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Abstract

A vast literature has documented that US inflation persistence has fallen in recent

decades. However, this empirical finding is difficult to explain in monetary models. Us-

ing survey data on inflation expectations, I document a positive co-movement between

ex-ante average forecast errors and forecast revisions (suggesting forecast sluggishness)

from 1968 to 1984, but no co-movement afterwards. I extend the New Keynesian (NK)

setting with noisy and dispersed information about the aggregate state, and show that

inflation is more persistent in periods of greater forecast sluggishness. My results show

that the change in firm forecasting behavior, documented in survey data, explains

around 90% of the fall in inflation persistence since the mid 1980s. I also find that the

disconnect between inflation and the real side of the economy in recent decades can

be explained by the change in information frictions. Contrary to the literature which

has emphasized a flattening of the NK Phillips curve in recent data, I do not find any

evidence of the change in the structural slope of the Phillips curve once I control for

the change in information frictions.
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1 Introduction

Since long, expectations have played a central role in macroeconomics. However, most of

work considers a limited theory of expectation formation, in which agents are perfectly and

homogeneously aware of the state of nature and others’ actions. In this paper, I consider a

theory of expectation formation that incorporates significant heterogeneity and sluggishness

in agents’ forecasts, thus relaxing the standard full information rational expectations (FIRE)

benchmark.1 I include such expectation formation features into an otherwise standard New

Keynesian (NK) model by introducing noisy and dispersed information, rationally processed

separately by each agent, and match the information-specific parameters to the observed

sluggishness in forecasts. I use this framework to interpret two empirical challenges in the

literature: the fall in inflation persistence and the flattening of the Phillips curve.

As for the first empirical challenge, evidence suggests that the dynamic properties of

US inflation have not been constant over time. In particular, inflation in the post-war

period exhibits a high degree of persistence up until the mid 1980s, falling significantly since

then. This fall in inflation persistence is not easily understood through the lens of monetary

models, which has resulted in the “inflation persistence puzzle” (Fuhrer 2010).2 This break

coincides with a change in the US Federal Reserve’s communication policy, which became

more transparent and informative after the mid 1980s. Using survey data on US firms’

forecasts, I document significant sluggishness in responses to new information until the mid

1980s, but no evidence of sluggishness afterwards. The theoretical framework I build is

consistent with this evidence. I argue that the change in the Fed communication improves

firms’ information and I use my model to show that the reduced the stickiness in firms’

inflation forecasts explains the fall in inflation persistence.

The second empirical challenge documents that the Phillips curve has flattened in the

recent decades, implying that inflation is no longer affected by other real variables (del Negro

et al. 2020; Ascari and Fosso 2021). This finding indirectly implies that central bank actions,

understood as nominal interest rate changes, are less effective in affecting inflation. I argue

from the perspective of my model that the change in the dynamics of the Phillips curve can

be explained by a lack of backward-lookingness and an increase of forward-lookingness after

the mid 1980s. In particular, I show that there is no evidence for a flattening in the Phillips

1. I define sluggishness as the stickiness of current expectations on past expectations. I measure sluggish-
ness as a positive co-movement between ex-ante average forecast errors and forecast revisions.

2. Persistence is an important property of a dynamic process since it determines both the memory of any
past shock on today’s outcome and its volatility. See Fuhrer (2010) for a handbook literature review.
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curve once we control for the decline in information frictions.

I extend the textbook NK framework in Gaĺı (2015) and Woodford (2003b) to noisy

information following Lucas (1972), Woodford (2003a), Nimark (2008), Lorenzoni (2009),

Huo and Takayama (2018), and Angeletos and Huo (2021). I assume that firms do not

have complete and perfect information about the aggregate economic conditions. Instead,

firms can observe their own granular conditions, the output they produce given their price,

but they do not have perfect information about aggregate variables like inflation, output or

interest rates. In place, they observe a noisy signal that provides information on the state of

the economy, the monetary policy shock in this case. With this piece of information, firms

form expectations on inflation, aggregate output and interest rates. This setting leads to

a dynamic beauty contest in which firms need to form beliefs on what other firms believe

about the economy. Morris and Shin (2002) and Woodford (2003a) are the first to study the

economy as a static beauty contest, and Allen et al. (2006), Bacchetta and Van Wincoop

(2006), Morris et al. (2006), and Nimark (2008) extend the economy to a dynamic beauty

contest. More recently, Angeletos and Huo (2021) show that noisy information attenuates

the general equilibrium effects associated with the Keynesian multiplier and the inflation-

spending feedback, causing the economy to respond to news about the future as if agents

were myopic. I extend the framework in Angeletos and Huo (2021) by merging the two

blocks, the Dynamic IS and NK Philips curves, while still obtaining closed-form equilibrium

dynamics that facilitate the interpretation of our results.3

In terms of the details of my model, I explain the fall in inflation persistence through a

decrease in the degree of information frictions that firms face on central bank actions. Since

the late 1960s, there has been a gradual improvement in the US Federal Reserve’s public

disclosure and transparency, sending clearer signals of their actions and future intentions to

the market.4 This has most notably occurred after 1985.5 I show that in this framework

3. Angeletos and Huo (2021) assume that firms observe the history of past price levels but do not extract
any information from it, thus simplifying the framework. I assume that firms do not observe the price level.

4. See Lindsey (2003) for a comprehensive historical review.
5. Before 1967 the Federal Open Market Committee (FOMC), the US Fed decision unit, only announced

policy decisions once a year in its Annual Report. In 1967, the FOMC decided to release the directive in
the Policy Report (PR), 90 days after the decision. In 1976, the PR was enlarged and its delay was reduced
to 45 days. Between 1976 and 1993 the information contained in the PR increased, without any further
changes in the announcement delay. In 1977, the Federal Reserve Reform Act officially entitled the Fed with
3 objectives: maximum employment, stable prices and moderate long-term interest rates. In 1979, the first
macroeconomic forecasts on real GNP and GNP inflation from FOMC members were made available. The
“tilt” (the likelihood regarding possible future action) was introduced in the PR in 1983. Between 1985
and 1991, the Fed introduced the “ranking of policy factors”, which after each meeting ranked aggregate
macro variables in importance, signaling priorities with regard to possible future adjustments. The minutes,
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inflation is more persistent in periods of greater forecast sluggishness. Noisy information

generates an underreaction to new information because individuals shrink their forecasts

towards prior beliefs when the signals they observe are noisy. This endogenous anchoring

in forecasts causes firms to set prices to their existing prior, thus slowing the speed of

price changes. Using micro-data on inflation expectations from the Survey of Professional

Forecasters (SPF) and the Livingston Survey on Firms, I document that firms’ forecasts

used to react sluggishly before the mid 1980s. However, there appears to be a break, and

there is no evidence of sluggishness in recent decades. My results suggest that agents became

more informed about inflation after the change in the Federal Reserve disclosure policy in

the mid 1980s. Because inflation depends on expectations of future inflation, the change in

expectation formation feeds into inflation dynamics, which endogenously reduces inflation

persistence. I find that this change in firm forecasting behavior explains around 90% of the

fall in inflation persistence since the mid 1980s.

I also study the dynamics of the Phillips curve over time through the lens of my model.

The previous literature has documented a fall in the sensitivity of inflation and the real

side of the economy (“inflation disconnect” puzzle, see e.g., del Negro et al. 2020; Ascari

and Fosso 2021). In the standard model, inflation dynamics are reduced to the NK Phillips

curve, which relates current inflation to the current output gap and expected future inflation.

Inflation is only related to the real side of the economy through the Phillips curve slope, and

the only possible explanation for the lack of dependence of inflation on output in the recent

decades is a fall in the slope.

The literature has focused extensively on this slope, in the hope of documenting that

this relation has weakened and that the inflation process is therefore largely independent

of any change from the demand side of the economy, including changes in the policy rate

or central bank actions. Armed with the noisy information framework, I find that the

disconnection between inflation and the real side of the economy can be explained by the

change in information frictions. First, I show that the NK Phillips curve is enlarged with

a backward-looking term on lagged inflation and myopia towards expected future inflation.

Once I correct for the misspecification in the NK Phillips curve, there is no evidence of a fall

in its slope, and the noisy information model explains the fall in inflation sensitivity towards

a revised transcript of the discussions during the meeting, started being released together with the PR in
1993, 45 days after the meeting. In 1994 the FOMC introduced the immediate release of the PR after a
meeting if there had been a change, coupled with an immediate release of the “tilt” (likelihood regarding
possible future action) since 1999. Since January 2000 there has been an immediate announcement and press
conference after each meeting, regardless of the decision.
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the real side of the economy through changes in beliefs. Second, I show that under a general

information structure, the Phillips curve is modified such that current inflation is related

to current and future output through two different channels: the slope of the Phillips curve

and firms’ expectation formation process. I show that there is no empirical evidence of a

change in the slope once I control for a decline in information frictions, using SPF forecasts.

In summary, contrary to the literature which has emphasized a flattening of the NK Phillips

curve in recent data, I do not find any evidence of the change in the structural slope once I

control for imperfect expectations.

Roadmap The paper proceeds as follows. Section 2 documents the fall in inflation persis-

tence in recent decades. In Section 3, I document the decrease in forecast sluggishness and

information frictions in recent decades. In Section 4, I describe the theoretical framework,

and derive the main results. In Section 5 I use the noisy information framework to explain

the inflation disconnect puzzle through noisy information dynamics, as opposed to changes

in the Phillips curve slope. Section 6 concludes the paper.

In Appendix D I revisit different theories that produce a structural relation between

inflation and other forces in the economy, and I show that they cannot explain the fall in

inflation persistence. In the benchmark NK model, inflation inherits its properties of the

exogenous driving forces. Hence, in order to explain the fall in inflation persistence docu-

mented in the data, a fall in the persistence of these exogenous shocks is required. I find that

the persistence of exogenous monetary policy, total factor productivity and other shocks has

been remarkably stable in the post-war period. Acknowledging the fact that purely forward-

looking models cannot generate intrinsic persistences, I extend the benchmark and explore

backward-looking frameworks. I find that they generate little endogenous persistence, insuf-

ficient to generate the significant fall in inflation persistence that I observe in the data.6

2 Inflation Dynamics

A vast literature has documented that US inflation persistence has fallen in recent decades.

Fuhrer and Moore (1995), Cogley and Sbordone (2008), Fuhrer (2010), Cogley et al. (2010),

and Goldstein and Gorodnichenko (2019) find evidence for a structural break in the persis-

tence coefficient in the 1980-1985 window, with persistence falling from around 0.75-0.8 to

0.5. In a cross-country analysis, Benati and Surico (2008) find that countries with central

6. I extend the setting to price indexation, trend inflation and optimal monetary policy under discretion
and commitment. I show that these frameworks cannot explain the large fall in inflation persistence.
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Figure 1: Time series of inflation, with subsample mean and standard deviation.

banks that follow an inflation targeting policy experience lower persistence. In terms of the

second moment, the volatility of aggregate macroeconomic variables fell in the Great Mod-

eration, including inflation. In this section I revisit this empirical challenges and document

a fall in inflation persistence and volatility since the mid 1980s.7 I use the (annualized)

quarterly growth in the GDP Deflator as a proxy for aggregate inflation, but the results

presented here are robust to alternative inflation measures.8

The inflation time series is reported in Figure 1. I follow Fuhrer (2010) and divide the

sample into two sub-periods, pre- and post-1985:Q1. I report the mean and 2 standard de-

viation bands by each subperiod. Inflation started its upward trend in the 1960s, continuing

in the next decade with two local peaks in the mid 1970s and in the early 1980s. Then,

inflation started its downward trend until the early 1990s, and has remained roughly at 2%

afterwards. Differentiating between the two subperiods, one can see from the previous fig-

ure that the level of inflation has fallen from 6% to 2%, and that inflation has become less

volatile.

In the monetary literature, inflation is generally assumed to follow an independent au-

toregressive stochastic process. In such a case, the stationary mean depends both on the

intercept and the lagged inflation coefficients. On the other hand, the stationary volatil-

ity depends both on the innovation volatility and the lagged inflation coefficients. Table I

reports summary statistics on the mean, volatility and first-order autocorrelation by each

7. Inflation data is available at a quarterly frequency since 1947:Q1. However, I will stick to the 1968:Q4-
2020:Q2 sample since I seek to link the results presented in this section to surveys on expectations, which
are available since 1968:Q4.

8. I define the inflation rate at time t, πt, as the (annualized) log growth in the index, 400 × (logXt −
logXt−1), where Xt is the GDP Deflator at time t.
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1968:Q4–2020:Q1 1968:Q4–1984:Q4 1985:Q1–2020:Q1

Mean 3.362 6.160 2.117
Volatility 2.400 2.234 1.016
First-Order Autocorrelation 0.880 0.754 0.505

Table I: Summary statistics over time.

subsample.9 In the following, I seek to investigate if these differences across subsamples are

statistically significant.

2.1 Persistence and Volatility

Persistence Let us consider that inflation follows a simple AR(1) process with a drift. In

the previous section I argued that the change in the level documented in Figure 1 can be

explained by two parameters, the intercept and persistence. Again, I follow Fuhrer (2010)

and assume that the break date is 1985:Q1. I test for the null of no structural break in

inflation dynamics around 1985:Q1.10 We reject the null of no break (p-value = 0.000), but

the test is inconclusive on whether the intercept or persistence (or both) are the culprits

of the structural change in inflation dynamics. In order to disentangle the two, I test for a

structural break on intercept and persistence jointly. Formally, I consider the regression

πt = απ + απ,∗1{t≥t∗} + ρππt−1 + ρπ,∗πt−11{t≥t∗} + et (2.1)

where 1{t≥t∗} is an indicator variable equal to 1 if the period is within the post-1985 era, and

et is the error term. The advantage of relying on a specification like (2.1) instead of a cross-

sample analysis as in Table I is that the former allows us to verify if the structural change

in the coefficients is statistically significant. I report my findings in Table II Panel A. First,

I find that both the intercept and the persistence are highly significant when I consider

the full sample with no structural break (column 1). Second, I find strong evidence of a

structural break in persistence, falling from 0.79 in the pre-1985 period to 0.5 afterwards

(column 2). On the other hand, I do not find any evidence of a structural break in the

9. The k-th order autocorrelation ρk of a stationary variable πt is defined as ρk = E(πtπt−k)
V(π) where the

autocorrelation function is defined as the vector of autocorrelations A = [ρ1, . . . , ρk]. For example, in the
particular case of an AR(1) process, each k-th order of the autocorrelation function becomes the k-th power:
A = [ρ, ρ2, . . . , ρk]. A time series is considered to be relatively persistent if its autocorrelations decay slowly.

10. If we instead are agnostic about the break date(s), the test suggests that the break occurred in 1991:Q1,
with lower and upper 95% confidence bands 1986:Q1 and 1996:Q1.
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(1) (2)
Panel A: Persistence

πt−1 0.880∗∗∗ 0.785∗∗∗

(0.0466) (0.0755)

πt−1 × 1{t≥t∗} −0.287∗∗

(0.144)

Constant 0.400∗∗ 1.320∗∗∗

(0.166) (0.471)

Constant×1{t≥t∗} −0.263
(0.543)

Observations 206 206

Panel B: Innovation Volatility

Constant 1.594∗∗∗

(0.050)

Constant×1{t≥t∗} −0.733∗∗∗

(0.059)

Observations 209

HAC robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table II: Persistence and Volatility

intercept. Considering these findings, and the robustness checks discussed in Section 2.2, I

conclude that (i) inflation persistence fell since 1985, and that (ii) the fall in the level of

inflation documented in Figure 1 is explained through a change in the inflation persistence.

Volatility Let us now move to volatility. I documented in Figure 1 that inflation volatility

fell by a factor of 2 in the post-1985 period. Using the assumed AR(1) dynamics, we can

already verify that the change in inflation persistence argued before explains around 50% of

the fall in unconditional volatility. Therefore, in order to explain the overall fall in inflation

volatility, the change in persistence must be coupled with a fall in the innovation volatility.

To further investigate this, in this section I model inflation variance as a GARCH(1,1)

process. Let επt denote the error terms in the regression πt = ρππt−1 + επt . These επt are

split into a stochastic piece zt and a time-dependent standard deviation σε,t, characterizing

8



the typical size of the terms so that επt = ztσε,t, where the random variable zt is a white

noise process. The GARCH(1,1) series σ2
ε,t is modelled as σ2

ε,t = α + β(επt−1)2 + γσ2
ε,t−1. To

investigate whether the difference in volatility across sub-periods is significant, I proceed as

in our previous analysis. First, I take the predicted (fitted) time-series of inflation volatility

σ̂ε,t and perform a known date structural break test. I test for the null of no structural break

in inflation volatility around 1985:Q1.11 We reject the null of no break (p-value = 0.000).

In order to get a quantitative sense of magnitudes, I follow a structural break analysis as

before. Formally, I estimate the following equation

σ̂ε,t = ασ + ασ,∗1{t≥t∗} + ut

I report our results in Table II Panel B. The structural change in the level of the innovation

volatility around 1985:Q1 is statistically significant, suggesting a fall from 1.594 to 0.861,

and explaining the remaining 50% fall in inflation volatility.

2.2 Robustness

I discuss the robustness of the previous findings in this section, and report the results in

Appendix B.1. First, I use two alternative measures of inflation: price inflation (CPI) and

producer inflation (PCE). All inflation measures exhibit a strong correlation.

Our second robustness dimension entails different persistence analyses. First, I follow

Fuhrer (2010) and Pivetta and Reis (2007) and compute rolling-sample estimates of an inde-

pendent AR(1) process using a 14-year window. The results suggest that there is significant

time variation in inflation persistence, which rises in the 1970s (from 0 to around 0.8), stays

roughly constant in the 1980s, falls in the 1990s (0.5-0.6) and falls further in the 2000s (0-0.4).

Similarly, I study a Time-Varying Parameter (TVP) AR(1) process, where the time-varying

persistence coefficient is assumed to follow a random walk. The results are consistent with

our main findings, and reported in Appendix B.1.

The two final robustness checks focus on unit roots. If an autorregressive process contains

a unit root, the persistence is unquestionably large. First, restricting ourselves to the class of

order 1 processes, I find that we cannot reject the null of a unit root in the pre-sample while

the null is rejected in the post-sample. These findings support the notion that persistence

fell after 1985:Q1. Second, relaxing the order of the autoregressive process, I then study the

11. If we instead are agnostic about the break date(s), the test suggests that the break occurred in 1982:Q1,
with lower and upper 95% confidence bands 1981:Q1 and 1983:Q1.
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dominant root of an independent AR(p) process. The results show that the dominant root

fell in the post-1985 period.

2.3 Summary

In this section and in Appendix B.1, I provide empirical evidence on the fall in inflation

persistence in recent decades through a variety of analyses, ranging from cross-sample au-

tocorrelation function, unit root tests, a dominant root analysis to structural break tests. I

also provide evidence for the fall in inflation volatility in recent decades. However, all the

analyses are based on an ad-hoc formulation of the inflation process, without a grounded

underlying theory.

In Appendix D, I revisit different theories that produce a structural relation between

inflation and other forces in the economy, based on the NK environment. I then investigate

if such a framework can explain the documented fall in inflation persistence and volatility.

I show that, although the NK framework is successful in explaining the fall in inflation

volatility, the benchmark NK setting and a variety of common extensions cannot explain

the fall in inflation persistence in a way that is consistent with empirical evidence. I then

suggest an extension to the benchmark model, in which the assumption of complete and full

information is relaxed, in Section 4.

3 Evidence on Information Frictions

As discussed in the introduction, the actions of the Fed have become more transparent over

time. The delay between the Fed’s action and the announcement to the public has been

shortened from around a year to a few minutes, and the amount of information contained

in the PR and other documents released to the public has substantially increased.12 In this

section I document a contemporaneous change in beliefs and expectation formation around

the same date in which inflation persistence is reported to break. Using survey data on US

firms’ forecasts, I document significant sluggishness in responses to new information until

the mid 1980s, but no evidence of sluggishness afterwards. Using expectations data from

the Survey of Professional Forecasters (SPF), I study whether there is a significant change

in different measures of information frictions around 1985:Q1.13

12. I provide a more detailed historical analysis of the Fed‘s gradual increase in transparency in Appendix
E.

13. The American Statistical Association and the National Bureau of Economic Research started the survey
in 1968:Q4, which has been conducted by the Federal Reserve Bank of Philadelphia since 1990:Q1. Every
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The problem that the econometrician faces when trying to quantify or estimate the degree

of information frictions is that she does not know what has each agent, or the average agent,

observed at any given point in time. The literature has approached this regression design

problem by measuring the change in actions after an inflow of information. Consider for

example the average forecast of annual inflation at time t, Etπt+3,t, where πt+3,t is the GDP

deflator growth between periods t+3 and t−1. We can think of this object as the action that

the average forecaster makes. Let us now consider the average forecast of 4-quarters-ahead

inflation at time t, Et−1πt+3,t. The difference between these two objects, the average forecast

revision revisiont ≡ Etπt+3,t − Et−1πt+3,t, provides us with information about the average

agent action after the inflow of information between periods t and t − 1. We plot the raw

data in Figure 2. Recent research (Coibion and Gorodnichenko 2012, 2015) has documented

a positive co-movement between ex-ante average forecast errors, forecast errort ≡ πt+3,t −
Etπt+3,t, and average forecast revisions.14 Formally, the regression design is

forecast errort = αrev + βrev revisiont + ut (3.1)

Notice that a positive co-movement (β̂rev > 0) suggests that positive revisions predict posi-

tive forecast errors.15 That is, after a positive revision of annual inflation forecasts, agents

consistently under-predict inflation. Although we only focus on firms in this paper, this form

of forecast stickiness or sluggishness is consistent across different agent types (see Coibion

and Gorodnichenko 2012, 2015 for evidence on consumers, firms, central bankers, etc.) This

three months, professional forecasters are surveyed on their forecasts on economic variables like output,
inflation or interest rates. These forecasters work at Wall Street financial firms, commercial banks, consulting
firms, university research centers and other private sector companies.

14. We used the first-release value of annual inflation, since forecasters did not have access to future revisions
of the data.

15. Under the FIRE assumption, βrev should be zero. Each agent’s individual forecast is identical to each
other agent’s forecast. As a result, the average expectation operator in (3.1) could be interpreted as a
representative agent forecast, and we would be effectively regressing the forecast error of the representative
agent on its forecast revision. Under RE, the forecast revision should not consistently predict the forecast
error. Otherwise, the agent would incorporate this information into his information set. Therefore, a positive
estimate of βrev in the above regression suggests that the FIRE assumption is violated. In this model, I
maintain the RE assumption, and assume that agents face information frictions, generating heterogenous
beliefs (information sets) across households. Bordalo et al. (2018) and Broer and Kohlhas (2019) find
evidence of a violation of the rational expectations assumption by regressing (3.1) at the individual level,
finding evidence of agent over-confidence when forecasting inflation. Notice that even if I assume information
frictions, the above regression at the individual level should report a βrev estimate of zero, because at the
individual level the forecast revision should not consistently predict the forecast error. I do not assume a
departure from rational expectations because, as shown in Angeletos et al. (2020), over-confidence would
have no effect on aggregate dynamics and would therefore not affect the inflation persistence.

11



Figure 2: Time series of ex-ante average forecast errors and forecast revisions.

forecast stickiness behavior is consistent with many different FIRE extensions of the bench-

mark setting. The authors show that alternative moments in survey data are only consistent

with noisy and dispersed information.

The results, reported in the first column in Table III, suggest a strong violation of the

FIRE assumption: the measure of information frictions, βrev, is significantly different from

zero. Agents underrevise their forecasts: a positive βrev coefficient suggests that positive

revisions predict positive (and larger) forecast errors. In particular, a 1 percentage point

revision predicts a 1.23 percentage point forecast error. The average forecast is thus smaller

than the realized outcome, which suggests that the forecast revision was too small, or that

forecasts react sluggishly.

Following the previous analyses on inflation persistence, I assume that the break date is

1985:Q1. I test for the null of no structural break in inflation dynamics around 1985:Q1.16

We reject the null of no break (p-value = 0.01). This structural break finding is also easily

visualized in the scatter plot in Figure 3. Following a similar structural break analysis as

in Section 2.1, I study if there is a change in expectation formation (stickiness) around the

same break date. Formally, I test for a structural break in belief formation around 1985:Q1

by estimating the following structural-break version of (3.1),

forecast errort = αrev +
(
βrev + βrev∗1{t≥t∗}

)
revisiont + ut (3.2)

A significant estimate of βrev∗ suggests a break in the information frictions. The results in

the fourth and fifth columns in Table III suggest that there is a structural break around

1985:Q1. The estimate β̂rev∗ < 0 suggests that firms’ forecasts have been less sticky since

16. If we instead are agnostic about the break date(s), the test suggests that the break occurred in 1980:Q1.
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Figure 3: Scatter plot of ex-ante average forecast error (vertical axis) and average forecast
revisions (horizontal axis). Red dots correspond to 1968-1984 observations, and blue dots
correspond to observations after 1984.

1985 (in fact, I do not find any evidence of forecast stickiness.) In the lens of a noisy and

dispersed information framework, this implies that agents became more more informed about

inflation, with individual forecasts relying less on priors and more on news. These structural

break findings are consistent with alternative measures of information frictions, as discussed

in Appendix B.4.17

In the next section I consider a theory of expectation formation that incorporates sig-

nificant heterogeneity and sluggishness in agents’ forecasts, thus relaxing the standard full

information rational expectations (FIRE) benchmark. I include such expectation forma-

tion features into an otherwise standard New Keynesian (NK) model by introducing noisy

and dispersed information, rationally processed separately by each agent, and match the

information-specific parameters to the observed sluggishness in forecasts. I will argue that

the change in the Fed communication improved firms’ information, and I use my model to

17. I conduct robustness checks studying the impulse response of ex-post inflation forecast errors to ex-
ante monetary policy shocks, the cross-sectional volatility of inflation forecasts over time, or using alternative
datasets like the Livingston Survey.
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Full Sample 1968:Q4-1984:Q4 1985:Q1-2020:Q1 Structural Break
(1) (2) (3) (4) (5)

Revision 1.230∗∗∗ 1.414∗∗∗ 0.169 1.501∗∗∗ 1.414∗∗∗

(0.250) (0.283) (0.193) (0.317) (0.281)

Revision × 1{t≥t∗} -1.111∗∗∗ -1.245∗∗∗

(0.379) (0.341)

Constant -0.0875 0.271 -0.317∗∗∗ -0.135∗ 0.271
(0.0696) (0.185) (0.0478) (0.0690) (0.184)

Constant × 1{t≥t∗} -0.587∗∗∗

(0.190)

Observations 197 58 139 197 197

Robust standard errors in parenthesis
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table III: Regression table

show that the reduced the stickiness in firms’ inflation forecasts will translate into reduced

persistence in inflation. I show that in this framework inflation is more persistent in peri-

ods of greater forecast sluggishness. Noisy information generates an underreaction to new

information because individuals shrink their forecasts towards prior beliefs when the signals

they observe are noisy. This endogenous anchoring in forecasts causes firms to set prices

to their existing prior, thus slowing the speed of price changes. Because inflation depends

on expectations of future inflation, the change in expectation formation feeds into inflation

dynamics, which endogenously reduces inflation persistence. I find that this change in firm

forecasting behavior explains around 90% of the fall in inflation persistence since the mid

1980s.

4 Noisy Information

I discuss a variety of New Keynesian models in Appendix D, and show that none of them

can produce a significant fall in inflation persistence. The intuition behind that result is

that, in purely forward frameworks, inflation is proportional to the exogenous shocks, and

only extrinsically persistent. I show that the persistence of these exogenous shocks has

not changed over time. Then, I explore several extensions that produce backward-looking

dynamics, such as optimal monetary policy under commitment, price indexation or positive

trend inflation. I argue that these extensions generate mild anchoring and cannot explain
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the documented change in inflation persistence.

In this section, I extend the benchmark setting to noisy and dispersed information and

show that this information structure generates additional persistence in inflation. As dis-

cussed in the introduction, the actions of the Fed have become more transparent over time.

The delay between the action and the announcement to the public has been shortened from

around a year to a few minutes and the amount of information contained in the PR and other

documents released to the public has substantially increased.18 I document a contempora-

neous change in beliefs and expectation formation around the same date in which inflation

persistence is reported to break. I show that this gradual increase in information has re-

duced the degree of anchoring in firm expectations. Given that expectations are a crucial

determinant of inflation, the gradual de-anchoring in expectations has led to a de-anchoring

in inflation.19

4.1 Noisy Information New Keynesian Model

In order to relate the previous empirical findings on inflation persistence to information

frictions, I build a noisy information New Keynesian model based on the island setting by

Lucas (1972), Woodford (2001), Nimark (2008), Lorenzoni (2009), and Angeletos and Huo

(2021).20 Firms observe the economic conditions in their island, but they do not have full

information about the economic conditions in the archipielago. In particular, firms can

observe their own granular conditions, such as their production given their price, but they

do not have perfect information about aggregate macro variables like inflation, output or

interest rates. They observe a noisy signal that provides information on the state of the

economy, in this case the monetary policy shock. With this piece of information, firms form

expectations on inflation, aggregate output and interest rates. For simplicity, I assume that

households and the monetary authority have access to full information.21

Apart from this information friction, which I describe formally below, firms are subject to

18. I provide a more detailed historical analysis of the Fed‘s gradual increase in transparency in Appendix
E.

19. A criticism to the gradual information disclosure argument is that, although actions themselves could
not be known with any certainty until after a year, market participants could observe the changes in interest
rates and monetary aggregates induced by the action and could thus infer the action, in the spirit of the
Grossman and Stiglitz (1980) paradox. To alleviate this concern, I measure information frictions using data
from professional forecasters. The underlying assumption here is that professional forecasters are among the
most informed agents in the economy since their job is to make predictions for private companies. Obtaining
evidence on significant information friction would therefore invalidate the previous criticism.

20. The derivation of the model is relegated to Online Appendix F.
21. I relax the FIRE assumption on households in Appendix C.

15



the standard Calvo-lottery price friction, which allows us to write the price-setting problem

as a forward-looking one, and compete in a monopolistic economy. There is a continuum

of firms indexed by j ∈ If = [0, 1], each being a monopolist producing a differentiated

intermediate-good variety with CES ε, producing output Yjt and setting price Pjt. Technol-

ogy is represented by the production function

Yjt = N1−α
jt (4.1)

where 1− α is the labor share.

