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Abstract

This paper considers the problem of forecasting under continuous and dis-
crete structural breaks and proposes weighting observations to obtain optimal
forecasts in the MSFE sense. We derive optimal weights for continuous and
discrete break processes. Under continuous breaks, our approach recovers ex-
ponential smoothing weights. Under discrete breaks, we provide analytical
expressions for the weights in models with a single regressor and asympotically
for larger models. It is shown that in these cases the value of the optimal
weight is the same across observations within a given regime and differs only
across regimes. In practice, where information on structural breaks is uncer-
tain a forecasting procedure based on robust weights is proposed. Monte Carlo
experiments and an empirical application to the predictive power of the yield
curve analyze the performance of our approach relative to other forecasting
methods.
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1 Introduction

It is now widely recognized that parameter instability is an important source of fore-
cast failure in macroeconomics and finance as documented by Pesaran and Timmer-
mann (2002), Pesaran, Pettenuzzo, Timmermann (2006), Koop and Potter (2007),
Giacomini and Rossi (2009), Inoue and Rossi (2011), among others. Clements and
Hendry (1999, 2006) and Rossi (2011) provide reviews. Parameter instability can
arise as a result of changes in tastes, technology, institutional arrangements and
government policy. Broadly speaking, there are two basic approaches to modeling
parameter instability: parameters can be assumed to change at discrete time in-
tervals or continuously. Under the former, break dates are estimated and forecasts
are typically constructed using the post-break observations.1 Assuming that the
break dates are accurately estimated, the forecasts based on observations after the
last break is likely to be unbiased, but as pointed out by Pesaran and Timmer-
mann (2007) the forecasts from the post-break window may not minimize the mean
square forecast error (MSFE) as the estimation uncertainty due to the relatively
short post-break window may be large. For this reason Pesaran and Timmermann
(2007) suggest an optimal estimation window that may include pre-break observa-
tions. When the time and size of the break is uncertain, Pesaran and Timmermann
(2007) consider averaging forecasts across estimation windows (AveW), which, as
Pesaran and Pick (2011) show, improves forecasts without relying on estimates of
break dates and sizes.

Under the continuously changing parameter model, the breaks are assumed to
occur every period, and observations are down-weighted to take account of the slowly
changing nature of the parameters. Within this framework a prominent approach is
the exponential smoothing (ExpS) first proposed by Holt (1957) and Brown (1959).
Other approaches using Kalman filters have also been proposed as generalizations of
ExpS. Hyndman, Koehler, Ord, and Snyder (2008) provide a comprehensive survey.
Like AveW forecasts, ExpS forecasts require no estimates of break dates and sizes
but are highly sensitive to the down-weighting parameter.

In this paper, we develop a unified approach to obtaining optimal forecasts
under both types of structural breaks. We consider forecasts based on weighted
observations as in the ExpS approach but derive weights that are optimal in the
sense that the resulting forecasts minimize the MSFE. In the case of continuous
breaks, our approach recovers the ExpS weights. But the optimal weights can differ
markedly from the ExpS weights when the breaks are assumed to occur at discrete
time intervals. We show that, conditional on the break size and date, the optimal
weights follow a step function that allocates constant weights within regimes but
different weights between regimes. A striking result emerges under multiple breaks:
observations of the last regime that continues into the forecast period may not
receive the highest weight. The intuition for this result is that the bias component
of the MSFE can be reduced by giving the largest weights to observations in an
early regime to counterbalance biases of the opposite sign in intermediate regimes.

In practice, however, the dates and sizes of the breaks are unknown and must
be estimated. But such estimates tend to be quite imprecise and their use leads to

1There are many statistical procedures that can be used for detection of break dates. See, for
example, Brown et al. (1975), Andrews (1993), Andrews et al. (1996), Bai and Perron (1997, 2003),
and Altissimo and Corradi (2003).
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a deterioration of forecasts, sometimes quite substantially. In order to address this
problem, we develop weights that are robust to the uncertainty that surrounds the
dates and the sizes of the breaks. The robust weights are derived by integrating the
optimal weights with respect to a uniformly distributed break dates. An interesting
insight from these derivations is that the effect of uncertainty of the break size on
the weights is of order T−2 if the break is in the slope coefficient, and of order T−3

if the break is in the error variances, where T is the sample size including the pre-
break observations. For estimation of the robust weights knowing the break date is
more important than knowing the size of the break, and that breaks in slopes are,
in turn, more important than breaks in error variances.

We conduct Monte Carlo experiments that compare the forecasts from optimal
weights to a range of competing forecasting methods. It emerges that the key factor
for the relative performance of different forecasting methods under a discrete break
is the size of the break. A larger break leads to more precise estimates of the break
date and improves forecasts that are conditional on these estimates, which include
the optimal weights forecast, post-break forecasts, and optimal window forecasts.
In contrast, when the break is small relative to the noise in the DGP, the robust
weights produce the best forecasts as they do not rely on the imprecise estimates
of the break date and size. When the break process is continuous, ExpS forecasts
that estimate the down-weighting parameter perform well. However, the forecasts
from the robust weights perform similarly well and in some settings provide the best
forecasts even in this setting.

We apply the different methods considered in the paper to forecasting real GDP
using the slope of the yield curve across nine industrial economies over the period
1994Q1–2009Q4. The general finding is that breaks are difficult to estimate with
sufficient accuracy and, similar to the Monte Carlo results, forecasts based on es-
timates of break dates perform poorly. Robust weights and exponential smoothing
forecasts perform well and deliver large improvements over forecasts based on equal
weights.

The rest of the paper is set out as follows. Using a linear regression model,
derivations of optimal weights under different break processes are set out in Section
2, and the MSFE outcomes are compared across different forecasting methods. Op-
timal weights that are robust to the uncertainty of the break process are motivated
and derived in Section 3. Monte Carlo evidence on the comparative performance
of the different forecasting methods is discussed in Section 4. Empirical results are
presented in Section 5. The paper ends with some concluding remarks in Section 6.
A few of the less essential derivations are collected in a mathematical appendix.

2 Optimal weights under different break processes

Consider the linear regression model

yt = β′
txt + σtεt, εt ∼ iid(0, 1), t = 1, 2, . . . , T, T + 1 (1)

where xt is a k × 1 vector of stationary regressors, and the k × 1 coefficient vector,
βt, and the scalar error variance, σ2t , are subject to breaks. The breaks can be
continuous, that is, βt changes its value in every period. A prominent example is
the random walk model

βt = βt−1 + Sβvt, where vt ∼ iid(0, Ik),
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where Ik is the identity matrix of order k, and the break variance, Σβ = SβS
′
β,

is assumed to be small relative to σ2t .
2 Alternatively, the breaks could be discrete

where the parameters change at distinct points in time, Tb,i, i = 1, 2, . . . , n,

βt =


β(1) for 1 < t ≤ Tb,1

β(2) for Tb,1 < t ≤ Tb,2
...

β(n) for Tb,n < t ≤ T

Additionally, σt may be subject to a similar break process.3 In contrast to the con-
tinuously changing parameter model, the number of discrete breaks, n, is assumed

to be small, although the break sizes, measured by
∥∥∥β(i) − β(i−1)

∥∥∥ could be large

relative to σt. There are merits in both specifications, and a choice between them
would depend on the particular forecasting problem under consideration.

We propose a general approach to achieve a minimum mean square forecast
error (MSFE) under both break processes. We weigh past observations by weights
wt in the estimation

β̂T (w) =

(
T∑
t=1

wtxtx
′
t

)−1 T∑
t=1

wtxtyt,

subject to the restriction
∑T

t=1wt = 1. The weights w = (w1, w2, . . . , wT )
′ are

chosen such that the resulting MSFE of the one-step ahead forecast

ŷT+1 = β̂
′
TxT+1

is minimized.
Closed form solutions under the continuous break process are only available

when we simplify the model to one without regressors. In this setting the optimal
weights recover the exponential smoothing forecast. For the discrete break process
we derive new results for the same simple model but also for models with one or
more regressors.

2.1 Optimal weights in a model with continuous breaks

Consider the following model
yt = βt + σεεt, (2)

where βt = βt−1 + σvvt, and εt and vt are iid(0, 1). The optimal weights can be
found by minimizing E(yT+1−ΣTt=1wtyt)

2 with respect to wt, t = 1, 2, . . . , T, subject
to
∑T

t=1wt = 1. For a solution to this problem we first note that the forecast error
is given by

eT+1 = yT+1 − β̂T+1(w) = βT+1 −w′β + σε(εT+1 −w′ε),

2The covariance matrix Σβ is said to be small relative to σt if ∥Σβ∥ /σt is small, where ∥A∥2 =
tr(AA′) denotes the Euclidean norm of matrix A.

