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Small Price Changes, Sales Volume, and Menu Cost 

 
 

Abstract 
 

In many retail price datasets, small price changes account for 20%–44% of price changes, which 

much of the literature interprets as evidence against the menu cost model. To reconcile, we consider 

a prediction of the menu cost model—an inverse relationship between sales volume and the width 

of the (S, s) band, which implies that if sales volume is high, small price changes will be more 

frequent. Analyzing scanner price dataset that contains information on both prices and sales-

volume, we find evidence consistent with this prediction: small price changes are more frequent 

for products with higher sales volume. 
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1.   Introduction 

Extensive empirical analyses of price-setting behavior using various micro-level price 

datasets, show that individual prices tend to change at a significantly lower frequency 

than the corresponding market conditions.1 A leading theory offered to explain the 

sluggish response of prices to underlying shocks is the menu cost theory, which posits 

that each time a firm changes a price, it incurs a lump sum cost (“menu cost”) that is 

independent of the size or the direction of the price change.2  

A key prediction of the menu cost theory is that firms will make infrequent but 

relatively large price changes because making small price changes are less profitable. 

However, empirical studies find that between 20%–44% of the observed price changes 

are small.3 This inconsistency is often cited as evidence against the menu cost theory.  

To reconcile small price changes with menu costs, Dotsey et al. (1999) hypothesize 

stochastic menu costs which lead to small price changes if the realized menu cost is 

small. Lach and Tsiddon (2007), Klenow and Malin, Midrigan (2011), Alvarez and Lippi 

(2014), and Chakraborty et al. (2015) offer evidence that is consistent with economies of 

scope in price setting with high average price change, allowing both small and large 

individual price changes.4 Rotemberg (1982b) and Chen et al. (2008) suggest that consumer 

inattention or fairness considerations can make small price changes profitable. 

We argue that small price changes do not necessarily contradict the menu cost model. 

The intuition of this argument is straightforward. In the menu cost model, a firm changes 

the price if the increase in profits expected from the price change exceeds the menu cost. 

Ceteris paribus, the expected profit from a price change will be greater the greater is the 

sales volume. In other words, the likelihood that a small price change is profitable 

 
1 See, for example, Liebermann and Zilberfarb (1985), Carlton (1986), Cecchetti (1986), Lach and Tsiddon 
(1992, 1996), Blinder et al. (1998), Levy et al. (1998), Eden (2001, 2018), Dutta et al. (2002), Levy et al. 
(2002), Owen and Trzepacz (2002), Baharad and Eden (2004), Bils and Klenow (2004), Álvarez, et al. 
(2006), Dhyne et al. (2006), Nakamura and Steinsson (2008), Kehoe and Midrigan (2015), Gorodnichenko 
et al. (2017), Anderson et al. (2015, 2017), and studies cited therein. For older surveys, see Romer (1993), 
Weiss (1993), Taylor (1999), Willis (2003), and Wolman (2007). More recent surveys include Klenow and 
Malin (2011), Leahy (2011), and Nakamuara and Steinsson (2013). 
2 See, for example, Barro (1972), Sheshinski and Weiss (1977, 1979, and 1982), Rotemberg (1982a,b), 
Akerlof and Yellen (1985), and Mankiw (1985). 
3 See, for example, Bils and Klenow (2004), Nakamura and Steinsson (2008), Chen et al. (2008), Klenow 
and Kryvtsov (2008), Midrigan (2011), Bhattarai and Schoenle (2014), and Klenow and Malin (2011). 
4 Eichenbaum et al. (2014) and Cavallo and Rigobon (2012) suggest that many of the reported small price 
changes are due to mesurment errors. Even these studies, however, find a non-negligible share of small 
price changes that cannot be explained by measurement errors. 
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increases with the sales volume.5 

To demonstrate this argument formally, we extend Barro’s (1972) menu cost model 

by deriving the relationship between the width of the (S, s) band and the sales volume. 

We show that the greater is the sales volume, the narrower is the optimal (S, s) band, 

which in turn implies that smaller price changes become more profitable.   

We test this prediction using Dominick’s scanner price data, which is particularly 

useful for our purpose because the data contain weekly information on both the prices 

and the sales volume for 18,035 different products in 29 product categories.  

We proceed as follows. In section 2, we derive analytically the relationship between 

the sales volume and the (S, s) band. In section 3, we discuss the data. In section 4, we 

present the empirical results. In section 5, we discuss robustness. We conclude in section 

6. In the Appendix, we report the details of some additional tests and analyses. 

2.   Sales volume and the width of the optimal (S, s) band 

Following Barro (1972), consider a profit maximizing monopolist producing a 

homogenous good. The linear demand and the quadratic cost functions are given by 

Y P uα β= − +  and 2( )C Y a bY cY= + + , where u is a symmetric demand 

disturbance/shifter, ( ) 0C Y′ > , and , , , , 0a b c α β > . The producer’s maximization 

problem is thus given by: 

( )2max

s.t.