Aggregate Price Dynamics As in the benchmark NK model, price rigidities take the

form of a Calvo-lottery. In every period, each firm can reset its price with probability (1−θ),
independent of the time of the last price change. That is, only a measure (1− θ) of firms is

able to reset their prices in a given period, and the average duration of a price is given by

1/(1 − θ). Let pt = logPt denote the (log) aggregate price level and p∗t = logP ∗t the (log)

aggregate price set by firms which are able to act. Such environment implies that aggregate

price dynamics are given (in log-linear terms) by

pt = (1− θ)p∗t + θpt−1, p∗t =

∫
If
p∗jt dj (4.2)

That is, the (log) aggregate price level at time t is a weighted average of the average price

set by resetters and the average price set by non-resetters, pt−1.

Optimal Price Setting A firm re-optimizing in period t will choose the price P ∗jt that

maximizes the current market value of the profits generated while the price remains effective.

Formally,

P ∗jt = arg max
Pjt

∞∑
k=0

θkEjt
{

Λt,t+k
PjtYj,t+k −Wt+kNj,t+k

Pt+k

}

where Λt,t+k ≡ βk
(
Ct+k
Ct

)−σ
is the stochastic discount factor and Ejt(·) denotes firm j’s

expectation conditional on its information set at time t, and subject to the sequence of

demand schedules Yj,t+k =
(

Pjt
Pt+k

)−ε
Ct+k and their production technology (4.1). I assume

that prices are set before wages. Log-linearizing the resulting first-order condition around
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the zero inflation steady-state, I obtain the familiar price-setting rule

p∗jt = (1− βθ)
∞∑
k=0

(βθ)kEjt (pt+k + Θm̂ct+k) (4.3)

where m̂ct = mct−mc is the deviation between real marginal costs and steady-state marginal

costs and Θ = 1−α
1−α+αε

. Comparing the price-setting rule arising in this framework with the

one in the benchmark, the only difference comes from the expectation operator. In the

benchmark case, information sets are homogeneous and all firms (allowed to act) set the

same price. Instead, in this framework, each firm will set a different price based on its own

belief structure.

Equilibrium Market clearing in the goods and labor market implies that ct = yt = (1 −
α)nt. Using the equilibrium aggregate labor supply condition, we can write marginal costs

in terms of output, mct = wt − pt =
(
σ + ϕ+α

1−α

)
yt, where σ is the elasticity of intertemporal

substitution and ϕ is the inverse Frisch elasticity. Rewriting output in terms of its gap with

respect to the flexible-prices equilibrium,

p∗jt = (1− βθ)
∞∑
k=0

(βθ)kEjt
[
pt+k + Θ

(
σ +

ϕ+ α

1− α

)
ỹt+k

]
(4.4)

which we can rewrite recursively as

p∗jt = (1− βθ)Ejtpt +
κθ

1− θ
Ejtỹt + βθEjtp∗j,t+1 (4.5)

where κ = (1−θ)(1−βθ)
θ

Θ
(
σ + ϕ+α

1−α

)
. Condition (4.5) is actually quite intuitive: when a firm

j sets its price, she considers how competitive will her price compared to the average price

in the economy (playing a game of strategic complementarities with other firms), which will

be the aggregate demand in the economy, and the future conditions since its price will be

effective for an unknown number of periods.

Demand side The demand side behaves as in the standard framework. Output gap

dynamics are described by the standard DIS curve (4.6), where current output gap depends

negatively on the expected real interest rate and positively on future aggregate demand; and

nominal interest rates are set by the central bank following a Taylor rule (4.7), in which the

central bank reacts to excessive inflation and output by reducing the nominal interest rates,
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and releases a monetary policy shock (4.8) that has an AR(1) structure:

ỹt = − 1

σ
(it − Etπt+1) + Etỹt+1 (4.6)

it = φππt + φyỹt + vt (4.7)

vt = ρvt−1 + σεε
v
t , εvt ∼ N (0, 1) (4.8)

The monetary policy shock vt will be a key object in this economy. It is the only aggregate

state variable, and I will assume that firms will have imperfect information on the central

bank’s action vt, consistent with our evidence on the transparency policy change by the Fed.

Aggregate Phillips curve In order to derive the aggregate Phillips curve, we aggregate

condition (4.4) across firms.22 The aggregate Phillips curve can then be written as

πt = κθ
∞∑
k=0

(βθ)kEft ỹt+k + (1− θ)
∞∑
k=0

(βθ)kEft πt+k +
(
Eft pt−1 − pt−1

)
(4.9)

where πt = pt − pt−1 is the inflation rate and Eft (·) =
∫
If
Ejt(·) dj is the average firm

expectation operator. Compared to the standard framework, there is an additional term

on the right-hand side, the result of firms not perfectly observing the previous price index.

Angeletos and Huo (2021) eliminate this term by assuming that firms know the aggregate

price level at time t− 1, but do not extract any information from it.23 In order to maintain

internal consistence in the theoretical framework, I do not make such assumption.

At this point, it is important to stress that in order to derive condition (4.5) I have

not yet specified an information structure. Therefore, the price-setting condition (4.5) and

the aggregate Phillips curve (4.9) should be interpreted as general individual price-setting

condition and general aggregate Phillips curve.24

22. We subtract pt−1 on both sides, and ±Eft pt−1 on the right-hand side.
23. Vives and Yang (2016) motivate this through bounded rationality and inattention, while Angeletos and

Huo (2021) argue that inflation contains little statistical information about real variables. Huo and Pedroni
(2021) allow for endogenous information, but such a choice complicates the dynamics and the concept of
persistence becomes less clear.

24. In the FIRE NK model, agents perfectly observe inflation and output, and face a symmetric Nash
equilibrium game, and thus every firm acts as a representative agent firm. In such a case, the individual
price-setting curve (4.5) can be aggregated to the well-known New Keynesian Phillips curve (5.1).
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Information Structure In order to generate heterogeneous beliefs and sticky forecasts, I

assume that the information is incomplete and dispersed. Each firm j observes a noisy signal

xjt that contains information on the monetary shock vt, and takes the standard functional

form of “outcome plus noise”. Formally, signal xjt is described as

xjt = vt + σuujt, with ujt ∼ N (0, 1) (4.10)

where signals are agent-specific. This implies that each agent’s information set is different,

and therefore generates heterogeneous information sets across the population of firms.

An equilibrium must therefore satisfy the individual-level optimal pricing policy functions

(4.5), the aggregate DIS curve (4.6), the Taylor rule (4.7), and rational expectation formation

should be consistent with the exogenous monetary shock process (4.8) and the signal process

(4.10).

Solution Algorithm Here I outline the solution algorithm, and the interested reader

is referred to the Proof of Proposition 1 in Appendix A. I first guess that the dynamics

of the output gap are endogenous to the aggregate price index and the monetary shock:

ỹt = aypt−1 + bypt−2 + cyvt for some unknown coefficients (ay, by, cy). This allows us to write

the individual price-setting condition (4.5) as a beauty contest in which each firm’s decision

will depend on its own expectation of the fundamental and on others’ actions. I then compute

expectations. For example, using the Kalman filter, we can write the expectation process

as25

EjtZt = ΛEj,t−1Zt−1 +Kxjt

= (I −ΛL)−1Kxjt

= Λ̃(L)xjt, Zt =
[
vt pt ỹt

]′
(4.11)

where I have made use of the lag operator L, and Λ̃(z) = (I − ΛL)−1K is a polynomial

matrix that depends on the guessed dynamics and the information noise σu. I then insert

these objects into firm j’s price policy function (4.5), and obtain aggregate price dynamics.

Finally, we verify our initial guess by introducing the implied price dynamics into the DIS

curve (4.6).

Notice that extending the benchmark framework to noisy and dispersed information

25. In the case of the Kalman filter, we also need to guess the dynamics of the price level.
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generates anchoring through expectations, which follow an autorregressive process now. This

additional anchoring will result in inflation being more persistent in the noisy information

framework, compared to the benchmark setting.

The following proposition outlines inflation and output gap dynamics.

Proposition 1. Under noisy information the output gap and price level dynamics are given

by

ỹt =
ϑ1[σ(1− ϑ2) + φy](ϑ1 + ϑ2 − 1− φπ) + (1− ϑ2)(φπ − ϑ2)(σ + φy)

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]
pt−1

+
ϑ1ϑ2[σ(1− ϑ1)(1− ϑ2)− (ϑ1 + ϑ2 − 1− φπ)φy]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]
pt−2 − ψyχy(ϑ1, ϑ2)vt (4.12)

pt = (ϑ1 + ϑ2)pt−1 − ϑ1ϑ2pt−2 − ψπχπ(ϑ1, ϑ2)vt (4.13)

where ϑ1 and ϑ2 are the reciprocal of the two outside roots of the quartic polynomial

P(z) = −(βθ − z)(1− θz)(z − ρ) (1− ρz)

− τz

[
(βθ − z)(1− θz) + z(1− θ)(1− βθ)

+ z2κθ
ϑ1[σ(1− ϑ2) + φy](ϑ1 + ϑ2 − 1− φπ) + (1− ϑ2)(φπ − ϑ2)(σ + φy)

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

+ z3κθ
ϑ1ϑ2[σ(1− ϑ1)(1− ϑ2)− (ϑ1 + ϑ2 − 1− φπ)φy]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

]

and χy, χπ are scalars endogenous to information frictions, with τ = σ2
ε/σ

2
u.

Proof. See Appendix A

First differencing price level dynamics (4.13), we can obtain the implied inflation dynam-

ics as

πt = (ϑ1 + ϑ2)πt−1 − ϑ1ϑ2πt−2 − ψπχπ(ϑ1, ϑ2)∆vt (4.14)

In the noisy information framework, inflation is intrinsically persistent and its persistence is

governed by the new information-related parameters ϑ1 and ϑ2, as opposed to the benchmark

framework in which it is only extrinsically persistent. The intuition for this result is simple:

inflation is partially determined by expectations (see condition (4.9) under noisy information,
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or (5.1) under complete information). Under noisy information, expectations are anchored

and follow an autoregressive process (see (4.11)), which creates the additional source of

anchoring in inflation dynamics, measured by ϑ1 and ϑ2. In particular, we can write the

inflation first-order autocorrelation as

ρ1 =
(1 + ρ)(ϑ1 + ϑ2) + (1− ρ)(ϑ1ϑ2 − 1)

1 + ρϑ1ϑ2

,

which is increasing in both ϑ1 and ϑ2. Since our ultimate goal is to understand the break in

inflation persistence documented in Section 2, the following proposition exposes the deter-

minants of ϑ1 and ϑ2, and provides analytical comparative statics.

Proposition 2. The persistence parameters are

(i) ϑ1 ∈ (0, ρ)

(ii) ϑ1 is increasing in σu

(iii) ϑ2 ∈ (θ, 1)

(iv) ϑ2 is decreasing in σu

Proof. See Appendix A.

Inflation persistence and information frictions are related through ϑ1 and ϑ2. The above

proposition is key to understand the time-varying properties of inflation persistence. First,

part (i) establishes that ϑ1 is bounded by 0 and ρ. Part (ii) states that ϑ1 is increasing

in the degree of information frictions, formalized via the noise of the signal innovation σu.

A decrease in information frictions reduces inflation first-order autocorrelation through a

de-anchoring of individual inflation expectations, which would in turn de-anchor inflation

dynamics. Figure 4a plots the level of intrinsic persistence ϑ1 for different degrees of infor-

mation frictions, measured by τ−1. Part (iii) establishes that ϑ2 is bounded by θ and 1.

Part (iv) states that ϑ2 is decreasing in the degree of information frictions. A decrease in

information frictions increases inflation first-order autocorrelation through an anchoring of

individual inflation expectations, which would in turn anchor inflation dynamics. Figure 4b

plots the level of intrinsic persistence ϑ2 for different degrees of information frictions. In the

limit of no information frictions σu → 0, ϑ1 → 0 and ϑ2 → 1.

Information frictions do, therefore, have opposing effects on persistence. On the one

hand, information frictions lead to an additional persistence through an increase in ϑ1, the
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standard mechanism in Angeletos and Huo (2021). On the other hand, there is an additional

component ϑ2 that is decreasing in information frictions. This element arises from the fact

that we are solving the NK model in prices, instead of inflation as in Angeletos and Huo

(2021) or as in the benchmark setting in Gaĺı (2015) in which prices follow a unit root. Since

price dynamics follow (4.2), when firm j forecasts the aggregate price level pt, she needs to

forecast the average action by other firms p∗t , but also backcast the aggregate price level in

the past pt−1. Information frictions relax the forward-lookingness of the model equations,

as formalized by Gabaix (2020) and Angeletos and Huo (2021), resulting in price dynamics

no longer following a unit root anymore. In the frictionless limit prices follow a unit root,

formalized by ϑ2 → 1. However, as shown in Figure 4c, the net result of an increase in

information frictions is an increase in the first-order autocorrelation. These key results,

coupled with the next result introduced in Proposition 3, will explain the overall fall in

inflation persistence.

In the next section I relate our theoretical findings on inflation persistence to empirical

evidence on information frictions, and their fall in the recent decades.

4.2 Calibrating Information Frictions

In our theoretical framework we rationalize the average forecast underreaction through an-

choring to priors. A positive βrev will therefore generate intrinsic persistence in inflation

dynamics. Yet, this is not enough to explain the change in inflation persistence over time. I

documented in Section 3 a structural break in belief formation. This break coincides with a

change in the US Federal Reserve’s communication policy, which became more transparent

and informative after the mid 1980s. Using survey data on US firms’ forecasts, I document

significant sluggishness in responses to new information until the mid 1980s, but no evidence

of sluggishness afterwards. In this section I calibrate the information friction parameter

σu to match the observed sluggishness in forecasts across time. As argued before, in the

dispersed-information model lens, the signal noise became more precise.

Propositions 1 and 2 state that inflation becomes less persistent when we relax the in-

formation frictions. In the next proposition, I relate the previous empirical findings on

expectations to model-implied inflation persistence.
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(a) Intrinsic persistence ϑ1 and information frictions τ−1

(b) Intrinsic persistence ϑ2 and information frictions τ−1

(c) First-Order Autocorrelation ρ1 and information frictions τ−1

Figure 4: Comparative statics.
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Proposition 3. The theoretical counterpart of the coefficient βrev in (3.1) is given by

βrev =
λ3ρ(1− ϑ1λ)(1− ϑ2λ)

(1− λ4)(ρ− λ)

{
λ(λ− ξ1)(λ− ξ2)(λ− ξ3)(λ− ξ4)

(λ− ϑ1)(λ− ϑ2)

− (1− λ2)

[
ϑ1(ϑ1 − ξ1)(ϑ1 − ξ2)(ϑ1 − ξ3)(ϑ1 − ξ4)

(1− λϑ1)(λ− ϑ1)(ϑ1 − ϑ2)
+
ϑ2(ϑ2 − ξ1)(ϑ2 − ξ2)(ϑ2 − ξ3)(ϑ2 − ξ4)

(1− λϑ2)(λ− ϑ2)(ϑ1 − ϑ2)

]}
(4.15)

where λ is the inside root of the quadratic polynomial Q1(z) = (1 − ρz)(z − ρ) + σ2
ε

σ2
u
z, and

(ξ1, ξ2, ξ3, ξ4) are the reciprocals of the roots of the quartic polynomial Q2(z) = φ0 + φ1z +

φ2z
2+φ3z

3+φ4z
4, where φ0 = cp, φ1 =

(
1
λ
− 1

ρ

)
cp, φ2 = (ρ−λ)cp

λ2ρ
, φ3 = (ρ−λ)cp[λ3−ϑ1−ϑ2+λϑ1ϑ2]

λ2ρ(1−λϑ1)(1−λϑ2)
,

and φ4 = −λ3+λ4ϑ2+λ4ϑ1−ϑ1ϑ2[λ−(1−λ4)ρ]
λ2ρ(1−λϑ1)(1−λϑ2)

.

Proof. See Appendix A.

The empirical results support a fall in information frictions in recent decades. Proposition

3 maps the theoretical information friction, σu, with the Coibion and Gorodnichenko (2015)

estimate. It introduces the model-implied βrev coefficient, which depends on the monetary

policy shock persistence ρ and on the information-related parameters ϑ1, ϑ2 and λ, where

λ, in turn, depends on the persistence parameter and the signal-to-noise ratio. In our noisy

information framework, βrev is strictly positive and increases with the degree of information

frictions. I show this graphically in Figure 5a. In the model lens, this underrevision is the

consequence of individual anchoring to priors, and generates forecast underreaction at the

aggregate level.

The most important finding is that βrev and ρ1, the theoretical counterparts of Coibion

and Gorodnichenko (2015) underreaction estimate βrev and inflation persistence, are closely

related as I show in Figure 5b. The fall in the first-order autocorrelation can be explained by a

fall in information frictions. For this quantitative analysis, I use a standard parameterization

in the literature, with the only exception of θ = 0.872, which is calibrated to match a Phillips

curve slope κ = 0.06, and φy = 0.5 which warrantees the existence of a unique equilibrium

as σu → 0.26 Finally, I calibrate τ = 0.069 in the pre-1985 sample to match the empirical

evidence on βrev in Table III.

As a last remark, notice that the dynamics generated by the noisy information model

(4.14) resemble those generated by the ad-hoc backward-looking models presented in Ap-

pendix D.3. However, differently from those ad-hoc frameworks, in the noisy information

26. All parameters are set to the values reported in Table OA.1.
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(a) βrev and information frictions τ−1

(b) First-Order Autocorrelation ρ1 and information frictions βrev

Figure 5: Comparative statics.
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framework intrinsic persistence is the result of the micro-founded anchoring in expectations.

Extending the model to accommodate noisy information introduces anchoring through ex-

pectations, for which I have empirical evidence, rather than the more ad-hoc consumption

external habits or price indexation assumptions, for which there is little or no evidence.27

4.3 Results

Inflation Persistence In the noisy information framework, inflation persistence is gov-

erned by ϑ1 and ϑ2. Propositions 1-3 establish a direct relation between the first-order

autocorrelation of inflation ρ1 and βrev, our empirical measure of information frictions. Fig-

ure 5b shows graphically the monotonically increasing relation between inflation persistence

and βrev. In the initial pre-1985 period, with βrev = 1.501, the model-implied inflation first-

order autocorrelation is ρ1 = 0.716. In the post-1985 period, with no information frictions,

the first-order autocorrelation falls to ρ1 = ρ, which is the persistence of the monetary pol-

icy shock in the benchmark framework (see Gaĺı 2015). Comparing our model results to the

empirical analysis in Tables I and II, I find that the noisy information framework produces

persistence dynamics that lie within the 95% confidence interval, and can explain around

90% of the point estimate fall. Noisy information produces such fall in a micro-consistent

manner, compared to the more ad-hoc NK models studied in Section D.

Role of Calvo Friction In our framework, information frictions affect the two roots ϑ1

and ϑ2 in opposing ways. In order for the model to explain the fall in inflation persistence,

it must be that ϑ2 is not very sensitive to information frictions. Since ϑ2 ∈ (θ, 1), a large

value of θ limits this sensitivity.

The calibration of the Calvo pricing friction implies a mean price duration of 7.8 quarters.

This estimate is in the upper range in the micro literature. Bils and Klenow (2004), Klenow

and Kryvtsov (2008), Nakamura and Steinsson (2008), and Goldberg and Hellerstein (2009)

find a median price duration of 4.5-11 months in US micro data. Gaĺı (2015) sets θ = 0.75

to match an implied duration of 1 year. Christiano et al. (2011) set θ = 0.85. Auclert

et al. (2020) and Afsar et al. (2021) estimate θ between 0.88 and 0.93 from macro data,

implying a price duration of 12-14 quarters.

27. Havranek et al. (2017) present a meta-analysis of the different estimates of habits in the macro literature
and the available micro-estimates. In general, macro models take h = 0.75, whereas micro-estimates suggest
a value around ĥ = 0.4. On the other hand, the price-indexation model suggests that every price is changed
every period, which is inconsistent with the micro-data estimates provided by Nakamura and Steinsson
(2008).
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Figure 6: First order autocorrelation ρ1 and price friction θ

In Figure 6, I plot the implied first-order autocorrelation for different values of the Calvo

price friction in the range of the literature. Depending on this parameter, the noisy informa-

tion framework explains between 40% and 100% of the point estimate fall in the first order

autocorrelation.

5 The “Inflation Disconnect” Puzzle and the Flattening of the

Phillips Curve

The second empirical challenge documents that the Phillips curve has flattened in the recent

decades, implying that inflation is no longer affected by other real variables (del Negro et

al. 2020; Ascari and Fosso 2021). This finding indirectly implies that central bank actions,

understood as nominal interest rate changes, are less effective in affecting inflation. I argue

from the perspective of my model that the change in the dynamics of the Phillips curve can

be explained by a lack of backward-lookingness and an increase of forward-lookingness after

the mid 1980s. In particular, I show that there is no evidence for a flattening in the Phillips

curve once we control for the decline in information frictions.

The most well-known (structural) inflation equation is the NK Phillips curve,

πt = κỹt + βEtπt+1 (5.1)

which relates current inflation to the current output gap and expected future inflation. Notice

that, in this framework, inflation is only related to output through the Phillips curve slope

κ. In such framework, the only possible explanation for the lack of dependence of inflation

on output is the fall in κ. The literature has focused extensively on this coefficient, in the

hope of showing that this relation has somehow flattened and that inflation is independent
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of any other variable. The available empirical evidence is mixed. The estimated coefficient

is generally small and not precisely estimated. Rotemberg and Woodford (1997) estimate a

coefficient of 0.019. Gaĺı (2008) sets κ to 0.085. Nakamura and Steinsson (2014) estimate it

around 0.0077. In a recent paper, Hazell et al. (2020) estimate a coefficient of 0.0062.

I argue below that the mainstream finding that the slope of the Phillips curve has fallen

in the recent period is simply the result of a misspecified Phillips curve equation (5.1). The

derivation of the Phillips curve relies on the FIRE assumption (and implicitly on the Law

of Iterated Expectations), for which I find a strong rejection in the data. I then conduct

two main exercises. First, by relaxing the FIRE assumption, the Phillips curve is instead

given by (4.9). Instead of replacing expectations of future inflation by its realization, as

the literature generally does when estimating condition (5.1), I use the survey forecasts to

estimate (4.9) and I do not find any evidence of a change in the slope. Second, in a more

theoretical exercise, I use the noisy information framework to rewrite its inflation dynamics

as an as if FIRE setting with some wedges (Angeletos and Huo 2021). According to my

theory, the Phillips curve (5.1) needs to be extended with a backward-looking inflation term

and significant myopia towards future inflation in the pre-1985 sample period. Once these

additional terms are controlled for, and I estimate a Phillips curve closer to the hybrid version

implied by price-indexation settings, I do not find any evidence of a change in κ.

In the next subsections, I will first explain the fall in inflation sensitivity through changes

in expectations, and then I will show empirically that there is no evidence of a fall in κ once

we control for non-standard expectations.

5.1 Inflation Disconnect via Expectations

Next, I argue that once I consider a micro-founded Phillips curve that takes into account

noisy information, there is no evidence of a change in the slope of the Phillips curve.

Let us first recall inflation dynamics in the standard model. In the benchmark NK

model, the Phillips curve is given by (5.1), the DIS curve is given by (4.6), the Taylor rule

is given by (4.7) and the monetary policy shock process is given by (4.8). Inserting the

Taylor rule (4.7) into the DIS curve (4.6), one can write the model as a system of two first-

order stochastic difference equations with reduced-form dynamics xt = δEtxt+1 +ϕvt, where
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xt = [ỹt πt pt]
′ is a 3× 1 vector containing output, inflation and prices, and

δ =
1

σ + φy + κφπ

 σ 1− βφπ 0

σκ κ+ β(σ + φy) 0

0 −1 1

 , ϕ =
1

σ + φy + κφπ

−1

−κ
0

 .
Angeletos and Huo (2021) show that, using the noisy information dynamics (4.12)-(4.14), we

can reverse engineer an as if system dynamics that mimics the dynamics of our NI model,

such that the following ad-hoc system of equations

xt = ωbxt−1 + ωfδEtxt+1 +ϕvt (5.2)

satisfies the model dynamics for some pair of 3× 3 matrices (ωb,ωf ). The next proposition

states that, under a certain pair (ωb,ωf ), the ad-hoc economy produces the same dynamics

that our noisy information framework.

Proposition 4. The ad-hoc hybrid dynamics (5.2) produces identical dynamics to the noisy

information model if (ωb,ωf ) satisfy

B −ϕ = ωfδ(AB + ρB)

ωb = (I3 − ωfδA)A
(5.3)

where

A =

0 by ay + by

0 ϑ1ϑ2 −(1− ϑ1)(1− ϑ2)

0 ϑ1ϑ2 ϑ1 + ϑ2 − ϑ1ϑ2

 , B =

−ψyχy(ϑ1, ϑ2)

−ψπχπ(ϑ1, ϑ2)

−ψπχπ(ϑ1, ϑ2)


ay =

ϑ1[σ(1− ϑ2) + φy](ϑ1 + ϑ2 − 1− φπ) + (1− ϑ2)(φπ − ϑ2)(σ + φy)

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

by =
ϑ1ϑ2[σ(1− ϑ1)(1− ϑ2)− (ϑ1 + ϑ2 − 1− φπ)φy]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

In particular, the “as if” FIRE Phillips curve dynamics are described by

πt = ωππt−1 + ωppt−1 + γyκỹt + δyEtỹt+1 + δπβEtπt+1 (5.4)

where (ωπ, ωp, γy, δy, δπ) depend on the (ωb,ωf ) pair.

Proof. See Appendix A.
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Notice that condition (5.3) does not uniquely determine the set of weights ωf consistent

with the noisy information dynamics. Different weights in ωf are consistent with noisy

information dynamics, although the dynamics are unique. Intuitively, agents’ actions can be

anchored/myopic with respect to aggregate output or inflation.

The slope of the Phillips curve is now interacted with γy, a coefficient arising from

information frictions. In the benchmark NK model with no information frictions we have

ωb,11 = ωb,12 = ωb,21 = ωb,22 = ωf,12 = ωf,21 = 0 and ωf,11 = ωf,22 = 1. As a result,

ωπ = ωp = δy = 0, γy = 1, δπ = 1 and the Phillips curve is reduced to the only forward-

looking (5.1).

I now estimate the Phillips curves. I start from the benchmark NK Phillips curve (5.1). I

follow the literature, replace expectations of future inflation by realized future inflation and

estimate the equation with GMM. In Table IV column 1 I report the estimated coefficients. I

find that the Phillips curve slope is small and not significant. In the second column, following

my structural break strategy in the previous sections, I test for a structural break after 1985

in the output gap coefficient. I find evidence for a break, which the literature has interpreted

as flattening in the Phillips curve (in absolute terms). Guided by the as if framework, I

estimate the wedge Phillips curve (5.4). I report the estimated coefficients in column 3.

I find that the Phillips curve slope is small and not significant. In fact, I find that only

inflation-related coefficients are significant, suggesting support for backward-lookingness. I

report the structural break results in column 4. I find no evidence of a structural break in

the slope (i.e., no evidence of flattening in the Phillips curve). In column 5 I explore if there

has been any other structural break in the dynamics of the Phillips curve. In particular, our

model suggests that the backward-looking term should have vanished after 1985, and that

the forward-looking term should have increased. I report these results in column 5. I find

a structural break in lagged and forward inflation: in recent decades the Phillips curve has

become more forward-looking and less backward-looking. This last result aligns well with the

documented drop in inflation persistence and information frictions, and with the mechanism

suggested in the noisy information framework. In the light of these noisy estimates, I take

the “Phillips curve flattening puzzle” as a result of misspecification in the standard Phillips

curve.

In order to understand these findings, I explore which set of wedges (ωb,ωf ) is consistent

with the documented dynamics. Since I do not find any evidence of the relevance of the

lagged price level and forward output gap, I choose wedges such that they produce the well-

known hybrid Phillips curve. That is, I choose a set of wedges consistent with (5.3) and
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ωp = δy = 0. In that case, we can reduce the wedge Phillips curve (5.4) to a micro-founded

hybrid Phillips curve with the following set of coefficients

πt = 0.319πt−1 + 0.181κỹt + 0.675βEtπt+1.

First, notice that the as if model produces anchoring, which lines up with the strong inflation

persistence during that period, and considerable myopia towards future inflation. Further-

more, our model suggests that the slope of the Phillips curve has increased in recent decades

(γy < 1), although this increase is small given that κ = 0.06, and is not significant in the

data. More importantly, our model suggests that anchoring and myopia should vanish in the

post-1985 sample. Overall, I find that one cannot empirically reject the null that, since the

structural break in 1985:Q1, (i) anchoring has gone to zero, (ii) myopia has disappeared,

and (iii) the slope moderately increased, which the model can successfully replicate.

