivalent to a VAR(1) with restricted parameters:

vec(Y:) = mat3(B) vec(Yi—1) + vec(E;), E: ~N(0,X,5%))

Y = Béytfl + € € ~ N(O, Z) (13)
The coefficient matrix B} and the covariance matrix X are given by
R
B =Y B9 @ vec (B 0 8Y), =50
r=1

Parameters in this example:

unrestricted VAR(1) MAR(1) with PARAFAC(R)
3 1 2 2 3 1 2
16+ 11sd]s+0 RY_Gi+5> hi(li+1)
j=1 j=1 j=1 J=1 =1

12-13 June 2023 Billio 31



Bayesian Tensor Autoregressive Models

4. Estimation

Prior Specification

Hierarchical global-local shrinkage prior for tensor marginals:

(B3I, ¢y Whr) ~ N3 (0, 7 6r Was)  Vhr

global comp |ocal

e global and component parts

7(r) ~ Ga(a;, by),  7(¢) ~ Dir(e)

e local part

7(Anr) ~ Ga(ax, by), T(Wh,r k| Anr) ~ Exp(N},,/2)

Noise covariances
m(y) ~ Ga(ay, by), T(Zaly) ~ IWy, (Th, YVh)

12-13 June 2023 Billio
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Bayesian Tensor Autoregressive Models 4. Estimation

Prior Specification RN - -

Figure: DAG of prior structure and model.
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Bayesian Tensor Autoregressive Models 4. Estimation

Posterior Computation - Gibbs sampler

Step 1. sample global and component variance hyper-parameters from
e collapsed Gibbs: p(1r|B,W) ~ GiG(aw — dy/2,2b,,2C,) then ¢, =1pr/ >
o p(7|¢p, B,W) ~ GiG(a, — Rdy/2,2b,,23", N,)

Step 2. sample local variance hyper-parameters and tensor marginals from
° p()\h,r|¢r77-7 ,35:)) ~ Ga <a,\ + Iy, by + H,Bﬁ,r) ) /\/T¢r>

r . r)?
o p(WhrklAnr 6. BY)) ~ GIG (3,2, 81 /(76,)) VK € 1, 1]
e p(BV1BY). B b7, Y. 51, 52,53, 54) ~ N, (g, ,)

Step 3. sample noise covariance matrices from
L4 p(7|217 227 z37 Z4) ~ ga(év + (Zlf‘;:l Ph + Tlh)/27 E’y + tr(z;l-;:]_ th;]-)/2)
® p(zh”}/a z*h? Bv Y) ~ leh(ﬁh + T/h7 ,Ywh + Sh)
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Bayesian Tensor Autoregressive Models 5. Application

Application | - COMTRADE data

(1998) (1999) (2000) (2001) (2002) (2003) (2004)
(2005) (2006) (2007) (2008) (2009) (2010) (2011)
(2012) (2013) (2014) (2015) (2016)

Figure: Trade network from 1998 (top left) to 2016 (bottom right). Nodes are countries, red and blue
edges stand for exports and imports between two countries. Edge thickness represents flow magnitude.
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Bayesian Tensor Autoregressive Models 5. Application

Empirical Application - Single layer network

Matrix autoregressive model - MAR(1)

Y: = B x3vec(Yi1) + E; E; ~ N10,10(0,X1,%>) (14)
» mode-3 matricized tensor: :H"‘l | HIRIE " I.’: | |
I— Bl = MLLIE Il iy P
mats(5) B3 ::ii_i i 1 jRmgEi " A
[vec(B..1), vec(B.2), . . ., vec(B:100)] :Ei:_l ba o Bl AR R i I'_'_I N B
402N i 1 -
» entry (/,) of Bj: jlgiijﬂl i :Ii -E‘i :iﬁ ::_-:j
impact edge j [t —1] — i [t] T Tt TR 3 b
Al Ik RO
..'Il L II { =
: . w| 41} 1 e el
Note: vertical regularities = 1l LT | e
transaction at t — 1 having similar “" | ST || kLS

impact on all transactions at t .
Figure: Estimated Bj.
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Bayesian Tensor Autoregressive Models 5. Application

Properties of ART(1) - Impulse Response Function

Definition 2 (Block-orthogonalized IRF for tensor models).

