An Integrated Framework for Multiple Financial Regulation

Charles A. E. Goodhart, Anil K Kashyap, Dimitrios P. Tsomocos \& Alexandros P. Vardoulakis

October 2012

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily represent those of the European Central Bank, Banque de France or the Eurosystem

Model Characteristics

General equilibrium

- Incomplete Asset Markets
- Two goods
- Heterogeneous agents
-Pareto Inefficient Competitive Equil. -Rationale for policy intervention

Externalities from the financial system:

- Default, credit crunches and fire sales

Contracts and transactions in nominal currency

- Price for liquidity

Model characteristics

* Uncertainty:
o Relative quantity of potatoes vs. houses
o Monetary endowments and banks' capital
o Central bank policy
* Households try to smooth consumption across goods within the period and total consumption over time
* Intermediaries improve smoothing but at the cost of amplifying shocks
* Regulations damp amplification of shocks but restrict smoothing

Non-financial benchmark

Imagine no financial intermediation, just a CB with providing short-term liquidity/credit

Home-owner can self-insure using both cash and holding houses, so he can smooth consumption across goods and across periods.

* Farmer can equate marginal utility of houses and potatoes in period 1. But cannot smooth between period 1 and 2.

Actions at $\mathrm{t}=2$

* (Uncertainty revealed: Bad news \rightarrow house price crash, Good news $\boldsymbol{\rightarrow}$ a house price boom)
Focus on the bad news case which includes default Financial flows:
o N defaults on repos, leaving B with losses
o B partially defaults on long-term deposits, its capital is reduced and this leads to a reduction in lending
o B might also sell MBS to pay the depositors, but this will further depress house prices
o Relative price of potatoes must rise
o F rents a house, P moves to a smaller one

Model properties and questions

* Knock effects from house price collapse and subsequent repo default
o Fire sale of MBS by banks
o Deposit defaults
o Potential margin spiral

Potential Policy Respones

Examined in the paper

o Capital requirement \& countercyclical capital buffers
o Liquidity regulation (LCR)
o Loan-to-value ratios
o Haircut requirements
o Dynamic provisioning
Future agenda
o Central Bank policies: conventional \& unconventional
o Taxes on: bank size, activity, deposits
o DTI, sectoral capital buffers, time-varying regulation
Off the table
o Net Stable Funding Ratio related to bank runs

Regulatory Channels

Table 1: Impact of Alternative Regulations on Key Endogenous Variables (Change relative to baseline equilibrium)

	LTV	MR	CR_{1}	$\mathrm{CR}_{2 \mathrm{~b}}$	LCR_{1}	DP
Securitization	-	-	+	+	+	+
Relative price of potatoes to housing-good state	-	≈ 0	≈ 0	+	+	+
Profits of the Bank period 1	+	+	+	-	-	-
Profits of Bank good state	+	+	-	-	-	-

Welfare effects

Table 2: Impact of Alternative Regulations on Household Utilities and Financial Institutions' Welfare (Change relative to baseline equilibrium)

	LTV	MR	CR_{1}	LCR_{1}	$\mathrm{CR}_{2 \mathrm{~b}}$	DP
P's Utility	-	≈ 0	+	+	+	+
F's Utility	-	≈ 0	≈ 0	+	+	+
R's Utility	≈ 0	≈ 0	≈ 0	-	≈ 0	-
B's Payoff	+	+	+	-	-	-
N's Payoff	+	+	≈ 0	≈ 0	-	-

Combination Regulatory Packages

Table 3: Impact of Combining Regulations on Household Utilities and Financial Institutions’ Welfare
(Change relative to baseline equilibrium)

	$\mathrm{CR}_{1}, \mathrm{CR}_{2 \mathrm{~b}}, \mathrm{MR}$	$\mathrm{CR}_{1}, \mathrm{LCR}_{1}, \mathrm{MR}$	$\mathrm{CR}_{1}, \mathrm{CR}_{2 \mathrm{~b}}, \mathrm{LTV}$
P's Utility	+	+	≈ 0
F's Utility	+	-	-
R's Utility	≈ 0	≈ 0	≈ 0
B's Payoff	+	+	+
N's Payoff	+	+	+