5.2 Controlling for Imperfect Expectations

In order to obtain the results on inflation persistence, I have assumed a particular information

structure, noisy and dispersed information. In this section I take a step back and instead

take an agnostic stance on expectation formation. Consider the aggregate Phillips curve

(4.9). Inflation is now related to current and future output through two different channels:

the slope of the Phillips curve, κ, and firms’ expectation formation process. In order to

test for a potential structural break in the slope controlling for non-standard expectations,

I regress the general Phillips curve (4.9) (truncated at k = 4), for which I do not assume

a particular information structure, using real GDP and GDP Deflator growth forecast data

from the SPF. We set β and θ to their quarterly values 0.99 and 0.872, and regress

πt = α1 + α2ỹ
e
t + α3π

e
t + ηt (5.5)

where ηt =
(
Eft pt−1 − pt−1

)
+ truncation error, ỹet = θ

∑4
k=0(βθ)kEft ỹt+k and πet =∑4

k=0(βθ)kEft πt+k denote the truncated sums of expected real GDP and inflation. I use

standard GMM methods by instrumenting for expectations with 4-quarter lagged annual

inflation and real GDP growth expectations. The results are reported in Table V. In column

1, I report the full sample coefficients. I find that κ is small, consistent with our choice of

κ and similar to the value found by Hazell et al. (2020). In column 2, I regress its (output)

structural break version. This is the only specification that suggests a structural break on
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(1) (2) (3)
Full Sample Break Output Break All

ỹet −0.00692 0.132∗∗ 0.0909∗

(0.0177) (0.0515) (0.0531)

ỹet × 1{t≥t∗} −0.103∗∗∗ 0.0112
(0.0356) (0.0649)

πet 0.262∗∗∗ 0.214∗∗∗ 0.237∗∗∗

(0.0121) (0.0223) (0.0240)

πet × 1{t≥t∗} −0.0932∗∗

(0.0402)

Observations 199 199 199

HAC Robust standard errors in parentheses

Instrument set: four lags of forecasts of annual real GDP growth

and annual GDP Deflator growth
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table V: Regression table

the slope. However, when I also consider a potential structural break in inflation, I find

an estimate of κ that aligns well with our model assumption, and I find no evidence of a

structural break in the Phillips curve slope.28

5.3 Summary

To sum up, I find that once we control for imperfect expectations and a potential change

in their dynamics, I do not find any evidence of a structural break in the slope of the

Phillips curve. First, I showed that the noisy information model can explain the change in

the dynamics between inflation and output via changes in belief formation through the γy

wedge and the different role of forward-lookingness. Second, I documented empirically that

controlling for non standard expectations, proxied by the forecasts submitted by professional

forecasters, I do not find any evidence of a change in the slope of the Phillips curve.

28. I repeat the analysis using the Livingston Survey on Appendix B, and find similar results.
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6 Conclusion

In this paper I document a fall in inflation persistence since the mid 1980s. State-of-the-art

monetary models face significant challenges in explaining this fall in inflation persistence. I

show that, by extending the benchmark NK in a micro-consistent manner relaxing the FIRE

assumption, our model generates the documented fall in persistence. Using micro-data on

inflation expectations from the Survey of Professional Forecasters (SPF), I show that agents

became more informed about inflation after the change in the Federal Reserve disclosure

policy, which endogenously lowers the intrinsic persistence in inflation dynamics.

I revisit different theories that produce a structural relation between inflation and other

forces in the economy. I show that a variety of NK models cannot explain the fall in inflation

persistence. Since the benchmark model is purely forward-looking, inflation exhibits no

intrinsic persistence, and its dynamic properties are now inherited from monetary policy

shocks. However, I document that the persistence of monetary policy shocks has not changed

over time. Acknowledging that purely forward-looking models cannot generate anchoring

or intrinsic persistence, I extend the benchmark model to incorporate a backward-looking

dimension. I show that the change in the monetary stance now affects inflation intrinsic

persistence. The effect is small, however.

Then, I show that our noisy and dispersed information extension is consistent with the

micro-data evidence on belief formation, and generates anchoring or intrinsic inflation per-

sistence. Using SPF data, I document that a structural break in expectation formation,

resulting in agents being more informed about inflation, is contemporaneous to the fall in

inflation persistence. The model can therefore explain the fall in inflation persistence in a

micro-consistent manner.

I discuss the consequences of noisy and dispersed information on the “inflation disconnect

puzzle” and the lack of flattening of the Phillips curve. In the noisy information model,

inflation is related to the demand side through two different channels: the slope of the

Phillips curve and firms’ expectation formation process. The model explains the fall in

inflation sensitivity towards the demand side of the economy via changes in expectations,

without resorting to changes in the slope. Finally, taking an agnostic stance on expectations,

I show that there is no empirical evidence of a change in the Phillips curve slope once we

control for non-standard expectations.
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Clarida, Richard, Jordi Gaĺı, and Mark Gertler. 2000. “Monetary policy rules and macroe-

conomic stability: Evidence and some theory.” Quarterly Journal of Economics. issn:

00335533.

Cogley, Timothy, and Argia M. Sbordone. 2008. “Trend Inflation, Indexation, and Inflation

Persistence in the New Keynesian Phillips Curve.” The American Economic Review 98

(5): 2101–2126. issn: 00028282.

Cogley, Timothy, Giorgio E. Primiceri, and Thomas J. Sargent. 2010. “Inflation-Gap Persis-

tence in the US.” American Economic Journal: Macroeconomics 2 (1): 43–69.

Coibion, Olivier, and Yuriy Gorodnichenko. 2015. “Information rigidity and the expectations

formation process: A simple framework and new facts.” American Economic Review.

issn: 00028282.

. 2012. “What Can Survey Forecasts Tell Us about Information Rigidities?” Journal

of Political Economy 120 (1): 116–159. issn: 00223808, 1537534X.

Cukierman, Alex, and Allan H. Meltzer. 1986. “A Theory of Ambiguity, Credibility, and

Inflation under Discretion and Asymmetric Information.” Econometrica 54 (5): 1099–

1128. issn: 00129682, 14680262.

del Negro, Marco, Michele Lenza, Giorgio Primiceri, and Andrea Tambalotti. 2020. “What’s

up with the Phillips Curve?” National Bureau of Economic Research. issn: 0898-2937.

36

https://arxiv.org/abs/arXiv:1011.1669v3


Faust, Jon, and Lars E. O. Svensson. 2002. “The Equilibrium Degree of Transparency and

Control in Monetary Policy.” Journal of Money, Credit and Banking 34 (2): 520–539.

issn: 00222879, 15384616.

. 2001. “Transparency and Credibility: Monetary Policy with Unobservable Goals.”

International Economic Review 42 (2): 369–397. issn: 00206598, 14682354.

Fernald, John. 2014. “A quarterly, utilization-adjusted series on total factor productivity.”

Francis, Neville, Michael T. Owyang, Jennifer E. Roush, and Riccardo DiCecio. 2014. “A

flexible finite-horizon alternative to long-run restrictions with an application to technol-

ogy shocks.” Review of Economics and Statistics. issn: 15309142.

Fuhrer, Jeff, and George Moore. 1995. “Inflation Persistence.” The Quarterly Journal of

Economics 110 (1): 127–159. issn: 00335533, 15314650.

Fuhrer, Jeffrey C. 2010. Inflation Persistence.

Gabaix, Xavier. 2020. “A behavioral new Keynesian model.” American Economic Review.

issn: 19447981.
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Appendix

A Proofs of Propositions in Main Text

Proof of Proposition 1. Under noisy information in the firm side, the individual price

policy functions are given by (4.5). Let us guess that the equilibrium output gap dynamics

will take the form of

ỹt = aypt−1 + bypt−2 + cyvt (A.1)

Making use of the guess I can rewrite the price-setting condition as

p∗it =
κθcy
1− θ

Eitvt +
κθby
1− θ

Eitpt−2 +
κθay
1− θ

Eitpt−1 + (1− βθ)Eitpt + βθEitp∗i,t+1 (A.2)

We now turn to solving the expectation terms in (A.2). We can write the fundamental

representation of the signal process as a system containing (4.8) and (4.10), which admits

the following state-space representation

Zt = FZt−1 + Φsit

Xit = HZt + Ψsit
(A.3)

with F = ρ, Φ =
[
σε 0

]
, Zt = vt, sit =

[
εvt

uit

]
, H = 1, Ψ =

[
0 σu

]
and Xit = xit. It is

convenient to rewrite the uncertainty parameters in terms of precision: define τε ≡ 1
σ2
ε

and

τu ≡ 1
σ2
u
. The signal system can be written as

Xit =
σε

1− ρL
εvt + σuuit =

[
τ
−1/2
ε

1−ρL τ
−1/2
u

] [εvt
uit

]
= M (L)sit, sit ∼ N (0, I) (A.4)

The Wold theorem states that there exists another representation of the signal process (A.4),

Xit = B(L)wit

such that B(z) is invertible and wit ∼ (0,V ) is white noise. Hence, we can write the

following equivalence

Xit = M (L)sit = B(L)wit (A.5)
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In the Wold representation of Xit, observing {Xit} is equivalent to observing {wit}, and

{X t
i} and {wt

i} contain the same information. Furthermore, note that the Wold represen-

tation has the property that, using the equivalence (A.5), both processes share the autoco-

variance generating function

ρxx(z) = M (z)M ′(z−1) = B(z)V B′(z−1)

Given the state-space representation of the signal process (A.26), optimal expectations

of the exogenous fundamental take the form of a Kalman filter

Eitvt = (I −KH)FEit−1vt−1 +Kxit = λEit−1vt−1 +Kxit

where K is given by

K = PH ′V −1 (A.6)

P = F [P − PH ′V −1HP ]F + ΦΦ′ (A.7)

We still need to find the unknowns B(z) and V . Propositions 13.1-13.4 in Hamilton (1994)

provide us with these objects. Unknowns B(z) and V satisfy

B(z) = I +H(I − F z)−1FK

V = HPH ′ + ΨΨ′

I can write (A.7) as

P 2 + P [(1− ρ2)σ2
u − σ2

ε ]− σ2
εσ

2
u = 0 (A.8)

from which we can infer that P is a scalar. Denote k = P−1 and rewrite (A.8) as

σ2
uσ

2
εk

2 = [(1− ρ2)σ2
u − σ2

ε ]k + 1 =⇒ k =
τε
2

1− ρ2 − τu
τε
±

√[
τu
τε
− (1− ρ2)

]2

+ 4
τu
τε


I also need to find K. Now that we have found P in terms of model primitives, we can
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obtain K using condition (A.6)

K =
1

1 + kσ2
u

We can finally write λ as

λ = (I −KH)F =
kσ2

uρ

1 + kσ2
u

=
1

2

1

ρ
+ ρ+

τg
ρτε
±

√(
1

ρ
+ ρ+

τg
ρτε

)2

− 4

 (A.9)

One can show that one of the roots λ1,2 lies inside the unit circle and the other lies outside

as long as ρ ∈ (0, 1), which guarantees that the Kalman expectation process is stationary

and unique. We set λ to the root that lies inside the unit circle (the one with the ‘−’ sign).

Notice that I can also write V in terms of λ

V = k−1 + σ2
u =

ρ

λτu

where I have used the identity k = λτu/(ρ− λ). Finally, I can obtain B(z)

B(z) = 1 +
ρz

(1− ρz)(1 + kσ2
u)

=
1− λz
1− ρz

and therefore one can verify that

B(z)V B′(z−1) = M(z)M ′(z−1)

ρ

λτu

(1− λz)(z − λ)

(1− ρz)(z − ρ)
=

τεz

(1− ρz)(z − ρ)
+ τu

Let us now move to the forecast of endogenous variables. Consider a variable ft =

A(L)sit. Applying the Wiener-Hopf prediction filter, we can obtain the forecast as

Eitft =
[
A(z)M ′(z−1)B(z−1)−1

]
+
V −1B(z)−1xit

where [·]+ denotes the annihilator operator.29

Recall from condition (A.2) that we are interested in obtaining Ejtvt, Ejtπt and Ejtπj,t+1.

Just as we did in the example above, we need to find the A(z) polynomial for each of the

29. See Online Appendix H for more details on the Wiener-Hopf prediction filter and the annihilator
operator.
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forecasted variables. Let us start from the exogenous fundamental vt to verify that the

Kalman and Wiener-Hopf filters result in the same forecast. I can write the fundamental as

vt =
[
τ
−1/2
ε

1−ρL 0
]
sit = Av(L)sit

Let us now move to the endogenous variables. In this case we need to guess (and verify)

that each agent i’s policy function takes the following form30

pit = h(L)xit

Aggregate price level can then be expressed as

pt = (1− θ)
∫
h(L)xit di+ θpt−1 = (1− θ)h(L)

τ
−1/2
ε

(1− ρL)(1− θL)
εvt

Using the guesses, I have

pt−k =
[
(1− θ)τ−1/2

ε
h(L)Lk

(1−ρL)(1−θL)
0
]
sit = Apk(L)sit

pi,t+1 =
h(L)

L
M (L)sit =

[
τ
−1/2
ε

h(L)
L(1−ρL)

τ
−1/2
u

h(L)
L

]
sit = Ai(L)sit

We are now armed with the necessary objects in order to obtain the three different

forecasts,

Eitvt =
[
Av(z)M ′(z−1)B(z−1)−1

]
+
V −1B(z)−1xit

=

[[
τ
−1/2
ε

1−ρz 0
] [ zτ−1/2

ε

z−ρ

τ
−1/2
u

]
z − ρ
z − λ

]
+

λτu
ρ

1− ρz
1− λz

xit

=

[
z

τε(1− ρz)(z − λ)

]
+

λτu
ρ

1− ρz
1− λz

xit

=

[
φv(z)

z − λ

]
+

λτu
ρ

1− ρz
1− λz

xit

=
φv(z)− φv(λ)

z − λ
λτu
ρ

1− ρz
1− λz

xit

=
λτu

ρτε(1− ρλ)

1

1− λz
xit = G1(z)xit (A.10)

30. In this framework agents only observe signals. As a result, the policy function can only depend on
current and past signals.
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Eitpt−k =
[
Apk(z)M ′(z−1)B(z−1)−1

]
+
V −1B(z)−1xit

=

[[
(1− θ)τ−1/2

ε
h(z)zk

(1−ρz)(1−θz) 0
] [ zτ−1/2

ε

z−ρ

τ
−1/2
u

]
z − ρ
z − λ

]
+

λτu
ρ

1− ρz
1− λz

xit

=

[
h(z)zk+1

(1− ρz)(z − λ)(1− θz)

]
+

(1− θ)λτu
τερ

1− ρz
1− λz

xit

=

[
φπ(z)

z − λ

]
+

(1− θ)λτu
τερ

1− ρz
1− λz

xit

=
φπ(z)− φπ(λ)

z − λ
(1− θ)λτu

ρτε

1− ρz
1− λz

xit

= (1− θ)λτu
ρτε

[
h(z)zk+1

1− θz
− h(λ)λk+1 1− ρz

(1− ρλ)(1− θλ)

]
1

(1− λz)(z − λ)
xit = G2(z)xit

(A.11)

Eitpi,t+1 =
[
Ai(z)M ′(z−1)B(z−1)−1

]
+
V −1B(z)−1xit

=

[[
τ
−1/2
ε

h(z)
z(1−ρz) τ

−1/2
u

h(z)
z

] [ zτ−1/2
ε

z−ρ

τ
−1/2
u

]
z − ρ
z − λ

]
+

λτu
ρ

1− ρz
1− λz

xit

=

[
h(z)

τε(1− ρz)(z − λ)
+
h(z)(z − ρ)

τuz(z − λ)

]
+

λτu
ρ

1− ρz
1− λz

xit

=

{[
h(z)

τε(1− ρz)(z − λ)

]
+

+

[
h(z)(z − ρ)

τuz(z − λ)

]
+

}
λτu
ρ

1− ρz
1− λz

xit

=

{[
φi,1(z)

z − λ

]
+

+

[
φi,2(z)

z(z − λ)

]
+

}
λτu
ρ

1− ρz
1− λz

xit

=

{
φi,1(z)− φi,1(λ)

z − λ
+
φi,2(z)− φi,2(λ)

λ(z − λ)
− φi,2(z)− φi,2(0)

λz

}
λτu
ρ

1− ρz
1− λz

xit

=
λ

ρ

{
h(z)

z − λ

[
τu

τε(1− ρz)
+
z − ρ
z

]
− h(λ)

z − λ

[
τu

τε(1− ρλ)
+
λ− ρ
λ

]
− ρh(0)

λz

}
1− ρz
1− λz

xit

= G3(z)xit (A.12)

where

φv(z) =
z

τε(1− ρz)
, φπ(z) =

h(z)z

(1− ρz)(1− θz)
, φi,1(z) =

h(z)

τε(1− ρz)
, φi,2(z) =

h(z)(z − ρ)

τu
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Rearranging terms, we obtain (A.13)-(A.15). We can show that expectations satisfy

Eitvt =

(
1− λ

ρ

)
1

1− λL
xit (A.13)

Eitpt−k = (1− θ)
(

1− λ

ρ

)[
h(z)zk+1(1− ρλ)

1− θz
− h(λ)λk+1(1− ρz)

1− θλ

]
1

(1− λz)(z − λ)

(A.14)

Eitp∗i,t+1 =

{
h(z)

z − λ

[(
1− λ

ρ

)
1− ρλ
1− ρz

+
λ(z − ρ)

ρz

]
− h(0)

z

}
1− ρz
1− λz

(A.15)

Recall the best response for firm i, condition (A.2). In order to be consistent with firm

optimization, the policy function h(z) must satisfy (A.2) at all times and signals. Plugging

the obtained expressions and rearranging by h(z), we can write

C̃(z)h(z)xit = d[z;h(λ), h(0)]xit

where

C̃(z) = (z − βθ)(1− θz)(z − λ)(1− λz)

− z2κθ

(
(1− θ)(1− βθ)

κθ
+ zay + z2by

)(
1− λ

ρ

)
(1− ρλ)

= λ

{
(βθ − z)(1− θz)(z − ρ)

(
z − 1

ρ

)

− τ

ρ
z

[
(βθ − z)(1− θz) + κθ

(
(1− θ)(1− βθ)

κθ
+ zay + z2by

)
z

]}
= λC(z)

d[z;h(λ), h(0)] =
κθcy
1− θ

(
1− λ

ρ

)
z(z − λ)(1− θz)

− h(λ)
λ

1− θλ

(
1− λ

ρ

)
κθ

(
(1− θ)(1− βθ)

κθ
+ λay + λ2by

)
z(1− ρz)(1− θz)

− h(0)βθ(1− ρz)(z − λ)(1− θz)

where I have used the following identity from the Kalman filter

λ+
1

λ
= ρ+

1

ρ
+
τ

ρ
=⇒ (ρ− λ)(1− ρλ) = λτ
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Notice that we can write polynomial C̃(z) in terms of its roots as

C̃(z) = θλ

(
1− τκby

ρ

)
(z − ζ1)(z − ζ2)(z − ϑ−1

1 )(z − ϑ−1
2 )

where ζ1, ζ2 are the inside roots of C(z), and ϑ1 and ϑ2 are the reciprocals of the outside roots.

In order to have a causal h(z) polynomial, we need to eliminate the inside roots in its denom-

inator, λC(z). I choose h(0) and h(λ) so that d[ζ1;h(0), h(λ)] = 0 and d[ζ2;h(0), h(λ)] = 0.

As a result, I can write

d[z;h(0), h(λ)] =
κθλτcy

(1− θ)ρ(1− ρζ1)(1− ρζ2)
(z − ζ1)(z − ζ2)(1− θz)

and hence the policy function is

h(z) =
κcy

1− θ
τϑ1ϑ2

(ρ− τκby) (1− ρζ1)(1− ρζ2)

1− θz
(1− ϑ1z)(1− ϑ2z)

(A.16)

Hence, aggregate price dynamics follow

pt = (1− θ)
∫
h(L)xit di

1− θL
= (1− θ) h(L)

1− θL
vt = κcy

τϑ1ϑ2

(ρ− τκby) (1− ρζ1)(1− ρζ2)

1

(1− ϑ1L)(1− ϑ2L)
vt

We can therefore write inflation dynamics as

πt = (1− L)pt = κcy
τϑ1ϑ2

(ρ− τκby) (1− ρζ1)(1− ρζ2)

1

(1− ϑ1L)(1− ϑ2L)
vt

= (ϑ1 + ϑ2)πt−1 − ϑ1ϑ2πt−2 + cp∆vt (A.17)

where cp = κcy
τϑ1ϑ2

(ρ−τκby)(1−ρζ1)(1−ρζ2)
.

Inserting inflation dynamics into the DIS equation (4.6) I can obtain output gap dynamics

ỹt =
1

σ
(−φπpt + φπpt−1 + σEtỹt+1 + Etpt+1 − pt − vt)

=
(σay + ϑ− φπ)(1 + ϑ) + φπ + σby − ϑ

σ
pt−1 −

(σay + ϑ− φπ)ϑ

σ
pt−2

− 1− ρ(cp − σcy)− (σay + ϑ− φπ)cp
σ

vt (A.18)
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In order to be consistent with our earlier guess (A.1), it must be that

ay =
ϑ1[σ(1− ϑ2) + φy](ϑ1 + ϑ2 − 1− φπ) + (1− ϑ2)(φπ − ϑ2)(σ + φy)

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

by =
ϑ1ϑ2[σ(1− ϑ1)(1− ϑ2)− (ϑ1 + ϑ2 − 1− φπ)φy]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

and two additional coefficients (cp, cy) irrelevant for persistence.

Finally, we can rewrite the C(z) polynomial as

C(z) =
λ

ρ

{
(z − βθ)(1− θz)(z − ρ)(1− ρz)− z3(1− θ)(1− βθ)(1− ρ)2

+ τz

[
(1− θz)(z − βθ)− z(1− θ)(1− βθ) +

(1− z)z2θκ

σ
ϑ

]}

C(z) =
λ

ρ

{
− (βθ − z)(1− θz)(z − ρ) (1− ρz)

− τz

[
(βθ − z)(1− θz) + z(1− θ)(1− βθ)

+ z2κθ
ϑ1[σ(1− ϑ2) + φy](ϑ1 + ϑ2 − 1− φπ) + (1− ϑ2)(φπ − ϑ2)(σ + φy)

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

+ z3κθ
ϑ1ϑ2[σ(1− ϑ1)(1− ϑ2)− (ϑ1 + ϑ2 − 1− φπ)φy]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

]}

Proof of Proposition 2. Let us first show that the polynomial described by C(z) has two
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inside roots and two outside roots. To do so, I evaluate C(z) at z = {0, λ, 1, ρ−1}

C(0) = βθλ > 0

C(λ) = −θκλ2
(

1− λ

ρ

)
(1− ρλ)

[
(1− θ)(1− βθ)

θκ
+

λ

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

× [σ(1− ϑ1)(1− ϑ2) (φπ − ϑ2 − ϑ1(1− λϑ2)) + φy (ϑ1(1− λϑ2)(ϑ1 + ϑ2 − 1− φπ) + (1− ϑ2)(φπ − ϑ2))]

]
< 0

(A.19)

C(1) =
λ

ρ

{
(1− θ)(1− βθ)(1− ρ)2 +

κθτ(1− ϑ1)(1− ϑ2)[ϑ1(σ(1− ϑ2) + φy)− (φπ − ϑ2)(σ + φy)]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

}
> 0

(A.20)

C(ρ−1) = −θλτ
ρ5

{
(1− ρ)ρ(1− ρβ) +

κ

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

× [σ(1− ϑ1)(1− ϑ2)[ϑ1(ϑ2 − ρ) + ρ(φπ − ϑ2)] + φy[ϑ1(ϑ2 − ρ)(1 + φπ − ϑ1 − ϑ2) + ρ(1− ϑ2)(φπ − ϑ2)]]

}
< 0

Notice that all conditions are trivially satisfied except for the second (A.19) and third

(A.20) conditions, which depend on the model parameterization. Combining both conditions,

we obtain the restriction

τ(1− ϑ1)(1− ϑ2)[(φπ − ϑ2)(σ + φy)− ϑ1(σ(1− ϑ2) + φy)]

(1− ρ)2[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]
<

(1− θ)(1− βθ)
θκ

<

< −λ [σ(1− ϑ1)(1− ϑ2) (φπ − ϑ2 − ϑ1(1− λϑ2)) + φy (ϑ1(1− λϑ2)(ϑ1 + ϑ2 − 1− φπ) + (1− ϑ2)(φπ − ϑ2))]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

It turns out that a standard calibration satisfies both conditions except for the limit case

σu = 0. Hence, I can conclude that the polynomial has two roots inside the unit circle and

two roots outside, and all of them are real.

Let us now show that ϑ1 < ρ. First, it is important to note that λ is the inside root of

the polynomial

C(z) = z2 −
(

1

ρ
+ ρ+

τ

ρ

)
z + 1
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which has one inside root and one outside root if ρ < 1 and τ > 0. Furthermore

C(0) = 1 > 0

C(ρ) = −τ
ρ
< 0

and, hence, λ < ρ. We have shown that C(ρ−1) < 0, and we have C(ϑ−1
1 ) = 0. I also know

that the function C(z) is always positive for values larger than ϑ−1
1 , and hence I can infer

ρ−1 < ϑ−1
1 and ϑ1 < ρ. In order to show that λ > ϑ1, I obtain

C(λ−1) = −θκτ
ρλ

{
(1− θ)(1− βθ)

θ

+
σ(1− ϑ1)(1− ϑ2)[ϑ1(ϑ2 − λ) + λ(φπ − ϑ2)] + φy[ϑ1(ϑ2 − λ)(1 + φπ − ϑ1 − ϑ2) + λ(1− ϑ2)(φπ − ϑ2)]

λ2[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

}
< 0

Following the same argument, knowing that λ < 1 and that the function C(z) is negative

for values of ϑ−1
1 > z > ϑ−1

2 , I can write λ−1 < ϑ−1
1 and λ > ϑ1. Hence I have proved the

relation ϑ1 < λ < ρ.
Let us now show that θ < ϑ2 < 1. We already proved that ϑ−1

2 > 1, which implies that
ϑ2 < 1. We have that

C(θ−1) = −κτλ
ρθ3

{
(1− θ)(1− βθ)θ

κ

+
σ(1− ϑ1)(1− ϑ2)[ϑ1(ϑ2 − θ) + θ(φπ − ϑ2)] + φy[ϑ1(ϑ2 − θ)(1 + φπ − ϑ1 − ϑ2) + θ(1− ϑ2)(φπ − ϑ2)]

[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]

}
< 0

Notice that C(θ−1) < 0, given that θ < 1, implies that θ−1 > ϑ−1
2 and delivers the result

ϑ2 < θ. To sum up, the following relation holds: 0 < ϑ1 < λ < ρ < θ < ϑ2 < 1.

Finally, I show that ϑ1 is increasing in σu. First, let us obtain the effect of an increase in
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τ and ϑ around C(ϑ−1),

∂C(ϑ−1
1 )

∂τ
=

θλ(1− ϑ1)

ρϑ3
1[σ(1− ϑ1) + φy]

[ϑ1(1− ϑ1)(1 + β)σ − κ(φπ − ϑ1)− φy(1− βϑ1)] > 0

∂C(ϑ−1
2 )

∂τ
=

θλ(1− ϑ2)

ρϑ3
2[σ(1− ϑ2) + φy]

[ϑ2(1− ϑ2)(1 + β)σ − κ(φπ − ϑ2)− φy(1− βϑ2)] > 0

∂C(ϑ−1
1 )

∂ϑ1

=
θκτλ(ϑ2 − ϑ1)

ρϑ4
1[σ(1− ϑ1) + φy]2[σ(1− ϑ2) + φy]

× [[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy](1− ϑ1) + φy[(σ + φy)(φπ − ϑ1 − ϑ2) + σϑ1ϑ2]] > 0

∂C(ϑ−1
2 )

∂ϑ2

= − θκτλ(ϑ2 − ϑ1)

ρϑ4
2[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy]2

× [[σ(1− ϑ1) + φy][σ(1− ϑ2) + φy](1− ϑ2) + φy[(σ + φy)(φπ − ϑ1 − ϑ2) + σϑ1ϑ2]] < 0

Using the Implicit Function Theorem I can infer that ϑ′1(τ) < 0 and ϑ′2(τ) > 0, and so ϑ1

(ϑ2) is increasing (decreasing) in σu.