PY a bY cY

Y P uα β

  − + +  
= − +

              (1) 

Setting MR MC= , and solving for P and Y, we obtain  

( )
( ) ( )

2 1 2*
2 1 2 1

c b cP u
c c

α β α β
β β β β

   + + +
= +   + +   

            (2) 

and 

( ) ( )
1*

2 1 2 1
bY u

c c
α β

β β
   −

= +   + +   
             (3) 

The second order condition for a maximum is given by 1 0cβ+ > .  

 
5 Bhattarai and Schoenle (2014) use micro-data underlying the US PPI to show that firms selling more 
products adjust prices more frequently. 
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In the absence of a disturbance 0u = , the profit maximizing output is given by  

( )0
*

2 1u

bY
c

α β
β=

−
=

+
               (4) 

where 0bα β− > , which is required for the output to be positive in the disturbance-free 

equilibrium. We can think of 
0

*
u

Y
=

as the expected output. 

Following Barro (1972, p. 19), suppose that the value of the disturbance changes from 

0 to u. Assuming that the firm continuously adjusts its price and output to the change in 

u, the resulting change in the firm’s profit, as Barro shows, is given by 

[ ]

( ) ( )

(0, )
0

0

2

( )

1
2 1 4 1

u

u

u

d du
du

P C Y du

b u u
c c

ππ

α β
β β β β

 ∆ =  
 

′= −

   −
= +   + +   

⌠

⌡

∫             (5) 

Next, assume that the firm’s price is sticky at P̂ , the optimal price in the disturbance-

free equilibrium, with 
ˆ

0dP
du

= . According to (2),  

( )
( )

2ˆ
2 1

c b
P

c
α β α

β β
+ +

=
+

               (6) 

We follow Barro (1972, p. 20) to assume that the disturbance is not “too small” or “too 

large”, i.e., min maxu u u≤ ≤ . This is necessary to avoid the situations of no production, 

which will be the case if minu u< , or a shortage, which will be the case if maxu u> . Then, 

( )

(0, )
0

0

2

ˆˆ

ˆ ˆ( )

2 1

u

u

u

d du
du

P C Y du

b u cu
c

ππ

α β
β β

 ∆ =  
 

 ′= − 
 −

= − + 

⌠

⌡

∫              (7) 

The expression in (7) is the change in the profit when the disturbance value changes from 
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0 to u, but the firm does not adjust its price, i.e., when the price is stuck at P̂ . 

The firm’s profit gain, if it adjusts its price to the demand shock, is therefore given by 

2
(0, ) (0, )ˆu u uπ π θ∆ −∆ =                (8) 

where  

( )
( )

21 2
0

4 1
c

c
β

θ
β β
+

= >
+

               (9) 

The expression in (9) can be interpreted as the loss the firm incurs for not adjusting its 

price in response to the demand shock. As Barro (1972, p. 20) notes, the symmetry of this 

loss means that what matters is the size of the demand shock, not its sign. It follows that 

the optimal price adjustment rule (S, s), is symmetric. Also, for a given disturbance u, the 

loss from not adjusting the price decreases with the price sensitivity of demand β , and 

increases with the slope of the marginal cost curve ( ) 2C Y c′′ = . 

If u follows a symmetric random walk, then the optimal (S, s) band is symmetric, 

given by ( )ˆ ˆ,h h− , where 

1
46ĥ γσ

θ
 =  
 

             (10) 

where γ  is a fixed, lump-sum menu cost, 2σ  is the variance of the Bernoulli process 

driving the symmetric random walk, and θ  is given by (9).  

According to (10), the higher is the menu cost, the wider is the band of inaction. On 

the other hand, a high θ  implies a narrow band of inaction. That is because a high θ , 

according to (8)–(9), means a greater profit loss from not adjusting the price. 

We can take advantage of the linear-quadratic structure of the optimization problem, 

to derive the relationship between the output and the optimal (S, s) band. Rewrite (9) as 

( )
( )

( )
( )
( )

2

2

1 2
4 1

1 2
2 1 2

c
c

cb
c b

β
θ

β β

βα β
β β α β

+
=

+

   +−
=   + −    

           (11) 

By (4), the term in the first brackets is the optimal level of output in the disturbance-free 
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equilibrium 
0

*
u

Y
=

. Therefore, (11) can be written as a function of 
0

*
u

Y
=

, 

( ) ( ) ( )
( )

2

0 0

1 2
* *

2u u

c
Y Y

b
β

θ
β α β= =

 +
=  

−  
           (12) 

with the derivative 

( ) ( )
( )

2

0

1 2
* 0

2u

c
Y

b
β

θ
β α β=

 +
′ = > 

−  
           (13) 

In other words, the greater is the monopolist’s expected output level, the greater is θ , 

which means that the greater is the loss the firm incurs from not adjusting the price. 

Combining (10) and (12), we have θ  

( ) ( )
( )

1
1 42

1

0

1 2ˆ 6 *
2u

c
h Y

b
β

σ γ
β α β

−
−

=

  + =   −    
          (14) 

with a partial derivative 

( )0

ˆ
0

*
u

h
Y

=

∂
<

∂
              (15) 

The expression in (15) is the main result: the greater is the monopolist’s output level, 

the smaller is ĥ , and thus the narrower is the optimal (S, s) band. In other words, there is 

an inverse relationship between the level of output and the width of the (S, s) band. If the 

output of the monopolist is high (low), then the (S, s) band will be narrower (wider), 

which means that we will see more (less) frequent smaller price changes. 