Denote ¥ the covariance matrix of the vectorised tensor autoregressive model
ART(1). We propose the block-orthogonalised impulse response function from the

transformation

vec(Vr) = icb,-et_,- = i(cb,-L)(L*let_,-) e ~N(0,%)
i=0 i=0
-y (®l)ne—i  m:~N(0,D) (15)
i=0
where
D=L1.2. ()= lg‘ g] ., bo=1I, o =Bd; 1, (16)

and A is a square matrix of size k equal to the number of entries to be shocked.
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Bayesian Tensor Autoregressive Models

Single layer network - block OIRF
DE exports +1%

5. Application
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Figure: Positive effects in red, negative effects in blue.
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Bayesian Tensor Autoregressive Models 5. Application

Single layer network - block OIRF
UK exports +1%
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Figure: Positive effects in red, negative effects in blue.
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Bayesian Tensor Autoregressive Models 5. Application

Single layer network - IRF analysis

Comments on positive shock to US,DE,UK exports

e pos shock to US exports more effective on the network (higher average
magnitude) than to DE or UK

o all cases: overall positive effect on network =- stimulus to international trade

e all cases: immediate boost to imports of Switzerland, Germany and Austria

Comments on negative shock DE imports
e overall negative effect on international trade

e one lag - mostly affected: imports Austria, Switzerland, Germany and France

e more lags: alternating sign decay

» shock persistence = slow decay in all cases (similar decay pattern)
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5. Application

Bayesian Tensor Autoregressive Models

COMTRADE & BIS Multi-Layer Networks
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Figure: International trade and financial networks. Nodes: countries. Edges: flows.
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Bayesian Tensor Autoregressive Models 5. Application

Empirical Application - multi-layer networks

Tensor autoregressive model ART(1)

Ve =B xavec(Ye—1) + &, & ~ Nio,102(0, X1, X2, X3) (17)
unrestricted VAR(1) ART(1) with PARAFAC(R)
N+1 N+1 1

H/+2H/ H/+1 R;lj—i—zg i(; + 1)
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Bayesian Tensor Autoregressive Models 5. Application

Empirical Application - multi-layer networks

Tensor autoregressive model ART(1)

Vi = B xgqvec(Ve_1) + &, Er ~ N10,102(0, 1,32, 2 3) (17)
ol h 0.04
40 [ i - i o R, 1l 7 i 003
60 ket k 244 o o2
e mode-4 matricized: . Gl sk S M PR U 0 it |- L AR
80 F 8 0.01
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Figure: Estimated B;.
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Bayesian Tensor Autoregressive Models

5. Application

Empirical Application - multi-layer networks
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Figure: Estimated covariance matrices: 3, (left), 3o (center), 33 (right).
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Bayesian Tensor Autoregressive Models 5. Application

Impulse Response: US import

o overall slightly negative effect on both Shock to US imports: -1%
layers (trade and financial) of the network h—=1
e reaction of the financial layer is higher in AU o
magnitude = higher responsiveness of ;‘LI q
capital flows w.r.t. trade goods flows DK 1
g S FR
e most affected real goods transactions are - o .
-_— 0.5
between Switzerland, Germany and France =
SE
(the exporters) vis-4-vis UK, Ireland, us
Sweden and Japan (the importers) « mm 0
CH
e same relation occurs on the financial layer 5 ~ o&
of the network, with opposite sign and § g IF)II: 05
. = @ .
greater magnitude L= ©°B
IE
JP
e proposed interpretation: kind of SE 8
“substitution effect” R _
SEREEB =288

e fast decay
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Bayesian Tensor Autoregressive Models 5. Application

Impulse Response: UK financial flows

Shock to GB capital inflows: -1%
h=1 h=2
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Bayesian Tensor Autoregressive Models 5. Application

Impulse Response: UK financial flows

Shock to GB capital inflows: -1% and outflows +1%
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Bayesian Tensor Autoregressive Models 5. Application

shock capital inflows shock capital inflows + outflows

e overall slightly negative effect on the e one lag: positive average impact on
capital (in- and out-) flows between the capital flows, both in- and out- (in
countries particular, Japan, UK, Switzerland and