Proof of Proposition 3. We are interested in obtaining βrev = C(forecast errort,revisiont)
V(revisiont)

. Us-

ing the results from the proof of Proposition 1 that we can write the forecast error as

πt+3,t − Eft πt+3,t = pt+3 − pt−1 − Eft (pt+3 − pt−1)

=
φ0 + φ1z + φ2z

2 + φ3z
3 + φ4z

4

(1− λz)(1− ϑ1z)(1− ϑ2z)
εvt+3

= φ0
(1− ξ1z)(1− ξ2z)(1− ξ3z)(1− ξ4z)

(1− λz)(1− ϑ1z)(1− ϑ2z)
εvt+3

=
φ0(λ− ξ1)(λ− ξ2)

(λ− ϑ1)(λ− ϑ2)

k∑
k=0

λk[εvt+3−k − (ξ3 + ξ4)εvt+2−k + ξ3ξ4ε
v
t+1−k]

− φ0(ϑ1 − ξ1)(ϑ1 − ξ2)

(λ− ϑ1)(ϑ1 − ϑ2)

k∑
k=0

ϑk1[εvt+3−k − (ξ3 + ξ4)εvt+2−k + ξ3ξ4ε
v
t+1−k]

+
φ0(ϑ2 − ξ1)(ϑ2 − ξ2)

(λ− ϑ2)(ϑ1 − ϑ2)

k∑
k=0

ϑk2[εvt+3−k − (ξ3 + ξ4)εvt+2−k + ξ3ξ4ε
v
t+1−k]

where φ0 = cp, φ1 =
(

1
λ
− 1

ρ

)
cp, φ2 = (ρ−λ)cp

λ2ρ
, φ3 = (ρ−λ)cp[λ3−ϑ1−ϑ2+λϑ1ϑ2]

λ2ρ(1−λϑ1)(1−λϑ2)
, φ4 =

−λ3+λ4ϑ2+λ4ϑ1−ϑ1ϑ2[λ−(1−λ4)ρ]
λ2ρ(1−λϑ1)(1−λϑ2)

and (ξ1, ξ2, ξ3, ξ4) are the reciprocals of the roots of the poly-

nomial φ0 + φ1z + φ2z
2 + φ3z

3 + φ4z
4.
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The average forecast revision is given by

Eft πt+3,t − Eft−1πt+3,t = Eft (pt+3 − pt−1)− Eft−1(pt+3 − pt−1)

cp(ρ− λ)(1− λ4)

ρλ3(1− ϑ1λ)(1− ϑ2λ)(1− λz)
εvt

=
cp(ρ− λ)(1− λ4)

ρλ3(1− ϑ1λ)(1− ϑ2λ)

∞∑
k=0

λkεvt−k

and we can finally write βrev as

βrev =
C(forecast errort, revisiont)

V(revisiont)

=
λ3ρ(1− ϑ1λ)(1− ϑ2λ)

(1− λ4)(ρ− λ)

{
λ(λ− ξ1)(λ− ξ2)(λ− ξ3)(λ− ξ4)

(λ− ϑ1)(λ− ϑ2)

− (1− λ2)

[
ϑ1(ϑ1 − ξ1)(ϑ1 − ξ2)(ϑ1 − ξ3)(ϑ1 − ξ4)

(1− λϑ1)(λ− ϑ1)(ϑ1 − ϑ2)
+
ϑ2(ϑ2 − ξ1)(ϑ2 − ξ2)(ϑ2 − ξ3)(ϑ2 − ξ4)

(1− λϑ2)(λ− ϑ2)(ϑ1 − ϑ2)

]}

Proof of Proposition 4. In the benchmark NK model the Phillips curve is given by (5.1),

the DIS curve is given by (4.6), the Taylor rule is given by (4.7) and the monetary policy

shock process is given by (4.8). Inserting the Taylor rule (4.7) into the DIS curve (4.6), one

can write the model as a system of two first-order stochastic difference equations

Ãxt = B̃Etxt+1 + C̃vt (A.21)

where xt = [ỹt πt pt]
′ is a 3×1 vector containing output, inflation and prices, Ã is a 3×3

coefficient matrix, B̃ is a 3× 3 coefficient matrix and C̃ is a 3× 1 vector satisfying

Ã =

σ + φy φπ 0

−κ 1 0

0 0 1

 , B̃ =

σ 1 0

0 β 0

0 −1 1

 , and C̃ =

−1

0

0


Premultiplying the system by Ã−1 we obtain xt = δEtxt+1 +ϕvt, where

δ = Ã−1B̃, ϕ = Ã−1C̃

In the dispersed information framework, structural-form dynamics are given by Asxt =
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Bsxt−1 + Csvt where

As =

1 0 0

0 1 −1

0 0 1

 , Bs =

0 by ay + by

0 0 −1

0 −bp ap + bp

 , and Cs =

cy0
cp


Premultiplying by A−1

s we obtain the reduced-form dynamics xt = Axt−1 +Bvt, where

A = A−1
s Bs, B = A−1

s Bs

Using the Method for Undetermined Coefficients, the ad-hoc behavioral dynamics and

the noisy information dynamics are observationally equivalent if

Axt−1 +Bvt = ϕvt + ωfδEtxt+1 + ωbxt−1

= ϕvt + ωfδEt(Axt +Bvt+1) + ωbxt−1

= ϕvt + ωfδ(Axt +BEtvt+1) + ωbxt−1

= ϕvt + ωfδ(Axt +Bρvt) + ωbxt−1

= ϕvt + ωfδ[A(Axt−1 +Bvt) +Bρvt] + ωbxt−1

= [ϕ+ ωfδ(A+ ρ)B] vt + [ωfδAA+ ωb]xt−1

They are thus equivalent if

B −ϕ = ωfδ(AB + ρB)

ωb = (I3 − ωfδA)A
(A.22)

for certain matrices ωb and ωf

ωb =

ωb,11 ωb,12 ωb,13

ωb,21 ωb,22 ωb,23

ωb,31 ωb,32 ωb,33

 and ωf =

ωf,11 ωf,12 ωf,13

ωf,21 ωf,22 ωf,23

ωf,31 ωf,32 ωf,33


The system of restrictions (A.22) implies that ωb,11 = ωb,21 = ωb,31 = 0. I need to multiply

the system by Ã to back out the structural dynamics. In particular, we can write inflation
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dynamics as

πt = ω1πt−1 + ω2pt−1 + κỹt + ω3Etỹt+1 + ω4Etπt+1 + ω5Etpt+1

=
ω1

1− ω5

πt−1 +
ω2 + ω5

1− ω5

pt−1 +
κ

1− ω5

ỹt +
ω3

1− ω5

Etỹt+1 +
ω4 + ω5

1− ω5

Etπt+1 (A.23)

Proof of Proposition 5. Recall the policy functions

cit =
βφπ
σ

Eitpt−1 +

(
1− β − βφy

σ

)
Eitỹt −

β(1 + φπ)

σ
Eitpt +

β

σ
Eitpt+1 −

β

σ
Eitvt + βEitci,t+1

(A.24)

p∗jt = (1− βθ)Ejtpt +
κθ

1− θ
Ejtỹt + βθEjtp∗j,t+1 (A.25)

We now turn to solving the expectation terms. We can write the fundamental representation

of the signal process as a system containing (4.8) and (4.10), which admits the following

state-space representation

Zt = FZt−1 + Φsit

Xit = HZt + Ψsit
(A.26)

with F = ρ, Φ =
[
σε 0

]
, Zt = vt, slgt =

[
εvt

ulgt

]
, H = 1, Ψg =

[
0 σgu

]
and Xlgt = xlgt.

It is convenient to rewrite the uncertainty parameters in terms of precision: define τε ≡ 1
σ2
ε

and τg ≡ 1
σ2
gu

. The signal system can be written as

Xigt =
σε

1− ρL
εvt + σguuit =

[
τ
−1/2
ε

1−ρL τ
−1/2
g

] [ εvt
ulgt

]
= Mg(L)slgt, slgt ∼ N (0, I) (A.27)

The Wold theorem states that there exists another representation of the signal process (A.27),

Xlgt = Bg(L)wlgt

such that Bg(z) is invertible and wlgt ∼ (0,Vg) is white noise. Hence, we can write the

following equivalence

Xlgt = Mg(L)slgt = Bg(L)wlgt (A.28)
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In the Wold representation of Xlgt, observing {Xlgt} is equivalent to observing {wlgt}, and

{X t
lg} and {wt

lg} contain the same information. Furthermore, note that the Wold rep-

resentation has the property that, using the equivalence (A.5), both processes share the

autocovariance generating function

ρgxx(z) = Mg(z)M ′
g(z
−1) = Bg(z)VgB

′
g(z
−1)

Given the state-space representation of the signal process (A.26), optimal expectations

of the exogenous fundamental take the form of a Kalman filter

Elgtvt = (I −KgH)FEit−1vt−1 +Kgxlgt = λgEit−1vt−1 +Kgxlgt

where Kg is given by

Kg = PgH
′V −1
g (A.29)

Pg = F [Pg − PgH ′V −1
g HPg]F + ΦΦ′ (A.30)

We still need to find the unknowns Bg(z) and Vg. Propositions 13.1-13.4 in Hamilton (1994)

provide us with these objects. Unknowns Bg(z) and Vg satisfy

Bg(z) = I +H(I − F z)−1FKg

Vg = HPgH
′ + ΨgΨ

′
g

I can write (A.30) as

P 2
g + Pg[(1− ρ2)σ2

gu − σ2
ε ]− σ2

εσ
2
gu = 0 (A.31)

from which we can infer that Pg is a scalar. Denote kg = P−1
g and rewrite (A.31) as

σ2
guσ

2
εk

2
g = [(1− ρ2)σ2

gu − σ2
ε ]kg + 1 =⇒ kg =

τε
2

1− ρ2 − τg
τε
±

√[
τg
τε
− (1− ρ2)

]2

+ 4
τg
τε


I also need to find Kg. Now that we have found Pg in terms of model primitives, we can
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obtain Kg using condition (A.29)

Kg =
1

1 + kgσ2
gu

We can finally write λg as

λg = (I −KgH)F =
kgσ

2
guρ

1 + kgσ2
gu

=
1

2

1

ρ
+ ρ+

τg
ρτε
±

√(
1

ρ
+ ρ+

τg
ρτε

)2

− 4

 (A.32)

One can show that one of the roots λg,[1,2] lies inside the unit circle and the other lies outside

as long as ρ ∈ (0, 1), which guarantees that the Kalman expectation process is stationary

and unique. We set λg to the root that lies inside the unit circle (the one with the ‘−’ sign).

Notice that I can also write Vg in terms of λg

Vg = k−1 + σ2
gu =

ρ

λgτg

where I have used the identity kg = λgτg/(ρ− λg). Finally, I can obtain Bg(z)

Bg(z) = 1 +
ρz

(1− ρz)(1 + kσ2
gu)

=
1− λgz
1− ρz

and therefore one can verify that

Bg(z)VgB
′
g(z
−1) = Mg(z)M ′

g(z
−1)

ρ

λgτg

(1− λgz)(z − λg)
(1− ρz)(z − ρ)

=
τεz

(1− ρz)(z − ρ)
+ τg

Let us now move to the forecast of endogenous variables. Consider a variable ft =

A(L)sit. Applying the Wiener-Hopf prediction filter, we can obtain the forecast as

Eitft =
[
A(z)M ′(z−1)B(z−1)−1

]
+
V −1B(z)−1xit

where [·]+ denotes the annihilator operator.31

Recall from conditions (A.24)-(A.25) that we are interested in obtaining Elgtvt, Elgtpt−k
and Elgtỹt−k, k = {−1, 0, 1}. Just as we did in the example above, we need to find the A(z)

31. See Online Appendix H for more details on the Wiener-Hopf prediction filter and the annihilator
operator.
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polynomial for each of the forecasted variables. Let us start from the exogenous fundamental

vt to verify that the Kalman and Wiener-Hopf filters result in the same forecast. I can write

the fundamental as

vt =
[
τ
−1/2
ε

1−ρL 0
]
sit = Av(L)sit

Let us now move to the endogenous variables. Let us start from the household side. We

need to guess (and verify) that each firm j’s policy function takes the following form32

cit = h1(L)xl1t

Aggregate output can then be expressed as

ỹt =

∫
h1(L)xl1t dj = h1(L)

τ
−1/2
ε

1− ρL
εvt

Using the guesses, I have

ỹt−k =
[
h1(L)Lk τ

−1/2
ε

1−ρL 0
]
sl1t = Ayk(L)sl1t

c∗i,t+1 =
h1(L)

L
M1(L)sl1t =

[
h1(L) τ

−1/2
ε

L(1−ρL)
τ
−1/2
1

h1(L)
L

]
sl1t = Ai1(L)sl1t

Let us now move to firms. In this case we need to guess (and verify) that each firm j’s

policy function takes the following form

p∗jt = h2(L)xl2t

Aggregate price level can then be expressed as

pt = (1− θ)
∫
h2(L)xl2t dj + θpt−1 = (1− θ)h2(L)

τ
−1/2
ε

(1− ρL)(1− θL)
εvt

32. In this framework agents only observe signals. As a result, the policy function can only depend on
current and past signals.
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Using the guesses, I have

pt−k =
[
(1− θ)τ−1/2

ε
h2(L)Lk

(1−ρL)(1−θL)
0
]
sl2t = Apk(L)sl2t

p∗j,t+1 =
h2(L)

L
M2(L)sl2t =

[
τ
−1/2
ε

h2(L)
L(1−ρL)

τ
−1/2
2

h2(L)
L

]
sl2t = Ai2(L)sl2t

We are now armed with the necessary objects in order to obtain the three different

forecasts,

Elgtvt =
[
Av(z)M ′

g(z
−1)Bg(z

−1)−1
]

+
V −1
g Bg(z)−1xlgt

=

[[
τ
−1/2
ε

1−ρz 0
] [ zτ−1/2

ε

z−ρ

τ
−1/2
g

]
z − ρ
z − λg

]
+

λgτg
ρ

1− ρz
1− λgz

xit

=

[
z

(1− ρz)(z − λg)

]
+

λτg
ρτε

1− ρz
1− λgz

xit

=

[
φv(z)

z − λg

]
+

λgτg
ρτε

1− ρz
1− λgz

xit

=
φv(z)− φv(λg)

z − λg
λgτg
ρτε

1− ρz
1− λgz

xit

=
λgτg

ρτε(1− ρλg)
1

1− λgz
xit = G1g(z)xit (A.33)

Elgtỹt−k =
[
Ayk(z)M ′

g(z
−1)Bg(z

−1)−1
]

+
V −1
g Bg(z)−1xlgt

=

[[
τ
−1/2
ε

h1(z)zk

1−ρz 0
] [ zτ−1/2

ε

z−ρ

τ
−1/2
g

]
z − ρ
z − λg

]
+

λgτg
ρ

1− ρz
1− λgz

xlgt

=

[
h1(z)zk+1

(1− ρz)(z − λg)

]
+

λgτg
τερ

1− ρz
1− λgz

xlgt

=

[
φy(z)

z − λg

]
+

λgτg
τερ

1− ρz
1− λgz

xlgt

=
φy(z)− φy(λg)

z − λg
λgτg
ρτε

1− ρz
1− λgz

xlgt

=
λgτg
ρτε

[
h1(z)zk+1 − h1(λg)λ

k+1
g

1− ρz
1− ρλg

]
1

(1− λgz)(z − λg)
xlgt = G2gk(z)xlgt

(A.34)
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Elgtpt−k =
[
Apk(z)M ′

g(z
−1)Bg(z

−1)−1
]

+
V −1
g Bg(z)−1xlgt

=

[[
(1− θ)τ−1/2

ε
h2(z)zk

(1−ρz)(1−θz) 0
] [ zτ−1/2

ε

z−ρ

τ
−1/2
g

]
z − ρ
z − λg

]
+

λgτg
ρ

1− ρz
1− λgz

xlgt

=

[
h2(z)zk+1

(1− ρz)(z − λg)(1− θz)

]
+

(1− θ)λgτg
τερ

1− ρz
1− λgz

xlgt

=

[
φπ(z)

z − λg

]
+

(1− θ)λgτg
τερ

1− ρz
1− λgz

xlgt

=
φπ(z)− φπ(λg)

z − λg
(1− θ)λgτg

ρτε

1− ρz
1− λgz

xlgt

= (1− θ)λgτg
ρτε

[
h2(z)zk+1

1− θz
− h2(λg)λ

k+1
g

1− ρz
(1− ρλg)(1− θλg)

]
1

(1− λgz)(z − λg)
xlgt = G3gk(z)xlgt

(A.35)

Elgtalg,t+1 =
[
Aig(z)M ′

g(z
−1)Bg(z

−1)−1
]

+
V −1
g Bg(z)−1xlgt

=

[[
τ
−1/2
ε

hg(z)

z(1−ρz) τ
−1/2
g

hg(z)

z

] [ zτ−1/2
ε

z−ρ

τ
−1/2
g

]
z − ρ
z − λg

]
+

λgτg
ρ

1− ρz
1− λgz

xlgt

=

[
hg(z)

τε(1− ρz)(z − λg)
+
hg(z)(z − ρ)

τgz(z − λg)

]
+

λgτg
ρ

1− ρz
1− λgz

xlgt

=

{[
hg(z)

τε(1− ρz)(z − λg)

]
+

+

[
hg(z)(z − ρ)

τgz(z − λg)

]
+

}
λgτg
ρ

1− ρz
1− λgz

xlgt

=

{[
φig,1(z)

z − λg

]
+

+

[
φig,2(z)

z(z − λg)

]
+

}
λgτg
ρ

1− ρz
1− λgz

xlgt

=

{
φig,1(z)− φig,1(λg)

z − λg
+
φig,2(z)− φig,2(λg)

λg(z − λg)
− φig,2(z)− φig,2(0)

λgz

}
λgτg
ρ

1− ρz
1− λgz

xlgt

=
λg
ρ

{
hg(z)

z − λg

[
τg

τε(1− ρz)
+
z − ρ
z

]
− hg(λg)

z − λg

[
τg

τε(1− ρλg)
+
λg − ρ
λg

]
− ρhg(0)

λgz

}
1− ρz
1− λgz

xlgt

= G4g(z)xlgt (A.36)
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where El1tal1,t+1 = Eitci,t+1, El2tal2,t+1 = Ejtp∗j,t+1, and

φv(z) =
z

1− ρz
, φπ(z) =

h2(z)zk+1

(1− ρz)(1− θz)
, φy(z) =

h1(z)zk+1

1− ρz

φig,1(z) =
hg(z)

τε(1− ρz)
, φig,2(z) =

hg(z)(z − ρ)

τg

Rearranging terms, we obtain (A.37)-(A.41). We can show that expectations satisfy

Elgtvt =

(
1− λg

ρ

)
1

1− λgz
xlgt = G1g(z)xlgt (A.37)

Elgtak,t−1 = (1− θk)
(

1− λg
ρ

)[
hk(z)z2(1− ρλg)

1− θkz
−
hk(λg)λ

2
g(1− ρz)

1− θkλg

]
1

(1− λgz)(z − λg)
xlgt = G2k(z)xlgt

(A.38)

Elgtak,t = (1− θk)
(

1− λg
ρ

)[
hk(z)z(1− ρλg)

1− θkz
− hk(λg)λg(1− ρz)

1− θkλg

]
1

(1− λgz)(z − λg)
xlgt = G3k(z)xlgt

(A.39)

Elgtak,t+1 = (1− θk)
(

1− λg
ρ

)[
hk(z)(1− ρλg)

1− θkz
− hk(λg)(1− ρz)

1− θkλg

]
1

(1− λgz)(z − λg)
xlgt = G4k(z)xlgt

(A.40)

Elgtalg,t+1 =

{
hg(z)

z − λg

[(
1− λg

ρ

)
1− ρλg
1− ρz

+
λg(z − ρ)

ρz

]
− hg(0)

z

}
1− ρz
1− λgz

xlgt = G5g(z)xlgt

(A.41)

Recall the best response for household i and firm j, conditions (A.24)-(A.25). In order to

be consistent with agent optimization, the policy functions hg(z) must satisfy (A.24)-(A.25)
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at all times and signals. Plugging the obtained expressions, we can write

algt = ϕgElgtvt + βgElgtalg,t+1 +
2∑
j=1

µgjElgtaj,t−1 +
2∑
j=1

γgjElgtaj,t +
2∑
j=1

αgjElgtaj,t+1

hg(z)xlgt = ϕgG1g(z)xlgt + βgG5g(z)xlgt +
2∑
j=1

µgjG2j(z)xlgt +
2∑
j=1

γgjG3j(z)xlgt +
2∑
j=1

αgjG4j(z)xlgt

hg(z) = ϕgG1g(z) + βgG5g(z) +
2∑
j=1

µgjG2j(z) +
2∑
j=1

γgjG3j(z) +
2∑
j=1

αgjG4j(z)

= ϕg

(
1− λg

ρ

)
1

1− λgz
+ βg

{
hg(z)

z − λg

[(
1− λg

ρ

)
1− ρλg
1− ρz

+
λg(z − ρ)

ρz

]
− hg(0)

z

}
1− ρz
1− λgz

+
2∑
j=1

µgj(1− θj)
(

1− λg
ρ

)[
hj(z)z2(1− ρλg)

1− θjz
−
hj(λg)λ

2
g(1− ρz)

1− θjλg

]
1

(1− λgz)(z − λg)

+
2∑
j=1

γgj(1− θj)
(

1− λg
ρ

)[
hj(z)z(1− ρλg)

1− θjz
− hj(λg)λg(1− ρz)

1− θjλg

]
1

(1− λgz)(z − λg)

+
2∑
j=1

αgj(1− θj)
(

1− λg
ρ

)[
hj(z)(1− ρλg)

1− θjz
− hj(λg)(1− ρz)

1− θjλg

]
1

(1− λgz)(z − λg)

where

ϕ1 = −β
σ

β1 = β

µ11 = 0

µ12 =
βφπ
σ

γ11 = 1− β
(

1 +
φy
σ

)
γ12 = −β(1 + φπ)

σ

α11 = 0

α12 =
β

σ

θ1 = 0

ϕ2 = 0

β2 = βθ

µ21 = 0

µ22 = 0

γ21 =
κθ

1− θ
γ22 = 1− βθ

α21 = 0

α22 = 0

θ2 = θ
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Multiplying both sides by z(z − λg)(1− λgz)(1− θ1z)(1− θ2z) we obtain

hg(z)z(z − λg)(1− λgz)(1− θ1z)(1− θ2z) =

= ϕg

(
1− λg

ρ

)
z(z − λg)(1− θ1z)(1− θ2z)

+ βg

{
hg(z)

[(
1− λg

ρ

)
(1− ρλg)z +

λg
ρz

(z − ρ)(1− ρz)

]
− hg(0)(z − λg)(1− ρz)

}
(1− θ1z)(1− θ2z)

+
2∑
j=1

µgj(1− θj)
(

1− λg
ρ

)[
hj(z)z3(1− ρλg)(1− θ¬jz)−

hj(λg)λ
2
gz(1− ρz)(1− θ1z)(1− θ2z)

1− θjλg

]

+
2∑
j=1

γgj(1− θj)
(

1− λg
ρ

)[
hj(z)z2(1− ρλg)(1− θ¬jz)− hj(λg)λgz(1− ρz)(1− θ1z)(1− θ2z)

1− θjλg

]

+
2∑
j=1

αgj(1− θj)
(

1− λg
ρ

)[
hj(z)z(1− ρλg)(1− θ¬jz)− hj(λg)z(1− ρz)(1− θ1z)(1− θ2z)

1− θjλg

]

Rearranging the LHS by hg(z),

hg(z)
{
z(z − λg)(1− λgz)(1− θ1z)(1− θ2z)

− βg
[(

1− λg
ρ

)
(1− ρλg)z +

λg
ρz

(z − ρ)(1− ρz)

]
(1− θ1z)(1− θ2z)

}
−

2∑
j=1

µgj(1− θj)
(

1− λg
ρ

)
z3(1− ρλg)(1− θ¬jz)hj(z)

−
2∑
j=1

γgj(1− θj)
(

1− λg
ρ

)
z2(1− ρλg)(1− θ¬jz)hj(z)

−
2∑
j=1

αgj(1− θj)
(

1− λg
ρ

)
z(1− ρλg)(1− θ¬jz)hj(z)

and the RHS can be rewritten as

dg(z) = ϕg

(
1− λg

ρ

)
z(z − λg)(1− θ1z)(1− θ2z)− hg(0)βg(z − λg)(1− ρz)(1− θ1z)(1− θ2z)

−

{(
1− λg

ρ

) 2∑
j=1

1− θj
1− θjλg

[µgjλ
2
g + γgjλg + αgj]hj(λg)

}
z(1− ρz)(1− θ1z)(1− θ2z)
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We can write the system in matrix form as

C(z)h(z) = d(z)

where

C(z) =

[
C11(z) C12(z)

C21(z) C22(z)

]
, h(z) =

[
h1(z)

h2(z)

]
, d(z) =

[
d1(z)

d2(z)

]
Cgg(z) = (z − βg)(z − λg)(1− λgz)(1− θ1z)(1− θ2z)

− (1− θg)
(

1− λg
ρ

)
(1− ρλg)(1− θ¬gz)z(µggz

2 + γggz + αgg)

Cgn(z) = −(1− θn)

(
1− λg

ρ

)
(1− ρλg)(1− θgz)(µgnz

3 + γgnz
2 + αgnz)

dg(z) =

[
ϕg

(
1− λg

ρ

)
z(z − λg)− hg(0)βg(z − λg)(1− ρz)− h̃gz(1− ρz)

]
(1− θ1z)(1− θ2z)

Cancelling out parameters equal to zero to simplify the expressions, we can write

C11(z) =

[
(z − β1)(z − λ1)(1− λ1z)−

(
1− λ1

ρ

)
(1− ρλ1)γ11z

2

]
(1− θ2z)

C12(z) = −(1− θ2)

(
1− λ1

ρ

)
(1− ρλ1)z(µ12z

2 + γ12z + α12)

C21(z) = −
(

1− λ2

ρ

)
(1− ρλ2)(1− θ2z)γ21z

2

C22(z) = (z − β2)(z − λ2)(1− λ2z)(1− θ2z)− (1− θ2)

(
1− λ2

ρ

)
(1− ρλ2)γ22z

2

d1(z) =

[
ϕ1

(
1− λ1

ρ

)
z(z − λ1)− h1(0)β1(z − λ1)(1− ρz)− h̃1z(1− ρz)

]
(1− θ2z)

d2(z) =
[
−hg(0)β2(z − λ2)(1− ρz)− h̃2z(1− ρz)

]
(1− θ2z)

and the solution to the policy functions is given by

h(z) = C(z)−1d(z) =
adj C(z)

det C(z)
d(z)

Note that the degree of C(z) is 8, given that θ1 = 0. Denote the inside roots of detC(z)

as {ζ1, ζ2, ..., ζn1} and the outside roots as {ϑ−1
1 , ϑ−1

2 , ..., ϑ−1
n1
}. Because agents cannot use

future signals, the inside roots have to be removed. Note that the number of free constants
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in d is 4: {hg(0), h̃g}2
g=1. For a unique solution, it must be the case that the number of

outside roots is n2 = 4. Also note that by Cramer’s rule, hg(z) is given by

h1(z) =

det

[
d1(z) C12(z)

d2(z) C22(z)

]
det C(z)

, h2(z) =

det

[
C11(z) d1(z)

C21(z) d2(z)

]
det C(z)

The degree of the numerator is 7, as the highest degree of dg(z) is 1 degree less than Cgg(z).

By choosing the constants {hg(0), h̃g}2
g=1, the 4 inside roots will be removed. Therefore, the

4 constants are solutions to the following system of linear equations33

det

[
d1(ζn) C12(ζn)

d2(ζn) C22(ζn)

]
= 0, for {ζn}4

n=1

where n2 = 4. After removing the inside roots in the denominator, the degree of the numer-

ator is 3 and the degree of the denominator is 4. As a result, the solution to hg(z) takes the

form

hg(z) =
ψ̃g1 + ψ̃g2z + ψ̃g3z

2 + ψ̃g4z
3

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)(1− ϑ4z)

Given the model conditions, we have that ϑ4 = θ. We can write

hg(z) =
ψ̃g1 + ψ̃g2z + ψ̃g3z

2 + ψ̃g4z
3

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)(1− θz)

=
ψ̃g4(z − ηg1)(z − ηg2)(z − ηg3)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)(1− θz)

=
−ψ̃g4ηg1ηg2ηg3(1− η−1

g1 z)(1− η−1
g2 z)(1− η−1

g3 z)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)(1− θz)

=
−ψ̃g4ηg1ηg2ηg3(1− ξg1z)(1− ξg2z)(1− ξg3z)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)(1− θz)

where (ηg1, ηg2, ηg3) are the roots of ψ̃g1 + ψ̃g2z + ψ̃g3z
2 + ψ̃g4z

3. We also have that ξ13 =

33. The set of constants that solve the system of equations for h1(z) also solves it for h2(z), since {ζn}4n=1

are roots of detC(z), leaving vectors in C(ζn) being linearly dependent.
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ξ22 = ξ23 = θ. Hence, we can write

ỹt = h1(z)vt

=
−ψ̃14η11η12η13(1− ξ11z)(1− ξ12z)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)
vt

= φ1
(1− ξ11z)(1− ξ12z)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)
vt

= ψ11

(
1− ϑ1

ρ

)
1

1− ϑ1z
vt + ψ12

(
1− ϑ2

ρ

)
1

1− ϑ2z
vt + ψ13

(
1− ϑ1

ρ

)
1

1− ϑ3z
vt

= ψ11ϑ̃1t + ψ12ϑ̃2t + ψ13ϑ̃3t

pt = (1− θ)h2(z)
1

1− θz
vt

=
−ψ̃24η21η22η23(1− θ)(1− ξ21z)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)
vt

= φ2
1− ξ21z

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)
vt

= ψ21

(
1− ϑ1

ρ

)
1

1− ϑ1z
vt + ψ22

(
1− ϑ2

ρ

)
1

1− ϑ2z
vt + ψ23

(
1− ϑ1

ρ

)
1

1− ϑ3z
vt

= ψ21ϑ̃1t + ψ22ϑ̃2t + ψ23ϑ̃3t

Using πt = (1− L)pt, we can write

πt = (1− θ)h2(z)
1− z
1− θz

vt

=
−ψ̃24η21η22η23(1− θ)(1− ξ21z)(1− z)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)
vt

= φ2
(1− ξ21z)(1− z)

(1− ϑ1z)(1− ϑ2z)(1− ϑ3z)
vt

= ψ31

(
1− ϑ1

ρ

)
1

1− ϑ1z
vt + ψ32

(
1− ϑ2

ρ

)
1

1− ϑ2z
vt + ψ33

(
1− ϑ1

ρ

)
1

1− ϑ3z
vt

= ψ31ϑ̃1t + ψ32ϑ̃2t + ψ33ϑ̃3t
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We can finally write

at =

ỹtpt
πt


= Qϑ̃t

=

ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33


ϑ̃1t

ϑ̃2t

ϑ̃3t


Notice that we can write

ϑ̃kt(1− ϑkL) =

(
1− ϑk

ρ

)
vt =⇒ ϑ̃kt = ϑkϑ̃k,t−1 +

(
1− ϑk

ρ

)
vt

which we can write as a system as

ϑ̃t = Λϑ̃t−1 + Γvt

where

Λ =

ϑ1 0 0

0 ϑ2 0

0 0 ϑ3

 , Γ =

1− ϑ1
ρ

1− ϑ2
ρ

1− ϑ3
ρ


Hence, we can write

at = Qθ̃t

= Q(Λθ̃t−1 + Γξt)

= QΛθ̃t−1 +QΓξt

= QΛQ−1at−1 +QΓξt

= Aat−1 +Bξt (A.42)
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Figure A.1: Time Series of GDP Deflator, CPI and PCE.

1969-2020
Variable GDP Deflator CPI PCE
GDP Deflator 1.00
CPI 0.86 1.00
PCE 0.91 0.96 1.00

1969-1985
GDP Deflator 1.00
CPI 0.83 1.00
PCE 0.88 0.92 1.00

1985-2020
GDP Deflator 1.00
CPI 0.66 1.00
PCE 0.73 0.96 1.00

Table A.i: Correlation matrix

B Robustness on Inflation Persistence and Information Frictions

B.1 Inflation Persistence and Volatility

B.1.1 Persistence

We begin our robustness analysis by considering alternative inflation measures. Figure A.1

presents the CPI and PCE series (together with the GDP Deflator growth). All inflation

measures are closely correlated. I report the correlation matrix across different sub-sample

periods in Table A.i. The three main inflation measures exhibit a high and positive corre-

lation in the pre-1985 period. In the post-1985 period, there is a detachment between the

GDP deflator and the two other price measures, CPI and PCE, which still exhibit a high

degree of correlation.

We repeat the structural break analysis discussed in the main body for CPI and PCE
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(1) (2)
CPI PCE

πt−1 0.793∗∗∗ 0.837∗∗∗

(0.0827) (0.0672)

πt−1 × 1{t≥t∗} -0.497∗∗∗ -0.434∗∗∗

(0.143) (0.117)

Constant 1.396∗∗ 0.990∗∗

(0.542) (0.431)

Constant×1{t≥t∗} 0.370 0.283
(0.607) (0.477)

Observations 206 206

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.ii: Regression table

inflation, and we find similar results in Table A.ii, with the structural change in dynamics

being less evident in the core series.