Importance of Dynamics

* Procyclicality
o Dynamically lower margins leading to higher default
o Distinguish between leverage and credit
o Marginal buyer / Marginal lender
* Time-varying regulation
o Which indicators should we use?
* Could give motive for bank runs and hence for NSFR and deposit insurance
Computational difficulties
o Discontinuities in the policy and transition functions
o Non-linearity probably important

Example of procyclicality

Average Risk Weights

- Aggregate data for Globally Systemically Important

Financial Institutions (G-SIFIs)

- Source: Bloomberg

Conclusions

Need a full GE model to sort out these effects

- Default in a key element: Can improve hedging, but can act as an amplifier of shocks

Concentrate on the channels through which regulation operates and not on the agents on which rules bind

* Financial system acts as an amplifier of primitive shocks
- Drop in the supply of credit due to loan losses further suppresses prices and income making default worse
- Default by financial institutions results in shocks being transferred throughout the economy
* Two-way interaction between financial instability and the real economy

Conclusions ctd.

* Stabilizing bank and non-banks can improve welfare
* Structural vs. cyclical policy interventions
* Focus not only on credit, but also on leverage
* Multiple externalities require multiple tools: Are the complements or substitutes?
* But, be careful about combining tools, it is easy to design welfare-reducing policies

Extra Slides

Aside - Margin Spiral

$V_{2 b}^{\text {MORT }} \equiv \frac{P_{2 b, h_{1, h}^{p}}^{\operatorname{MORT}^{B}}\left(1+r^{\text {MORT }}\right)}{}$ and arbitrage pins down MBS prices
$P_{2 b, \text { MBS }}=\frac{V_{2 b}^{\text {MORT }}\left(1+r^{\text {MORT }}\right)}{1+r_{2 b}^{\text {CB }}}$
\therefore MBS and house prices must be connected
$P_{2 b, \text { MBS }}=\frac{P_{2 b, h} h_{1, h}^{P}}{\text { MORT }^{B}} \frac{1}{1+r_{2 b}^{C B}} \Leftrightarrow P_{2 b, h}=P_{2 b, M B S} \frac{M O R T^{B}}{c_{1, h}^{P}}\left(1+r_{2 b}^{C B}\right)$
Plus cash-in-the-market pricing: $P_{2 b, M B S} M B S_{2 b}^{N} \leq E_{2 b}^{N}$
So more fire sales mean lower house prices!

Household P’s Optimization Problem

$$
\begin{aligned}
\bar{U}^{P}= & U^{P}\left(c_{1, p}^{P}, c_{1, h}^{P}\right)+\tilde{\xi}_{2 g}\left[U^{P}\left(c_{2 g, p}^{P},(1-\delta) c_{1, h}^{P}+c_{2 g, h}^{P}\right)\right]+ \\
& \tilde{\xi}_{2 b}\left[U^{P}\left(c_{2 b, p}^{P}, c_{2 b, h}^{P}\right)-\tau_{2 b}^{P}\left(\operatorname{MORT}^{P}\left(1+r^{\text {MORT }}\right)-P_{2 b, h} c_{1, h}^{P}\right)\right]
\end{aligned}
$$

where

$$
U^{P}\left(c_{t s, p}^{P}, c_{t s, h}^{P}\right)=\frac{1}{1-\gamma^{P}}\left(c_{t s, p}^{P}\right)^{1-\gamma^{P}}+\frac{1}{1-\gamma^{P}}\left(c_{t s, h}^{P}\right)^{1-\gamma^{P}}
$$