This prediction can be tested with a dataset that contains both retail prices and 

quantities. The model predicts that if the average quantity sold is high, then we will see 

more frequent small price changes. 

3.   Data  

We use the dataset of Dominick’s, a large US retail food chain, operating 93 stores in 

the greater Chicago area with a market share of 25%. The dataset contains 98+ million 

weekly observations over an 8-year period, from September 14, 1989 to May 8, 1997, for 
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18,035 products (UPCs) in 29 product categories, including food, cleaning products, 

pharmaceutical products, and hygienic products. Each weekly observation includes the 

retail price, the number of units sold, the revenue, the retailer's markup and some product 

attributes. These features make the Dominick's dataset especially well-suited for our 

analysis. In the data, there is a large variability in both prices and sales volumes, both 

across goods and across stores. The latter is important, because it allows us to test the 

effect of variation in the sales volumes across stores, holding the product constant.6 

4. Empirical findings 

4a. Results of cross-category analyses 
 

Table 1 shows by product category the number of all price changes and the number of 

small price changes ( ¢0 )1P∆ ≤ , both conditional on observing the prices in consecutive 

weeks (t and t + 1), the percentage of small price changes out of all price changes, and the 

average sales volume. The latter is calculated by first finding the average weekly sales 

volume for each product in each store (product-store) in the category, and then averaging 

over all products. There is a large cross-category variation in the share of small price 

changes, ranging from 5.4% for the beer category to 56.6% for the canned tuna category. 

Figure 1 shows a scatterplot of the category-level average sales volume and the 

percentage of small price changes, along with a linear regression line (red solid line). We 

find a positive correlation between sales volume and the percentage of small price 

changes. The correlation is even stronger (green dashed line) if we exclude the categories 

of paper towels and bathroom tissues, which have particularly high values of both 

average sales volumes and percentage of small price changes. 

To test this more formally, we run cross-category OLS regressions which we report in 

Table 2. The dependent variable in all regressions is the category level percentage of 

small price changes. In column 1, the independent variable is the average weekly sales 

volume. We find that the coefficient is 0.89. Thus, at the category level, 1-unit increase in 

the average weekly sales volume is associated with an increase of 0.89% in the 

percentage of small price changes. 

 
6 Dominick’s prices are calculated as a ratio of revenue to quantity-sold. This is unlikely to pose a problem, 
as the Dominick’s prices are set on a weekly basis. If shoppers use manufacturer coupons, we cannot 
account for these. However, during the sample period, the use of such coupons was limited. See Barksy et 
al. (2003), Chen et al. (2008), and Levy et al. (2010, 2011), for more details about the data. 



7 
 

A possible explanation for this correlation could be that categories with low average 

price level have higher share of small price changes and higher sales volumes. The 

regression in column 2 shows that there is indeed a negative correlation between the 

average price in a category and the percentage of small price changes. However, in 

column 3, which reports the results of a regression that includes both the average prices 

and the average sales volumes as independent variables, we find that the coefficient of 

the average sales volumes is 0.69 and statistically significant. Thus, we find that sales 

volume is correlated with small price changes even after controlling for the price level. 

A possible alternative explanation is competition. It could be that products in 

categories with high sales volume face stronger competition, and their producers may 

want to avoid large price changes that could alienate consumers. To tests this, in column 

4 we look at the correlation between the percentage of small price changes and category 

level estimates of absolute own price elasticity, which is taken from Hoch et al. (1995). 

We find that the correlation is negative. I.e., small price changes are more common in 

product categories with low rather than high (in absolute values) price elasticities, which 

is inconsistent with the hypothesis that small price changes are a response to competition. 

It is consistent, however, with our model, because a low price elasticity means a small 

response to price changes and, consequently, as an approximation, the retailer’s benefit 

from a small price change can be assessed based on the sales volume before the price 

change. Furthermore, in column 5, where we report the results of a regression with both 

the sales volumes and the price elasticity as independent variables, we find that adding 

the price elasticity as a control does not change the effect of the sales volume 

substantially. The coefficient of the sales volume is 0.73, and statistically significant. 

As another test of the correlation between sales volume and the % of small price 

changes, we merged the observations in all 29 categories and then divided product-stores 

into deciles according to their sales volume. Figure 2 shows the frequency of small price 

changes by sales volume deciles. As the figure indicates, an increase in the sales volume 

is associated with a significant increase in the percentage of small price changes. The 

percentage of small price changes in the 10th decile of sales volumes is 31.7%, 3.2 times 

higher than the percentage of price changes in the 1st decile of sales volumes, 10.0%. 

4b. Results of category-level analyses 

To further study the correlation between small price changes and sales volume, we 
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compare high sales volume products to low sales volume products in each category. For 

each product in each store, we compute the average sales volume over the entire sample 

period. By taking the average over a long period, we obtain an estimate of the expected 

sales volume that does not depend on transitory shocks or sales. We then group the 

products into high, medium and low sales volume products. Low sales volume products 

are products with average sales volume in the lower third of the distribution, high sales 

volume products have sales volumes in the higher third of the distribution, and medium 

sales volume products have sales volumes in between.  