Autocorrelation Function Let us start from the most agnostic analysis of inflation per-

sistence. Figure A.2 plots the autocorrelation function for the three main inflation measures

across subsamples. Focusing on the second and third columns, I find a significant fall in the

first-order autocorrelation for the three measures. For instance, the first-order autocorrela-

tion for all inflation measures in the pre-1985 sample is around 0.75, while the same statistic

for the second period ranges from 0.5 to 0.3 depending on the measure.

Rolling Sample I compute rolling-sample estimates of an independent AR(1) process

using a 14-year window for the different inflation measures. Figure A.3 plots the time-

varying persistence parameter ρt with 95% confidence bands. The results suggest that there

is significant time variation in inflation persistence.

Time-Varying Parameter Autorregression We assume that the persistence coefficient

in the AR(1) process follows a Random Walk: ρt+1 = ρt + ut, ut ∼ N (0,Σu), where the

model is estimated using Bayesian methods. The model is estimated using Bayesian methods.

Our prior selection is standard, following Nakajima (2011), using the invert Wishart and
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(a) GDP Deflator, 1947-1985 (b) GDP Deflator, 1969-1985 (c) GDP Deflator, 1985-2020

(d) CPI, 1947-1985 (e) CPI, 1969-1985 (f) CPI, 1985-2020

(g) PCE, 1947-1985 (h) PCE, 1969-1985 (i) PCE, 1985-2020

Figure A.2: Autocorrelation function of GDP Deflator (first row), CPI (second row) and
PCE (last row)

(a) GDP Deflator (b) CPI (c) PCE

Figure A.3: First-order autocorrelation of GDP Deflator, CPI and PCE, rolling sample (14y
window)
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Figure A.4: Time-varying persistence.

invert Gamma distributions

ρ1 ∼ N (0, 10× I), σε ∼ IG(2, 0.02), Σu ∼ IW(4, 40× I)

I plot the estimated ρt with 95% confidence bands in Figure A.4. The fall in persistence is

delayed until the mid 2000s, but the overall fall is consistent with our previous findings.

Unit Root Tests Inspecting Figure A.3, one could imagine that inflation is characterized

by a unit root process in the pre-1985 sample and not afterwards. In order to investigate

this, I proceed via a cross-sample unit root analysis using both the Augmented Dickie-Fuller

and the Phillips-Perron tests. I report our results in Table A.iii, including the p-values of

both unit root tests under the null of unit root. Focusing on the last two rows I find that,

consistent with our previous evidence on the first-order autocorrelation, the null hypothesis of

a unit root series cannot be rejected by any of the unit root tests conducted in the different

inflation measures in the pre-1985 period. On the other hand, when I repeat the similar

analysis in the post-1985 period, I find a strong rejection of the null hypothesis, suggesting

that inflation can no longer be described as a unit root process. Having understood the

close relation between the roots of the inflation dynamic process and its persistence, I can

conclude that inflation persistence fell in the post-1985 period.
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p-values, null = series has unit root
1969-2020

Variable ADF Phillips-Perron
GDP Deflator 0.23 0.02
CPI 0.11 0.00
PCE 0.16 0.00

1969-1985
Variable ADF Phillips-Perron
GDP Deflator 0.15 0.07
CPI 0.17 0.09
PCE 0.055 0.09

1985-2020
Variable ADF Phillips-Perron
GDP Deflator 0.07 0.00
CPI 0.00 0.00
PCE 0.01 0.00

Table A.iii: Unit Root Tests for Inflation Measures.

Dominant Root A further procedure of studying persistence that relies on the roots of

the dynamic process of inflation is the dominant root analysis. Consider the AR(p) process

πt = ρ1πt−1 + ρ2πt−2 + . . .+ ρpπt−p + επt

with companion matrix R(p). The root of the characteristic polynomial of R(p) with the

largest magnitude is the dominant root of interest. Notice that in the case of an AR(p)

where p > 1, the dominant root will depend not only on the first lag coefficient but in all of

them. An AR(p) is considered to be stable if all the roots of the characteristic polynomial of

matrix R(p) have an absolute value lower than 1. One can therefore proceed as in the unit

root case, and study the dominant root of the underlying inflation process over the different

subsamples. We find that the dominant root in the 1968:Q4-1984:Q4 period is 0.870 and

0.841 in the 1985:Q1-2020:Q1 period, suggesting a moderate fall in persistence.

B.1.2 Volatility

We repeat the GARCH analysis conducted in the main body for the different inflation

measures. Figure A.5 plots the predicted time-varying volatility σ̂2
t for the three inflation

measures.

To investigate whether the difference in volatility across sub-periods is significant, I pro-

ceed as in our previous structural break analysis. I report our results in Table A.iv. For all

inflation measures, the structural change in the level of inflation volatility around 1985:I is
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(a) GDP Deflator (b) CPI (c) PCE

Figure A.5: Predicted time-varying inflation variance.

(1) (2) (3)
Deflator CPI PCE

σ2
π 2.712∗∗∗ 10.78∗∗∗ 3.104∗∗∗

(0.163) (1.221) (0.140)

σ2
π × 1{t≥t∗} −1.843∗∗∗ −4.740∗∗∗ −0.364

(0.182) (1.793) (0.276)

Observations 208 208 208

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.iv: Regression table

statistically significant.

B.2 Monetary Policy Shock Process

B.2.1 Persistence

Rolling Sample AR(1) Estimate of Persistence In order to test for changes in mon-

etary shocks’ persistence, I check nominal interest rates’ autocorrelation. I plot in Figure

A.6a the rolling (14 years) first-order autocorrelation of the nominal Fed Funds rate. I find

no evidence for a fall in the first-order autocorrelation over time.

As a robustness check, I estimate (D.3) and plot the rolling estimate ρ̂v over time. Notice

that the NK model implies that the error term ξt in (D.3) is serially correlated. In fact, the

72



(a) Non-parametric First-order Autocorrelation (b) First-order Autocorrelation, GMM

Figure A.6: First-order autocorrelation of Nominal interest rates

NK model suggests that ξt follows an ARMA(1,1), or equivalently an MA(∞),

ξt = ρvξt−1 + φ1ε
v
t + φ2ε

v
t−1

= φ1ε
v
t + φ1(ρ+ φ2)

∞∑
j=0

ρjεvt−1−j

where φ1 = 1 − ρv(φπψπ + φyψy) and φ2 = −ρv(1−φπψπ−φyψy)

1−ρv(φπψπ+φyψy)
. However, a standard pa-

rameterization of the model suggests that such serial correlation is small, in the sense that

φ1(ρ+ φ2) < 0.1. To be on the safe side, I estimate (D.3) using GMM with Bartlett-Newey-

West robust standard errors, using as instruments four lags of the Effective Fed Funds rate,

GDP Deflator, CBO Output Gap, Commodity Price Inflation, Real M2 Growth and the

spread between the long-term bond rate and the three-month Treasury Bill rate, following

Clarida et al. (2000). Overall, I find no evidence of a fall in persistence ρ in the recent

decades.

Dominant Root Estimate of Persistence I confirm this result by obtaining the domi-

nant root of the nominal interest rate over time. As I showed in section 3, another procedure

to measure persistence is to compute the dominant root of an AR(p) process. I estimate an

AR(20) process on nominal interest rates, and obtain the dominant root at each sub-sample

period. Our results are reported in Table A.v. I find no evidence for a change in nominal

rates persistence. If anything, I find evidence for a moderate increase in the nominal interest

rate dominant root over time.
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Variable 1954-2020 1969-2020 1954-1985 1969-1985 1985-2020
Fed Funds rate 0.97 0.97 0.95 0.90 0.95

Table A.v: Dominant root of an AR(20) for nominal interest rate.

B.3 Change in the Monetary Stance

The fall in inflation persistence coincides with a structural change in the Fed policy stance

around 1985:I, documented in Clarida et al. (2000). Economists generally model the change

in the Fed stance around 1985:I as a structural break in the reaction function of Central

Banks. In particular, the break is modelled as if the elasticity of nominal rates with respect

to inflation, φπ, went from a previous value of 1 to a value closer to 2. That is, as if the

Federal Reserve had become more hawkish in the recent decades. To test this, I estimate

a standard Taylor rule in which nominal rates are elastic to current inflation and output

gap, as the benchmark framework suggests. I test for a structural break in 1985:I, and our

findings align with those in the literature,34

it = αi + φππt + φπ,∗πt1{t≥t∗} + φyỹt + φy,∗ỹt1{t≥t∗} + vt (B.1)

using Bartlett-Newey-West standard errors that take into consideration serially correlated

residuals, which the theoretical framework suggests. I report our results in table A.vi. Indeed,

our results show that prior to 1985 the elasticity with respect to inflation was around 1.32, and

increased to 2.28 in the Great Moderation, close to the findings by Clarida et al. (2000). In

the following subsection I link this structural change with the dynamics of inflation produced

in the NK model. As I will show, the increase in φπ will effectively reduce inflation volatility

but will have no effect on persistence.

B.4 Empirical Evidence on Information Frictions

Rolling Sample Regression I obtain a rolling-sample estimate version of (3.1). Figure

A.7 plots the rolling estimate βCG,t over time. The figure suggests that information frictions

were reduced after the 1980s, with a smaller local peak in the late 2000s, which coincides

with the local peak in inflation persistence in Figure A.3.

34. To estimate the Taylor rule I rely on GMM methods, using four lags of the Effective Fed Funds rate,
GDP Deflator, CBO Output Gap, Commodity Price Inflation, Real M2 Growth and the spread between
the long-term bond rate and the three-month Treasury Bill rate as instruments. The standard NK model
incorporates inertia in the Taylor rule via the AR(1) component vt instead of including lags of the nominal
interest rate on the right-hand side of (B.1), which allows us to obtain a closed-form solution of the model.
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(1) (2)
Taylor Rule Break

πt 1.154∗∗∗ 1.323∗∗∗

(0.112) (0.140)

ỹt 0.353∗∗∗ 0.309∗∗

(0.121) (0.128)

πt × 1{t≥t∗} 0.958∗∗∗

(0.284)

Constant 1.518∗∗∗ −0.517
(0.442) (0.844)

Observations 204 204

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.vi: Regression table

Figure A.7: Time-varying βCG,t in the CG regression (3.1) using a 14y window.
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Figure A.8: Time-varying coibion2015 regression.

Time-Varying Parameter Autorregression I use the following representation of the

time-varying parameter regression model

πt+3,t − Etπt+3,t = βCG,t(Etπt+3,t − Et−1πt+3,t) + ut, ut ∼ N (0, σ2
u)

where the time-varying persistence coefficient is assumed to follow a random walk

βCG,t+1 = βCG,t + εt, εt ∼ N (0,Σε)

The model is estimated using Bayesian methods. Our prior selection is standard, following

Nakajima (2011), using the invert Wishart and invert Gamma distributions

βCG,1 ∼ N (0, 10× I), σu ∼ IG(2, 0.02), Σε ∼ IW(4, 40× I)

I plot the estimated βCG,t with 95% confidence bands in Figure A.8. After the break

in the mid-1980s the estimated values are not statistically significant, unable to reject the

FIRE assumption.

Forecast Error response to Monetary Policy Shocks Under FIRE, ex-post forecast

errors should be unpredictable by ex-ante available information. Therefore, the IRF of

forecast errors to monetary policy shocks should be insignificant. Coibion and Gorodnichenko

(2012) show that forecast errors react to several exogenous shocks to the economy. In order

to study if the sensitivity of ex-post forecast errors has changed after the 1985:Q1 structural

break, we produce the local projection of Romer and Romer (2004) monetary policy shocks
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(a) Pre-1985 period.

(b) Post-1985 period.

(c) Change.

Figure A.9: Impulse response function of average forecasts to monetary policy shocks.

on the average forecast error,

errort+h = βhε
v
t + βh∗ε

v
t × 1t≥t∗ + γXt + ut

where h denotes the horizon and Xt includes four lags of Romer and Romer (2004) shocks

and four lags of forecast errors. We report the implied impulse responses in Figure A.9. We

find that the IRF is positive in the pre-1985 period, suggesting that forecasts react less to

monetary shocks than the forecasted variable (see Figure A.9a). After 1985, forecast errors

do not react to monetary shocks, suggesting that information frictions lessened (see Figure

A.9b). I show in Figure A.9c that the difference between the IRFs under the two regimes is

significant.

77



Figure A.10: Cross-sectional volatility of (annual) inflation forecasts at each period.

Disagreement I define a measure of “disagreement” as the cross-sectional standard devi-

ation of forecasts at each time,

disagreementt = σi(Fitπt+3,t)

Under the assumption of common complete information, disagreement should be zero

since all agents would have observed the same past, their information set would therefore

be the same, and their expectation around a future variable should coincide, provided that

agents are ex-ante identical. As we observe in Figure A.10, disagreement was large around

the 1980s, coinciding with the beginning of the Volcker activism and the lack of public

disclosure of the Federal Reserve decisions, and fell dramatically until the 1990s, stabilizing

at that level after the 1990s.

The previous figure dynamics are reminiscent of the inflation dynamics in Figure 1. One

could thus argue that, if forecast disagreement depends on the level of inflation, the fall in

disagreement would be entirely explained by the fall in inflation. We now show that forecast

do not depend on the current level of inflation. First, assuming that inflation follows an

AR(p) (up to p = 3), we regress the individual (average) forecast of the AR(p) process, and

we add realized inflation

Fitπt+3 = ρ1Fitπt+2 + ρ2Fitπt+1 + ρ3Fitπt + γπt−1,t−5 + ut (B.2)

Ftπt+3 = ρ1Ftπt+2 + ρ2Ftπt+1 + ρ3Ftπt + γπt−1,t−5 + ut (B.3)

We report our results in Table A.vii. We find in columns 1-3 (columns 4-6) that the

lagged inflation coefficient is insignificant in most cases. We then regress the average forecast

error on the average forecast revision (column 7) or on the lagged forecast error (column 8),

controlling for lagged inflation. We find that realized inflation is insignificant in both cases.
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Individual forecasts Average forecast Error Error
AR(1) AR(2) AR(3) AR(1) AR(2) AR(3)

Ftπt+2 1.284∗∗∗ 1.435∗∗∗ 1.417∗∗∗ 1.356∗∗∗ 1.870∗∗∗ 1.749∗∗∗

(0.0162) (0.0476) (0.0482) (0.0190) (0.0707) (0.0739)

Ftπt+1 −0.232∗∗∗ −0.0992 −0.775∗∗∗ −0.390∗∗∗

(0.0652) (0.0874) (0.102) (0.139)

Ftπt −0.214∗∗∗ −0.414∗∗∗

(0.0697) (0.097)

revisiont 1.220∗∗∗

(0.248)

errort−1 0.881∗∗∗

(0.0592)
πt−1,t−5 0.00705 0.0119 0.0137∗ −0.0299∗∗ −0.0182 −0.0169 0.00819 −0.0163

(0.00909) (0.00859) (0.00819) (0.0124) (0.0115) (0.0108) (0.0340) (0.0131)

Observations 7, 751 7, 750 7, 750 205 205 205 197 203

HAC robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.vii: Regression table

We can therefore argue that the fall in cross-sectional forecast volatility fell after the 1985

period as a result of lessened information frictions.

Livingston Survey Using the Livingston survey on firms, I test for a structural break in

belief formation around 1985:I. Since the survey is conducted semiannually, I estimate the

following structural-break variant of (3.2)

πt+2,t − Etπt+2,t = αCG +
(
βCG + βCG∗1{t≥t∗}

)
(Etπt+2,t − Et−2πt+2,t) + ut (B.4)

Our results, reported in the first column in Table A.viii, suggest a strong violation of the

FIRE assumption: the measure of information frictions, βCG, is significantly different from

zero. Secondly, a significant estimate of βCG∗ would suggest a break in the information

frictions faced by agents. Our results in the second column in Table III suggest that there

is a structural break around the period in which the Fed changed the monetary stance. Our

result βCG∗ < 0 suggests that agents became more more informed about inflation, with

individual forecasts relying less on priors and more on news. A t-test under the null that

βCG+βCG,∗ = 0 has an associated p-value of 0.254. I can therefore conclude that information

frictions on the CPI vanish, consistent with our findings on CPI persistence in Figure A.3b.
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(1) (2)

CG Regression Structural Break

Revision 0.380∗ 0.412∗∗

(0.202) (0.204)

Revision×1{t≥t∗} −0.880∗∗

(0.414)

Constant −0.183∗ −0.105

(0.102) (0.119)

Observations 146 146

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.viii: Regression table

As a second exercise, I estimate the following structural-break variant of (5.5)

πt,t−2 =
(
α1 + α1,∗1{t≥t∗}

) ∞∑
k=0

(βθ)kEft ỹt+k,t+k−2 +
(
α2 + α2,∗1{t≥t∗}

) ∞∑
k=0

(βθ)kEft πt+k,t+k−2

Since the survey is only conducted semiannually and only asks for 6m and 12m ahead fore-

casts we only consider the cases k = 2 and k = 4. Our results suggest no evidence of a

structural break in κ once we control for non-standard expectations.

C Extending Information Frictions to Households

In this section we relax the FIRE assumption on households. We show in Online Appendix

F that in such case, the individual household policy function is given by

cit = −β
σ
Eitrt + (1− β)Eitỹt + βEitci,t+1, with ỹt =

∫
cit di (C.1)

We still maintain the FIRE assumption on the monetary authority, which is not subject

to information frictions. In this case, the model equations are (C.1), (4.5), (4.7) and (4.8).

Information Structure In order to generate heterogeneous beliefs and sticky forecasts,

I assume that the information is incomplete and dispersed. Each agent l in group g ∈
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(1) (2) (3)
NKPC Break Output Break

Eft ỹt+2,t 1.014∗∗∗ 1.402∗∗∗ 1.079∗∗

(0.262) (0.438) (0.418)

Eft ỹt+4,t+2 −0.0717 −0.680 −0.354
(0.335) (0.553) (0.533)

Eft πt+2,t −0.0552 −0.0352 −0.264∗∗∗

(0.0652) (0.0602) (0.0836)

Eft πt+4,t+2 −0.0375 −0.123 0.237
(0.151) (0.147) (0.180)

Eft ỹt+2,t× 1{t≥t∗} −0.892∗ −0.598
(0.526) (0.509)

Eft ỹt+4,t+2× 1{t≥t∗} 0.882 0.555
(0.662) (0.641)

Eft πt+2,t× 1{t≥t∗} 0.303∗∗∗

(0.0955)

Eft πt+4,t+2× 1{t≥t∗} −0.486∗∗

(0.191)

Constant −0.115 0.388 0.479
(0.250) (0.398) (0.460)

Observations 99 99 99

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.ix: Regression table
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{household, firm} observes a noisy signal xlgt that contains information on the monetary

shock vt, and takes the standard functional form of “outcome plus noise”. Formally, signal

xlgt is described as

xlgt = vt + σguulgt, with ulgt ∼ N (0, 1) (C.2)

where signals are agent-specific. This implies that each agent’s information set is different,

and therefore generates heterogeneous information sets across the population of households

and firms. Notice that we allow for heterogeneity in the variance that each of the groups

(households and firms) face.

An equilibrium must therefore satisfy the individual-level optimal pricing policy func-

tions (4.5), the individual DIS curve (C.1), the Taylor rule (4.7), and rational expectation

formation should be consistent with the exogenous monetary shock process (4.8) and the

signal process (C.2).

The following proposition outlines inflation and output gap dynamics.

Proposition 5. Under noisy information the output gap, price level and inflation dynamics

are given by

at = A(ϑ1, ϑ2, ϑ3)at−1 +B(ϑ1, ϑ2, ϑ3)vt (C.3)

where at =
[
ỹt pt πt

]′
is a vector containing output, price level and inflation, A(ϑ1, ϑ2, ϑ3)

is a 3× 3 matrix and B(ϑ1, ϑ2, ϑ3) is a 3× 1 vector, where (ϑ1, ϑ2, ϑ3) are three scalars that

are given by the reciprocal of three of the four outside roots of the characteristic polynomial

of the following matrix35

C(z) =

[
C11(z) C12(z)

C21(z) C22(z)

]

35. The other outside root is always equal to θ and is cancelled out.
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where

C11(z) =

[
(z − β)(z − λ1)(1− λ1z)−

(
1− λ1

ρ

)
(1− ρλ1)

(
1− β

(
1 +

φy
σ

))
z2

]
(1− θ2z)

C12(z) = −(1− θ)
(

1− λ1

ρ

)
(1− ρλ1)z

(
βφπ
σ
z2 − β(1 + φπ)

σ
z +

β

σ

)
C21(z) = −

(
1− λ2

ρ

)
(1− ρλ2)(1− θz)

κθ

1− θ
z2

C22(z) = (z − βθ)(z − λ2)(1− λ2z)(1− θz)− (1− θ)
(

1− λ2

ρ

)
(1− ρλ2)(1− βθ)z2

with λg, g ∈ {1, 2} being the inside root of the following polynomial

D(z) ≡ z2 −
(

1

ρ
+ ρ+

σ2
ε

ρσ2
gu

)
z + 1

Proof. See Appendix A

In the noisy information framework, inflation is intrinsically persistent and its persis-

tence is governed by the new information-related parameters ϑ1, ϑ2 and ϑ3, as opposed to

the benchmark framework in which it is only extrinsically persistent, A(0, 0, 0) = 0. The

intuition for this result is simple: inflation is partially determined by expectations (see con-

dition (4.9) under noisy information, or (5.1) under complete information). Under noisy

information, expectations are anchored and follow an autoregressive process (see (4.11)),

which creates the additional source of anchoring in inflation dynamics, measured by ϑ1, ϑ2

and ϑ3.

Empirical Evidence on Household’s Information Frictions There are now two dif-

ferent information parameters to calibrate, since we allow for heterogeneity in information

precision by group. In order to calibrate the additional one, we use the Michigan Survey of

Consumers’ annual forecasts of inflation.36 Consider the average forecast of annual inflation

at time t, Ectπt+3,t, where πt+3,t is the inflation between periods t + 3 and t − 1. We can

think of this object as the action that the average consumer makes. A drawback of this

source of expectations data is that it is are only available at a forecasting horizon of one year

and therefore revisions in forecasts over identical horizons are not available. Thus, I follow

36. Each quarter, the University of Michigan surveys 500–1,500 households and asks them about their
expectation of price changes over the course of the next year.
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Coibion and Gorodnichenko (2015) and replace the forecast revision with the change in the

year-aheadforecast, yielding the following quasi-revision: revisiont ≡ Ectπt+3,t − Ect−1πt+2,t−1.

The average forecast revision provides information about the average agent annual forecast

after the inflow of information between periods t and t − 1. Recent research (Coibion and

Gorodnichenko 2012, 2015) has documented a positive co-movement between ex-ante average

forecast errors and average forecast revisions.37 Formally, the regression design is

forecast errort = αrev + βrev revisiont + ut (C.4)

The error term now consists of the rational expectations forecast error and βrev(Ect−1πt−1 −
Ectπt+3) because forecasts horizons do not overlap. We therefore rely on an IV estimator,

using as an instrument the (log) change in the oil price.38

Notice that a positive co-movement (β̂rev > 0) suggests that positive revisions predict

positive forecast errors. That is, after a positive revision of annual inflation forecasts, con-

sumers consistently under-predict inflation. The results, reported in the first column in Table

A.x, suggest a strong violation of the FIRE assumption: the measure of information frictions,

βrev, is significantly different from zero. Agents underrevise their forecasts: a positive βrev

coefficient suggests that positive revisions predict positive (and larger) forecast errors. In

particular, a 1 percentage point revision predicts a 1.012 percentage point forecast error. The

average forecast is thus smaller than the realized outcome, which suggests that the forecast

revision was too small, or that forecasts react sluggishly.

Following the previous analyses on inflation persistence, I assume that the break date is

1985:Q1. I test for the null of no structural break in inflation dynamics around 1985:Q1.39

We cannot the null of no break (p-value = 0.60). Following a similar structural break analysis

as in Section 2.1, I study if there is a change in expectation formation (stickiness) around the

same break date. Formally, I test for a structural break in belief formation around 1985:Q1

by estimating the following structural-break version of (C.4),

forecast errort = αrev +
(
βrev + βrev∗1{t≥t∗}

)
revisiont + ut (C.5)

37. We used the first-release value of annual inflation, since forecasters did not have access to future revisions
of the data.

38. Coibion and Gorodnichenko (2015) argue that oil prices have significant effects on CPI inflation, and
therefore are statistically significant predictors of contemporaneous changes in inflation forecasts and can
account for an importantshare of their volatility.

39. If we instead are agnostic about the break date(s), the test suggests that there is no such break.
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(1) (2)
All Sample Structural Break

Revision 1.012∗∗∗ 1.706∗

(0.299) (1.018)

Revision ×1{t≥t∗} −1.083
(1.066)

Constant −0.571∗∗∗ −0.571∗∗∗

(0.181) (0.180)

Observations 182 182

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.x: Regression table

A significant estimate of βrev∗ suggests a break in the information frictions. The results in

the second column in Table A.x suggest that there is no structural break around 1985:Q1.

Results I calibrate the two information volatilities σ1u and σ2u to match jointly the em-

pirical evidence on forecast sluggishness in Tables III and A.x. This results in σ1u = 13.919

and σ2u = 12.432 in the pre-1985 sample, and σ1u = 16.566 and σ2u = 0.015. In the pre-1985

period, the model-implied inflation first-order autocorrelation is ρπ1 = 0.796. In the post-

1985 period, inflation persistence falls to 0.686. The fall is smaller because the output gap,

which is still intrinsically persistent because of households’ information frictions, reduces the

overall effect of the fall in firm information frictions. Comparing our model results to the

empirical analysis in Tables I and II, I find that the noisy information framework can explain

around 50% of the point estimate fall.

D Persistence and Volatility in NK Models

In this section I study the determinants of inflation persistence and volatility in a structural

macro framework. I show that the empirical findings documented in the previous section

present a puzzle in the NK model. I cover a wide range of NK frameworks and show that

they cannot explain the fall in inflation persistence in an empirically consistent manner.

Regarding volatility, I show that its fall can be explained via a change in the monetary

stance in the post-Volcker era.

In the benchmark NK model, in which agents form rational expectations using complete
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information, the demand (output gap) and supply side (inflation) dynamics are modeled as

two forward-looking stochastic equations, commonly referred to as the Dynamic IS (DIS) and

New Keynesian Phillips (NKPC) curves.40 Nominal interest rates are set by the Central Bank

following a reaction function that takes the form of a standard Taylor rule. The Central Bank

reacts to excess inflation and output gap and controls an exogenous component, vt, which

follows an independent AR(1) process which innovations are treated as serially uncorrelated

monetary policy shocks.

Inserting the Taylor rule (4.7)-(4.8) into the DIS curve (4.6), one can write the model as

a system of two first-order stochastic difference equations that can be solved analytically. In

particular, inflation dynamics satisfy

πt = −ψπvt = ρπt−1 − ψπσεεvt (D.1)

where ψπ satisfies,

ψπ =
κ

(1− ρβ)[σ(1− ρ) + φy] + κ(φπ − ρ)
(D.2)

and output gap dynamics are given by ỹt = −ψyvt = ρỹt−1−ψyσεεvt . Notice that inflation is

proportional to the exogenous shock. As a result inflation will inherit its dynamic properties

from the exogenous driving force.41 A final implication is that inflation is only extrinsically

persistent: its persistence is determined by the vt AR(1) process’ persistence.

In order to explain the fall in inflation persistence and volatility I discuss each causal

explanation separately. First, I explore whether there has been a change in the structural

shocks affecting the economy. I show that these exogenous forces’ dynamics have been

remarkably stable since the beginning of the sample. Second, I investigate if a change in the

monetary stance around 1985:Q1, for which Clarida et al. (2000) and Lubik and Schorfheide

(2004) provide empirical evidence, could have affected inflation dynamics. I show that the

change in the monetary stance can indeed explain the fall in volatility but has null or modest

effects on persistence. Finally, I explore if changes in intrinsic persistence, generated via

backward-looking assumptions on the firm side, have a sizeable effect on persistence. As in

the previous case, I show that these have only marginal effects.

40. The model derivation is relegated to Online Appendix F.
41. One can also notice that the benchmark model predicts that output gap and inflation are equally

persistent, and their dynamics will only differ due to the differential monetary policy shock impact effect,
captured by ψy and ψπ. Another implication is that the Pearson correlation coefficient between output gap
and inflation is equal to 1, an aspect rejected in the data.
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D.1 Structural Shocks

I documented in Section 2 that inflation persistence and volatility fell in the recent decades.

The NK model suggests that such fall is inherited from a fall in the persistence of the

monetary policy shock process. I now seek to find evidence on the time-varying properties

of such persistence.

Persistence The challenge that the econometrician faces is that she does not have an

empirical proxy for vt. The monetary policy shocks estimated by the literature are not

serially correlated, and are therefore a better picture of the monetary policy shock εvt .
42,43

However, one can use the model properties and rewrite the Taylor rule (4.7) using the AR(1)

properties of (4.8), as

it = ρit−1 + (φππt + φyyt)− ρ (φππt−1 + φyyt−1) + σεε
v
t (D.3)

where the error term is the monetary policy shock.44 Hence, an estimate of the first-order

autoregressive coefficient in (D.3) identifies the monetary policy shock process persistence.45

I present here the structural break analysis and leave for Appendix B.2.1 the robustness

analysis. I test for a potential tructural break in the persistence of the nominal interest rate

process, described by (D.3), around 1985:Q1. I do this in two different ways. First, I use an

unrestricted GMM and estimate

it = αi + αi,∗1{t≥t∗} + ρiit−1 + ρi,∗it−11{t≥t∗} + γXt + ut

where Xt is a set of control variables that includes current and lagged output gap and

inflation.46 I report our results in the first two columns of Table A.xi Panel A. There is

42. In fact, the process vt is a model device engineered to produce inertia yet still allowing us to obtain a
closed-form solution. If inertia is directly introduced in the nominal interest rate equation, I would not be
able to obtain the closed-form solution (D.1) since the system would also feature a backward-looking term
whose coefficients would depend on the roots of a quadratic polynomial.

43. For example, Romer and Romer (2004) use the cumulative sum of their estimated monetary policy
shocks to derive the IRFs.