3Note that brackets around subscripts denote subsamples between breaks, such that βt is the
parameter at period t but β(i+1) the parameter after break i.
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where β = (β1, β2, . . . , βT )
′. But using the random walk formulation of β we have

β = β0ιT + σvHv,

where v = (v1, v2, . . . , vT )
′ and

H =


1 0 0 0 0
1 1 0 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

 , ιT =


1
1
...
1
1

 .

Also, βT+1 = β0 + σvι
′
Tv + σvvT+1. Hence,

σ−1
ε eT+1 =

[(
ι′Tv −w′Hv

)
δ + (εT+1 −w′ε) + δvT+1

]
,

where δ2 = σ2v/σ
2
ε . Therefore, (noting that by assumption v and ε are independently

distributed)

E(σ−2
ε e2T+1 |w ) ∝ δ2w′HH′w − 2δ2w′HιT +w′w.

The first order condition for minimization of E(σ−2
ε e2T+1 |w ) subject to the con-

straint, w′ιT = 1, is given by

δ2HH′w − δ2HιT +w − θιT = 0,

where θ is the Lagrangian multiplier applied to the w′ιT = 1. Solving for w in
terms of θ we have

w = (δ2HH′ + IT )
−1(δ2H+θIT )ιT , (3)

Also, since ι′Tw = 1,

θ =
1− ι′T (δ

2HH′ + IT )
−1δ2HιT

ι′T (δ
2HH′ + IT )−1ιT

.

It is easily seen that for the extreme values of δ2 = ∞ and 0 we obtain the
random walk and equal weighted solutions, w(∞) = (1, 0, . . . , 0)′ and w(0) =
T−1(1, 1, . . . , 1)′, respectively.

The literature on exponential smoothing has traditionally used a different solu-
tion to address the time varying βt. Write the model in terms of the observables

yt − yt−1 = σvvt + σε(εt − εt−1), (4)

which represents an MA(1) process in ∆yt with the MA parameter given by γ, or
more specifically

∆yt = ξt − γξt−1, (5)

where ξt is a serially uncorrelated process with mean zero and a constant variance,
and by equating the first order autocorrelation in (4) and (5) we have

γ

1 + γ2
=

σ2ε
2σ2ε + σ2v

=
1

2 + δ2
,
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Hence,
γ2 − (2 + δ2)γ + 1 = 0. (6)

This equation has two real roots given by

γ =
(2 + δ2)± δ(4 + δ2)1/2

2
. (7)

Since δ > 0, then γ = 1+ δ2/2− δ(1 + δ2/4)1/2 is the root that lies within the unit
circle and should be used.4 The optimal forecast of yT+1 is now given by

E(yT+1 |yT , yT−1, . . .) = yT − γξT ,

but since 0 < γ < 1 we can invert the MA process to obtain

ξT = (1− γL)−1(yT − yT−1),

and hence

E(yT+1 |yT , yT−1, . . .) = yT − γ(1− γL)−1(yT − yT−1),

= (1− γ)
(
yT + γyT−1 + γ2yT−2 + . . .

)
.

In practice, the infinite series must be truncated to yield the ExpS forecast

ŷT+1 =
1− γ

1− γT

T∑
j=1

γT−jyj (8)

and the quality of the approximation will depend on T and γ, and could be poor
when T is relatively small and γ close to unity. For large T and γ not too close to
unity the elements of wt will be very close to (1 − γ)γT−t for t = T, T − 1, . . . It
is worth noting that the weights wt add up to unity and adapt to the sample size
T , whilst the MA weights are optimal only for large T and when γ is not too close
unity.

Assuming that 0 ≤ γ < 1, the relationship between δ and γ is given by5

δ =
σv
σε

=
1− γ
√
γ
. (9)

This suggests that for values of γ in the range 0.95 − 0.99 used in the literature,
changes in β (per unit of time) must be quite small relative to σε, the size of
innovations to the errors. For example, for γ = 0.95, σv/σε = 0.05, and for γ = 0.98
we have σv/σε = 0.02.

2.2 Optimal weights in a model with a single, discrete break

Again consider model (2) but now assume that βt is subject to a single, discrete
break at Tb, 1 < Tb < T ,

βt =

{
β(1) for t ≤ Tb

β(2) for Tb < t ≤ T + 1

4Since δ > 0 then it is easily seen that 0 < γ = 1 + δ2/2− δ(1 + δ2/4)1/2 < 1.
5Using (6), note that (1− γ)2 = γδ2.
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In this case the forecast is ŷT+1 = β̂T (w) where β̂T (w) =
∑T

t=1wtyt and

β̂T (w)− βT = (β(1) − β(2))

Tb∑
t=1

wt +
T∑
t=1

wtσεεt.

Therefore, the forecast error is given by

eT+1(w) = yT+1 − β̂T (w)

= σεεt − (β(1) − β(2))

Tb∑
t=1

wt −
T∑
t=1

wtσεεt,

and the MSFE scaled by the error variance is

E[σ−2
ε e2T+1(w)] = 1 + λ2

(
Tb∑
t=1

wt

)2

+
T∑
t=1

w2
t , (10)

where λ = (β(1) − β(2))/σε.

We can now obtain the optimal weights by minimizing (10) subject to
∑T

t=1wt =

1. The first order conditions are: for t ≤ Tb we have 2λ2
∑Tb

t=1wt + 2wt + θ = 0,
and for Tb < t ≤ T, 2wt+ θ = 0, where θ is the Lagrange multiplier associated with∑T

t=1wt = 1. Note that wt for t ≤ Tb does not depend on t and the same is true
for wt for t > Tb. Hence

wt =

{
w(1) = −λ2

∑Tb
t=1wt − θ/2 for 1 < t ≤ Tb

w(2) = −θ/2 for Tb < t ≤ T

and

w(2) − w(1) = λ2
Tb∑
t=1

wt = λ2Tbw(1).

Solving for w(2) and substituting into
∑T

t=1wt = Tbw(1) + (T − Tb)w(2) = 1 yields
the optimal weights

w(1) =
1

T

1

1 + Tb(1− b)λ2
, (11)

and

w(2) =
1

T

1 + Tbλ2

1 + Tb(1− b)λ2
. (12)

where b = Tb/T .
We can use the fact that the weights are constant in the subsamples in (10) to

obtain the scaled MSFE

E(σ−2
ε ê2T+1) = 1 + (Tbλw(1))

2 + Tbw
2
(1) + (T − Tb)w

2
(2)

and using (11) and (12) it is straightforward to show that this reduces to

E(σ−2
ε ê2T+1) = 1 +

1

T

1 + Tbλ2

1 + Tb(1− b)λ2
(13)

= 1 + w(2).
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Namely, the MSFE varies with λ through the post-beak weight, w(2).
We can now compare the forecasts based on optimal weights to those from

a range of competing forecasting methods: post-break window observations, the
optimal estimation window, averaging across estimation windows, and exponential
smoothing.

2.2.1 Optimal window and post-break window forecasts

We now consider the optimal window that gives equal weights to observations within
the window and zero weights to preceding observations as suggested by Pesaran and
Timmermann (2007). Suppose that the optimal window size contains observations
Tv to T (inclusive), where v = (T − Tv + 1) /T so that Tv = T (1− v) + 1. Then, as
we show in Appendix A.1, the optimal window size is

vo =


1−b

1− 1
2λ2(1−b)T

if λ2 ≥ T
2(T−Tb)Tb

1 if λ2 < T
2(T−Tb)Tb .

The scaled MSFE for the optimal window is (for λ2 ≥ T
2(T−Tb)Tb )

E
(
σ−2
ε ê2T+1|vov>(1−b)

)
= 1 +

1

T (1− b)
− 1

T 2

1

4λ2(1− b)2
. (14)

Furthermore, the scaled MSFE of the post-break window is

E
[
σ−2
ε ê2T+1|v = (1− b)

]
= 1 +

1

T (1− b)
(15)

and it can be seen that the MSFE in (14) cannot be greater than that in (15) as
the elements of the last fraction of (14) are non-negative.