Household P’s budget constraints

$$
P_{1, h} c_{1, h}^{P} \leq \text { Money }_{1}^{P}+\text { MORT }^{P}+L S T_{1}^{P}
$$

$$
\operatorname{LST}_{1}^{P}\left(1+r_{1}^{S T}\right) \leq P_{1, p} q_{1, p}^{P}
$$

$\operatorname{MORT}^{P}\left(1+r^{\text {MORT }}\right)+P_{2 g, h} c_{2 g, h}^{P} \leq$ Money $_{2 g}^{P}+L S T_{2 g}^{P}$

$$
\operatorname{LST}_{2 g}^{P}\left(1+r_{2 g}^{S T}\right) \leq P_{2 g, p} q_{2 g, p}^{P}
$$

$$
P_{2 b, h} c_{2 b, h}^{P} \leq \text { Money }_{2 b}^{P}+L S T_{2 b}^{P}
$$

$$
L S T_{2 b}^{P}\left(1+r_{2 b}^{S T}\right) \leq P_{2 b, p} q_{2 b, p}^{P}
$$

Household F’s Optimization Problem

$$
\bar{U}^{F}=\omega_{2 g}\left[U^{F}\left(c_{2 g, p}^{F}, c_{2 g, h}^{F}\right)\right]+\omega_{2 b}\left[U^{F}\left(c_{2 b, p}^{F}, c_{2 b, h}^{F}\right)\right]
$$

where
$U^{F}\left(c_{2 p}^{F}, c_{2 h}^{F}\right)=\frac{1}{1-\gamma^{F}}\left(c_{2 p}^{F}\right)^{1-\gamma^{F}}+\frac{1}{1-\gamma^{F}}\left(c_{2 h}^{F}\right)^{1-\gamma^{F}}$
and $\quad P_{2 s, h} c_{2 s, h}^{F} \leq$ Money $_{2 s}^{F}+L S T_{2 s}^{F}$

$$
L S T_{2 s}^{F}\left(1+r_{2 s}^{S T}\right) \leq P_{2 s, p} q_{2 s, p}^{F}
$$

Household R’s Optimization Problem

$\bar{U}^{\mathrm{R}}=U^{\mathrm{R}}\left(c_{1, p}^{\mathrm{R}}, c_{1, h}^{\mathrm{R}}\right)+\tilde{\xi}_{29}\left[U^{\mathrm{R}}\left(c_{29, p}^{\mathrm{R}},(1-\delta)\left(c_{1, h}^{\mathrm{R}}\right)+c_{2, h}^{\mathrm{R}}, \mathrm{R}\right)\right]$
$+\tilde{\xi}_{2 b}\left[U^{R}\left(c_{2 b, p}^{R},(1-\delta)\left(c_{1, h}^{R}\right)+c_{2 b, h}^{R}\right)\right]$
where

$$
U^{R}\left(c_{s, p}^{R}, c_{s, h}^{R}\right)=\frac{1}{1-\gamma^{R}}\left(c_{s, p}^{R}\right)^{1-\gamma^{R}}+\frac{1}{1-\gamma^{R}}\left(c_{s, h}^{R}\right)^{1-\gamma^{R}}
$$

and
$P_{1, p} R_{1, p}^{R}+D^{R} \leq$ Money $_{1}^{R}+L S T_{1}^{R}$
$L S T_{1}^{R}\left(1+r_{1}^{S T}\right) \leq P_{1, h} q_{1, h}^{R}$
$P_{2 s, p} C_{2 s, p}^{R} \leq$ Money $_{2 s}^{R}+L S T_{2 s}^{R}+V_{2 s}^{D} D^{R}\left(1+r^{D}\right)$
$L S T_{2 s}^{R}\left(1+r_{2 s}^{S T}\right) \leq P_{2 s, h} q_{2 s, h}^{R}$