Figure 4 shows, for every category, the frequency of price changes for each size of 

price change from 1¢ to 50¢. The red dashed line depicts the frequency of price changes 

among high sales volume products, while the blue solid line depicts the frequency of 

price changes among low sales volume products. The green shaded area shows the range 

of small price changes, 10¢P∆ ≤ .  

The figure shows that the most common price changes are multiples of 10¢. It can 

also be observed that consistent with the prediction of Barro’s (1972) model, in all 

categories except beers, which is highly regulated, price changes are significantly more 

common among high sales volume products than among low sales volume products. 

Focusing on the shaded area, we see that the frequency of small price changes is far 

greater among the high sales volume products than low sales volume products. Indeed, 

for high sales volume products, in most product categories, the frequency of small price 

changes exceeds the frequency of large price changes. This is far less common, and less 

dramatic, among low sales volume products. 

As a formal test, we estimate a series of fixed effect regressions: 

, , , , ,

, ,

log( )i s t i s i s t

t t s i i s t

small price change average sales volume
month year u
α β γ

δ µ

= + +

+ + + + +

X
        (16) 

where small price change is a dummy that equals 1 if a price change of product i in store 

s at time t is less or equal to 10¢, and 0 otherwise. The average sales volume is the 

average sales volume of product i in store s over the sample period. X is a matrix of other 

control variables. Month and year are fixed effects for the month and the year of the price 

change. δ  and µ  are fixed effects for stores and for products. u is an iid error term. We 

estimate separate regressions for each product category, clustering the errors by product. 

Table 3 reports the coefficients of the key variable, the average sales volume, for each 
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product category. Column 1 reports the results of baseline regressions that include only 

the average sales volume and the fixed effects for months, years, stores, and products. 

We find that in all 29 product categories, the coefficients are positive and statistically 

significant. In other words, in all 29 product categories, there is a positive correlation 

between the likelihood that a price change is small and the average sales volume. The 

effect is economically significant. The average coefficient is 0.035, suggesting that an 

increase of 1% in the sales volume is associated with an increase of 3.5% in the 

likelihood that a price change will be small. 

In column 2, we add the following controls: the log of the average price to control for 

the price level effect on the size of price changes, the log of the absolute change in the 

wholesale price, and a control for sale- and bounce back prices. The latter is important as 

price changes associated with sales tend to be large (Nakamura and Steinsson 2008).7  

The results are similar to column 1. The coefficient of the average sales volume is 

positive and statistically significant in all categories, averaging 0.03. Thus, even after 

including the controls, we still find that increasing the average sales volume by 1% is 

associated with an increase of 3% in the likelihood of a small price change. 

In column 3, we add a dummy for 9-ending prices as an additional control because 

when the pre-change price is 9-ending, price changes tend to be larger than when the pre-

change price ends in other digits (Levy et al. 2020). Thus, if products with high sales 

volume tend to have non 9-ending prices, then it might lead to high sales volume product 

prices changing by small amounts. 

However, adding this dummy does not change the main result appreciably. All 29 

coefficients remain positive and statistically significant. On average, once we control for 

9-ending prices, increasing the average sales volume by 1% is associated with an increase 

of 2.6% in the likelihood of a small price change. 

In column 4, we focus on regular prices by excluding sale- and bounce back prices. 

We do this for two reasons. First, sale- and bounce back prices tend to be large and 

therefore, we need to account for them properly. Second, changes in sale prices have 

smaller effect on inflation than changes in regular prices (Nakamura and Steinsson 2008, 

 
7 To identify sale prices, we do not use the sales’ flag included in the Dominick’s data because it was not 
set on a consistent basis (Peltzman 2000). We therefore use the sales spotter algorithm of Fox and Syed 
(2016) to identify sales. This algorithm has the advantage that it was calibrated using the Dominick’s data 
and, consequently, it is particularly useful for identifying sales in the Dominick’s data. 
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Midrigan 2011, Anderson et al. 2017). It is therefore of interest to look at regular prices 

when studying the correlation between small price changes and sales volume. 

We find that excluding sale prices strengthens the correlation between sales volume 

and small price changes. All coefficients are again positive and statistically significant, 

averaging 0.045, implying that for regular prices, an increase of 1% in the average sales 

volume is associated with an increase of 4.5% in the likelihood of a small price change. 

4c. Results of product-level analyses 

A possible explanation for the correlation between sales volume and small price 

changes is that products with high sales volume have some unobserved attributes that 

makes them prone to small price changes. We explore this possibility by estimating for 

each product a separate regression. If the correlation between sales volume and small 

price changes is found also at the level of individual products, then it cannot be explained 

by unobserved attributes, since in each regression we have data on only one product. 

Before presenting the full regression results, consider as an example the crackers 

category. In Figure 5, we show a scatter plot for each of the 22 cracker products that has 

data for all 93 stores of Dominick’s. In each of the 22 figures, there are 93 dots, one for 

each store. In each figure, the x-axis in the figures gives the average weekly sales volume 

of the product in a store, and the y-axis gives the share of small price changes of the 

product in a store. The straight lines are regression lines.  