. . Denmark)

e Austria and Japan (among the top capital
exporters) = overall reduction of capital e impact on Denmark and Germany =
outflows moving in opposite directions, both on

from the financial and the commercial

e Ireland and Germany (among the least (similar in previous case)

capital exporting countries) = positive
effect on outflows e overall total impact of shock is greater

than in the previous two situations = due

e substitution effect between Switzerland to the magnitude of the shock

and Germany

e increase in UK capital outflows = overall

e trade layer: overall positive effect, with positive cascade effect (stimulates the

smaller magnitude than that on the outflows from other countries). Impact on

financial layer .
Y trade network is smaller

» Both cases: persistence of a financial shock greater than that of trade shock
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Bayesian Tensor Autoregressive Models 6. Conclusions

Conclusions

Proposal: linear, dynamic tensor regression model

generalises linear regression models to multi-dimensional regression
PARAFAC tensor decomposition for parsimony

hierarchical global-local shrinkage prior for sparse coefficients

good performance against synthetic data up to 50 x 50

vvyyvyy

.0

% application to COMTRADE network (matrix AR(1) model):

v/ impact of trade links is heterogeneous and sparse

v heterogeneous magnitude and persistence of shock propagation
v role of network topology in shock propagation

+% application to COMTRADE+BIS 2-layer networks (tensor AR(1) model):
v impact of trade and financial links are heterogeneous and sparse
v financial shock propagation has higher magnitude
v/ block-orthogonal tensor IRF
v/ within 4+ between layer shock propagation
v/ meaningful country-specific IRF results
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Bayesian Tensor Autoregressive Models 1. Appendix

Proof of Proposition - Part 1/3.

Denote with L the lag operator, s.t. LY = Vi1, by propertles of the contracted
product in Lemma 3, case (iv), we get (I AlL)xNyt Ao + BXyXs + &. We
apply to both sides the operator (Z + Al + .A%L2 et A{ 1[t=1) take t — oo,
and get

Jim (T — AS L)%Y, = (Z Lk)>‘<,\,(,2(0+z§>‘<MXt+5t).

k=0
From Behera et al. (2019), if p(A1) < 1 and Y is finite a.s., then
lim: 00 AlxNyo O and the operator y ;2 oAkL applied to a sequence Y; s.t.
|Vit| < c a.s. Vi converges to the inverse operator (7 — AlL) . By the properties

of the contracted product we get
o0
ZAIXN (LK Ao) + Y (AfXnB)Xm(L Xt)+ZA1><N (LKEr)
k=0 k=0

(I .AlL XN.Ao-i-Z.A XNBJ;(MXt_k—i-Z.ZIl(;(Ngt_k.
k=0 k=0
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Bayesian Tensor Autoregressive Models 1. Appendix

Proof of Proposition - Part 2/3.

From the assumption & /\/',1 (O, Z1,...,Xn), we know that E(Y:) = Db,
which is finite. Consider the auto-covariance at lag h > 1. From Lemma 3, we have

E((yt - E(yt)) o (yt—h - E(yt—h))) = E(yt o yt—h) = E(yp_(lytth). Using the

infinite moving average representation for )y, we get

o0
E(ytilylh) ( ZA XNEr k+ZAk+hXNEt k—h) X1 z KNEt—k—h T)
k=0 =

B3 A RuEemsn) %2 (30 T hZn(AT)),

k=0 k=0

where we used the assumption of independence of &;,&;:_p, for any h > 0, and the
fact that (X XyY)" = (YT xnX 7).
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Bayesian Tensor Autoregressive Models 1. Appendix

Proof of Proposition - Part 3/3.

Using E(&;) = O and linearity of expectation and of the contracted product we get

E<yt>_<1ytT_h> = Z ARFhSNE <5t_k—h>_<15tT_k_h) Xn(ATk
=
= AIINER (AT = AP (T - ARNERNAT) T,
k=0
where E(gt—k—h;(lgttk_h) = E(gt—k—h o gt—k—h) =L = 21 Ol .. O ZN. From the
assumption p(A) < 1 it follows that the above series converges to a finite limit,
which is independent from t, thus proving that the process is weakly stationary.
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Bayesian Tensor Autoregressive Models 1. Appendix

Lemma 3 (Properties of contracted product).