44. Using the lag operator, I can write the monetary policy shock process (4.8) as vt = (1 − ρL)−1εvt .
Introducing this last expression into (4.7), multiplying by (1− ρL) and rearranging terms, I obtain (D.3).

45. Our measure of the nominal rate will be the effective Fed Funds rate (EFFR), calculated as a volume-
weighted median of overnight federal funds transactions, and is available at daily frequency. I use the
quarterly frequency series.

46. The instrument set includes four lags of the Effective Fed Funds rate, GDP Deflator, CBO Output
Gap, labor share, Commodity Price Inflation, Real M2 Growth and the spread between the long-term bond
rate and the three-month Treasury Bill rate.
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Panel A (1) (2)
Unrestricted GMM Restricted GMM

it−1 0.939∗∗∗ 0.931∗∗∗

(0.0448) (0.0365)

it−1 × 1{t≥t∗} −0.00261 −0.0537
(0.0591) (0.0632)

Constant 0.305 0.851∗∗

(0.473) (0.373)

Constant×1{t≥t∗} −0.123 −0.813
(0.436) (0.559)

Observations 203 203

Panel B Romer & Romer
Pre 1985 Post 1985

Standard deviation 0.286 0.0923

HAC robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.xi: Regression table

no evidence for a decrease in nominal interest rate persistence (and thus, monetary shock

process persistence) over time. Notice however that monetary shock persistence plays a dual

role in (D.3), since it also affects lagged output and inflation. As a robustness check, I

estimate the structural break version of (D.3) using a restricted-coefficient GMM, reported

in the last two columns in Table A.xi Panel A. Our findings are similar.

This set of results is inconsistent with the NK model, since the model suggests that the

empirically documented fall in inflation persistence can only be explained by an identical fall

in nominal interest rates persistence.

Volatility In order to discuss inflation volatility, let us first state the model-implied mea-

sure of inflation volatility. Inflation dynamics are described by (D.1) and inflation volatility

is given by

σπ = ψπ
σε√

1− ρ2
(D.4)

We assume momentarily that structural model parameters, summarized by ψπ, are con-
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Panel A Model Data
Persistence Pre 1985 Post 1985 Pre 1985 Post 1985

Monetary 0.94 0.94 0.79 0.50
Add technology & cost-push 0.94∗ 0.95∗ 0.77∗ 0.51∗

Panel B
Technology shocks Pre 1985 Post 1985

First-order autocorrelation 0.934 0.980
Standard deviation 0.0422 0.0948
Panel C

Cost-push shocks Pre 1985 Post 1985
First-order autocorrelation 0.933 0.913
Standard deviation 0.0401 0.0308
∗An asterisk denotes persistence measured as the first-order autocorrelation.
Data refers to Table II (row 1) and Figure A.2 (row 2).

Table A.xii: Summary

stant across samples.47 In this case, the inflation volatility fall could only be explained from

a fall in the volatility of the innovation σε. To further investigate the fall in the volatility of

exogenous monetary shocks, I calculate the standard deviation of Romer and Romer (2004)

monetary policy shocks in the two periods. I report the standard deviation findings in Table

A.xi Panel B. I find that the volatility is greatly reduced in the post-1985 period.

Additional Structural shocks In the model studied above I only considered monetary

policy shocks, but it could be the case that other relevant shocks have lost persistence in the

recent decades and could thus explain the fall in inflation persistence. I additionally consider

demand (technology) and supply (cost-push) shocks. In this case inflation dynamics follow

πt = ψπvvt + ψπaat + ψπuut (D.5)

where at is the technology shock, ut is the cost-push shock, ψπx for x ∈ {v, a, u} are scalars

that depend on model parameters, defined in Online Appendix G, and shock processes follow

respective AR(1) processes xt = ρxxt−1 + εxt . Using different measures of technology shocks

from Fernald (2014), Francis et al. (2014), and Justiniano et al. (2011) and cost-push shocks

from Nekarda and Ramey (2010), I show in Online Appendix G that there is no empirical

evidence for a fall in their persistence, which rules out this explanation.

47. We will return to this in the next subsection, when we study potential changes in the monetary stance.
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D.2 Monetary Stance

We now consider exogenous changes in the reaction function of the monetary authority. Let

us first consider the benchmark framework, with inflation dynamics described by (D.1). We

already argued that changes in the policy rule do not affect inflation persistence. Let us

focus on volatility then. Recall that model-implied inflation volatility is given by (D.4). We

now focus on the determinants of ψπ. In particular, we study the inflation coefficient in the

Taylor rule. Clarida et al. (2000) and Lubik and Schorfheide (2004) document an increase

from around 1 to 2 in the post-Volcker period, which we corroborate in Appendix B.3. Using

a standard calibration of the NK model, presented in Table OA.1, we find that ψπ falls by

a factor of 4 in the post-sample, which squares well with our findings in Table II Panel B.

Let us now consider extensions of the benchmark model that could explain the fall in

inflation persistence. We begin by considering a hypothetical change in monetary policy,

conducted via the Taylor rule (4.7)-(4.8). The previous literature has considered the possi-

bility of the Fed conducting a passive monetary policy before 1985, which in the lens of the

theory would lead to multiplicity of equilibria. For example, Clarida et al. (2000) document

that the inflation coefficient in the Taylor rule was well below one, not satisfying the Tay-

lor principle. Lubik and Schorfheide (2004) estimate a NK model under determinacy and

indeterminacy, and argue that monetary policy after 1982 is consistent with determinacy,

whereas the pre-Volcker policy is not. I study if this change in the monetary stance could

have affected inflation persistence. I find that inflation dynamics are less persistent in the in-

determinacy region when measured using the IRF to a monetary policy shock. If we instead

consider the response to a sunspot shock, inflation dynamics are more persistent. However,

the change in persistence is minimal: 0.97 in the pre-1985 (indeterminacy) period and 0.94

afterwards.

The second extension that I inspect is optimal monetary policy under discretion. I show

that an increase in φπ can be micro-founded through a change in the monetary stance in

which the central bank follows a Taylor rule in the pre-1985 period, while it follows optimal

monetary policy under discretion in the post-1985 period. In such case, inflation dynamics

follow (D.5) in the pre-1985 period, and πt = ρuπt−1 + ψdε
u
t in the post-1985 period, where

ψd is a positive scalar that depends on deep parameters and inflation persistence is inherited

from the cost-push shock. Compared to the pre-1985 dynamics, described by (D.5), there is

no significant change in inflation persistence: in the pre-period, model persistence is around
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Model Data
Persistence Pre 1985 Post 1985 Pre 1985 Post 1985

Indeterminacy 0.97 0.94 0.79 0.50
Discretion 0.94∗ 0.96 0.77∗ 0.51∗

Commitment 0.94∗ 0.31 0.83 0.61

∗An asterisk denotes persistence measured as the first-order autocorrelation.
Data refers to Table II (row 1) and Figure A.2 (row 2).

Table A.xiii: Summary

0.95,48 while in the post-period persistence is around 0.96.49 Therefore, such change in the

policy stance would have generated an increase in inflation persistence, which rules out this

explanation.

Consider the benchmark NK model with optimal monetary policy under commitment.

Under commitment, the monetary authority can credibly control households’ and firms’

expectations. In this framework, inflation dynamics are given by πt = ρcπt−1 +ψc∆ut, where

ρc and ψc are positive scalars that depend on deep parameters, ∆ut ≡ ut − ut−1 is the

exogenous cost-push shock process, with ρc governing inflation intrinsic persistence. Using

a standard parameterization I find that ρc = 0.310, which suggests that this framework,

although it produces an excessive fall in inflation persistence, could explain its fall. Its main

drawback is that its implied Taylor rule in the post-1985 period would require an increase in

φπ from 1 to 6.5, as I show in Online Appendix G, which is inconsistent with the documented

evidence in table A.xi Panel A.

D.3 Intrinsic Persistence

The main reason for the failure in explaining the change in the dynamics in the benchmark

NK model is that the endogenous outcome variables, output gap and inflation, are propor-

tional to the monetary policy shock process and thus inherit its dynamics. This is a result of

having a pure forward-looking model, which direct consequence is that endogenous variables

are not intrinsically persistent, and its persistence is simply inherited from the exogenous

driving force and unaffected by changes in the monetary stance. I therefore enlarge the stan-

dard NK model to accommodate a backward-looking dimension in the following discussed

extensions, including a lagged term in the system of equations.

48. Measured by the first-order autocorrelation of (D.5).
49. The estimated persistence of cost-push shocks, ρu, is constant throughout both periods, as I document

in Table OA.5.
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I consider a backward-looking inflation framework, “micro-founded” through price in-

dexation. In this framework, a restricted firm resets its price (partially) indexed to past

inflation, which generates anchoring in aggregate inflation dynamics. In such framework,

inflation dynamics are given by πt = ρωπt−1 + ψωvt. In this framework inflation intrinsic

persistence is increasing in the degree of price indexation ω, as I show in Online Appendix

G. A fall in the degree of indexation could explain the fall in inflation persistence. However,

the parameterization of such parameter is not a clear one. Price indexation implies that

every price is changed every period, and therefore one could not identify the Calvo restricted

firms in the data and estimate ω. As a result, the parameter is usually estimated using ag-

gregate data and trying to match the anchoring of the inflation dynamics, and its estimate

will therefore depend on the additional model equations. Christiano et al. (2005) assume

ω = 1. Smets and Wouters (2007) estimate a value of ω = 0.21 trying to match aggregate

anchoring in inflation dynamics. It is hard to justify a particular micro estimate for ω, since

it is unobservable in the micro data.50 A counterfactual prediction in this framework is that

all prices are changed in every period, in contradiction with the empirical findings in Bils

and Klenow (2004) and Nakamura and Steinsson (2008). As a result, one cannot credibly

claim that ω is the causant of the fall in inflation persistence, since it needs to be identified

from the macro aggregate data, which makes unfeasible to identify ω and the true inflation

persistence separately.

Our last extension is to include trend inflation, for which the literature has documented

a fall from 4% in the 1947-1985 period to 2% afterwards (see e.g., Ascari and Sbordone 2014;

Stock and Watson 2007). Differently from the standard environment, I log-linearize the

model equations around a steady state with positive trend inflation, which I assume constant

within eras. Augmenting the model with trend inflation creates intrinsic persistence in the

inflation dynamics through relative price dispersion, which is a backward-looking variable

that has no first-order effects in the benchmark NK model. Inflation dynamics are now

given by πt = ρπ̄πt−1 + ψπ̄vt + ξt, where first-order intrinsic persistence is given by ρπ̄,

which is increasing in the level of trend inflation, and ξt is an MA(∞) process. I therefore

investigate if the documented fall in trend inflation, coupled with the already discussed

change in the monetary stance, can explain the fall in inflation persistence. Although in the

correct direction, I find that the fall in trend inflation and the increase in the Taylor rule

coefficients produce a small decrease in intrinsic persistence, from 0.11 to 0.09.

50. One would need to identify the firms that were not hit by the Calvo fairy in a given period, yet they
change their price.

92



Model Data
Persistence Pre 1985 Post 1985 Pre 1985 Post 1985

Price indexation 0.60 0.55 0.81 0.48
Trend inflation 0.11 0.09 0.81 0.48
Price indexation & trend inflation 0.63 0.57 0.81 0.48

Data refers to Table OA.9.

Table A.xiv: Summary

E History of Fed’s Gradual Transparency

Fed’s actions have become more transparent over time. Before 1967 the FOMC only an-

nounced policy decisions once a year in the Annual Report. The report also included the

Memoranda of Discussion (MOD) containing the minutes of the meeting, released with a

5 year lag since 1935. In 1967, the FOMC decided to release the directive in the PR, 90

days after the decision. The rationale for maintaining a delay was that earlier disclosure

would interfere with central bank best practice due to political pressure, both from the Ad-

ministration and from the Congress. In a letter from Chairman Burns to Senator Proxmire

on August 1972, Burns enumerated six reasons for deferment of availability. Among them,

Burns argued that earlier disclosure could interfere with the execution of policies, permit

speculators to gain unfair profits by trading in securities, foreign exchange, etc., result in

unwarranted disturbances in the asset market, or affect transactions with foreign govern-

ments or banks. In the same letter Burns hypothesised with reducing the delay shorter than

90 days, although stressing that a few hours/days delay would harm the Fed.

In March 1975 David R. Merril, a student at Georgetown University, requested current

MOD to be disclosed based on the Freedom of Information Act (FOIA). Congressman Pat-

man supported this initiative, and officially asked Chairman Burns for the unedited MOD

from the period 1971-1974. Burns declined to comply with the request.51 At the same time,

the FOMC formed a subcommittee on the matter, which suggested to cut back substantially

on details about the members’ forecasts and to allow each member to edit the minutes, but

discouraged eliminating the MODs. In May 1976, concerned about the chance of premature

disclosure, the FOMC discontinued the MOD arguing that it had not been a useful tool.52,53

51. The letter exchange is available at Lindsey (2003), pp. 11-15.
52. Robert P. Black, former president of the Richmond Fed that served at the FOMC, explained years later

that “I did it for the fear that Congress would request access quite promptly” (see Lindsey (2003), p. 22).
53. Whether meetings were still recorded was unclear to the public, until Chairman Greenspan revealed

their existence in October 1993, causing a stir.
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(a) Real government spending as a share of real
GDP.

(b) Percentage of workers that are members of a
Trade Union.

Figure A.11: Time series.

The decision increased the ire of several critics of the Fed. In the coming years the Congress

took several actions to protect the premature release of the minutes, in order to convince

the Fed to reinstate the MOD, with no success. Contemporaneously to these events, in May

1976 the PR increased its length (expanded to include short-run and long-run members’

forecasts) and reduced the delay to 45 days, shortly after the next (monthly) meeting.

Merrill’s lawsuit included the request for an immediate release of the directive (the Fed

decision). On November 1977 the Court of Appeals for the District of Columbia ruled in

Merrill’s favor on this regard. In January 1978, Burns asked Senator Proxmire for legislative

relief from the requirement. Finally, in June 1979 the Supreme Court ruled in the FOMC

favor.

Between 1976 and 1993 the information contained in the PR was significantly enlarged,

without further changes in the announcement delay. In November 1977 the Federal Reserve

Reform Act officially entitled the Fed with 3 objectives: maximum employment, stable prices

and moderate long-term interest rates. In July 1979, the first individual macroeconomic

forecasts on (annual) real GNP growth, GNP inflation and unemployment from FOMC

members were made available. During this period, the Fed was widely criticised for the rise

in inflation (see Figure 1). The FOMC stressed in their communication that the increase

in inflation was due to excessive fiscal policy stimulus (see Figure A.11a) and the cost-push

shock on real wages coming from the increased worker unionization (see Figure A.11b).

From October 1979 to November 1989 the policy instrument changed from the fed funds

rate to non-borrowed reserves (M1, until Fall 1982) and borrowed reserves (M2 and M3,

thereafter), respectively. In the early 1980s the Fed had not stablished an inflation target
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yet. Instead, the focus was on stabilizing monetary aggregates, M1 growth in particular.

However, frequent and volatile changes in money demand made it particularly challenging for

the Fed to deliver stable monetary aggregates. The aspects of these operational procedures

were not explained to the public during 1982.

The “tilt” (predisposition or likelihood regarding possible future action) was introduced

in the PR in November 1983. Between March 1985 and December 1991 the Fed introduced

the “ranking of policy factors”, which after each meeting ranked aggregate macro variables

in importance, signaling priorities with regard to possible future adjustments. During this

period the FOMC members started discussing internally the possibility of reducing the delay

of announcements. An internal report from November 1982 summarizes the benefits, calling

for democratic public institutions, reducing the criticism due to excessive secrecy, and the

induced misallocation of resources by firms, somehow forced to hire “Fed watchers”. Yet,

the cons, which remained similar as those expressed in 1972. In fact, Chairman Volcker

defended the Fed’s translucent policy in two letters to Representative Fauntroy in August

1984 and Senator Mattingly in July 1985.

Until then, the FOMC had been successful in convincing politicians and the judicial

system that its secrecy was grounded in a purely economic rationale, and was not the result of

an arbitrary decision. The first critique from the academic profession came from Goodfriend

(1986), which argued that opaqueness reduces the power of monetary policy by distorting

agents’ reactions. Cukierman and Meltzer (1986) formalize a theoretical framework in which

credibility and reputation induce rich dynamics around a low-inflation steady state. Blinder

(2000) and Bernanke et al. (1999) stressed the benefits of a more transparent policy, such as

inflation targeting. Faust and Svensson (2001) build a framework in which the Central Bank

cares about its reputation, and identify a potential conflict between society and the Central

Bank: the general public wants full transparency, while the Central Bank prefers minimal

transparency. Faust and Svensson (2002) extend their results by endogeneizing the choice

of transparency and the degree of control that the Central Bank has.

After the successful disinflation episode in the mid 1980s the Fed gained reputation,

not fearing criticism of further tightening in the policy stance. As a result the FOMC was

subject to little political interference, which together with the criticism coming from the

academic profession led them to increase transparency. The minutes, a revised transcript

of the discussions during the meeting, were reintroduced into the PR in March 1993 under

Chairman Greenspan. In 1994 the FOMC introduced the immediate release of the PR after

a meeting if there had been a decision, coupled with an immediate release of the “tilt” since
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1999. Since January 2000 there is an immediate announcement and press conference after

each meeting, regardless of the decision.
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Online Appendix

F Model Derivation

F.1 Derivation of the General New Keynesian Model

F.1.1 Households

There is a continuum of infinitely-lived, ex-ante identical households indexed by i ∈ Ih =

[0, 1] seeking to maximize

Ei0
∞∑
t=0

βtU(Cit, Nit) (F.1)

where utility takes a standard CRRA shape U(C,N) = C1−σ

1−σ −
N1+ϕ

1+ϕ
. Notice that I relax

the benchmark framework and assume that households might differ in their beliefs and their

expectation formation. Furthermore, the consumption index Cit is given by

Cit =

(∫
If
C

ε−1
ε

ijt dj

) ε
ε−1

with Cijt denoting the quantity of good j consumed by household i in period t, and ε denotes

the elasticity between goods. Here I have assumed that each consumption good is indexed

by j ∈ If = [0, 1]. Given the different good varieties, the household must decide how to

optimally allocate its limited expenditure on each good j. A cost-minimization problem

yields

Cijt =

(
Pjt
Pt

)−ε
Cit (F.2)

where the aggregate price index is defined as Pt ≡
(∫
If
P 1−ε
jt dj

) 1
1−ε

. Using the above condi-

tions, one can show that ∫
If
PjtCijt dj = PtCit

I can now state the household-level budget constraint. In real terms, households decide

how much to consume, work and save subject to the following restriction

Cit +Bit = Rt−1Bi,t−1 +W r
t Nit +Dt (F.3)
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where Nit denotes employment (or hours worked) by household i, Bit denotes savings (or

bond purchases) by household i, Rt−1 denotes the gross real return on savings, W r
t denotes

the real wage at time t, and Dt denotes dividends received from the profits produced by

firms. The optimality conditions from the household problem satisfy

C−σit = βEit
(
RtC

−σ
i,t+1

)
Cσ
itN

ϕ
it = EitW r

t

Let us now focus on the budget constraint. Define Ait = Rt−1Bi,t−1 as consumer i’s initial

asset position in period t. Rewrite (F.3) at t+ 1

Cit+1 +Bit+1 = RtBi,t +W r
t+1Nit+1 +Dt+1 (F.4)

Combining (F.3) and (F.4) I can write

Cit + (Cit+1 +Bit+1)R−1
t = Ait +W r

t Nit +Dt + (W r
t+1Nit+1 +Dt+1)R−1

t

Doing this until t→∞ I obtain

∞∑
k=0

k∏
j=1

1

Rt+j−1

Cit+k = Ait +
∞∑
k=0

k∏
j=1

1

Rt+j−1

(W r
t+kNit+k +Dt+k)

Log-linearizing the above condition around a zero inflation steady-state I obtain

∞∑
k=0

βkcit+k = ait + Ωi

∞∑
k=0

βk(wrt+k + nit+k) + (1− Ωi)
∞∑
k=0

βkdt+k (F.5)

where a lower case letter denotes the log deviation from steady state, i.e., xt = logXt−logX,

except for the initial asset position, defined as ait = Ait/Ci; and Ωi denotes the labor income

share for household i.

The optimal intratemporal labor supply condition can be log-linearized to

Eitwrt = σcit + ϕnit (F.6)
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and the intertemporal Euler condition can be log-linearized to

cit = − 1

σ
Eitrt + Eitcit+1 (F.7)

where I define the ex-post real interest rate as rt = it − πt+1.

I want to obtain the optimal expenditure of household i in period t as a function of the

current a future expected wages, dividends and real interest rates. Using (F.6) and taking

expectations, I can rearrange (F.5) as

∞∑
k=0

βkEitcit+k = ait + Ωi

∞∑
k=0

βkEit
(

1 + ϕ

ϕ
wrt+k −

σ

ϕ
cit+k

)
+ (1− Ωi)

∞∑
k=0

βkEitdt+k

=
ϕ

ϕ+ σΩi

ait +
∞∑
k=0

βkEit
[

Ωi(1 + ϕ)

ϕ+ σΩi

wrt+k +
(1− Ωi)ϕ

ϕ+ σΩi

dt+k

]
(F.8)

Let us now focus on the left-hand side. Taking individual expectations, I can rewrite it

as
∑∞

k=0 β
kEitcit+k. Keeping this aside, I can rearrange (F.7) as

Eitcit+1 = cit +
1

σ
Eitrt

Iterating (F.7) one period forward, I can similarly write

Eitcit+2 = cit +
1

σ
Eit(rt + rt+1)

and, for a general k,

Eitcit+k = cit +
1

σ

k∑
j=0

Eitrt+j

That is, I can write

∞∑
k=0

βkEitcit+k =
∞∑
k=0

βkcit +
1

σ

∞∑
k=0

k∑
j=0

βkEitrt+j

=
1

1− β
cit +

β

σ(1− β)

∞∑
k=0

βkEitrt+k
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Inserting this last condition into (F.8), I can write

cit = −β
σ

∞∑
k=0

βkEitrt+k +
ϕ(1− β)

ϕ+ σΩ
ait +

∞∑
k=0

βkEit
[

Ωi(1 + ϕ)(1− β)

ϕ+ σΩ
wrt+k +

(1− Ωi)ϕ(1− β)

ϕ+ σΩ
dt+k

]

Aggregating, using the fact that assets are in zero net supply,
∫
Ih
ait di = at = 0,

ct = −β
σ

∞∑
k=0

βkEht rt+k +
∞∑
k=0

βk
[

Ω(1 + ϕ)(1− β)

ϕ+ σΩ
Ehtwrt+k +

(1− Ω)ϕ(1− β)

ϕ+ σΩ
Eht dt+k

]
(F.9)

where Eht (·) =
∫
Ic Eit(·) di is the average household expectation operator in period t.

F.1.2 Firms

As in the household sector, I assume a continuum of firms indexed by j ∈ If = [0, 1]. Each

firm is a monopolist producing a differentiated intermediate-good variety, producing output

Yjt and setting nominal price Pjt and making real profit Djt. Technology is represented by

the production function

Yjt = AtN
1−α
jt (F.10)

where At is the level of technology, common to all firms, which evolves according to

at = ρaat−1 + εat (F.11)

where εat ∼ N (0, σ2
a).

Aggregate Price Dynamics As in the benchmark NK model, price rigidities take the

form of Calvo-lottery friction. At every period, each firm is able to reset their price with

probability (1−θ), independent of the time of the last price change. That is, only a measure

(1 − θ) of firms is able to reset their prices in a given period, and the average duration of

a price is given by 1/(1 − θ). Such environment implies that aggregate price dynamics are

given (in log-linear terms) by

πt =

∫
If
πjt dj = (1− θ)

[∫
If
p∗jt dj − pt−1

]
= (1− θ) (p∗t − pt−1) (F.12)
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Optimal Price Setting A firm re-optimizing in period t will choose the price P ∗jt that

maximizes the current market value of the profits generated while the price remains effective.

Formally,

P ∗jt = arg max
Pjt

∞∑
k=0

θkEjt
{

Λt,t+k
1

Pt+k

[
PjtYj,t+k|t − Ct+k(Yj,t+j|t)

]}

subject to the sequence of demand schedules

Yj,t+k|t =

(
Pjt
Pt+k

)−ε
Ct+k

where Λt,t+k ≡ βk
(
Ct+k
Ct

)−σ
is the stochastic discount factor, Ct(·) is the (nominal) cost

function, and Yj,t+k|t denotes output in period t + k for a firm j that last reset its price in

period t. The First-Order Condition is

∞∑
k=0

θkEjt
[
Λt,t+kYj,t+k|t

1

Pt+k

(
P ∗jt −MΨj,t+k|t

)]
= 0

where Ψj,t+k|t ≡ C ′t+k(Yj,t+j|t) denotes the (nominal) marginal cost for firm j, and M = ε
ε−1

.

Log-linearizing around the zero inflation steady-state, I obtain the familiar price-setting rule

p∗jt = (1− βθ)
∞∑
k=0

(βθ)kEjt
(
ψj,t+k|t + µ

)
(F.13)

where ψj,t+k|t = log Ψj,t+k|t and µ = logM.

F.1.3 Equilibrium

Market clearing in the goods market implies that Yjt = Cjt =
∫
Ih
Cijt di for each j good/firm.

Aggregating across firms, I obtain the aggregate market clearing condition: since assets are

in zero net supply and there is no capital, investment, government consumption nor net

exports, production equals consumption:∫
If
Yjt dj =

∫
Ih

∫
If
Cijt dj di =⇒ Yt = Ct

Aggregate employment is given by the sum of employment across firms, and must meet
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aggregate labor supply

Nt =

∫
Ih
Nit di =

∫
If
Njt dj

Using the production function (F.10) and (F.2) together with goods market clearing

Nt =

∫
If

(
Yjt
At

) 1
1−α

dj =

(
Yt
At

) 1
1−α
∫
If

(
Pjt
Pt

)− ε
1−α

dj

Log-linearizing the above expression yields to

nt =
1

1− α
(yt − at) (F.14)

The (log) marginal cost for firm j at time t+ k|t is

ψj,t+k|t = wt+k −mpnj,t+k|t
= wt+k − [at+k − αnj,t+k|t + log(1− α)]

where mpnj,t+k|t and nj,t+k|t denote (log) marginal product of labor and (log) employment

in period t+ k for a firm that last reset its price at time t, respectively.

Let ψt ≡
∫
If
ψjt denote the (log) average marginal cost. I can then write

ψt = wt − [at − αnt + log(1− α)]

Thus, the following relation holds

ψj,t+k|t = ψt+k + α(njt+k|t − nt+k)

= ψt+k +
α

1− α
(yjt+k|t − yt+k)

= ψt+k −
αε

1− α
(p∗jt − pt+k) (F.15)

Introducing (F.15) into (F.13), I can rewrite the firm price-setting condition as

p∗jt = (1− βθ)
∞∑
k=0

(βθ)kEjt (pt+k −Θµ̂t+k)

where µ̂ = µt − µ is the deviation between the average and desired markups, where µt =

−(ψt − pt), and Θ = 1−α
1−α+αε

.
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Individual and Aggregate Phillips curve Suppose that firms observe the aggregate

prices up to period t− 1, pt−1, then I can restate the above condition as

p∗jt − pt−1 = −(1− βθ)Θ
∞∑
k=0

(βθ)kEjtµ̂t+k +
∞∑
k=0

(βθ)kEjtπt+k

Define the firm-specific inflation rate as πjt = (1− θ)(p∗jt−pt−1). Then I can write the above

expression as

πjt = −(1− θ)(1− βθ)Θ
∞∑
k=0

(βθ)kEjtµ̂t+k + (1− θ)
∞∑
k=0

(βθ)kEjtπt+k

= (1− θ)Ejt[πt − (1− βθ)Θµ̂t] + βθEjt

{
(1− θ)

∞∑
k=0

(βθ)k[πt+1+k − (1− βθ)Θµ̂t+1+k]

}

= (1− θ)Ejt[πt − (1− βθ)Θµ̂t] + βθEjt

{
(1− θ)

∞∑
k=0

(βθ)kEj,t+1[πt+1+k − (1− βθ)Θµ̂t+1+k]

}
= −(1− θ)(1− βθ)ΘEjtµ̂t + (1− θ)Ejtπt + βθEjtπj,t+1 (F.16)

where πt =
∫
If
πjt dj.