Bank B’s Optimization Problem

$$
\begin{aligned}
\overline{\operatorname{Prof}}^{B} & =\operatorname{Prof}^{B}\left(\pi_{1}^{B}\right) \\
& +\xi \sum_{s} \omega_{2 s}\left[\operatorname{Prof}^{B}\left(\pi_{2 s}^{B}\right)-\tau_{2 s}^{B}\left[1-v_{2 s}^{B}\right] D^{B}\left(1+r^{D}\right)\right]
\end{aligned}
$$

where
$\operatorname{Prof}\left(\pi_{t s}^{B}\right)=\frac{1}{1-\gamma^{B}}\left(\pi_{t s}^{B}\right)^{1-\gamma^{B}} \quad$ and period 1 budget constraints
$L S T_{1}^{B}+R E P O^{B}+C C^{B} \leq E_{1}^{B}+D I S C_{1}^{B}+D^{B}$
$M O R T^{B} \leq C C^{B}+P_{1, M B S}^{M} M B S_{1}^{B}$
$\operatorname{DISC}_{1}^{B}\left(1+r_{1}^{C B}\right)+\operatorname{cash}_{1}^{B} \leq L S T_{1}^{B}\left(1+r_{1}^{S T}\right)$

Bank B’s Second Period Constraints

$$
\begin{aligned}
& L S T_{2 g}^{B}+V_{2 g}^{B} D^{B}\left(1+r^{D}\right) \leq \operatorname{cash}_{1}^{B}+E_{2 g}^{B}+\text { DISC }_{2 g}^{B}+P_{2 g, \text { MBS }} \sigma_{2 g}^{B}\left(\text { MORT }^{B}-\text { MBS }_{1}^{B}\right) \\
& \pi_{2 g}^{B} \leq L S T_{2 g}^{B}\left(1+r_{2 g}^{S T}\right)+R E P O^{B}\left(1+r^{R E P}\right) \\
& +\left(1-\sigma_{2 g}^{B}\right)\left(\text { MORT }^{B}-\text { MBS }_{1}^{B}\right)\left(1+r^{\text {MORT }}\right)-\text { DISC }_{2 g}^{B}\left(1+r_{2 g}^{C B}\right) \\
& L S T_{2 b}^{B}+v_{2 b}^{B} D^{\beta}\left(1+r^{D}\right) \leq \operatorname{cash}_{1}^{B}+E_{2 b}^{B}+\text { DISC }_{2 b}^{B} \\
& +P_{2 b, \text { MBS }}\left[\vartheta_{2 b}^{B} M B S_{1}^{B}+\sigma_{2 b}^{B}\left(M O R T^{B}-M B S_{1}^{B}\right)\right] \\
& \pi_{2 b}^{B} \leq L S T_{2 b}^{B}\left(1+r_{2 b}^{S T}\right)+V_{2 b}^{\text {MORT }}\left(\text { MORT }^{B}-\vartheta_{2 b}^{B} M B S_{1}^{B}-\sigma_{2 b}^{B}\left(\text { MORT }^{B}-M B S_{1}^{B}\right)\right)\left(1+r^{\text {MORT }}\right) \\
& -D_{I S C}^{B b}\left(1+r_{2 b}^{C B}\right)
\end{aligned}
$$

Non-Bank N’s Optimization Problem

$$
\begin{aligned}
\overline{\operatorname{Prof}}^{N}= & \tilde{\xi}_{2 g} \operatorname{Prof}^{N}\left(\pi_{2 g}^{N}\right) \\
& +\tilde{\xi}_{2 b}\left[\operatorname{Prof}^{N}\left(\pi_{2 b}^{N}\right)-\tau_{2 b}^{N}\left[R E P O^{N}\left(1+r^{\text {REPO }}\right)-V_{2 b}^{\text {MORT }} \operatorname{MBS}_{1}^{N}\left(1+r^{\text {MORT }}\right)\right]\right]
\end{aligned}
$$

where

$$
\operatorname{Prof}\left(\pi_{2 s}^{N}\right)=\frac{1}{1-\gamma^{N}}\left(\pi_{2 s}^{N}\right)^{1-\gamma^{N}}
$$