According to the plots, the correlation between sales volume and the share of small 

price changes is positive for all 22 individual products. For 20 of them (marked with solid 

black regression lines), the correlations are statistically significant. The two regression 

lines that are not statistically significant are marked with red dotted lines. 

For a more formal analyses, we calculate for each product in each of the 29 product 

categories the average weekly sales volume and the share of small price changes in each 

of the stores it was offered. Many products in the sample were offered for only short 

periods or only in a small number of stores. To avoid biases, we drop products for which 

we do not have information for at least 30 stores. 

Using these data, we estimate for each product in each category an OLS regression 

with robust standard errors. The dependent variable is the share of small price changes 

for the product in each store. The independent variable is the average sales volume of the 

product in each store. The estimation results are summarized in Table 4. 
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Column 1 gives, for each product category, the average of the estimated coefficients. 

Columns 2–5 give information on the sign of the estimated coefficients: the number of 

positive coefficients, the number of negative coefficients, the percentage of the positive 

coefficients, and the percentage of negative coefficients, respectively. Columns 6 and 7 

report the number of coefficients that are both positive and statistically significant, and 

negative and statistically significant, respectively, at the 5% level. 

According to the figures in the table, the average coefficients are positive in 28 of the 

29 product categories. The only exception is the cigarettes category, which is highly 

regulated and, consequently, it is often excluded from the analyses (Chen et al. 2008, p. 

729, footnote 2). The number of positive coefficients far exceeds the number of negative 

coefficients. On average, the former is 4.6 times larger than the latter. Ignoring the 

cigarettes category, in all 28 categories more than 71% of the coefficients are positive. 

Focusing on statistically significant coefficients, we find a far greater number of 

positive coefficients that are significant than negative coefficients that are significant. In 

fact, in 16 product categories we do not have a single case of statistically significant 

negative coefficient. In the remaining categories there are only 1–4 products with 

statistically significant negative coefficient. In other words, for the overwhelming 

majority of the individual products in our sample, we find a positive relationship between 

their sales volume and the share of small price changes. 

To summarize, we find that the correlation between sales volume and the share of 

small price changes is positive whether we look across categories, within categories, and 

for individual products across stores. It seems unlikely, therefore, that the correlation is 

due to unobserved characteristics of the products or the product categories. 

5.   Robustness 

We conducted several robustness checks. To minimize the possibility of mistakes, we 

repeat the analyses (1) by excluding all 1¢ price changes (Eichenbaum et al. 2014), and 

(2) by excluding observations if the price, after it changes, does not last for at least two 

weeks (Strulov-Shlain 2019). In addition, we repeated the analyses by defining a small 

price change as a price change of (3) smaller or equal to 5¢, (4) smaller or equal to 15¢, 

(5) smaller or equal to 2%, and (6) smaller or equal to 5%.  (7) We used the average sales 

volume in each year instead of the average sales volume in the entire sample period. (8) 

We augment the data with demographic information about consumers living in the 
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neighborhood of each store, including their median income, the share of minorities, and 

the share of unemployed. To control for local competition, we also add a control for the 

pricing zone of each store. We re-estimate the product-level regressions using these 

variables as controls. Our main results remain unchanged. Online Web Appendix 

contains the details of these analysis. 

6.   Conclusion 

The finding of frequent small price changes in many retail price datasets has been 

interpreted by many authors as a prima facie evidence against the menu cost model. We, 

however, argue that the finding of frequent small price changes is not necessarily 

inconsistent with the menu cost model. It depends on the sales volume of the product in 

question. If the retailer expects to sell many units of the product, then small price changes 

might be profitable even in a world with fixed menu cost. 

We extend Barro’s (1972) theoretical menu cost model to demonstrate analytically 

that there is a negative relationship between the sales volume and the width of the (S, s) 

band. It follows that if the sales volume is high, then we are more likely to see more 

frequent small price changes.  

To test this prediction, we analyze Dominick’s scanner price dataset, which has the 

advantage that it contains information on both prices and sales volume. Consistent with 

the predictions of the theoretical model, we find that there are more frequent small price 

changes for products with higher sales volume. 

This finding is quite robust. It holds across product categories, within product 

categories, and for individual products. The finding is also robust to a variety of 

sensitivity analyses such as the definition of “small” price changes, measurement errors, 

inclusion of various control variables, etc. 

We should note two caveats, however. On the theoretical front, we show that this 

result holds in the simple menu costs model of Barro (1972).8 We do not know whether it 

will hold in a more complex menu cost model. On the empirical front, the dataset we use 

is somewhat old. Future work should therefore explore the relationship between sales 

volume and the width of the (S, s) band in more complex menu cost models, and test their 

predictions using more recent datasets.  