Let X € Rh¥*Iv and Y € RAX>IvxIvixexInee [ et (A, .%5) be a partition of
{1,...,N+ P}, where # = {1,...,N}, % = {N+1,...,N+ P}. It holds:

(i) ifP=0and l,=J,, n=1,...,N, then XxnY = (X,Y) = vec(X) - vec(D).
(ii) if P>0and |, = J, forn=1,... N, then

XXNY = vec(X) X1 V(g7 € RIIP
y>_<N.)(' = y(yl’yz) X1 VGC(X) & lex...xjp'

(i) let Z = {1,...,N} and ¢ = {N+1,...,2N}. If P =N and I, = Jp = Intn,
n=1,..., N, then

X X Ny>_< N/Y = vec(X)’Y(%’%) VEC(X).

(iv) let M = N + P, then X oY = X5:1Y7, where X,Y are (Il x ... x Iy x 1)-
and (J1 % ... x Jy x 1)-dimensional tensors, respectively, given by X. ., = X,
_ T _
z:,...,:,l =Y and 2j1,~--JM,J'I\/I+1 o ZJ'M+1J/w,-~-,j1'
12-13 June 2023 Billio 7



Bayesian Tensor Autoregressive Models 1. Appendix

Lemma 4 (Relation ART(p) and ART(1)).

Every (hh X I x ... x Iy)-dimensional ART(p) process

p
Ve = ZAkiNyt—j + &

k=1
can be rewritten as a (ph x k X ... x ly)-dimensional ART(1) process

Y= A;(NZt—l + &
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Bayesian Tensor Autoregressive Models 1. Appendix

Proof of Lemma .

Consider a ART(p) process with J; € Rh**v and p > 1. We define the
(ph x I x ... x Iy)-dimensional tensors ), and &,, for k =0,...,p, as

X(k—l)ll—{—l:kll,:,...,:,t =Ytk é(k—l)l1—&—1:kll,:,...,:,t =&k

Define the (ph x X ... X Iy X ply X |, X ... X Iy)-dimensional tensor A as
A(l:ll,:,...7:,(k—l)l1+1:kll,:,...,: = Ak k=1,...,p

A(kll+1:(k+1)ll,:,...,:,(kfl)llJrl:kIl,:,...,: =7 =1k p—1,

and 0 elsewhere. We can rewrite the (/1 X k x ... x ly)-dimensional ART(p) process
p
Ve = ZAkXNyt—j + &
k=1

as the (ply x  x ... x Iy)-dimensional ART(1) process

Yy = A;(Nlt—l + &

12-13 June 2023 Billio 8



Bayesian Tensor Autoregressive Models 1. Appendix

Proof of Proposition 3

Proof of Proposition 3.
From Brazell et al. (2013, Theorem 3.2, Corollary 3.3), we know that T is a group
(called tensor group) and that the matricization operator maty.y 1.y is an

isomorphism between T and the linear group of square matrices of size I* = H,’Yzl Iy.

Therefore, there exists a one-to-one relationship between the two eigenvalue problems
AXyX = AX and Ax = Ax, where A = maty.y 1.n(A). In particular, A = A and

x = vec(X).

Consequently, p(A) = p(A) and the result follows for p = 1 from the fact that

p(A) < 1 is a sufficient condition for the VAR(1) stationarity Liitkepohl (2005,
Proposition 2.1).

Since any VAR(p) and ART(p) processes can be rewritten as VAR(1) and ART(1),
respectively, on an augmented state space, the result follows for any p > 1.
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Bayesian Tensor Autoregressive Models 1. Appendix

Properties of ART(1) - Impulse Response Function

Orthogonalised IRF requires orthogonal shocks:
IRF, = ]E[yt+h|Eij,t = 0jj, E—ij,t =0, Fr_1] — E[VeynlE: = 0, Fr_1] (18)

e covariance restrictions for avoiding/mitigating compositional effect (due to
contemporaneous correlations)

e Cholesky = not invariant to ordering of variables; not unique

Generalised IRF (Koop et al. (1996), Pesaran and Shin (1998)):
GIRFp = E[Verh|Eje = 6, Fe-1] = EVenl Fe1] (19)

e unique and invariant to ordering of variables

e no covariance restrictions: when one variable is shocked, other variables also vary,
then average by integrating out all other shocks

e not distinguish causes of a change in E[Viip|Fi—1]

12-13 June 2023 Billio 10



Bayesian Tensor Autoregressive Models 1. Appendix

Prior for entry of tensor B

The joint distribution of PARAFAC marginal entries is HLI W(B,(mr, ¢r, Wh,r). To obtain the
conditional prior distribution for tensor entry bjy, we apply:

Theorem 5 (4 in Springer and Thompson (1970)).