Non-Bank N’s Budget Constraints

$$
P_{1, \text { MBS }} M B S_{1}^{N} \leq E_{1}^{N}+R E P O^{N}
$$

$$
P_{2 s, M B S} M B S_{2 s}^{N} \leq E_{2 s}^{N}
$$

$$
\begin{gathered}
\pi_{2 g}^{N} \leq\left(M B S_{1}^{N}+M B S_{2 g}^{N}\right)\left(1+r^{\text {MORT }}\right) \\
-\operatorname{REPO}^{N}\left(1+r^{R E P O}\right)
\end{gathered}
$$

$$
\pi_{2 b}^{N} \leq V_{2 b}^{\text {MORT }} \text { MBS }_{2 b}^{N}\left(1+r^{\text {MORT }}\right)
$$

Loan to Value and Haircut Regulation

$L T V^{P}=\frac{M O R T^{B}}{P_{1, h} c_{1, h}^{P}}$
(mortgage divided by house price value)
$M R^{N}=\frac{E_{1}^{N}}{P_{1, M B S} M B S_{1}^{N}}$
(N's equity relative to its borrowing)

B’s Middle of Period 1 Balance Sheet

Liquidity and Capital Regulation

$C R_{\text {mid } 1}^{B}=\frac{E_{1}^{B}+\pi_{1}^{B}}{r w_{1}^{M O R T} \cdot\left(M O R T^{B}-M B S_{1}^{B}\right)+r w_{1}^{R E P O} \cdot R E P O^{B}}$
(riskless assets get zero risk weight)
$L C R_{\text {mid } 1}^{B}=\frac{L S T_{1}^{B}}{L S T_{1}^{B}+R E P O^{B}+M O R T^{B}-M B S_{1}^{B}}$

B’s Middle of Period 2 Balance Sheet (Good state)

Assets

$$
\begin{array}{c|c}
L S T_{2 g}^{B} & E_{1}^{B}+E_{2 g}^{B}+\pi_{1}^{B} \\
R E P O^{B} & P_{-} L_{\text {mid } 2 g}^{B} \\
\left(1-\sigma_{2 g}^{B}\right)\left(M O R T^{B}-M B S_{1}^{B}\right) & {D I S C_{2 g}^{B}}^{2}
\end{array}
$$

$$
L C R_{\text {mid } 2 g}^{B}=\frac{L S T_{2 g}^{B}}{L S T_{2 g}^{B}+R E P O^{B}+\left(1-\sigma_{2 g}^{B}\right)\left(M O R T^{B}-M B S_{1}^{B}\right)}
$$

B's Middle of Period 2 Balance Sheet (Bad state, before deposit default)

Assets	Liabilities
$M O R T^{B}-\vartheta_{2 b}^{B} M B S_{1}^{B}$	$E_{1}^{B}+E_{2 b}^{B}+\pi_{1}^{B}$
$\operatorname{cash}_{2 s}^{B}$	$P_{-} L_{\text {mid } 2 b}^{B}=R E P O^{B}-\left(1-\vartheta_{2 b}^{B}\right) M B S_{1}^{B}$
	$D^{B} \quad-P_{2 b, M B S} \vartheta_{2 b}^{B} M B S_{1}^{B}$

$$
C R_{\operatorname{mid} 2 b}^{B}=\frac{E_{1}^{B}+E_{2 b}^{B}+\pi_{1}^{B}+P_{-} L_{\text {mid } 2 b}^{B}}{r w_{2 b}^{M O R T} \cdot\left(M O R T^{B}-\vartheta_{2 b}^{B} M B S_{1}^{B}\right)}
$$

b’s Middle of Period 2 Balance Sheet

 (Bad state, after deposit default)| Assets | Liabilities |
| :---: | :---: |
| $L S T_{2 b}^{B}$ | $E_{1}^{B}+E_{2 b}^{B}+\pi_{1}^{B}$ |
| $M O R T^{B}-\vartheta_{2 b}^{B} M B S_{1}^{B}$ | $P_{-} L_{\text {mid } 2^{\prime} b}^{B}$ |
| | $D I S C_{2 b}^{B}$ |
| | |

$$
L C R_{m i d 2 b}^{B}=\frac{L S T_{2 b}^{B}}{L S T_{2 b}^{B}+M O R T^{B}-\vartheta_{2 b}^{\beta} M B S_{1}^{B}}
$$