 

 
8 The result also holds in Mankiw (1985) model. 
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Table 1. Proportion of small price changes and the average sales volume by product categories 

Product 
Category 
  

All price 
changes 

(1) 

Small price 
changes 

(2) 

% of small price 
changes 

(3)  

Average sales 
volume 

(4) 
Analgesics 276,225 35,378 12.8 1.25 
Bath soap 35,572 5,125 14.4 0.73 
Bathroom tissues 325,837 136,493 41.9 39.21 
Beer 45,9405 24,859 5.4 3.61 
Bottled juices 962,368 358,443 37.3 8.12 
Canned soups 950,357 488,159 51.4 12.4 
Canned tuna 379,680 214,923 56.6 9.66 
Cereals 724,013 226,449 31.3 14.98 
Cheese 1,811,753 813,305 44.9 11.44 
Cigarettes 56,000 16,327 29.2 2.37 
Cookies 1,353,330 374,027 27.6 5.19 
Crackers 476,008 164,529 34.6 4.81 
Dish detergents 374,058 138,909 37.1 8.50 
Fabric softeners 348,422 116,134 33.3 5.57 
Front end candies 487,886 249,939 51.2 11.26 
Frozen dinners 502,830 115,471 23.0 5.57 
Frozen entrees 1,846,911 314,441 17.0 6.56 
Frozen juices 658,225 235,246 35.7 16.32 
Grooming products 659,842 82,759 12.5 1.21 
Laundry detergents 559,576 107,931 19.3 7.29 
Oatmeal 169,093 68,971 40.8 7.20 
Paper towels 248,289 135,462 54.6 35.00 
Refrigerated juices 800,280 259,263 32.4 19.82 
Shampoos 701,813 54,068 7.7 0.87 
Snack crackers 800,253 220,178 27.5 6.74 
Soaps 324,724 145,984 45.0 4.69 
Soft drinks 4,532,158 743,243 16.4 13.46 
Toothbrushes 295,021 33,386 11.3 1.80 
Toothpastes 588,261 100,141 17.0 3.07 

Total 21,708,190 5,979,543 27.6 9.27 

Notes: Column 1 presents the total number of price changes in each category. Column 2 presents the number of small price 
changes ( ¢0 )1P∆ ≤ . Column 3 presents the % of small price changes out of all price changes. Column 4 presents the 
average number of units sold per product, per week, per store. 
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Table 2. Cross-category regression of the % of small price changes and sales volume 

 (1) (2) (3) (4) (5) 
Average sales volume 0.89*** 

(0.020) 
 0.69** 

(0.264) 
 0.73*** 

(0.209) 

Average            price  −4.83*** 
(1.651) 

−3.28* 
(1.610) 

  

Absolute     elasticity    −12.82** 
(5.282) 

−15.70** 
(4.139) 

2R  0.30 0.24 0.40 0.27 0.60 

Number of categories 29 29 29 18 18 

Notes: The table presents the results of OLS regressions. The dependent variable is the % of small price changes out of 
all price changes, in each of the 29 categories. Small price changes are defined as price changes of 10¢P∆ ≤ . The 
average price is the average price in the product category. The absolute elasticity is the absolute value of the demand 
price elasticity estimates as reported by Hoch et al. (1995). Columns (4) and (5) contain only 18 observations because 
Hoch et al. (1995) provide elasticity estimates only for 18 of the 29 product categories.   * p < 10%, ** p < 5%, *** p < 
1% 
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Table 3. Category-level regressions of small price changes and sales volume 

  (1) (2) (3) (4) 

Analgesics 
Coefficient 0.0381***  0.031*** 0.0253*** 0.047*** 

(0.0052) (Std.) (0.0032) (0.0027) (0.0025) 
Observations 276,225 276,225 276,225 77,653 

Bath soap 
Coefficient 0.043*** 0.0471*** 0.0438*** 0.0885*** 

(0.0157) (Std.) (0.0087) (0.0094) (0.0091) 
Observations 35,572 35,572 35,572 6,540 

Bathroom 
tissues 

Coefficient 0.0321*** 0.0163*** 0.0136*** 0.0332*** 
(0.0067) (Std.) (0.0057) (0.0046) (0.0043) 

Observations 32,5837 32,5837 32,5837 82,602 

Beer 
Coefficient 0.0235*** 0.0252*** 0.0209*** 0.0679*** 

(0.005) (Std.) (0.0015) (0.0012) (0.0012) 
Observations 459,405 459,405 459,405 56,829 

Bottled juice 
Coefficient 0.0474*** 0.0377*** 0.0332*** 0.033*** 

(0.0044) (Std.) (0.0037) (0.0031)   (0.0031) 
Observations 962,368 962,368 962,368 243,787 

Canned soup 
Coefficient 0.0239*** 0.0161*** 0.0167*** 0.0182*** 

(0.0038) (Std.) (0.004) (0.0034) (0.0033) 
Observations 950,357 950,357 950,357 278,543 

Canned tuna 
Coefficient 0.0367*** 0.0269*** 0.0228*** 0.0295*** 

(0.0043) (Std.) (0.0046) (0.0039) (0.0036) 
Observations 379,680 379,680 379,680 116,890 

Cereals 
Coefficient 0.0238*** 0.0184*** 0.0172*** 0.027*** 

(0.0034) (Std.) (0.0026) (0.0023) (0.0024) 
Observations 724,013 724,013 724,013 260,460 

Cheese 
Coefficient 0.0374*** 0.0219*** 0.018*** 0.0127*** 

(0.0032) (Std.) (0.0027) (0.0021) (0.0021) 
Observations 1,811,753 1,811,753 1,811,753 521,244 