The probability density function of the product z = Hf;l x; of J independent Normal random

variables x; ~ N (0, Jf), j=1,...,J, is a Meijer G-function multiplied by a normalising constant H:
4l
P20, {07 ) = H- 613 (£ [, 0), (20)
where
J
H=@r) 2 o (21)
j=1

and G;)'(+|-) is a Meijer G-function (c € R,s € C, integral along vertical line in the complex plane):

A _ 1 et L, 17, T(s+b) [T, T(1—a —5)
bly"'qu ]._[j?:n+1 r(s+al) 'H7:m+1 r(]' - bJ _S)

Gmn

p,q

ds.  (22)

270 Jo_joo
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Bayesian Tensor Autoregressive Models 1. Appendix

Prior for entry of tensor B

Define 3, = (') ,6’2; ,83 P ,B ") Under the prior specification, by Theorem 5 we have the

4,p

conditional pr/or distribution:

R 4 1 i
3 63 (8- T1 3 W' |0) (23)
r=1 h=1 r
with:
4 1 5 1 c+i° 4 s

6o(o 11 2, Vor 0) - 210 J oo ( @ror )4 H /) (24)

h=1 &=l h=
H, = (2n)72 - (r¢,)™* H w, ). (25)

j=1

Thus, the marginal prior distribution is: m(bjkp) = /7r(b,j;<,,|7'7 &, W) (7)m()m (W) dr d¢p dW.
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Bayesian Tensor Autoregressive Models 1. Appendix

Prior for entry of tensor B

By Y(1LY

Eapiial v Norusl CDF Y(11,1) ) Eupral v Noeual CDF Y075

Figure: Simulated distribution of two entries of tensor (std Normal marginals) vs
Normal with same mean and variance vs std Normal, for R = 5.
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Bayesian Tensor Autoregressive Models 1. Appendix

Prior for entry of tensor B

Tail of distribution - entry ¥(1,1,1)

Tail of distribution - entry (7,4, 5)

Figure: Simulated distribution (tail) of two entries of tensor (std Normal
marginals) vs Normal with same mean and variance vs std Normal, for R = 5.
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Bayesian Tensor Autoregressive Models 1. Appendix

Prior for entry of tensor B

Eatry Y(L 1, o Bty Y(7,45)

Eunpircal v Nocwal CDF Y(,1,1) . Eunpircal vs Normal CDF Y(7,4.5)

Figure: Simulated distribution of two entries of tensor (std Normal marginals) vs
Normal with same mean and variance vs std Normal, for R = 10.
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Bayesian Tensor Autoregressive Models 1. Appendix

Prior for entry of tensor B

il of distibution - ntry (11,1

Figure: Simulated distribution (tail) of two entries of tensor (std Normal
marginals) vs Normal with same mean and variance vs std Normal, for R = 10.
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Bayesian Tensor Autoregressive Models 1. Appendix

Initialisation of Gibbs sampler

Gibbs sampler sensitive to initial value of some key parameters:

» tensor PARAFAC marginals {ﬂj(.r)}N initialised via Simulated Annealing;
Intuition: find the set of marginals generating a sufficiently sparse tensor, while
allowing deviations from zero.

» other parameters initialised from prior distribution;
Intuition: sampler not very sensitive to their starting value.
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Bayesian Tensor Autoregressive Models 1. Appendix

Initialisation marginals BJ(.r) -

Intuition: find the set of marginals generating a tensor with many entries close to
zero, others far zero. Use Simulated Annealing for minimising the objective function:

R
FIB™Y) = o Hg(n)H2 +s Y ggr)xn) (26)
r=1 2
Penalties:
e 19 > 0 — tensor quadratic norm;
e )3 > 0 — quadratic norm 3-order marginals.
Cooling schedule, with fixed g > O:
Cln)=—31——  n=1,...,Nsa. (27)

1y log(n)
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