Comparing the MSFEs of the forecasts from the optimal window to that of the
optimal weight forecast, using (14) and (13), we have

E
(
σ−2
ε ê2T+1|vov>(1−b)

)
− E(σ−2

ε ê2T+1)

=

[
1

T (1− b)
− 1

T 2

1

4λ2(1− b)2

]
− 1

T

1 + Tbλ2

1 + Tb(1− b)λ2

=
1

T

Tλ2b(1− b) + 2Tλ2b(1− b)− 1

4T (1− b)2λ2[1 + Tb(1− b)λ2]
> 0 (16)

where the last inequality follows since vo ≤ 1, implies that Tλ2b(1 − b) ≥ 1/2.
Therefore, forecasts obtained from optimal weights will have a smaller MSFE than
forecasts giving equal weight to observations in an optimally chosen window. In the
case where Tλ2 < 1/2, the optimal window contains all observations, so that the
comparison is between the optimal weights and equal weights. Clearly, by merit
of the optimality of the weights the forecast based on optimal weights will have a
lower MSFE.

While optimal weights lead to a lower MSFE, it is interesting to get a quantita-
tive sense of the difference. Table 1 reports the ratio of MSFEs of different forecast-
ing methods to that of the equal weight forecast using all observations for a range
of values of λ and b. That is, for forecast method i we report MSFEi/MSFEequal.
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Table 1: Relative MSFE for a single break in drift for known b and λ
b 0.95 0.9
λ 0.5 1 2 0.5 1 2

opt. weights 0.901 0.610 0.258 0.884 0.600 0.258
post-break obs. 0.971 0.628 0.260 0.907 0.604 0.259
opt. window 0.939 0.622 0.259 0.899 0.603 0.259
AveW(vmin = 0.05) 0.966 0.900 0.829 0.941 0.830 0.704
ExpS(γ = 0.95) 0.973 0.924 0.872 0.958 0.883 0.799

Note: The table reports the MSFE relative to that of the equal weights forecasts,

MSFEi/MSFEequal, where MSFEi is the MSFE of the respective forecasting

method in the first column. These are (i) using the optimal weights, (ii) using

the post-break observations, (iii) forecasts based on the optimal window, (iv)

AveW forecasts with vmin = 0.05 and m = T (1 − vmin) + 1 windows, and (v)

ExpS forecasts with γ = 0.95. Finally, T = 100.

The first line gives the ratio of MSFE for the forecast using optimal weights, the
second line that when using only the post-break observations, and the third line
that when using the optimal window.

It can be seen that the forecast based on optimal weights has the lowest MSFE
across all parameter combinations. The MSFE of the forecast based on the post-
break window is relatively similar to that using optimal weights when either the
break or the post-break window is large (b = 0.9). For breaks of smaller magnitude,
however, the post-break window forecast has a substantially higher MSFE. Forecasts
based on the optimal window perform better than those based on the post-break
window but for small breaks have a substantially larger MSFE than the optimal
weights forecast.

2.2.2 Averaging across estimation windows

Pesaran and Pick (2011) discuss theoretical properties of averaging forecasts from
sub-windows (AveW). For the case of the random walk (2) they show that the AveW
forecast

ŷT+1 =

m∑
i=1

ŷT+1(v(i)), where ŷT+1(v(i)) =
1

T − Tv(i) + 1

T∑
s=Tv(i)

ys,

v(i) is the minimum (shortest) window, and m is the number of sub-windows, has
the MSFE

E(σ−2
ε ê2T+1|v(i)) = 1 +

[
λ

m

m∑
i=1

v(i) − (1− b)

v(i)
I[v(i) − (1− b)]

]2

+
1

m2

m∑
i=1

1 + 2(i− 1)

Tv(i)
.

Pesaran and Pick (2011) show that for the case of the random walk it will
improve over equal weights forecasts using all observations unless the break is very
small. This is reflected in the results in the fourth line of Table 1, which report
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results for vmin = 0.05. The AveW forecasts have smaller MSFEs than the single
window forecasts using equal weights but they have substantially larger MSFEs
than the forecasts obtained using the optimal weights. The intuition for this result
is that averaging over estimation windows can be seen as a weighting observations
where weights are smoothly decaying. The optimal weights (11) and (12), however,
have a discrete change and will only be approximated poorly by the weights implied
by the AveW forecast. Given the optimality of w(1) and w(2), this means that the
AveW MSFE will be necessarily larger than that of the forecasts using w(1) and
w(2). However, these results are not surprising as averaging forecasts is based on
the idea that it will be beneficial when the break date and size are uncertain or
where multiple breaks of unknown time and size may be present. We will explore
such settings in the Monte Carlo experiments in Section 4.

2.2.3 Exponential smoothing

In Section 2.1 we have shown that under continuous breaks optimal weights recover
ExpS weights. While the application of ExpS weights is not optimal under discrete
breaks, it is nevertheless interesting to get a quantitative sense of the loss implied
in using weights for continuous breaks when there is a single discrete break.

The MSFE of the exponential smoothing forecast can be shown to be

E(σ−2
ε ê2T+1|γ) = 1 + λ2

(
γ1+Tb − γT

1− γT

)2

+

(
1− γ

1− γY

)(
1− γ2T

1− γ2

)
.

See Pesaran and Pick (2011). The last line in Table 1 reports results for γ = 0.95.
Similar to the AveW forecasts, the ExpS forecasts improve on the results from the
forecasts using equal weights but have a larger MSFE than the forecasts based on
the optimal weights. The reason is that, just as the AveW forecasts, the ExpS
forecasts use smoothly decaying weights for the observations, where we have shown
that discretely changing weights are optimal.

2.3 A single, discrete break in a multiple regression model

We now turn to the multiple regression model where the slope parameters and the
error variance are subject to a single break at time t = Tb

yt =

{
β′
(1)xt + σ(1)εt for 1 ≤ t ≤ Tb,

β′
(2)xt + σ(2)εt for Tb + 1 ≤ t ≤ T

(17)

where xt is a k×1 vector of exogenous regressors and εt ∼ iid(0, 1). Again, suppose
that the slope parameter is estimated by weighting observations over the whole
sample

β̂T (w) =

(
T∑
t=1

wtxtx
′
t

)−1 T∑
t=1

wtxtyt. (18)
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The scaled MSFE is

E
[
σ−2
(2)e

2
T+1(w) |xt, t = 1, 2, . . . , T + 1

]
(19)

= 1 +
[
x′
T+1S

−1(w)S1(w(1))λ
]2

+x′
T+1S

−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xT+1,

where λ = (β(1) − β(2))/σ(2) and q = σ(1)/σ(2). See Appendix A.2 for details.
Similar to the derivations in Section 2.2, maximizing (19) yields the optimal

weights. For t ≤ Tb we have[
x′
T+1S

−1(w)xt
]
q2wt (20)

= x′
T+1S

−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xt

−
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S2(w(2))λ
]
,

and for t ≥ Tb + 1[
x′
T+1S

−1(w)xt
]
wt (21)

= x′
T+1S

−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xt

+
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S1(w(1))λ
]
.

with the details provided in Appendix A.2.
These optimal weights have a number of interesting properties. First, in the

absence of a break, that is when λ = 0 and q = 1, then wt = w for all t, as to be
expected. To see this, note that when λ = 0 and q = 1, then for all t we have

wt =
x′
T+1S

−1(w)
(∑T

t=1w
2
txtx

′
t

)
S−1(w)xt

x′
T+1S

−1(w)xt
.

It is now easily seen that wt = w (fixed) is a solution to the above. Note that for
wt = w, we have S(w) = wS(1) and therefore

wt =
x′
T+1S

−1(1)
(∑T

t=1 xtx
′
t

)
S−1(1)xt

w−1x′
T+1S

−1(1)xt
=

x′
T+1S

−1(1)S(1)S−1(1)xt

w−1x′
T+1S

−1(1)xt
= w.

Consider now the case where λ ̸= 0 and q ̸= 1, but suppose that x1 = x2, then
using (20) and (21) the optimal weights for t = 1 and t = 2 we have

q2
[
x′
T+1S

−1(w)x1

]
(w2 − w1) = 0.