Dynamic Provisioning

Define Real Estate Related Credit Growth as
$g \%=\left(\frac{L S T_{2 g}^{P}+L S T_{2 g}^{F}}{M O R T^{B}+L S T_{1}^{P}}-1\right) \%$
Provision κ per dollar of lending whenever $\mathrm{g}>$ " x "
$L S T_{2 g, p}^{B}+L S T_{2 g, h}^{B}+v_{2 g}^{B} D^{B}\left(1+r^{D}\right)+(g \%-x \%) \kappa$
$\leq \operatorname{cash}_{1}^{B}+E_{2 g}^{B}+\operatorname{DISC}_{2 g}^{B}+P_{2 g, \text { MBS }} \sigma_{2 g}^{B}\left(M O R T^{B}-M B S_{1}^{B}\right)$

Makes it possible to lean against the boom without directly distorting the allocations in the bust

Endowments of goods	Households' wealth	F.I. capital	CB rates	Default penalties	Risk aversion	Other parameters
$e_{1, p}^{P}=10$	Money $_{1}^{P}=4.1$	$E_{1}^{B}=0.5$	$r_{1}^{C B}=0.12$	$\tau_{2 b}^{P}=4$	$\gamma^{P}=2.1$	$\omega_{2 b}=0.1$
$e_{2 g, p}^{P}=32$	Money $_{2 g}^{P}=4.1$	$E_{2 g}^{B}=0.5$	$r_{2 g}^{C B}=0.12$	$\tau_{2 g}^{B}=1.2$	$\gamma^{F}=2.1$	$\xi=0.85$
$e_{2 b, p}^{P}=5.8$	Money $_{2 b}^{P}=0.1$	$E_{2 b}^{B}=0$	$r_{2 b}^{C B}=0.20$	$\tau_{2 b}^{\beta}=1.2$	$\gamma^{R}=2.4$	$\delta=0.15$
$e_{2 g, p}^{F}=11$	Money $_{2 g}^{F}=4.1$	$E_{1}^{N}=1$		$\tau_{2 b}^{N}=0.2$	$\gamma^{B}=1.4$	
$e_{2 b, p}^{F}=11$	Money $_{2 b}^{F}=0.1$	$E_{2 g}^{N}=2$			$\gamma^{N}=0.7$	
$e_{1, h}^{R}=1$	Money $_{1}^{R}=6.5$	$E_{2 b}^{N}=1$				
$e_{2 g, h}^{R}=0$	Money $_{2 g}^{R}=0$					
$e_{2 b, h}^{R}=0$	Money $_{2 b}^{R}=0$					