Note that I can write the deviation between average and desired markups as

µt = pt − ψt
= pt − wt + wt − ψt
= −(wt − pt) + wt − [wt − at + αnt − log(1− α)]

= −(σyt + ϕnt) + [at − αnt + log(1− α)]

= −
(
σ +

ϕ+ α

1− α

)
yt +

1 + ϕ

1− α
at + log(1− α)

As in the benchmark model, under flexible prices (θ = 0) the average markup is constant

and equal to the desired µ. Consider the natural level of output, ynt as the equilibrium

level under flexible prices and full-information rational expectations. Rewriting the above

condition under the natural equilibrium,

µ = −
(
σ +

ϕ+ α

1− α

)
ynt +

1 + ϕ

1− α
at + log(1− α)
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which I can write as

ynt = ψyaat + ψy

where ψya = 1+ϕ
σ(1−α)+ϕ+α

and ψy = − (1−α)[µ−log(1−α)]
σ(1−α)+ϕ+α

. Therefore, I can write

µ̂t = −
(
σ +

ϕ+ α

1− α

)
ỹt

where ỹt = yt − ynt is defined as the output gap. Finally, I can write the individual Phillips

curve as

πjt = (1− θ)(1− βθ)Θ
(
σ +

ϕ+ α

1− α

)
Ejtỹt + (1− θ)Ejtπt + βθEjtπi,t+1

= κθEjtỹt + (1− θ)Ejtπt + βθEjtπi,t+1 (F.17)

where κ = (1−θ)(1−βθ)
θ

Θ
(
σ + ϕ+α

1−α

)
, and the aggregate Phillips curve can be written as

πt = κθ
∞∑
k=0

(βθ)kEft ỹt+k + (1− θ)
∞∑
k=0

(βθ)kEft πt+k (F.18)

Individual and Aggregate DIS curve In order to derive the DIS curve, let us first

log-linearize the profit of the monopolist. The profit Djt of monopolist j at time t is

Djt =
1

Pt
(PjtYjt −WtNjt)

=
Pjt
Pt
Yjt −W r

t Njt

Log-linearizing around a zero-inflation steady state

Djdjt =
Pj
P
Yj(pjt + yjt − pt)−

W r

P
Nj(w

r
t + njt)

Aggregating the above expression across firms

yt =
W rN

Y
(wrt + nt) +

D

Y
dt

= Ω(wrt + nt) + (1− Ω)dt (F.19)
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Aggregating the labor supply condition (F.6) across households, and using the goods market

clearing condition

wrt = σyt + ϕnt

Inserting the above condition in (F.19), I can write

yt =
Ω(1 + ϕ)

ϕ+ Ωσ
wrt +

(1− Ω)ϕ

ϕ+ Ωσ
dt

Introducing this last expression into the aggregate consumption function (F.9), using again

the goods market clearing condition

yt = −β
σ

∞∑
k=0

βkEht rt+k + (1− β)
∞∑
k=0

βkEht yt+k (F.20)

Let us now derive the DIS curve. Substracting the natural level of output from (F.20), I

obtain

ỹt = −β
σ

∞∑
k=0

βkEht (rt+k − rnt+k) + (1− β)
∞∑
k=0

βkEht ỹt+k (F.21)

I now need to derive an expression for the natural real interest rate. Recall that in a natural

equilibrium with no price nor information frictions, the natural real interest rate is given by

rnt = σEt∆ynt+1

= σψyaEt∆at+1

= σψya(ρa − 1)at (F.22)

Finally, the aggregate DIS curve is given by

ỹt = −β
σ

∞∑
k=0

βkEht (it+k − πt+k+1) + (1− β)
∞∑
k=0

βkEht ỹt+k − ψya(1− ρa)
∞∑
k=0

βkEht at+k

(F.23)

Notice that in this case there is no direct individual DIS curve. However, one can show
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that the following consumption function

cit = −β
σ
Eitrt + (1− β)Eitct + βEitci,t+1 − ψya(1− ρa)Eitat, with ct =

∫
cit di (F.24)

is equivalent to (F.23) provided that limT→∞ β
TEitci,t+T , which is broadly assumed in the

literature given β < 1.

Monetary Authority The model is closed through a Central Bank reaction function.

Following Taylor (1993, 1999) I model the reaction function in terms of elasticities. The

Central Bank reacts to excess inflation and output gap through a set of parameters {φπ, φy}.
On top of that, the monetary authority controls an exogenous component, vt, which I model

in reduced-form as an AR(1) process to account for interest rate inertia and depends on

monetary shocks εvt ∼ N (0, σ2
v) that are serially uncorrelated. Formally, I can write the

Taylor rule as (4.7)-(4.8).

F.1.4 Discussion on Model Derivation and FIRE

Notice that throughout the model derivation I have not discussed how are beliefs and expec-

tations formed. Therefore, the model derived above, consisting of equations (F.23), (F.18),

(4.7), (4.8) and (F.11), should be interpreted as a general framework.

Under the assumption that expectations satisfy the Law of Iterated expectations,

Et[Et+k(·)] = Et(·) for k > 0, and that they are common across agents, Eht (·) = Eft (·) = Et(·),
I can write the model in its usual form

ỹt = − 1

σ
(it − Etπt+1) + Etỹt+1 + ψya(ρa − 1)at

πt = κỹt + βEtπt+1

together with (4.7), (4.8) and (F.11).

F.2 The (FIRE) Trend-Inflation New Keynesian Model

F.2.1 Households

There is a continuum of infinitely-lived, ex-ante identical households indexed by i ∈ Ih =

[0, 1] seeking to maximize
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E0

∞∑
t=0

βtU(Cit, Nit) (F.25)

where utility takes a standard CRRA shape U(C,N) = C1−σ

1−σ −
N1+ϕ

1+ϕ
. Furthermore, the

consumption index Cit is given by

Cit =

(∫
If
C

ε−1
ε

ijt dj

) ε
ε−1

with Cijt denoting the quantity of good j consumed by household i in period t, and ε denotes

the elasticity between goods. Here I have assumed that each consumption good is indexed

by j ∈ If = [0, 1]. Given the different good varieties, the household must decide how to

optimally allocate its limited expenditure on each good j. A cost-minimization problem

yields

Cijt =

(
Pjt
Pt

)−ε
Cit (F.26)

where the aggregate price index is defined as Pt ≡
(∫
If
P 1−ε
jt dj

) 1
1−ε

. Using the above condi-

tions, one can show that ∫
If
PjtCijt dj = PtCit

I can now state the household-level budget constraint. In real terms, households decide

how much to consume, work and save subject to the following restriction

Cit +Bit =
It−1

Πt

Bi,t−1 +wr
itNit +Dit (F.27)

whereNit denotes employment (or hours worked) by household i, Bit denotes savings (or bond

purchases) by household i, It−1 denotes the gross nominal return on savings, Πt ≡ Pt/Pt−1

denotes gross inflation rate at time t, W r
it denotes the realwage received by household i at

time t, and Dit denotes dividends received by household i from the profits produced by firms.

In order to avoid a potential Grossman-Stiglitz paradox, I follow the literature and noise up

individual wages and dividends, so that agents cannot infer aggregate wages and output from

their individual measure. Formally, I assume that wages and dividends have an aggregate

and an iid idiosyncratic component, such that Xit = Xtζit. The optimality conditions from

the household problem satisfy
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C−σit = βEt
(

Rt

Πt+1

C−σi,t+1

)
Nϕ
it = wr

itC
−σ
it

Aggregating across households and log-linearizing the above conditions around a steady state

with trend inflation I find

yt = Etyt+1 −
1

σ
(it − Etπt+1)

wrt = ϕnt + σyt (F.28)

where xt = logXt − logX.

F.2.2 Firms

As in the household sector, I assume a continuum of firms indexed by j ∈ If = [0, 1]. Each

firm is a monopolist producing a differentiated intermediate-good variety, producing output

Yjt and setting nominal price Pjt and making real profit Djt. Technology is represented by

the production function

Yjt = AtN
1−α
jt (F.29)

where At is the level of technology, common to all firms, which evolves according to

at = ρaat−1 + εat (F.30)

where εat ∼ N (0, σ2
a).

Aggregate Price Dynamics As in the benchmark NK model, price rigidities take the

form of Calvo-lottery friction. At every period, each firm is able to reset their price with

probability (1− θ), independent of the time of the last price change. However, a firm that is

unable to re-optimize gets to reset its price to a partial indexation on past inflation. Formally,

Pjt = Pj,t−1Πω
t−1
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where ω is the elasticity of prices with respect to past inflation. As a result, a firm that last

reset its price in period t will face a nominal price in period t+ k of P ∗t χt,t+k, where

χt,t+k =

{
Πω
t Πω

t+1Πω
t+2 · · ·Πω

t+k−1 if k ≥ 1

1 if k = 0

Such environment implies that aggregate price dynamics are given by

Pt =
[
θΠ

(1−ε)ω
t−1 P 1−ε

t−1 + (1− θ)(P ∗jt)1−ε
] 1

1−ε

Dividing by Pt and rearranging terms, I can write

Pjt
Pt

=

[
1− θΠ(1−ε)ω

t−1 Πε−1
t

1− θ

] 1
1−ε

Log-linearizing the above expression around a steady-state with trend inflation I obtain

p∗jt − pt =
θπ̄(ε−1)(1−ω)

1− θπ̄(ε−1)(1−ω)
(πt − ωπt−1) (F.31)

Optimal Price Setting A firm re-optimizing in period t will choose the price P ∗jt that

maximizes the current market value of the profits generated while the price remains effective.

Formally,

P ∗jt = arg max
Pjt

∞∑
k=0

θkEjt
{

Λt,t+k
1

Pt+k

[
Pjtχt,t+kYj,t+k|t − Ct+k(Yj,t+j|t)

]}

subject to the sequence of demand schedules

Yj,t+k|t =

(
Pjtχt,t+k
Pt+k

)−ε
Ct+k
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where Λt,t+k ≡ βk
(
Ct+k
Ct

)−σ
is the stochastic discount factor, Ct(·) is the (nominal) cost

function where

Ct+k = Wt+kNj,t+k|t

= Wt+k

(
Yj,t+k|t
At+k

) 1
1−α

and Yj,t+k|t denotes output in period t + k for a firm j that last reset its price in period t.

The First-Order Condition is

∞∑
k=0

θkEjt

{
Λt,t+k

[
(1− ε)(P ∗jt)−ε

(
χt,t+k
Pt+k

)1−ε
Yj,t+k|t +

ε

1− α
(P ∗jt)

α−1−ε
1−α

Wt+k

Pt+k

(
Yj,t+k|t

At+k

) 1
1−α

(
χt,t+k
Pt+k

)− ε
1−α
]}

= 0

where Ψj,t+k|t ≡ C ′t+k(Yj,t+j|t) denotes the (nominal) marginal cost for firm j,

Ψj,t+k|t =
1

1− α
A
− 1

1−α
t+k Wt+kY

α
1−α
j,t+k|t

The FOC can be rewritten as

(P ∗it)
1−α+εα

1−α =M 1

1− α

Et
∑∞

k=0 θ
kΛt,t+k

Wt+k

Pt+k

(
Yj,t+k|t
At+k

) 1
1−α
(
χt,t+k
Pt+k

)− ε
1−α

Et
∑∞

k=0 θ
kΛt,t+k

(
χt,t+k
Pt+k

)1−ε
Yj,t+k|t

where M = ε
ε−1

. Diving the above expression by P
1−α+εα

1−α
t = P

1−ε+ ε
1−α

t = P 1−ε
t P

ε
1−α
t ,

(
P ∗it
Pt

) 1−α+εα
1−α

=M 1

1− α

Et
∑∞

k=0 θ
kΛt,t+k

Wt+k

Pt+k

(
Yj,t+k|t
At+k

) 1
1−α
(
χ
− 1−ω

ω
t,t+k Πt

)− ε
1−α

Et
∑∞

k=0 θ
kΛt,t+k

(
χ
− 1−ω

ω
t,t+k Πt

)1−ε
Yj,t+k|t

=
M

1− α
Ψt

Φt

(F.32)
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where the auxiliary variables are defined, recursively, as

Ψt ≡ Et
∞∑
j=0

(βθ)kY
1−σ(1−α)

1−α
j,t+k|t A

− 1
1−α

t+k

Wt+k

Pt+k

(
χ
− 1−ω

ω
t,t+k Πt

)− ε
1−α

=
Wt

Pt
A
− 1

1−α
t Y

1−σ(1−α)
1−α

jt|t + βθΠ
− εω

1−α
t Et

[
Π

ε
1−α
t+1 Ψt+1

]
(F.33)

Φt ≡ Et
∞∑
j=0

(βθ)kY 1−σ
j,t+k|t

(
χ
− 1−ω

ω
t,t+k Πt

)1−ε

= Y 1−σ
jt|t + βθΠ

ω(1−ε)
t Et

[
Πε−1
t+1Φt+1

]
(F.34)

epsilon Log-linearizing (F.32), (F.33) and around a steady state with trend inflation yields,

respectively

ψt − φt =
1− α + εα

1− α
(p∗jt − pt) (F.35)

ψt =
[
1− θβπ̄

ε(1−ρ)
1−α

](
wrt −

1

1− α
at +

1− σ(1− α)

1− α
yt

)
+ θβπ̄

ε(1−ω)
1−α

(
Etψt+1 +

ε

1− α
Etπt+1 −

ωε

1− α
πt

)
(F.36)

φt =
[
1− θβπ̄(ε−1)(1−ω)

]
(1− σ)yt + θβπ̄(ε−1)(1−ω) [ω(1− ε)πt + Etφt+1 + (ε− 1)Etπt+1]

(F.37)

F.2.3 Equilibrium

Market clearing in the goods market implies that Yjt = Cjt =
∫
Ih
Cijt di for each j good/firm.

Aggregating across firms, I obtain the aggregate market clearing condition: since assets are

in zero net supply and there is no capital, investment, government consumption nor net

exports, production equals consumption:∫
If
Yjt dj =

∫
Ih

∫
If
Cijt dj di =⇒ Yt = Ct

Aggregate employment is given by the sum of employment across firms, and must meet

aggregate labor supply

Nt =

∫
Ih
Nit di =

∫
If
Njt dj
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Using the production function (F.29) and (F.26) together with goods market clearing

Nt =

∫
If

(
Yjt
At

) 1
1−α

dj

=

(
Yt
At

) 1
1−α
∫
If

(
Pjt
Pt

)− ε
1−α

dj

=

(
Yt
At

) 1
1−α

St (F.38)

where St is a measure of price dispersion and is bounded below one (see Schmitt-Grohe and

Uribe (2005)). Price dispersion can be understood as the resource costs coming from price

dispersion: the smaller St, the larger labor amount is necessary to achieve a particular level

of production. In the benchmark model with no trend inflation, Π = π = 1 and St does not

affect real variables up to the first order. Schmitt-Grohe and Uribe (2005) show that relative

price dispersion can be written as

St = (1− θ)
(
P ∗jt
Pt

)− ε
1−α

+ θΠ
− εω

1−α
t−1 Π

ε
1−α
t St−1 (F.39)

Log-linearizing (F.38) and (F.39) around a steady state with trend inflation I can write,

respectively

nt = st +
1

1− α
(yt − at) (F.40)

st = − ε

1− α

(
1− θπ̄

ε(1−ω)
1−α

)
(p∗jt − pt) + θπ̄

ε(1−ω)
1−α

(
− εω

1− α
πt−1 +

ε

1− α
πt + st−1

)
(F.41)

Aggregate DIS and Phillips Curves Combining the intratemporal labor supply condi-

tion (F.28) and the production function (F.40), I can write real wages as

wrt = ϕst +
ϕ+ σ(1− α)

1− α
yt −

ϕ

1− α
at (F.42)

Combining the optimal price setting rule (F.35) and the aggregate price dynamics con-

dition (F.31), denoting ∆t = πt − ωπt−1, I can write φt in terms of ∆t,

φt = ψt −
1− α + εα

1− α
θπ̄(ε−1)(1−ω)

1− θπ̄(ε−1)(1−ω)
∆t (F.43)
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Combining the price dispersion dynamics (F.41) and the aggregate price dynamics condi-

tion (F.31), I can write current price dispersion as a backward-looking equation in inflation

and price dispersion. This equation, which does not affect real variables in the benchmark

model, will be key in order to generate anchoring,

st = − ε

1− α

(
1− θπ̄

ε(1−ω)
1−α

) θπ̄(ε−1)(1−ω)

1− θπ̄(ε−1)(1−ω)
∆t + θπ̄

ε(1−ω)
1−α

(
ε

1− α
∆t + st−1

)
= − ε

1− α

[(
1− θπ̄

ε(1−ω)
1−α

) θπ̄(ε−1)(1−ω)

1− θπ̄(ε−1)(1−ω)
− θπ̄

ε(1−ω)
1−α

]
∆t + θπ̄

ε(1−ω)
1−α st−1

=
ε

1− α
δ − χ
1− χ

∆t + δst−1

where δ(π) = θπ
ε(1−ω)
1−α , χ(π) = θπ(ε−1)(1−ω).

Inserting the real wage equation (F.42) into the net present value of marginal costs (F.36)

ψt =
[
1− θβπ̄

ε(1−ρ)
1−α

] [
ϕst +

1 + ϕ

1− α
(yt − at)

]
+ θβπ̄

ε(1−ω)
1−α

(
Etψt+1 +

ε

1− α
Et∆t+1

)
= (1− βδ)

[
ϕst +

1 + ϕ

1− α
(yt − at)

]
+ βδ

(
Etψt+1 +

ε

1− α
Et∆t+1

)
Finally, introducing (F.43) into (F.37), I can write the New Keynesian Phillips curve,

∆t = Θ
1− χ
χ

ψt −Θ(1− σ)
(1− χ)(1− βχ)

χ
yt −Θβ(1− χ)Etψt+1 − [Θ(ε− 1)β(1− χ)− βχ]Et∆t+1

where Θ = 1−α
1−α+εα

.

Monetary Authority The model is closed through a Central Bank reaction function.

Following Taylor (1993, 1999) I model the reaction function in terms of elasticities. The

Central Bank reacts to excess inflation and output gap through a set of parameters {φπ, φy}.
On top of that, the monetary authority controls an exogenous component, the monetary

policy shock εvt ∼ N (0, σ2
v) that are serially uncorrelated. Formally, I can write the Taylor

rule as

it = ρiit−1 + (1− ρi)(φππt + φyyt) + εvt (F.44)
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Steady State In steady-state the model exhibits trend inflation. The model consists of 5

equations and 5 variables, which can be written in steady-state as

Y =

[
(ε− 1)(1− α)A

1+ϕ
1−α

εSϕ

] 1−α
ϕ+σ+α(1−σ)

=

[
(ε− 1)(1− α)

εSϕ

] 1−α
ϕ+σ+α(1−σ)

Π = π̄

1 + i =
π̄

β

Ψ =
SϕA−

1+ϕ
1−αY

1+ϕ
1−α

1− θβπ̄
ε(1−ω)
1−α

=
SϕY

1+ϕ
1−α

1− θβπ̄
ε(1−ω)
1−α

=
SϕY

1+ϕ
1−α

1− βδ

S =
1− θ

1− θπ̄
ε(1−ω)
1−α

[
1− θπ̄(ε−1)(1−ω)

1− θ

] ε
(ε−1)(1−α)

=
1− θ
1− δ

(
1− χ
1− θ

) ε
(ε−1)(1−α)

hence, I can write

y =
1− α

ϕ+ σ + α(1− σ)

[
log

(ε− 1)(1− α)

ε
− ϕs

]
π = log π̄

i = log π̄ − log β = π − log β

ψ =
1 + ϕ

1− α
y + ϕs− log(1− βδ)

s = log
1− θ
1− δ

+
ε

(ε− 1)(1− α)
log

1− χ
1− θ

G Extensions to the Benchmark New Keynesian Model

G.1 Forward-Looking Models

G.1.1 Benchmark New Keynesian Model

Inserting the Taylor rule (4.7) into the DIS curve (4.6), one can write the model as a system

of two first-order stochastic difference equations,

xt = δEtxt+1 +ϕvt (G.1)

where x = [yt πt]
′ is a 2× 1 vector containing output and inflation, δ is a 2× 2 coefficient

matrix and ϕ is a 2× 1 vector satisfying
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Parameter Description Value Source/Target

σ IES 1 Gali (2015)
β Discount factor 0.99 Gali (2015)
ϕ Inverse Frisch elasticity 5 Gali (2015)
1− α Labor share 1/4 Gali (2015)
ε CES between varieties 9 Gali (2015)
θ Calvo lottery 0.872 κ = 0.06
ρ Monetary shock persistence 0.5 Gali (2015)
φπ Inflation coefficient Taylor rule 1.5 Gali (2015)
φy Output gap coefficient Taylor rule 0.5 Stability
σε Volatility monetary shock 1 Gali (2015)

Table OA.1: Model parameters.

δ =
1

σ + φy + κφπ

[
σ 1− βφπ
σκ κ+ β(σ + φy)

]
, ϕ =

1

σ + φy + κφπ

[
1

κ

]

The system of first-order stochastic difference equations (G.1) can be solved analytically,

which is of help for our purpose. In particular, the solution to the above system of equations

satisfies xt = Ψvt, where Ψ = [ψy ψπ]′ with ψπ defined in (D.2) and

ψy = − 1− ρvβ
(1− ρvβ)[σ(1− ρ) + φy] + κ(φπ − ρ)

Model Parameters Model parameters are set to their standard values in the NK litera-

ture, reported in Table OA.1.

G.1.2 Accommodating Technology and Cost-push Shocks

In this section I extend the general model to accommodate cost-push shocks. The demand

side is still described by (F.23), which under the FIRE assumption collapses to

ỹt = − 1

σ
(it − Etπt+1)− (1− ρa)ψyaat + Etỹt+1 (G.2)

In order to accommodate cost-push shocks in a micro-consistent manner, I allow the elas-

ticity of substitution among goof varieties, ε, to vary over time according to some stationary

process {εt}. Assuming constant returns to scale in the production function (F.10) (α = 0)
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for simplicity, the Phillips curve becomes

πt = βEtπt+1 − λµ̂t + λµ̂nt

= βEtπt+1 + κỹt + ut (G.3)

where µnt = log εt
εt−1

is the time-varying desired markup and µ̂nt = µnt − µ. I assume that

the exogenous process ut = λµ̂nt follows an AR(1) process with autorregressive coefficient ρu.

Combining (G.2), (G.3), (4.7) and the respective shock processes, I can write the equilibrium

conditions as a system of stochastic difference equations

Ãxt = B̃Etxt+1 + C̃wt (G.4)

where xt = [yt πt]
′ is a 2 × 1 vector containing output and inflation, wt = [vt at ut]

′

is a 3 × 1 vector containing the monetary, technology and cost-push shocks, Ã is a 2 × 2

coefficient matrix, B̃ is a 2× 2 coefficient matrix and C̃ is a 2× 3 matrix satisfying

Ã =

[
σ + φy φπ

−κ 1

]
, B̃ =

[
σ 1

0 β

]
, and C̃ =

[
−1 −σ(1− ρa)ψya 0

0 0 1

]

Premultiplying the system by Ã−1 I obtain

xt = δEtxt+1 +ϕwt (G.5)

where δ = Ã−1B̃ and ϕ = Ã−1C̃. Notice that wt follows a VAR(1) process with autorregres-

sive coefficient matrix R = diag(ρv, ρa, ρu). Using the method for undetermined coefficients,

the solution to (G.5) is conjectured to be of the form

ỹt = Φywt, where Φy = [φyv φya φyu]

π̃t = Φπwt, where Φπ = [φπv φπa φπu]

Imposing the conjectured relations into (G.5) allows one to solve for the undetermined coef-

ficients φyv, φya, φyu, φπv, φπa and φπu, which satisfy the following condition

Φ = δΦR +ϕ

where Φ = [Φy Φπ]′ is a 2× 3 vector containing all the unknown parameters. The solution
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to the above system of unknown parameters satisfied

φyv = − 1− ρvβ
(1− ρvβ)[σ(1− ρv) + φy] + κ(φπ − ρv)

φya = − σψya(1− ρa)(1− ρaβ)

(1− ρaβ)[σ(1− ρa) + φy] + κ(φπ − ρa)

φyu = − φπ − ρu
(1− ρuβ)[σ(1− ρu) + φy] + κ(φπ − ρu)

φπv = − κ

(1− ρvβ)[σ(1− ρv) + φy] + κ(φπ − ρv)

φπa = − κσψya(1− ρa)
(1− ρaβ)[σ(1− ρa) + φy] + κ(φπ − ρa)

φπu =
σ(1− ρu) + φy

(1− ρuβ)[σ(1− ρu) + φy] + κ(φπ − ρu)

and therefore equilibrium dynamics are given by

ỹt = φyvvt + φyaat + φyuut (G.6)

πt = φπvvt + φπaat + φπuut (G.7)

In this framework with multiple shocks, I study inflation persistence as the first-order

autocorrelation coefficient ρ1 as

ρ1 =
ρv

φ2πvσ
2
εv

1−ρ2v
+ ρa

φ2πaσ
2
εa

1−ρ2a
+ ρu

φ2πuσ
2
εu

1−ρ2u
φ2πvσ

2
εv

1−ρ2v
+ φ2πaσ

2
εa

1−ρ2a
+ φ2πuσ

2
εu

1−ρ2u

Notice that coefficients φyx and φπx are relevant for the first-order autocorrelation of the

inflation process. As a result, a fall in inflation persistence could be explained by a con-

temporaneous fall in the autoregressive coefficients ρv, ρa and ρu, a change in the monetary

stance φπ and φy, or a change in the shock volatilities εxt . Having shown in Section D.1

that there is no evidence for a change in monetary policy shock persistence and that their

volatility fell, I investigate below if the data suggests a structural break in technology and/or

cost-push shock persistence and volatility. As I show below, I find no evidence of a fall in

productivity or cost-push shocks’ persistence over time, yet there is evidence on the fall in

technology and weak evidence on a fall in cost-push shocks volatility. Using a standard pa-

rameterization, reported in Table OA.1 (first six rows) and Table OA.2, I find the NK model

extended with technology and cost-push shocks predicts that aggregate persistence should
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Parameter Description Value Source/Target
ρa Technology shock persistence 0.95 Table OA.3
ρu Cost-push shock persistence 0.96 Table OA.5
σεa Technology innovation pre-1985 0.91 Table OA.4
σεu Cost-push innovation 0.01 Table OA.6
φπ,pre Fed response to inflation pre-1985 1 Table A.xi Panel A
φπ,post Fed response to inflation post-1985 2 Table A.xi Panel A
φy,pre Fed response to output gap pre-1985 0.25 Table A.xi Panel A
φy,post Fed response to output gap post-1985 1 Table A.xi Panel A

Table OA.2: Estimated parameters

have increased: ρ1,pre = 0.94 vs. ρ1,post = 0.95. I therefore conclude that the standard model

cannot explain the fall in intrinsic or aggregate inflation persistence after 1985.

Technology Shocks In this section I rely on the vast literature on technology shocks,

dating back to Solow (1957) and Kydland and Prescott (1982). Early work in the literature

generally assumed that a regression on the (log) production function reports residuals that

can be interpreted as (log) TFP neutral shocks, as the one discussed in this section. Due to

endogeneity concerns between capital and TFP, the literature moved forward and estimated

TFP shocks through different assumptions and methods. In this new wave, Gaĺı (1999)

used long-run restrictions to identify neutral technology shocks by assuming that technology

shocks are the only that can have permanent effects on labor productivity. Following this

idea, Francis et al. (2014) identify technology shocks as the shock that maximizes the fore-

cast error variance share of labor productivity at some horizon. Basu et al. (2006) instead

estimate TFP by adjusting the annual Solow residual for utilization (using hours per worker

as a proxy), and Fernald (2014) extended the series to quarterly frequency. Finally, Justini-

ano et al. (2011) obtain technology shocks by estimating a NK model, incorporating other

technology-related shocks such as investment-specific technology and marginal efficiency of

investment shocks. Ramey (2016) compares the shocks, and shows that the IRFs of stan-

dard aggregate variables after the each shock series are similar. In particular, Francis et

al. (2014) and Justiniano et al. (2011) produce remarkably similar IRFs of real GDP, hours

and consumption.

I plot the different series in Figure OA.1. Notice the difference between the left and right

panels: while Fernald (2014) estimates directly (log) technology at, Francis et al. (2014) and

Justiniano et al. (2011) estimate the technology shock εat . I overcome the difficulty with the

estimation of technology persistence by estimating persistence in the natural real interest
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Figure OA.1: TFP dynamics

rate process. In the standard NK model, the natural real rate is given by (F.22), which can

be rewritten using the AR(1) properties of the technology process as

rnt = ρar
n
t−1 − σψya(1− ρa)εat (G.8)

I use the Federal Reserve estimate of the natural interest rate series, produced by Holston

et al. (2017), as our proxy for rnt . Table OA.3 reports our results. The first two columns

report the (direct) estimate of the technology process (F.11) persistence and its structural

break around 1985:I, while columns three to six report the estimate of the natural real rate

process (G.8) using the technology series constructed by Francis et al. (2014) and Justiniano

et al. (2011), respectively. Our results suggest that there is no evidence for a fall in technology

persistence over time.

Regarding technology shock volatility, I follow the GARCH approach discussed in section

2.1 for the three measures of technology shocks: the predicted residual of the AR(1) regression

using the (log) technology measure from Fernald (2014), and the two TFP shocks constructed

by Francis et al. (2014) and Justiniano et al. (2011). I report our results in table OA.4. As

in the case of monetary policy shocks, I find evidence for a decrease in technology shocks

volatility for the three measures.

Cost-push Shocks In the benchmark NK model with monopolistic competition among

firms, cost-push shocks are interpreted as the deviation from the desired time-varying price-

cost markup, which depends on the elasticity of substitution among good varieties. Nekarda
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(1) (2) (3) (4) (5) (6)
Technology SB Natural rate SB Natural rate SB

(Log) TFPt−1 0.998∗∗∗ 0.990∗∗∗

(0.00454) (0.00860)

(Log) TFPt−1 change 0.00323
(0.00339)

Natural ratet−1 0.951∗∗∗ 0.945∗∗∗ 0.963∗∗∗ 0.957∗∗∗

(0.0317) (0.0327) (0.0367) (0.0404)

Technology shock in Francis et al. (2014) 0.0511∗∗ 0.0514∗∗

(0.0234) (0.0237)

Natural ratet−1 change −0.0106 −0.00863
(0.0129) (0.0141)

Technology shock in Justiniano et al. (2011) 0.0191 0.0195
(0.0278) (0.0280)

Constant 0.00360 0.00743∗ 0.128 0.162 0.0878 0.123
(0.00327) (0.00445) (0.0968) (0.109) (0.114) (0.140)

Observations 186 186 163 163 160 160

Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table OA.3: Regression table

(1) (2) (3)
Fernald (2014) Francis et al. (2014) Justiniano et al. (2011)

Constant×1{t≥t∗} −0.0000293∗∗∗ −0.0466∗∗∗ −0.244∗∗∗

(0.00000230) (0.0176) (0.0623)

Constant 0.0000770∗∗∗ 0.826∗∗∗ 1.042∗∗∗

(0.00000216) (0.0166) (0.0587)

Observations 208 208 208

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table OA.4: Regression table
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Figure OA.2: Markup series

and Ramey (2010) estimate the structural time-varying price-cost markup under a richer

framework than the benchmark NK model. In particular, they consider both labor and

capital as inputs in the production function. They argue that measured wages are a better

indicator for marginal costs than labor compensation, and provide a range of markup mea-

sures depending on the elasticity of substitution between capital and labor. As a result, they

obtain markup estimates either from labor side or the capital side. Since our model does

not include capital, I will rely on the labor-side estimates.