Hence, the weights within a given regime will be the same if the regressor values for
the two points of time in that regime are identical. But the same is not true of the
weights for time points in different regimes. For example, for the first regime select

11



t = 1 and for the second regime select t = T , and suppose that x1 = xT . Then
from (20) and (21), and recalling that it follows that S1(w(1)) + S2(w(2)) = S(w),
we have [

x′
T+1S

−1(w)xT
]
(wT − q2w1) =

[
x′
T+1S

−1(w)S1(w(1))λ
] (

x′
Tλ
)
,

which suggests that, in general, when λ ̸= 0 and q ̸= 1 the weights across the two
regimes differ even if the regressor values are the same. Therefore, in general, the
optimal weights will differ both within and across regimes.

An exact analytical solution does not seem to be available and the unknown
weights in (20) and (21) must be solved numerically. To this end let

d(w) = S−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xT+1

p1(w) = S−1(w)S1(w(1))λ, and p2(w) = S−1(w)S2(w(2))λ

γ(w) = x′
T+1S

−1(w)S1(w(1))λ

θt(w) =

{
q2x′

T+1S
−1(w)xt if t ≤ Tb

x′
T+1S

−1(w)xt if t > Tb,

where d(w), p1(w) and p2(w) are k × 1 vectors, and γ(w) and θt(w) are scalar
functions of w. Then, the T equations in (20) and (21) can be written as

θ(w)⊙w = Xd(w) + γ(w)

(
−X(1)p2(w)

X(2)p1(w)

)
= Xd(w) + γ(w)Z(w),

where X is the T × k matrix of observations on x, X =
(
X′

(1),X
′
(2)

)′
, X(1) and

X(2) are Tb× k and (T − Tb)× k matrices of pre-break and post-break observations
on x. Also θ(w) = (θ1(w), θ2(w), . . . , θT (w))′ and ⊙ denotes element by element
vector multiplication. We now need to minimize the function

min
w

f ′(w)f(w)

subject to ι′Tw = 1 and wt ≥ 0, where

f(w) = θ(w)⊙w −Xq(w)− γ(w)Z(w).

The asymptotic weights given in Section 2.3.2 below can be used as starting values
for the numerical optimization.

2.3.1 A single, discrete break in a model with one regressor

Analytically more tractable results can be obtained when k = 1. In this case, the
scaled MSFE (19) simplifies to

E[σ−2
(2)e

2
T+1(w)] = 1 +

[
xT+1S(w(1))λ

S(w)

]2
(22)

+
x2T+1

(∑Tb
t=1 q

2w2
t x

2
t +

∑T
t=Tb+1w

2
t x

2
t

)
[S(w)]2

12



where λ = (β(1)−β(2))/σ(2), and the first order conditions (20) and (21) simplify to

wt =


∑T

t=1 w
2
t x

2
t

q2S(w)
− λ2

S1(w(1))S2(w(2))

q2S(w)
for t ≤ Tb∑T

t=1 w
2
t x

2
t

S(w) + λ2
S2
1(w(1))

S(w) for t ≥ Tb + 1

Similar to the case of model (2), wt for t ≤ Tb does not depend on t and the same
is true for wt for t > Tb. We can, therefore, set

wt =

{
w(1) for t ≤ Tb
w(2) for t ≥ Tb + 1

Using the above results it now readily follows that w(2)−q2w(1) = w(1)S1(1)λ
2, where

S1(1) =
∑Tb

t=1 x
2
t . Also using the constraint

∑T
t=1wt = 1 we have w(1)Tb + (T −

Tb)w(2) = 1. Hence, for Tb reasonably large, which is not a restrictive assumption
for the problem under consideration, and solving for w(1) and w(2) we obtain

w(1) =
1

T

1

b+ (1− b)(q2 + Tbλ2ω2
x)
, (23)

w(2) =
1

T

q2 + Tbλ2ω2
x

b+ (1− b)(q2 + Tbλ2ω2
x)
. (24)

where ω2
x = plimTb→∞( 1

Tb

∑Tb
t=1 x

2
t ).

Given that for the optimal weights we have that w
(opt.)
t = w(1) for t ≤ Tb and

w
(opt.)
t = w(2) for t > Tb, (22) can be rewritten as

E
(
σ−2
(2)e

2
T+1|w

(opt.)
t

)
≈ 1 +

x2T+1

Tω2
x

w2
(1)b(Tbϕ

2 + q2) + w2
(2)(1− b)[

w(1)b+ (1− b)w(2)

]2 (25)

From (23) and (24) it can be seen that w(2) = (Tbϕ2 + q2)w(1) and (25) simplifies
to

E
(
σ−2
(2)e

2
T+1|w

(opt.)
t

)
≈ 1 +

x2T+1

ω2
x

w(2).

Namely, the MSFE varies with λ and q through the post-break weight, w(2). Note
that

∂E
(
σ−2
(2)e

2
T+1|w

(opt.)
t

)
∂q2

=
x2T+1

Tω2
x

b

[b+ (1− b)q2 + Tb(1− b)ϕ2]2
> 0.

In the standard case where the estimation uses the entire sample with equal

weighting, that is, w
(equal)
t = 1/T ,

E
(
σ−2
(2)e

2
T+1|w

(equal)
t

)
= 1 + b2λ2x2T+1


T−1
b

Tb∑
t=1

x2t

T−1
∑T

t=1 x
2
t


2

+
1

T

b
(
q2 − 1

)
x2T+1

(
T−1
b

Tb∑
t=1

x2t

)
(
T−1

∑T
t=1 x

2
t

)2 +
1

T

(
x2T+1

T−1
∑T

t=1 x
2
t

)
,

13



or approximately

E
(
σ−2
(2)e

2
T+1|w

(equal)
t

)
≈ 1 +

x2T+1

ω2
x

[
b2ϕ2 +

bq2 + (1− b)

T

]
where we have used that for Tb large and T − Tb small ω2

x = plimT→∞( 1
T

∑T
t=1 x

2
t ),

and ϕ2 = ω2
xλ

2. ϕ and q measure the sizes of the breaks in β and σ, and b gives the
proportion of pre-break observations.

Comparing the MSFE of optimal weights with the one based on equal weights
we have

ω2
x

x2T+1

(MSFEequal −MSFEopt.) =
b
(
Tbϕ2 + q2

)
+ (1− b)

T
− Tbϕ2 + q2

T [b+ (1− b)(Tbϕ2 + q2)]

=
b(1− b)[1− Tbϕ2 − q2]2

T [b+ (1− b)(Tbϕ2 + q2)]
> 0.

Similarly, when wt are set independently of xt (as in the case of exponential down-
weighting) we have

E
(
σ−2
(2)e

2
T+1

)
≈ 1 +

x2T+1

ω2
x

ϕ2( Tb∑
t=1

wt

)2

+
(
q2 − 1

) Tb∑
t=1

w2
t +

T∑
t=1

w2
t

 .
When only post-break observations are used, the implicit weights are w

(post)
t = 0

for t ≤ Tb and w
(post)
t = (T − Tb) /T for t > Tb. We therefore have

E
(
σ−2
(2)e

2
T+1|w

(post)
t

)
≈ 1 +

x2T+1

ω2
x

1

T (1− b)

Comparing it to the MSFE based on post-break observations we have

ω2
x

x2T+1

(MSFEpost −MSFEopt.) =
b

T (1− b) [b+ (1− b)(Tbϕ2 + q2)]
> 0,

namely, optimal weights forecasts dominate post-break forecasts for all values of
0 < b < 1, but, as to be expected, the superiority of the optimal weights forecasts
diminishes as T (1− b) → ∞.

2.3.2 Asymptotic results with k ≥ 1 stationary regressors

The general solution in (20) and (21) can be simplified if we assume that T and
Tb are sufficiently large with T − Tb fixed, and xt is a stationary process with
E(xtx

′
t) = Ωxx a positive definite matrix. That is we assume that T → ∞ and

b → 1 but T (1 − b) → τ , where τ is a relatively small, constant number of post-
break observations. Under these assumptions (and conditional on the weights, wt)

S(w) →

(
T∑
t=1

wt

)
E(xtx

′
t) = Ωxx (26)

S1(w(1)) →

(
Tb∑
t=1

wt

)
E(xtx

′
t) =

(
Tb∑
t=1

wt

)
Ωxx, (27)
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and
T∑
t=1

w2
txtx

′
t →

(
T∑
t=1

w2
t

)
Ωxx, (28)

and the MSFE simplifies to

E(σ−2
(2)e

2
T+1) = 1 +

(
x′
T+1λ

)2( Tb∑
t=1

wt

)2

(29)

+
(
x′
T+1Ω

−1
xxxT+1

) Tb∑
t=1

q2w2
t +

T∑
t=Tb+1

w2
t

 .