Prices	Interest rates/Money supply	Aggregate Consumption		Loans		Securitization	Repayment rates	F.I. profits
	$r_{1}{ }^{S T}=0.12$	$\begin{aligned} & \hline c_{1, p}^{P} \\ & =0.859 \end{aligned}$	$\begin{aligned} & c_{1, p}^{R} \\ & =9.141 \end{aligned}$	$\begin{aligned} & \hline L S T_{1}^{P} \\ & =8.81 \end{aligned}$	$\begin{aligned} & L S T_{1}^{B} \\ & =42.06 \end{aligned}$	$\begin{aligned} & M B S_{1}^{B} \\ & =21.52 \end{aligned}$	$\begin{aligned} & V_{2 g}^{M O R T} \\ & =1 \end{aligned}$	$\begin{aligned} & \pi_{1}^{B} \\ & =0.73 \end{aligned}$
$P_{2 g, p}=1.39$	$r_{2 g}^{S T}=0.12$	$\begin{aligned} & c_{2 g, p}^{P} \\ & =1.126 \end{aligned}$	$\begin{aligned} & \hline c_{2 g, p}^{R} \\ & =41.478 \end{aligned}$	$\begin{aligned} & L S T_{2 g}^{P} \\ & =38.41 \end{aligned}$	$\begin{aligned} & L S T_{2 g}^{B} \\ & =67.05 \end{aligned}$	$\sigma_{2 g}^{B}=0.456$	$\begin{aligned} & V_{2 b}^{M O R T} \\ & =0.47 \end{aligned}$	$\begin{aligned} & \pi_{2 g}^{B} \\ & =1.42 \end{aligned}$
$P_{2 b, p}=1.48$	$r_{2 b}^{S T}=0.20$	$\begin{aligned} & c_{2 b, p}^{P} \\ & =0.285 \end{aligned}$	$\begin{aligned} & c_{2 b, p}^{R} \\ & =15.997 \end{aligned}$	$\begin{aligned} & L S T_{2 b}^{P} \\ & =6.82 \end{aligned}$	$\begin{aligned} & L S T_{2 b}^{B} \\ & =19.76 \end{aligned}$	$\sigma_{2 b}^{B}=0$	$V_{2 g}^{D}=1$	$\begin{aligned} & \pi_{2 b}^{B} \\ & =1.00 \end{aligned}$
$\begin{aligned} & P_{1, h} \\ & =676.96 \end{aligned}$	$r^{D}=0.42$	$\begin{aligned} & c_{1, h}^{P} \\ & =0.055 \end{aligned}$	$\begin{aligned} & c_{1, h}^{R} \\ & =0.945 \end{aligned}$	$\begin{aligned} & M O R T^{P} \\ & =24.32 \end{aligned}$	$\begin{aligned} & \text { DISC } C_{1}^{B} \\ & =35.00 \end{aligned}$	$\vartheta_{2 b}^{B}=0.068$	$\begin{aligned} & \begin{array}{l} V_{2 b}^{D} \\ =0.56 \end{array} \end{aligned}$	$\begin{aligned} & C C^{B} \\ & =3.42 \end{aligned}$
$\begin{aligned} & P_{2 g, h} \\ & =1,111.41 \end{aligned}$	$r^{M O R T}=0.75$	$\begin{aligned} & c_{2 g, h}^{P} \\ & =0.047 \end{aligned}$	$\begin{aligned} & \hline c_{2 g, h}^{R} \\ & =0.788 \end{aligned}$	$\begin{aligned} & \hline L S T_{2 g}^{F} \\ & =13.20 \end{aligned}$	$\begin{aligned} & D_{I S C}^{2 g} B \\ & =99.00 \end{aligned}$	$\begin{aligned} & M B S_{2 g}^{N} \\ & =1.28 \end{aligned}$		$\begin{aligned} & \operatorname{cash}_{1}^{B} \\ & =7.90 \end{aligned}$
$\begin{aligned} & P_{2 b, h} \\ & =362.73 \end{aligned}$	$r^{R E P O}=0.74$	$\begin{aligned} & c_{2 b, h}^{P} \\ & =0.019 \end{aligned}$						
						34		

	Period 1	Period 2, State g	Period 2, State b
Potatoes Prices	1.08	1.39	1.48
Housing Prices	676.96	$1,111.41$	362.73
MBS Prices	0.97	1.56	0.68
Relative price of potatoes to housing	0.0016	0.0013	0.0041

	Period 1	Beginning of bad state	Middle of bad state
Capital adequacy ratio	9.91%	3.46%	8.24%
Liquidity ratio	64.94%	-	46.36%
Margin on repos	4.78%	-	-
Loan-to-value ratio	65.32%	-	-
Note: No dynamic provisions required in the good state. per dollar of reserves for loan growth above 20 percent.			