Cigarettes 
Coefficient 0.0196*** 0.0191*** 0.0185*** 0.0186*** 

(0.0037) (Std.) (0.0031) (0.0031) (0.0031) 
Observations 56,000 56,000 56,000 44,322 

Cookies 
Coefficient 0.0436*** 0.0382*** 0.0323*** 0.0532*** 

(0.003) (Std.) (0.0016) (0.0016) (0.0014) 
Observations 1,353,330 1,353,330 1,353,330 228,976 

Crackers 
Coefficient 0.0548*** 0.0435*** 0.0392*** 0.0581*** 

(0.0063) (Std.) (0.0033) (0.0031) (0.0029) 
Observations 476,008 476,008 476,008 88,768 

Dish detergent 
Coefficient 0.0513*** 0.0388*** 0.0337*** 0.0419*** 

(0.004) (Std.) (0.0034) (0.0028) (0.0028) 
Observations 374,058 374,058 374,058 93,657 

Fabric softener 
Coefficient 0.0434*** 0.0316*** 0.028*** 0.0473*** 

(0.0047) (Std.) (0.0038) (0.0036) (0.0036) 
Observations 348,422 348,422 348,422 100,472 

Front-end-
candies 

Coefficient 0.0043*** 0.008*** 0.0069*** 0.0087*** 
(0.0029) (Std.) (0.0035) (0.0027) (0.0027) 

Observations 487,886 487,886 487,886 157,539 
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Table 3. (Cont.) 
  
  (1) (2) (3) (4) 

Frozen 
dinners 

Coefficient 0.0513*** 0.0406*** 0.0392*** 0.0874*** 
(0.0056) (Std.) (0.0025) (0.0022) (0.0022) 

Observations 502,830 502,830 502,830 72,865 

Frozen 
entrees 

Coefficient 0.033*** 0.0328*** 0.0319*** 0.0635*** 
(0.0034) (Std.) (0.0019) (0.0016) (0.0016) 

Observations 1,846,911 1,846,911 1,846,911 352,717 

Frozen juices 
Coefficient 0.0326*** 0.0261*** 0.0235*** 0.0295*** 

(0.0048) (Std.) (0.0037) (0.0032) (0.0031) 
Observations 658,225 658,225 658,225 150,064 

Grooming 
products 

Coefficient 0.0398*** 0.0448*** 0.0388*** 0.0624*** 
(0.005) (Std.) (0.0022) (0.002) (0.0019) 

Observations 659,842 659,842 659,842 107,669 

Laundry 
detergents 

Coefficient 0.032*** 0.0227*** 0.0185*** 0.0366*** 
(0.0041) (Std.) (0.0027) (0.0024) (0.0024) 

Observations. 559,576 559,576 559,576 148,548 

Oatmeal 
Coefficient 0.0295*** 0.0175*** 0.0156*** 0.0314*** 

(0.0093) (Std.) (0.0073) (0.0052) (0.0052) 
Observations 169,093 169,093 169,093 63,705 

Paper towels 
Coefficient 0.0347*** 0.0275*** 0.0263*** 0.0285*** 

(0.0085) Std. (0.0095) (0.0102) (0.0103) 
Observations 248,289 248,289 248,289 53,732 

Refrigerated 
juices 

Coefficient 0.0307*** 0.0208*** 0.0181*** 0.0302*** 
(0.0041) (Std.) (0.0032) (0.0027) (0.0026) 

Observations 800,280 800,280 800,280 161,098 

Shampoos 
Coefficient 0.0305*** 0.0377*** 0.0329*** 0.0581*** 

(0.0035) (Std.) (0.0013) (0.0013) (0.0012) 
Observations 701,813 701,813 701,813 96,389 

Snack 
crackers 

Coefficient 0.044*** 0.0388**** 0.0343*** 0.0641*** 
(0.004) (Std.) (0.0032) (0.003) (0.0026) 

Observations 800,253 800,253 800,253 143,143 

Soap 
Coefficient 0.0238*** 0.0266*** 0.0223*** 0.0606*** 

(0.0027) (Std.) (0.0013) (0.001) (0.0009) 
Observations 4,532,158 4,532,158 4,532,158 350,167 

Soft drinks 
Coefficient 0.0567*** 0.0404*** 0.0333*** 0.0515*** 

(0.0054) (Std.) (0.0043) (0.0042) (0.0041) 
Observations 324,724 324,724 324,724 96,574 

Toothbrushes 
Coefficient 0.0293*** 0.0321*** 0.0263*** 0.0583*** 

(0.0063) (Std.) (0.0028) (0.0028) (0.0025) 
Observations 295,021 295,021 295,021 45,457 

Toothpastes 
Coefficient 0.0293*** 0.0292*** 0.0255*** 0.0593*** 

(0.0053) (Std.) (0.0027) (0.0021) (0.002) 
Observations 588,261 588,261 588,261 96,728 