The solution is similar to the case for k = 1 and is given by

w(1) =
1

T

1

b+ (1− b)(q2 + Tbϕ2)
, (30)

w(2) =
1

T

q2 + Tbϕ2

b+ (1− b)(q2 + Tbϕ2)
, (31)

where

ϕ =
x′
T+1λ(

x′
T+1Ω

−1
xxxT+1

)1/2 .
The above result is also in line with the result obtained for the simple case of k = 1.
In that case Ωxx = ω2

x and ϕ = λωx.

2.4 Multiple discrete breaks in a multiple regression model

Consider now the case of multiple breaks in the slope coefficient of a linear regression
model

yt = β′
txt + σεt

where the parameter vector βt is subject to n breaks at points bi = Tb,i/T , such
that b1 < b2 < · · · < bn. For simplicity of exposition here we assume that the
error variance is not subject to breaks. Initially, assume that n = 2, such that the
parameter vector is

βt =


β(1) for 1 < t ≤ Tb,1

β(2) for Tb,1 < t ≤ Tb,2

β(3) for Tb,2 < t ≤ T

Using the weighted least squares estimator (18) we have that

β̂T (w)−β(3) = S−1(w)
[
S1(w(1))(β(1) − β(3)) + S2(w(2))(β(2) − β(3))

]
+S−1(w)

T∑
t=1

wtxtσεt,

where S1(w(1)) =
∑Tb,1

t=1 wtxtx
′
t, S2(w(2)) =

∑Tb,2
t=Tb,1+1wtxtx

′
t, and S(w) =

∑T
t=1wtxtx

′
t.

Consequently,

eT+1(w) = yT+1 − xT+1β̂T (w)

= σεT+1 − x′
T+1S

−1(w)
[
S1(w1)(β(1) − β(3)) + S2(w(2))(β(2) − β(3))

]
+x′

T+1S
−1(w)

T∑
t=1

wtxtσεt
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and

E
[
σ−2e2T+1(w)

]
= 1 +

{
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]}2
+x′

T+1S
−1(w)

(
T∑
t=1

w2xtx
′
t

)
S−1(w)xT+1

where

λ(1) =
β(1) − β(3)

σ
and λ(2) =

β(2) − β(3)

σ
.

Optimal weights can therefore be obtained from

w∗ = argmin
w

f(w),

subject to ι′Tw = 1, where

f(w) =
{
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]}2
+x′

T+1S
−1(w)

(
T∑
t=1

w2
txtx

′
t

)
S−1(w)xT+1. (32)

The first order conditions are

wt
[
x′
T+1S

−1(w)AtS
−1(w)xT+1

]
= x′

T+1S
−1(w)

[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
×
{
x′
T+1S

−1(w)AtS
−1(w)

[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
− x′

T+1S
−1(w)Atλ(i)

}
+x′

T+1S
−1(w)AtS

−1(w)

(
T∑
t=1

w2
txtx

′
t

)
S−1(w)xT+1 + θ/2,

where again θ is the Lagrange multiplier associated with ι′Tw = 1 and

λ =


λ(1) if t ≤ Tb,1

λ(2) if Tb,1 < t ≤ Tb,2

0 if Tb,2 < t ≤ T

Again, by multiplying both sides by wt and aggregating over t = 1, 2, . . . , T it can
easily be verified that θ = 0.

Hence, for xt ̸= 0 the optimal weights are

wt =
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
x′
T+1S

−1(w)xt
×

×
{
x′
tS

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]}
+
x′
tS

−1(w)
(∑T

t=1w
2
txtx

′
t

)
S−1(w)xt+1

x′
T+1S

−1(w)xt
(33)

−
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
(x′
tλ(i))

x′
T+1S

−1(w)xt
.
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For n breaks it is easily seen that

wt =
x′
T+1S

−1(w)
[∑n−1

j=1 Sj(w(j))λ(j)

]{
x′
tS

−1(w)
[∑n−1

j=1 Sj(w(j))λ(j)

]}
x′
T+1S

−1(w)xt

+
x′
tS

−1(w)
(∑T

t=1w
2
txtx

′
t

)
S−1(w)xt+1

x′
T+1S

−1(w)xt
−

x′
T+1S

−1(w)
[∑n−1

j=1 Sj(w(j))λ(j)

]
(x′
tλ(i))

x′
T+1S

−1(w)xt
,

where

λ =



λ(1) =
β(1)−β(n+1)

σ if t ≤ Tb,1

λ(2) =
β(2)−β(n+1)

σ if Tb,1 < t ≤ Tb,2
...

...

λ(n) =
β(n)−β(n+1)

σ if Tb,n−1 < t ≤ Tb,n

0 if Tb,n < t ≤ T

As in the case of a single break, numerical methods are necessary to obtain the
weights.

2.4.1 Optimal weights for multiple breaks in a simple regression model

In the case of a single regressor we can solve for the weights analytically. In this
case, (33) simplifies to

wt =
[S1(w(1))λ(1) + S2(w(2))λ(2)]

2

S(w)
+

∑T
t=1w

2
t x

2
t

S(w)
− [S1(w(1))λ(1)+S2(w(2))λ(2)]λ(i)

where λ(i) is defined as above but is now a scalar. Therefore, defining S1(1) =∑Tb,1
t=1 x

2
t and S2(1) =

∑Tb,2
t=Tb,1+1 x

2
t , solving for the optimal weights yields

w(1) =
1

T

1 + λ2(2)S2(1)− λ(1)λ(2)S2(1)

as,2

w(2) =
1

T

1 + λ2(1)S1(1)− λ(1)λ(2)S1(1)

as,2

w(3) =
1

T

1 + λ2(1)S1(1) + λ2(2)S2(1)

as,2

where as,2 = 1+(1−b2)
[
S1(1)λ

2
(1) + S2(1)λ

2
(2)

]
+
[
λ(1) − λ(2)

] [
(b2 − b1)S1(1)λ(1) − b1S2(1)λ(2)

]
.

This result generalizes to n breaks where

w(i)|i ≤ n =
1

T

1 +
∑n

j=1,j ̸=i λ
2
(j)Sj(1)− λ(i)

∑n
j=1,j ̸=i λ(j)Sj(1)

as,n

w(n+1) =
1

T

1 +
∑n

j=1 λ
2
(j)Sj(1)

as,n

and

as,n = 1 +
n+1∑
l=1

(bl − bl−1)
n∑

j=1,j ̸=l
λ2(j)Sj(1)−

n∑
l=1

λ(l)(bl − bl−1)
n∑

j=1,j ̸=l
λ(j)Sj(1).
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2.4.2 Asymptotic results in the multi-break case with k ≥ 1 stationary
regressors

Similar to the case with one break, we can simplify the solution when there are
two or more regressors if we assume that many observations are available between
breaks and xt is a stationary process with E(xtx

′
t) = Ωxx. Note, however, that we

make no assumption about the number of observations since the last break. Initially
consider the case of two breaks. In addition to (26) and (28) we have

S1(w(1)) →

Tb,1∑
t=1

wt

E(xtx
′
t) =

Tb,1∑
t=1

wt

Ωxx

S2(w(2)) →

 Tb,2∑
t=Tb,1+1

wt

E(xtx
′
t) =

 Tb,2∑
t=Tb,1+1

wt

Ωxx

Then (32) simplifies to

f(w) =

x′
T+1

λ(1) Tb,1∑
t=1

wt + λ(2)

Tb,2∑
t=Tb,1+1

wt

2

+ x′
T+1

T∑
t=1

w2
tΩxxxT+1.

The optimal weights are therefore

w(1) =
1

T

1 + T (b2 − b1)ϕ
2
(2) − T (b2 − b1)ϕ(1)ϕ(2)

aa,2
(34)

w(2) =
1

T

1 + Tb1ϕ
2
(1) − Tb1ϕ(1)ϕ(2)

aa,2
(35)

w(3) =
1

T

1 + Tb1ϕ
2
(1) + T (b2 − b1)ϕ

2
(2)

aa,2
(36)

where aa,2 = 1+T (1− b2)b1ϕ
2
(1)+T (b2− b1)(1− b2)ϕ

2
(2)+Tb1(b2− b1)(ϕ(1)−ϕ(2))

2

and

ϕ(i) =
x′
T+1λ(i)(

x′
T+1Ω

−1
xxxT+1

)1/2 , for i = 1, 2.