Figure OA.2 plots two different measures of the cost-push shock. In the first, the authors

rely on a Cobb-Douglas production function in order to estimate the markup, while in

the second the authors rely on a CES production function, estimating labor-augmented

technology using long-run restrictions as in Gaĺı (1999). I therefore estimate (??) using

these two measures. Our results are reported in Table OA.5. Columns one and two report

the estimates based on the Cobb-Douglas production function, while columns three to four

report the estimates based on the (labor-side) CES production function. I find no evidence

of a change in cost-push persistence over time

Regarding cost-push shock volatility, I follow the GARCH approach for the two measures

of cost-push shocks, the CD-based and CES-based. I report our results in table OA.6. I find

evidence for a decrease in cost-push shocks volatility only in the CES-based case.
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(1) (2) (3) (4)
Cobb-Douglas SB CES SB

Markupt−1 0.945∗∗∗ 0.938∗∗∗ 0.963∗∗∗ 0.947∗∗∗

(0.0246) (0.0305) (0.0234) (0.0252)

Markupt−1 × 1{t≥t∗} 0.00187 0.00472
(0.00436) (0.00419)

Constant 0.0280∗∗ 0.0307∗∗ 0.0189 0.0252∗∗

(0.0125) (0.0146) (0.0117) (0.0120)

Observations 195 195 195 195

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table OA.5: Regression table

(1) (2)
Cobb-Douglas CES

Constant×1{t≥t∗} 0.00000544 −0.0000452∗∗∗

(0.00000936) (0.00000978)

Constant 0.000145∗∗∗ 0.000178∗∗∗

(0.00000516) (0.00000778)

Observations 208 208

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table OA.6: Regression table
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G.1.3 Optimal Monetary Policy under Discretion

Following Gaĺı (2015), the welfare losses experienced by a representative consumer, up to a

second-order approximation, are proportional to

E0

∞∑
k=0

βt
(
π2
t +

κ

ε
x2
t

)
(G.9)

where xt ≡ yt − yet is the welfare-relevant output gap, with yet = ψyaat denoting the (log)

efficient level of output. Notice that κ/ε regulates the (optimal) relative weight that the

social planner (or the monetary authority) assigns to the welfare-relevant output gap. In

this case, the DIS can be written as

xt = − 1

σ
(it − Etπt+1)− (1− ρa)ψyaat + Etxt+1 (G.10)

I can also rewrite the Phillips curve as

πt = βEtπt+1 + κxt + ut (G.11)

where ut ≡ κ(yet − ynt ). Again, I assume that the cost-push shock follows an AR(1) process

with autorregressive coefficient ρu.

Under discretion, the central bank does not control future output gap or inflation, but

just the current measures. Therefore, the monetary authority minimizes π2 + κ
ε
x2
t subject to

the constraint πt = κxt + ξt, where ξt ≡ βEtπt+1 + ut is treated as a non-policy shock (one

can show that Etπt+1 is a function of future output gaps). The optimality condition is

xt = −επt (G.12)

In case of inflationary pressures, the Central bank will reduce output below its potential,

“leaning against the wind”. In this case, the welfare-relevant output gap and inflation follow

ỹt = − 1− ρuβ + 2εκ

κ(1− ρuβ + εκ)
ut (G.13)

πt =
1

1− ρuβ + εκ
ut (G.14)

Using the DIS curve (4.6) and the optimality conditions (G.13) and (G.14), I can reverse-
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engineer the following Taylor rule, which replicates the optimal allocation under discretion

it =
ρu + εσ(1− ρu)

1− βρu + εκ
ut − (1− ρa)ψyaat

= Ψiut − (1− ρa)ψyaat (G.15)

Unfortunately, such a rule yields multiple equilibria since it does not satisfy the Taylor

Principle. However, adding a component φπ

(
πt − 1

1−ρuβ+εκ
ut

)
= 0, I can write

it = φππt +
εσ(1− ρu)− (φπ − ρu)

1− βρu + εκ
ut − (1− ρa)ψyaat

= φππt + Θiut − (1− ρa)ψyaat (G.16)

Inserting condition (G.14) to eliminate the cost-push shock yields

it = φππt + [εσ(1− ρu)− (φπ − ρu)]πt − (1− ρa)ψyaat
= φππt + φπ,1{t≥1985:I}πt + ξt (G.17)

As a result, one could understand the documented increase in the Taylor rule as a version

of optimal discretionary policy. In our benchmark specification I find φπ,1{t≥1985:I} = 0.95,

which aligns well with the data. I already discussed that an increase in φπ does not affect

inflation persistence. What if the change in the monetary stance was not a mere increase

in the elasticity of nominal rates with respect to inflation, but an additional response to

cost-push shocks in the Taylor rule? Recall that, under discretion, inflation dynamics are

given by (G.14), which I can write as

πt = ρuπt−1 +
1

1− ρuβ + εκ
εut (G.18)

Compared to the pre-1985 dynamics, described by (G.7) and disregarding technology shocks

for simplicity, inflation persistence would be even larger if ρu > ρv, which I have documented

in Tables A.xi Panel A and OA.5. That is, optimal discretionary policy would not explain the

fall in inflation persistence, provided that cost-push persistence has been stable throughout

the decades, and that cost-push shocks are more persistent than monetary policy shocks,

which would have generated an increase in inflation persistence.54

54. Including technology shocks in the comparison of (G.7) and (G.18) would alter the results, provided
that ρa > ρu > ρv. However, since ρu is in between the two other highly persistent parameters and none of
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G.1.4 Indeterminacy

The previous literature has considered the possibility of the Fed conducting a passive mone-

tary policy before 1985, which in the lens of the NK framework would lead to multiplicity of

equilibria. For example, Clarida et al. (2000) document that the inflation coefficient in the

Taylor rule was well below one, not satisfying the Taylor principle. Lubik and Schorfheide

(2004) estimate a NK model under determinacy and indeterminacy, and argue that monetary

policy after 1982 is consistent with determinacy, whereas the pre-Volcker policy is not. We

study here if this change in the monetary stance could have affected inflation persistence.

Consider the standard framework in (G.1). We have explored inflation dynamics under

determinacy. In this section we uncover the (multiple) stable solutions under indeterminacy,

where φπ < 1− 1−β
κ
φy. Following Lubik and Schorfheide (2003), we rewrite the model as

Γ0ξt = Γ1ξt−1 + Ψεvt + Πηt

where ξt = [ξyt ξπt vt]
′, ηt = [ηyt ηπt ]′ and we denote the conditional forecast ξxt = Etxt+1

and the forecast error ηxt = xt − ξxt−1, with

Γ0 =

1 1
σ
− 1
σ

0 β 0

0 0 1

 , Γ1 =

1 + φy
σ

φπ
σ

0

−κ 1 0

0 0 ρ

 , Ψ =

0

0

1

 , Π =

1 + φy
σ

φπ
σ

−κ 1

0 0


Premultiplying the system by Γ−1

0 we obtain the reduced-form dynamics

ξt = Γ∗1ξt−1 + Ψ∗εvt + Π∗ηt

Using the Jordan decomposition of Γ∗1 = JΛJ−1, and denoting wt = J−1ξt, we can write

wt = Λwt−1 + J−1Ψ∗εvt + J−1Π∗ηt

Let the wit denote ith element of wt, [J−1Ψ∗]i denote the ith row of J−1Ψ∗ and [J−1Π∗]i

denote the ith row of J−1Π∗. Since Λ is a diagonal matrix, the dynamic process can be

decomposed in 3 uncoupled AR(1) processes. Define Ix denote the set of unstable AR(1)

them have changed over time, the difference (if any) in reduced-form persistence in (G.7) and (G.18) would
be small, and would not explain the documented large fall.
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processes, and let ΨJ
x and ΠJ

x be the matrices composed of the row vectors [J−1Ψ∗]i and

[J−1Π∗]i such that i ∈ Ix. Finally, we proceed with a singular value decomposition of the

matrix ΠJ
x ,

ΠJ
x =

[
U1 U2

] [D11 0

0 0

][
V ′1

V ′2

]
= U1D11V ′1

Lubik and Schorfheide (2003) prove that if there exists a solution in the indeterminacy

region, it is of the form

ξt = Γ∗1ξt−1 + [Ψ∗ − Π∗V1D
−1
11 U

′
1ΨJ

x ]εvt + Π∗V2(M̃εvt +Mζζt)

Two aspects deserve a discussion. First, matrices M̃ and Mζ do not depend on model param-

eters, which yields the multiplicity of equilibria. Following Lubik and Schorfheide (2003), we

select the equilibrium that produces the same dynamics as the determinate framework on

impact.55 Second, the model features i.i.d sunspot shocks ζt that affect equilibrium dynamics.

In order to obtain the model dynamics, we set parameters to the values reported in Table

OA.1, with the exception of φπ. For the determinate case we set φπ,det = 1.5, and for the

indeterminate case we set φπ,ind = 0.83, the estimate reported by Clarida et al. (2000). I then

compute the IRF to both monetary and sunspot shocks. We find that inflation dynamics

are less persistent in the indeterminacy region when measured using the IRF to a monetary

policy shock (see Figure OA.3a). On the other hand, inflation dynamics more persistent

when measured using the IRF to a sunspot shock (see Figure OA.3b). However, the increase

in persistence is minimal: 0.97 in the pre-1985 (indeterminacy) period and 0.94 afterwards.

G.2 Backward-looking New Keynesian Models

The main reason for the failure in explaining the change in the dynamics in the benchmark

NK model is that endogenous outcome variables, output gap and inflation, are proportional

to the monetary policy shock process and thus inherit its dynamics. This is a result of having

a pure forward-looking model. A direct consequence is that endogenous outcome variables

are not intrinsically persistent, and therefore its persistence is simply inherited from the

exogenous driving force. In this section I enlarge the standard NK model to accommodate a

backward-looking dimension, including a lagged term xt−1 in the system of equations (G.1).

55. We set M̃ such that −V1D−111 U
′
1ΨJ

x + V2M̃ = −ψπ, and Mζ such that V2,2ζ0 = ψπε
v
0.
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(a) IRF after a monetary policy shock. (b) IRF after a sunspot shock.

Figure OA.3: Inflation dynamics under Determinacy and Undeterminacy

I do so in two different ways: in the first extension, discussed in section G.2.2, I include

keeping up with the Joneses households, which introduces anchoring in the demand side, and

price-indexing firms, which introduces anchoring in the supply side. In the second extension I

introduce log-linearize the standard model around a steady state with trend inflation, which

endogenously creates anchoring in the demand and supply sides.

G.2.1 Optimal Monetary Policy under Commitment

Our first backward-looking framework is the benchmark NK model with optimal monetary

policy under commitment. Under commitment, the monetary authority can credibly control

household’s and firm’s expectations. As a result, the Central bank program is to minimize

(G.9) subject to the sequence of constraints (G.11). The optimality conditions from this

program yield the following conditions relating the welfare-relevant output gap and inflation

x0 = −επ0 (G.19)

xt = xt−1 − επt (G.20)

for t ≥ 1. Notice that these two conditions can be jointly represented as an implicit price-level

target

xt = −εp̂t (G.21)

where p̂t ≡ pt−p−1 is the (log) deviation of the price level from an initial target. Combining

the Phillips curve (G.11) and the optimal price level target (G.21) I obtain a second-order
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stochastic difference equation

p̂t = γp̂t−1 + γβEtp̂t+1 + γut

where γ = (1 + β + εκ)−1. The stationary solution to the above condition satisfies

p̂t = δp̂t−1 +
δ

1− βδρu
ut (G.22)

where δ =
1−
√

1−4βγ2

2γβ
∈ (0, 1) is the inside root of the following lag polynomial

P(x) = γβx2 − x+ γ

Inserting the price level target (G.21) into (G.22), I can write the welfare-relevant output

gap in terms of the cost-push shock

x0 = − εδ

1− δβρu
u0

xt = δxt−1 −
εδ

1− δβρu
ut (G.23)

Notice that (G.25) can be written in terms of the lag polynomial as

∆xt = − εδ

1− δβρu
1

1− δL
∆ut

which I can insert back into (G.19)-(G.20) to obtain inflation dynamics

π0 =
δ

1− δβρu
u0

πt = δπt−1 +
δ

1− δβρu
∆ut (G.24)

Rewriting the output gap dynamics

ỹt = δỹt−1 −
1− δ(βρu − κε)

1− δβρu
ut +

δ

κ
ut−1 (G.25)

Just as in the case under discretion, the monetary authority can engineer a Taylor rule

that produces the optimal dynamics. Inserting (G.21), (G.22) and (G.25) into the DIS curve
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(G.10) I can specify the following Taylor rule,

it = (1− δ)(σε− 1)p̂t − σψya(1− ρa)at
= φpp̂t + ξt (G.26)

which produces the same allocation than the optimal policy. Inserting (G.24) in the Taylor

rule, I can write

it = (1− δ)(σε− 1)p̂t − σψya(1− ρa)at + φπ

(
πt − δπt−1 −

δ

1− δβρu
∆ut

)
= φππt + (1− δ)(σε− 1)p̂t − φπδπt−1 −

φπδ

1− δβρu
∆ut − σψya(1− ρa)at

= φππt + (1− δ)(σε− 1)(πt + p̂t−1)− φπδπt−1 −
φπδ

1− δβρu
∆ut − σψya(1− ρa)at

= φππt + φπ,1{t≥1985:I}πt + φπ,1{t≥1985:I} p̂t−1 − φπδπt−1 −
φπδ

1− δβρu
∆ut − σψya(1− ρa)at

= φππt + φπ,1{t≥1985:I}πt + φπ,1{t≥1985:I} p̂t−1 − φπδπt−1 −
φπδ

1− δβρu
∆ut + ξt

where ξt is an AR(1) process. Our standard parameterization, reported in Table OA.1,

suggests φπ,1{t≥1985:I} = 5.52, which is excessive considering our previous empirical findings.

To confirm this, I estimate the above Taylor rule.

Table OA.7 reports our results. Columns one and two repeat our previous exercise but

assuming no response to output gap deviations. Columns three to four report the estimates

of the optimal Taylor rule under commitment, using Nekarda and Ramey (2010) estimates

of markups. Our results support the notion that the Fed included the price level and the

cost-push shock in its Taylor rule. However, the results are inconsistent with the theory,

since the increase in the inflation coefficient and the increase in the price level coefficients

are of opposite sign. Additionally, the change in the inflation coefficient is still far from the

model-implied change that supports a commitment-rule.

G.2.2 Price Indexation

Consider a backward-looking version of the Phillips curve, microfounded through price in-

dexation at the firm level and governed by ω

πt =
ω

1 + βω
πt−1 +

κ

1 + βω
ỹt +

β

1 + βω
Etπt+1 (G.27)
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(1) (2) (3) (4)
Taylor rule SB Optimal MP (CD) Optimal MP (CES)

πt 1.389∗∗∗ 1.247∗∗∗ 1.173∗∗∗ 1.169∗∗∗

(0.0659) (0.0730) (0.0724) (0.0727)

πt × 1{t≥t∗} 0.553∗∗∗ 2.065∗∗ 2.018∗∗

(0.152) (0.944) (0.986)

πt−1 × 1{t≥t∗} 0.581 0.598
(0.763) (0.752)

pt × 1{t≥t∗} −0.00252∗∗∗ −0.00243∗∗∗

(0.000794) (0.000830)

ut × 1{t≥t∗} −1.148∗ −1.057
(0.629) (0.688)

Observations 203 203 192 192

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table OA.7: Regression table

Parameter Description Value Source/Target
ω Price indexation 0.75 Range literature

Table OA.8: Model Parameters

The rest of the model equations are the same as in the benchmark model, (4.6), (4.7) and

(4.8). The model derivation is relegated to Online Appendix F.2, and the parameterization is

identical to that of Table OA.1, with the model enlarged by the price-indexation parameter

ω. The parameterization of such parameter is not a clear one. As I show below, price

indexation implies that every price is changed every period, and therefore one could not

identify the Calvo restricted firms in the data and estimate ω. As a result, the parameter

is usually estimated using aggregate data and trying to match the anchoring of the inflation

dynamics, and its estimate will therefore depend on the additional model equations. I set

ω = 0.75, which is in the range of the literature (0.21 in Smets and Wouters (2007), 1 in

Christiano et al. (2005)).

The model can be collapsed to a system of three second-order stochastic difference equa-

tions

xt = Γbxt−1 + ΓfEtxt+1 + Λvt
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(1) (2)
(G.29) Structural break

πt−1 0.880∗∗∗ 0.814∗∗∗

(0.0464) (0.0481)

πt−1 × 1{t≥t∗} −0.338∗∗∗

(0.0800)

Constant 0.400∗∗∗ 1.110∗∗∗

(0.151) (0.244)

Observations 206 206

Newey-West standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table OA.9: Regression table

where xt = [yt πt]
′. The solution of the above system satisfies

xt = Axt−1 + Ψvt (G.28)

where both matrices A(φπ,Φ) and Ψ(φπ,Φ) depend now on φπ and the rest of the model

parameters Φ. Notice that a key difference between the benchmark model and this backward-

looking version is that a change in φπ will have an effect on inflation persistence, and could

therefore explain the fall in inflation persistence.

In Figure OA.4a I show that a change in the monetary policy stance has now a significant

effect on inflation persistence: a change of φπ from 1 to 2, as I have documented in Table

A.xi Panel A, produces a large fall in inflation persistence, measured as aπ in (G.29) using

the inflation dynamics that the theoretical model produces (see system dynamics (G.28)).

However, is not enough to produce the effect that I observe in the data.

πt = aππt−1 − bπvt (G.29)

The model faces two challenges. First, intrinsic inflation persistence is far from its empirical

estimate, which in the pre-1985 period is 0.81 in the data (see Table OA.9) and 0.55 in the

model. Second, the fall is not enough to explain the fall in inflation persistence observed in

the data. The data suggests that the fall in intrinsic inflation persistence of 0.34. Instead,

the model can only produce a fall of less than 0.13.

On the other hand, the increase in φπ has a relevant effect on volatility. In Figure OA.4b

131



(a) Intrinsic persistence, aπ (b) Intrinsic Volatility, bπ

Figure OA.4: Inflation persistence and volatility (as a function of φπ) in the backward-looking
NK model

I show that inflation volatility falls by a factor of seven, whether I measure volatility as

intrinsic, bπ in (G.29).

I have shown that the change in the monetary policy stance does not have a sufficiently

large effect on inflation persistence. The target now is to find a candidate parameter that can

explain the observed loss in inflation persistence. The ideal candidate is ω, since this term

produces anchoring in the Phillips curve (G.27). As I show in Figure OA.5, as ω decreases

so does inflation persistence.

I can see in Figure OA.5a that the decrease in ω from 1 (full indexation) to 0 (no

indexation) produces a complete fall in inflation intrinsic persistence, and I would be back

to the standard model with no indexation. However, the model faces the same challenge

as before: even in the case of full indexation, intrinsic inflation persistence is far from its

empirical estimate, which is 0.81 in the data (see Table OA.9) and 0.55 in the model. The

model is indeed successful in reducing intrinsic persistence, despite the initial low starting

point. The natural question is then: what is ω? Does a fall from 1 to 0 makes sense? In

the backward-looking NK model, a firm i that is unable to reset (log) prices gets to reset its

price to

pit = pit−1 + ωπt−1 (G.30)

The presence of the term ωπt−1 is what gives anchoring. What is the value of ω in the

literature? Christiano et al. (2005) assume ω = 1. Smets and Wouters (2007) estimate a value

of ω = 0.21 trying to match aggregate anchoring in inflation dynamics. The main problem
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(a) Intrinsic persistence, aπ (b) Intrinsic volatility, bπ

Figure OA.5: Inflation persistence and volatility in the backward-looking NK model

here is that it is hard to justify a particular micro estimate for ω, since it is unobservable in

the micro data. One would need to identify the firms that were not hit by the Calvo fairy in a

given period and then regress (G.30). However, the price indexation suggests that all prices

are changed in every period, which makes unfeasible to identify the Calvo-restricted firms.

Another aspect in which ω > 0 is inconsistent with the micro-data is that it implies that

all prices change every period, in contradiction with Bils and Klenow (2004) and Nakamura

and Steinsson (2008). As a result, one cannot claim that ω is the causant of the fall in

inflation persistence, since it needs to be identified from the macro aggregate data, which

makes unfeasible to separately identify ω and the true inflation persistence.

I therefore conclude that extending the benchmark framework to price indexation does not

have the quantitative bite to explain the fall in inflation persistence, although the estimates

move in the correct direction.

G.2.3 Trend Inflation

Although it is well known that Central Banks’ objective is to have a stable inflation rate

around 2%, most New Keynesian models are log-linearized around a zero inflation steady

state since the optimal steady state level of inflation is 0%. Ascari and Sbordone (2014)

extend the benchmark model to account for trend inflation. The non-linear model is identical

to the one presented in the previous section. Differently from the standard environment, they

log-linearize the model around a steady with a certain level of trend inflation π̄, which is

constant over time. Price dispersion, a backward-looking variable that has no first-order
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Parameter Description Value Source/Target
ω Price indexation 0.75 Range literature
π̄ Trend inflation 1.021/4 − 1.041/4 Ascari and Sbordone (2014)

Table OA.10: Model Parameters

effects in the benchmark NK model, is now relevant for the trend NK model. Augmenting

the model with trend inflation creates intrinsic persistence in the inflation dynamics through

relative price dispersion. The model, similar to the one in Ascari and Sbordone (2014),

is derived in Online Appendix F.2. The model can now be summarized as a system of

six equations, including (4.6), (4.7) and (4.8), with the additional inclusion of the price

dispersion dynamics (G.31)

st =
ε

1− α
δ − χ
1− χ

πt −
ωε

1− α
δ − χ
1− χ

πt−1 + δst−1 (G.31)

and the Phillips curve, which is now given by the system

πt = κππt−1 + κψψt + κyyt + βψEtψt+1 + βπEtπt+1

ψt = (1− βδ)ϕst +
1 + ϕ

1− α
(1− βδ)yt −

ωε

1− α
βδπt + βδEtψt+1 +

ε

1− α
βδEtπt+1

(G.32)

where Θ = 1−α
1−α+εα

, δ(π) = θπ
ε(1−ω)
1−α and χ(π) = θπ(ε−1)(1−ω), κπ = ω

1−ω[Θ(ε−1)β(1−χ)−βχ]
,

κψ = Θ(1−χ)
χ{1−ω[Θ(ε−1)β(1−χ)−βχ]} , κy = − Θ(1−σ)(1−χ)(1−βχ)

χ{1−ω[Θ(ε−1)β(1−χ)−βχ]} , βψ = − Θβ(1−χ)
1−ω[Θ(ε−1)β(1−χ)−βχ]

and

βπ = − Θ(ε−1)β(1−χ)−βχ
1−ω[Θ(ε−1)β(1−χ)−βχ]

. The parameterization is identical to that of Table OA.1 with the

following differences.

The model can be collapsed to a system of four second-order stochastic difference equa-

tions

xt = Γbxt−1 + ΓfEtxt+1 + Λvt

where xt = [yt πt ψt st]
′. The solution of the above system satisfies

xt = Axt−1 + Ψvt (G.33)

where both matrices A(φπ, π̄,Φ) and Ψ(φπ, π̄,Φ) depend now on φπ, trend inflation π̄, and

the rest of the model parameters Φ.

In this framework, I define st as (log) price dispersion at time t, and ψt as the present
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discounted value of future marginal costs. Notice that I have extended an otherwise stan-

dard trend-inflation NK model with price indexation (governed by ω) as in (G.30). Even

in the zero-indexation case, there will be anchoring coming from the price dispersion equa-

tion, which is the only backward-looking equation in the system. To see this, under zero-

indexation, inflation dynamics are given by

πt = asst−1 + bπvt

= as
ε(δ − χ)

(1− α)(1− χ)

∞∑
k=0

δkπt−1−k + bπvt

where first-order intrinsic persistence is given by as
ε(δ−χ)

(1−α)(1−χ)
. In the price-indexation case,

inflation dynamics are given by

πt = aππt−1 + asst−1 + bπvt

=

[
as

ε(δ − χ)

(1− α)(1− χ)
+ aπ

]
πt−1 + as

ε(δ − χ)(δ − ω)

(1− α)(1− χ)

∞∑
k=0

δkπt−2−k + bπvt

where first-order intrinsic persistence is given by as
ε(δ−χ)

(1−α)(1−χ)
+aπ. Most importantly, one can

see that the parameter that governs anchoring (and persistence) in the system, δ in (G.31),

is increasing in the level of trend inflation π. This framework, therefore, has the potential

of explaining the fall in inflation persistence if trend inflation had fallen. Stock and Watson

(2007) and Ascari and Sbordone (2014) provide evidence of a fall of trend inflation from 4%

in the 1969-1985 period to 2% afterwards. They estimate trend inflation using a Bayesian

VAR with time-varying coefficients, which I reproduce here in Figure OA.6. Importantly,

they find that their estimated trend inflation is correlated (0.96) with the 10-year inflation

expectations reported in the Survey of Professional Forecasters (after 1981).

As I argued before, a fall in the trend inflation π̄ would decrease δ(π̄) and thus reduce

aggregate anchoring in the system. I therefore investigate if such fall, together with the

already discussed change in φπ, can explain the documented fall in inflation persistence.

I begin by comparing inflation intrinsic persistence and volatility for different values of

steady state trend inflation π̄ in our trend inflation model with price indexation. I plot our

results in Figure OA.7. As I previewed above, the decrease in trend inflation documented

by Ascari and Sbordone (2014) can explain (part of) the fall in persistence. In particular, a

fall in trend inflation from 4% to 2% produces a fall in inflation persistence from 0.5 to 0.48.

The effect of trend inflation on its own is not enough to explain the fall in persistence, but
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Figure OA.6: Inflation, Trend Inflation and Mean Inflation, Figure 3 in Ascari and Sbordone
(2014).

(a) Intrinsic persistence (b) Intrinsic volatility

Figure OA.7: Inflation persistence and volatility (as a function of π) with φπ = 1.5.

its effect reinforces the effect of an increase in φπ.

I therefore explore the effect of an increase in the monetary authority aggressiveness on

inflation. I plot our results in Figure OA.8. Let us first focus on the effect of an increase in

φπ and π in inflation intrinsic persistence. I observe that an increase in φπ reduces inflation

intrinsic persistence, and that the slope of the effect is independent of trend inflation. On the

other hand, higher trend inflation scales up intrinsic persistence. Both structural changes

seem to be promising, at least qualitatively.

In order to understand the effect of both changes together, I compute inflation intrinsic

persistence in two sub-periods. In the first, reminiscent of the pre-1985 period, I set nominal

rates elasticity to inflation and trend inflation to {φπ, π} = {1, 1.041/4}. In the second,

reminiscent of the post-1985 period, I set {φπ, π} = {2, 1.021/4}. In the first one intrinsic
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(a) Intrinsic persistence (b) Intrinsic volatility

Figure OA.8: Inflation persistence and volatility (as a function of φπ and π).

persistence is 0.59. After the change in the Fed monetary stance, summarized as a reduction

in trend inflation and the excess aggressivity towards excess inflation, intrinsic persistence

falls to 0.43. Although in the correct direction, the trend inflation model lacks the enough

quantitative bite to produce the large fall documented in Table OA.9. I therefore conclude

that extending the benchmark framework to trend inflation and price indexation does not

explain the fall in inflation persistence, although the estimates move in the correct direction.

H Useful Mathematical Concepts

H.1 Wiener-Hopf Filter

Consider the non-causal prediction of ft = A(L)ŝit given the whole stream of signals

E(ft|x∞i ) = ρyx(L)ρ−1
xx (L)xit

= ρyx(L)B(L−1)−1V −1B(L)−1xit

= ρyx(L)B(L−1)−1V −1wit

=
∞∑

k=−∞

hkwit−k

where ρyx(z) = A(z)M ′(z−1) and ρxx(z) = B(z)V B′(z−1). Notice that we are using future

values of wit. However, if the agent only observes events or signals up to time t, the best
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prediction is

E(ft|xti) =

[
∞∑

k=−∞

hkwit−k

]
+

=
∞∑
k=0

hkwit−k

=
[
ρyx(L)B(L−1)−1

]
+
V −1wit

=
[
ρyx(L)B(L−1)−1

]
+
V −1B(L)−1xit

H.2 Annihilator Operator

The annihilator operator [·]+ eliminates the negative powers of the lag polynomial:

[A(z)]+ =

[
∞∑

k=−∞

akz
k

]
+

=
∞∑
k=0

akz
k

Suppose that we are interested in obtaining [A(z)]+, where A(z) takes this particular

form, A(z) = φ(z)
z−λ with |λ| < 1, and φ(z) only contains positive powers of z. We can rewrite

A(z) as

A(z) =
φ(z)− φ(λ)

z − λ
+

φ(λ)

z − λ

Let us first have a look at the second term, We can write

φ(λ)

z − λ
= −φ(λ)

λ

1

1− λ−1z

= −φ(λ)

λ
(1 + λ−1z + λ−2z2 + ...)

which is not converging. Alternatively, we can write it as a converging series as

φ(λ)

z − λ
= φ(λ)z−1 1

1− λz−1

= φ(λ)z−1(1 + λz−1 + λ2z−2 + ...)
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Notice that all the power terms are on the negative side of z. As a result,[
φ(λ)

z − λ

]
+

= 0

Let us now move to the first term. We can write

φ(z)− φ(λ) =
∞∑
k=0

φk(z
k − λk)

= φ0

∞∏
k=1

(z − ξk)

where {ξk} are the roots of this difference polynomial. Since we know that λ is a root of the

LHS, we can set ξk = λ and write

φ(z)− φ(λ) = φ0(z − λ)
∞∏
k=2

(z − ξk) =⇒ φ(z)− φ(λ)

z − λ
=
∞∏
k=2

(z − ξk)

which only contains positive powers of z. Hence, we have that[
φ(z)

z − λ

]
+

=
φ(z)− φ(λ)

z − λ

Consider now instead the case A(z) = φ(z)
(z−λ)(z−β)

. Making use of partial fractions, we can

write

φ(z)

(z − λ)(z − β)
=

1

λ− β

[
φ(z)

z − λ
− φ(z)

z − β

]
=

1

λ− β

[
φ(z)− φ(λ)

z − λ
− φ(z)− φ(β)

z − β
+

φ(λ)

z − λ
− φ(β)

z − β

]
Following the same steps as in the previous case, we can solve[

φ(z)

(z − λ)(z − β)

]
+

=
φ(z)− φ(λ)

(λ− β)(z − λ)
− φ(z)− φ(β)

(λ− β)(z − β)
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