 
Notes: The table reports the results of category-level fixed effect regressions of the probability of a small price change. 
The dependent variable is “small price change,” which equals 1 if a price change of product i in store s at time t is less or 
equal to 10¢, and 0 otherwise. The main independent variable is the average sales volume of product i in store s over the 
sample period. Column 1 reports the results of baseline regression that includes only the average sales volume and the 
fixed effects for months, years, stores, and products. In column 2, we add the following controls: the log of the average 
price, the log of the absolute change in the wholesale price, and a control for sale- and bounce back prices, which we 
identify using a sales filter algorithm. In column 3, we add a dummy for 9-ending prices as an additional control. In column 
4, we focus on regular prices by excluding the sale- and bounce back prices. We estimate separate regressions for each 
product category, clustering the errors by product. *** p < 1% 
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Table 4. Product-level regressions of the % of small price changes and sales volume by categories 

Product  
Category 

Average 
coefficient 

(1) 

No. of positive 
coefficients 

(2) 

No. of negative 
coefficients 

(3) 

% positive 
coefficients 

(4) 

% Negative 
coefficients 

(5) 

No. of positive 
& significant 

(6) 

No. of negative 
& significant 

(7) 
Analgesics 4.04 230 47 83.0 17.0 43 0 
Bath Soaps 4.67 31 11 73.8 26.2 7 0 
Bathroom tissues 4.75 83 20 80.6 19.4 16 0 
Beers 2.35 253 23 91.7 8.3 84 0 
Bottled juices 6.97 316 69 82.1 7.9 102 4 
Canned soups 4.13 268 85 75.9 24.1 70 0 
Canned tuna 4.94 137 47 74.5 25.5 30 1 
Cereals 4.06 286 74 79.4 20.6 43 0 
Cheese 4.50 399 95 80.8 19.2 133 1 
Cigarettes -0.06 84 45 65.1 34.9 1 1 
Cookies 5.17 588 126 82.4 17.6 178 1 
Crackers 5.96 193 25 88.5 11.5 71 0 
Dish detergents 5.12 176 35 83.4 16.3 47 0 
Fabric softeners 5.86 195 43 81.9 18.1 42 2 
Front end candies 4.37 210 84 71.4 28.6 26 0 
Frozen dinners 6.02 206 18 92.0 8.0 67 0 
Frozen entrees 5.00 612 80 88.4 11.6 194 0 
Frozen juices 3.87 108 35 75.5 24.5 31 0 
Grooming products 2.89 565 145 79.6 20.4 119 3 
Laundry detergents 3.50 334 100 77.0 23.0 48 2 
Oatmeal 4.85 55 16 77.5 22.5 9 0 
Paper towels 3.89 69 23 75.0 25.0 13 0 
Refrigerated juices 3.54 133 49 73.1 26.9 33 3 
Shampoos 3.05 757 177 81.0 19.0 116 0 
Snack crackers 5.60 256 38 87.1 12.9 90 3 
Soaps 5.89 185 46 80.1 19.9 29 0 
Soft drinks 3.08 837 187 81.7 18.3 266 4 
Toothbrushes 2.98 202 53 79.2 20.8 45 1 
Toothpastes 2.32 275 103 72.8 27.2 46 1 

 

Notes: For each product category, column 1 presents the average estimated coefficients. Column 2 presents the number of positive coefficients. 
Column 3 presents the number of negative coefficients. Column 4 presents the % of positive coefficients. Column 5 presents the % of negative 
coefficients. Last two columns present the number of coefficients that are both positive (negative) and statistically significant, at the 5% level.  
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Figure 1. Cross-category correlation between small price changes and sales volume 

 
 
Notes: The red solid line is a linear regression line when all 29 product categories are included. The dotted green 
line is the linear regression line if the two RHS categories (paper towels and bathroom tissues) are excluded. 
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Figure 2. Frequency of small price changes by sales volume deciles 

 
Notes: The chart was obtained by merging all 29 product categories and dividing it into deciles according to the 
products’ sales volume. The % of small price changes was calculated for each decile as a ratio of the number of 
small price changes to the number of total price changes in each decile. 
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Figure 3. Frequency of price changes by size for high and low sales volume products 

 

 

 

 

 

 

 

 

 

 



24 
 

Figure 3. (Continues) 

 

Notes: For each category, the figure shows the frequency of price changes for each size of price change from 1¢ to 50¢, 
comparing high sales volume products to low sales volume products. To obtain the figures, we compute the average 
sales volume over the entire sample period for each product, in each store. We then group the products into high, medium 
and low sales volume products. High (low) sales volume products are products in the high (low) third of the distribution. 
The y-axis shows the frequency of price changes. The red dashed line depicts the frequency of price changes for the 
high sales volume products, and the blue solid line depicts the frequency of price changes for the low sales volume 
products. The green shaded area shows the range of small price changes, 10¢P∆ ≤ . 
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Figure 4. Product-level correlations between sales volume and small price changes in the 
Crackers Category 

 

Note: The figure depicts the correlation between average sales volumes (x-axis) and the percentage of small price 
changes for various products in the crackers’ category. Each dot in the figures represents the data for the product in a 
specific store. There are 93 dots in each figure, one for each store. Straight lines in the figures are the regression lines. 
Black solid regression lines indicate that the regression coefficient is significant at the 5% significance level, which is 
the case for 20 of the 22 products. The two regression lines that are not statistically significant, are red dotted lines. 
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