An interesting result is that the weights for two breaks are not necessarily de-
creasing in the distance from T . In particular,

• w(1) > w(3) > w(2) if ϕ(1) < 0, ϕ(2) > 0 and b1ϕ(1) > −(b2 − b1)ϕ(2)

• w(1) > w(3) > w(2) if ϕ(1) > 0, ϕ(2) < 0 and b1ϕ(1) < −(b2 − b1)ϕ(2)

• w(2) > w(3) > w(1) if ϕ(1) < 0, ϕ(2) > 0 and b1ϕ(1) < −(b2 − b1)ϕ(2)

• w(2) > w(3) > w(1) if ϕ(1) > 0, ϕ(2) < 0 and b1ϕ(1) > −(b2 − b1)ϕ(2)

Figure 1 plots the weights for T = 100, b1 = 0.3, b2 = 0.6, ϕ(1) = −0.5 and
ϕ(2) = 1.5. Under this parameter constellation it is easily seen that w(1) > w(3) >
w(2).
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Figure 1: Optimal weights for T = 100, b1 = 0.3, b2 = 0.6, ϕ(1) = −0.5 and
ϕ(2) = 1.5
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Note that the weights w(1) and w(2) can be negative. We do not restrict the
weights to be positive as the weights in (34), (35), and (36) give a unique minimum
of the MSFE.

In the case of n breaks, the weights for the n+ 1 segments are given by

w(i)|i≤n =
1

T

1 + T
∑n

j=1,j ̸=i(bj − bj−1)ϕ
2
(j) − Tϕ(i)

∑n
j=1,j ̸=i(bj − bj−1)

aa,n

w(n+1) =
1

T

1 + T
∑n

j=1(bj − bj−1)ϕ
2
(j)

aa,n

where aa,n = 1 + T
∑n+1

l=1 (bl − bl−1)
∑n

j=1,j ̸=l ϕ
2
(j)(bj − bj−1) − T

∑n
l=1 ϕ(l)(bl −

bl−1)
∑n

j=1,j ̸=l ϕ
2
(j)(bj − bj−1) and b0 = 0.

3 Optimal weights when the time and size of the break
are uncertain

So far we have assumed that the time and the size of the break are known. However,
this may not be the case in many situations of practical interest. In particular, the
size of the break is difficult to estimate unless a relatively large number of post-break
observations is available.6 It is, therefore, worthwhile to develop weights that are
reasonably robust to the point and the size of the break(s). As a simple example,
consider the model with a single break at time Tb both in the slopes and the error
variances. Using (23) and (24) we first note that

Tw(1) =
1

b+ (1− b)q2 + Tb(1− b)ϕ2
,

Tw(2) =
q2 + Tbϕ2

b+ (1− b)q2 + Tb(1− b)ϕ2
.

6Also in finite samples distribution of the estimated break point does not have a closed form
expression and depends on the distribution of xt and εt. (See Hinkley, 1970). Asymptotic re-
sults can be obtained that do not depend on the distribution of the regressors or the error term
(e.g. Bai 1997), but such results might not be reliable in small samples.
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where ϕ2 = λ2ω̂2
x, with ω̂

2
x = T−1

∑T
t=1 x

2
t . The time profile of the weights can be

written as
Twt(b, q

2, ϕ2) = w(2) +
[
w(1) − w(2)

]
I(Tb − t)

for t = 1, 2, . . . , T . Hence

Tw(a, b, q2, ϕ2) =
q2

T + bϕ2

b+(1−b)q2
T + b(1− b)ϕ2

+

[
1−q2
T − bϕ2

b+(1−b)q2
T + b(1− b)ϕ2

]
I(b− a), (37)

where a = t/T ∈ [0, 1], and as before b = Tb/T ∈ [0, b̄], where b̄ < 1.
Initially, consider the case where the break is in the error variances only, namely

ϕ = 0 and q2 ̸= 1. Then

Tw(a, b, q2) =
q2

b+ (1− b)q2
+

[
1− q2

b+ (1− b)q2

]
I(b− a),

or

Tw(a, b, q2) =
1

1 + bψ
+

(
ψ

1 + bψ

)
I(b− a).

where ψ = (1− q2)/q2 = (σ2(2) − σ2(1))/σ
2
(1). It is also worth noting that w(1)/w(2) =

1 + ψ = σ2(2)/σ
2
(1), and more weights will be given to pre break observations if

σ2(2) > σ2(1), and vice versa. This is in line with the result obtained by Pesaran and

Timmermann (2007) using the concept of the optimal window.
In situations where b and q2 are uncertain their effects on the optimal weights

can be integrated out with respect to a given distribution of b and q2. Here, we
assume that b and q2 are independently distributed and focus on the uncertainty of
b for a given value of q2 or ψ. For b we assume that it is uniformly distributed over
the range b and b̄, namely the probability density of b is given by

f(b) =


0 if b < b
(b̄− b)−1 if b ≤ b < b̄
0 if b ≥ b̄.

The expression for w(a, q2) depends on whether a falls within the range [b, b̄] or not.
Specifically we have,

Tw(a, q2) =


(b̄− b)−1

∫ b̄
b

1+ψ
1+bψdb if a < b

(b̄− b)−1
∫ b̄
b

1
1+bψdb+

ψ
b̄−b
∫ b̄
a

1
1+bψdb if b ≤ a ≤ b̄

(b̄− b)−1
∫ b̄
b

1
1+bψdb if a > b̄

Also, it is easily seen that∫ b̄

b

1

1 + bψ
db = ψ−1 log

(
1 + b̄ψ

1 + bψ

)
,

and hence

Tw(a, q2) = (b̄− b)−1

[
ψ−1 log

(
1 + b̄ψ

1 + bψ

)
+ log

(
1 + b̄ψ

1 + aψ

)]
, if b ≤ a ≤ b̄.
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Figure 2: Robust weights (38) for break in variance, T = 100, q2 = 0.5, b = 0.3, b̄ =
0.9
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Since ψ = (1− q2)/q2, we can also write

Tw(a, q2) =


(b̄− b)−1 1

1−q2 log
(
b̄+(1−b̄)q2
b+(1−b)q2

)
if a < b

(b̄− b)−1
[

q2

1−q2 log
(
b̄+(1−b̄)q2
b+(1−b)q2

)
+ log

(
b̄+(1−b̄)q2
a+(1−a)q2

)]
if b ≤ a ≤ b̄

(b̄− b)−1 q2

1−q2 log
(
b̄+(1−b̄)q2
b+(1−b)q2

)
if a > b̄

(38)
Over the range b ≤ a ≤ b̄

T∂w(a, q2)

∂a
= (b̄− b)−1 −(1− q2)

a+ (1− a)q2
=

1

b̄− b

σ2(1) − σ2(2)

σ2(2) [a+ (1− a)q2]

and the weights w(a, q2) monotonically rise (fall) with a if σ2(1) > σ2(2) (σ
2
(1) < σ2(2)).

In other words, more weights will be placed on more recent observations only if
post-break error variance is smaller than pre-break error variance. This result holds
for all values of T . Figure 2 shows the weights for T = 100, q2 = 1/2, b = 0.3 and
b̄ = 0.9.

The expression for w(a, q2) simplifies further if we assume that the break point
could be any point within the range (0, 1). For this case we have

Tw(a, q2) =
−q2

1− q2
log
(
q2
)
− log

[
a+ (1− a)q2

]
, 0 ≤ a ≤ 1.

A discrete time approximation is given by

wt(q
2) =

1

T

−q2

1− q2
log
(
q2
)
− 1

T
log

[
t

T
+ (1− t

T
)q2
]
, t = 1, 2, . . . , T.

As to be expected, limq→1 Tw(a, q
2) = 1. Furthermore, it is easily seen that

w(a, q2) = w(1−a, 1/q2). Using these results the uncertainty regarding the value of
q2 can be integrated out by assuming a suitable density for q2. We shall not pursue
this idea, since we will show below that the effects of breaks in error variances are
dominated by the potential effects of breaks in slope coefficients.
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Consider now the more general case where ϕ2 > 0. Using (37) we have for
b < a < b̄

Tw(a, b, q2, ϕ2) =

q2

ϕ2T
+ b

b+(1−b)q2
Tϕ2

+ b(1− b)
+

1−q2
ϕ2T

− b

b+(1−b)q2
Tϕ2

+ b(1− b)
I(b− a),

For given values of q2 and ϕ2 and assuming that b lies in the range [b, b̄] with
0 < b < b̄ < 1, we have for b < a < b̄

Tw(a
∣∣q2, ϕ2 ) =

∫ b̄

b

q2

ϕ2T
+ b

[q2+(1−q2)b]
Tϕ2

+ b(1− b)
db (39)

+

∫ b̄

a

1−q2
ϕ2T

− b

[b+(1−b)q2]
Tϕ2

+ b(1− b)
db,

This result further simplifies when q2 = 1, and we have (for b < a < b̄)

Tw(a
∣∣ϕ2, q2 = 1) =

∫ b̄

b

1 + ϕ2Tb

1 + b(1− b)Tϕ2
db− ϕ2

∫ b̄

a

bTϕ2

1 + b(1− b)Tϕ2
db.

It is now easily seen that

T
∂w(a

∣∣ϕ2, q2 = 1)

∂a
=

aϕ2

T−1 + a(1− a)ϕ2
> 0,

namely, for all values of ϕ2 > 0, w(a
∣∣ϕ2, q2 = 1) is a monotonically increasing

function of a with the observations farthest from the end of the sample getting the
smallest weights. The decay rate of the wights depends on T . When q2 ̸= 1, we
have

T
∂w(a

∣∣ϕ2, q2 )
∂a

=
−(1−q

2

ϕ2T
− a)

[a+(1−a)q2]
Tϕ2

+ a(1− a)
.

In this more general case the weights increase monotonically in a if a > 1−q2
ϕ2T

, which

is clearly satisfied if q2 > 1.

3.1 Large T approximation

Consider now a large T approximation of the optimal weights and note that

Tw(a, b, q2, ϕ2) =

q2

ϕ2T
+ b

b(1− b)
(
1 + θ

T

) +
(
1−q2
ϕ2T

− b
)
I(b− a)

b(1− b)
(
1 + θ

T

) ,

where θ =
[
q2 + (1− q2)b

]
/ϕ2b(1 − b) > 0. Using

(
1 + θ

T

)−1
= 1 − θ

T + O(T−2),
and replacing θ in terms of b, q, and ϕ, we have

Tw(a, b, q2, ϕ2) =
1

1− b
− 1

1− b
I(b− a) +

1

T

[
q2

ϕ2b(1− b)
− q2 + (1− q2)b

ϕ2b(1− b)2

]
+
1

T

[
1− q2

ϕ2b(1− b)
+
q2 + (1− q2)b

ϕ2b(1− b)2

]
I(b− a) +O(T−2).
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Figure 3: Robust weights (41), T = 100, b = 0.3, b̄ = 0.9
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But since

q2

ϕ2b(1− b)
− q2 + (1− q2)b

ϕ2b(1− b)2
=
q2(1− b)− q2 − (1− q2)b

ϕ2b(1− b)2
=

−1

ϕ2(1− b)2

1− q2

ϕ2b(1− b)
+
q2 + (1− q2)b

ϕ2b(1− b)2
=

(
1− q2

)
(1− b) + q2 + (1− q2)b

ϕ2b(1− b)2
=

1

ϕ2b(1− b)2

the weights profile simplifies to

Tw(a, b, q2, ϕ2) =
1

1− b
− 1

1− b
I(b− a) (40)

− 1

T

[
1

ϕ2(1− b)2

]
+

1

T

[
1

ϕ2b(1− b)2

]
I(b− a) +O(T−2).

It is interesting that the first order term in this expansion does not depend on the
sizes of the breaks, and depends only on the break point, b. Also, the terms up to
order T−1 are independent of q2 as long as ϕ2 > 0, that is, a break in the error
variance is dominated by a break in the mean of the process.

Therefore, for large T , robust weights are determined by the distribution of b.
Here, we assuming that b ∼ Uniform(b, b̄) with 0 < b < b̄ < 1, and obtain

Tw(a) =


0 +O(T−1), for a < b

(b̄− b)−1
∫ b̄
b

1
1−bdb− (b̄− b)−1

∫ b̄
a

1
1−bdb+O(T−1), for b ≤ a ≤ b̄

(b̄− b)−1
∫ b̄
b

1
1−bdb+O(T−1), for a > b̄

and

w(a) ≈


0, if a < b

−1
T(b̄−b)

log
(
1−a
1−b

)
, if b ≤ a ≤ b̄

−1
T(b̄−b)

log
(
1−b̄
1−b

)
, if a > b̄

(41)

Figure 3 shows the robust weights for T = 100, b = 0.3 and b̄ = 0.9, assuming that
ϕ2 > 0, and it can be seen that the weights increase monotonically from b to b̄.

In the case where b and b̄ are close to the end points of 0 and 1, we have

w(a) ≈ − log(1− a)

T
, a ∈

[
0, b̄
]
. (42)
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A discrete time version can be obtained by setting T b̄ = T − 1, or b̄ = 1 − 1/T .7

Namely,

w∗
t =

− log(1− t/T )

T − 1
, for t = 1, 2, . . . , T − 1 (43)

w∗
T =

−1

T − 1
log

(
1− T − 1

T

)
=

log(T )

T − 1
(44)

Due to the approximation/discretization these weights do not sum to unity, and
can be scaled as

wt =
w∗
t∑T

s=1w
∗
s

, for t = 1, 2, . . . , T. (45)

For b and b̄ close to the end points of 0 and 1 and using calculations detailed in
Appendix A.3, we can also obtain the MSFE implied by the robust weights (41) as

ω2
x

x2T+1

[
E
(
σ−2
(2)e

2
T+1

)
− 1
]
≈ ϕ2 [b+ (1− b) log(1− b)]2 (46)

+

(
q2 − 1

)
T

[
−(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

]
+

2

T

Comparing this result to the equal weight MSFE we have

ω2
x

x2T+1

(MSFEequal −MSFErobust) = ϕ2ψϕ(b) +

(
q2 − 1

)
T

ψq(b)−
1

T
,

where

ψϕ(b) =
[
b2 − [b+ (1− b) log(1− b)]2

]
= [2b+ (1− b) log(1− b)] [−(1− b) log(1− b)] ,

and
ψq(b) = (1− b) [log(1− b)]2 − 2(1− b) log(1− b)− b

Consider the case where q = 1. Then

ω2
x

x2T+1

(MSFEequal −MSFErobust) = ϕ2ψϕ(b)−
1

T
.

It is easily seen that for values of 0 ≤ b ≤ b̄ , ψ(b) > 0 and attains its maximum
at b = 0.80 giving ψ(0.80) = 0.41. For relatively large breaks the robust optimal
weights will dominate the equal weights in MSFE. Only in cases where T and ϕ are
small and b close to the beginning of the sample one would expect the equal weights
to perform better than the robust weights.

When q ̸= 1 the relative performance of the two sets of weights depend on the
sign of

(
q2 − 1

)
ψq(b). It can be shown that ψq(b) > 0 if b ≤ 0.91, and negative

otherwise. However, for reasonable values of q2 (say 1/2 or 2), the term
(q2−1)
T ψq(b)

is relatively unimportant when T is 100 or more. Note that max0≤b≤0.95 |ψq(b)| =
7Clearly, one could set b̄ to other values close to 1, say 1 − 0.5/T . But for relatively large T ,

the choice of w∗
T for the forecasts is unlikely to be of great importance.
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Figure 4: Comparison of optimal weights, robust optimal weights, and fitted expo-
nential smoothing weights

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
T=50 q2=0.5 and φ2=0.1

 

 

w(a|q2,φ2)

w*
t

ExpS(γ=0.97817)

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
T=500 q2=0.5 and φ2=0.1

 

 

w(a|q2,φ2)

w*
t

ExpS(γ=0.99432)

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
T=50 q2=0.5 and φ2=1

 

 

w(a|q2,φ2)

w*
t

ExpS(γ=0.94432)

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
T=500 q2=0.5 and φ2=1

 

 

w(a|q2,φ2)

w*
t

ExpS(γ=0.99259)

Note: T = 50 in the plots in the left column, T = 500 in the plots in the right column, ϕ2 = 0.1 in
the plots in the top row, ϕ2 = 1 in the plots in the bottom row, and q2 = 0.5 throughout.

0.202 and for T = 100 the contribution of
(q2−1)
T ψq(b) to the relative performance

of the two weights can be ignored, unless ϕ is very small and b very close to 0 or 1.
It is also interesting to explore the fit of the robust weights and the ExpS weights

to the optimal weights for a range of T , q2 and ϕ2. Figure 4 contains plots of the
optimal weights w(a|q2, ϕ2) in (39), the robust weights, wt, in (45) and the ExpS
weights (8), where γ is chosen such that the distance between w(a|q2, ϕ2) and wet (γ)
is minimized. The plots show that the accuracy of the robust optimal weights
depends largely on ϕ2: for larger ϕ2 the robust weights are very close to the optimal
weights, for the smaller ϕ2 a good approximation requires large T . The plots also
show that, as predicted by our theory, q2 has a minor influence on the weights
that is only visible when T and ϕ2 are both small, which is visible in the top left
plot, where initially the weights fall slightly. Finally, the down-weighting parameter
γ in the exponential smoothing weight that best approximates the exact optimal
weight varies between 0.944 and 0.994, and the ExpS weights generally give too low
a weight to the most recent observations as compared to the optimal weights.

Robust weights that allow for high order terms in the expansion (40) are provided
in Appendix A.4. However, we will not pursue them further in this paper.
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Figure 5: Robust weights for two breaks, T = 100, and different values of ϕ(1) and
ϕ(2)
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Note: The first graph plots the weights for ϕ(1) = −0.5 and ϕ(2) = 1.5, the second for ϕ(1) = 0

and ϕ(2) = 1, and the third for ϕ(1) = 2 and ϕ(2) = 1. The weights are given in (34) to (36) and

integrating uniformly over b1 and b2 over the range 1/T to (T − 1)/T.

3.1.1 Robust weights for regression models with two breaks

Consider the case of two breaks, where the weights conditional on b and λ are
given in (34) to (36). Clearly, b < b1 < b2 < b̄ and Pr(b1, b2) = Pr(b1)Pr(b2|b1),
furthermore b1 < b1 < b̄1 and b2 < b2 < b̄2 where b1 < b2 and b̄1 < b̄2, then

Pr(b1) =


0 if b1 < b1

1
b̄1−b1

if b1 < b1 ≤ b̄1

0 if b1 > b̄1

Pr(b2|b1) =


0 if b2 < b2

1
b̄2−b1

if b2 < b2 ≤ b̄2

0 if b2 > b̄2

Analytic solutions for the robust weights under two breaks are not easy to obtain.
However, we can obtain numerical solutions using (34) to (36) and integrating over
a grid for b1 and b2 taking into account that b1 < b2 and setting b1 = 1/T , b2 = 2/T ,
b̄1 = (T − 2)/T and, finally, b̄2 = (T − 1)/T .

Figure 5 plots the robust weights for two breaks and T = 100, where the first
graph reports the weights for ϕ(1) = −0.5 and ϕ(2) = 1.5, the second for ϕ(1) = 0
and ϕ(2) = 1, the third for ϕ(1) = 2 and ϕ(2) = 1. It can be seen that the shape of
the weights depends on the parameters chosen. The first graph the parameters ϕ(1)
and ϕ(2) are those that under known break dates resulted in the example in Figure 1
where the first subsample receives the largest weights. The pattern is the same with
the very early observation receiving higher weights than the last observations. The
second graph is for parameters that would lead to equal weights in the first and last
subsample if the break dates were known. The final graph uses breaks that decrease
in size, which results in continuously increasing weights.

In practice, given that the break date is uncertain, the size of break is also likely
to be unknown. In addition to the break date, we therefore also integrate over
the break sizes. Figure 6 plots the weights when ϕ(1) and ϕ(2) are integrated with
respect to a unform distribution in the range −2 to 2. The first graph shows the
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Figure 6: Robust weights for two breaks and ϕ(1) and ϕ(2) integrated out, T = 50
and 200
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Note: The first graph plots the weights for T = 50 and the second for T = 200. The weights are

given in (34) to (36) and integrating uniformly over b1 and b2 over the range 1/T to (T − 1)/T and

ϕ(1) and ϕ(2) over the range −2 to 2.

weights for T = 50 and the second for T = 200. It can be seen that the shape
of the weight function is largely independent of the sample size. Most weight is
given to the most recent observations. Interestingly, the first observations receive
a higher weight than the observations in the middle of the sample, which reflects
the possibility that early observations can have a bias that counterbalances that of
later observations.

4 Monte Carlo evidence on forecasting performance

4.1 Data generating process

We now turn to evaluate the performance of the forecasting methods discussed above
in a range of Monte Carlo experiments. The first set of experiments considers the
continuous break model (2) in Section 2.1. A second set of experiments concentrates
on the random walk model (2) with a single discrete break as discussed in Section 2.2.
In this model the MSFEs of the different forecast models are known conditional on
Tb and λ and have been reported in Table 1. The Monte Carlo experiments will
show in how far the uncertainty around the break date and size affects the different
forecasts. In a final set of experiments we add a regressor using the simple linear
regression model discussed in Section 2.3.1.

The first model is
yt = µt + σtεt, εt ∼ N(0, 1) (47)

where the mean follows a random walk

µt = µt−1 + σvvt, vt ∼ N(0, 1)

and t = 1, 2, . . . , T, T +1 with T = 50, 100, 200, and γ = {0.8, 0.9, 0.95, 0.98}, which
corresponds to δ = σε/σv ≈ {4.472, 9.487, 19.494, 49.497}.

Next, we assume that the mean in (47) has a discrete break

µt =

{
µ(1) t ≤ Tb
µ(2) t > Tb

and σt =

{
σ(1) t ≤ Tb
σ(2) t > Tb
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and t = 1, 2, . . . , T, T + 1 with T = 50, 100, 200. We set b = {0.95, 0.9}, λ =
(µ(1) − µ(2))/σ(2) = {0.5, 1, 2} and q = σ(1)/σ(2) = {0.5, 1}. We assume that Tb, λ
and q are unknown and have to be estimated.

The third model adds a regressor, such that

yt = βtxt + σtεt, εt ∼ N(0, 1)

where

βt =

{
β(1) t ≤ Tb
β(2) t > Tb

and σt =

{
σ(1) t ≤ Tb
σ(2) t > Tb

we set b and λ as in the second experiment but restrict attention to q = 1. Regressors
are generated as xt ∼ iidN(0, 1), and forecasts are conditional on xT+1.

Forecasts based on the full estimation window with equal weights will serve as
the base line to which all other forecast methods are compared. We also include
the infeasible optimal forecasts based on the optimal weights that use the true
parameter values of the break process for comparison. For model (47) with the
continuous breaks the weights are given by (3), for the model with discrete breaks
the weights are given in (11) and (12), and for the simple regression model they are
given by (23) and (24).

For the methods that assume a continuous break we estimate γ from an MA(1)
in first differences, which also yields an estimate of δ via (9). The MA(1) estimation
at times suffers from a relatively flat likelihood, and for this reason we restrict this
estimation to the random walk model. We also report the MSE of the estimation of
γ. We forecast the model with weights (3) using the estimated δ̂ and by ExpS with
weights (7) using γ̂. For comparison we also add ExpS forecasts based on γ = 0.95
and γ = 0.98.

For the methods that assume a discrete break process we use the Bai and Perron
(1998, 2003) procedure to estimate the break dates, b = (b1, b2)

′, and, conditional on
the dates, the break sizes, λ = (λ(1), λ(2))

′. We then use these estimates to compute
feasible forecasts based on the optimal weights (11) and (12) in the random walk
model or (23) and (24) in the simple linear regression model with b̂ and λ̂ in place
of b and λ. For the DGP with continuous breaks we allow for two breaks, for the
DGP with a discrete break we restrict attention to testing for one break.

We also make forecasts using the robust weights developed above. First, we
assume that the forecaster uses the information that the break is in the last quarter
but not in the last 2% of the sample. The corresponding weights are given by (41).
Second, we assume that break dates in the full sample are equally likely with the
weights given in (45). Finally, in the experiments with continuous break process we
use robust weights assuming two breaks, where the weights are calculated numeri-
cally integrating over (b1 > b2) and ϕ(1) and ϕ(2) over the range −2 to 2.

For comparison, we construct forecasts based on the observations after the es-
timated break date and using optimal estimation window based on the estimated
break date and size. Given uncertainty over the break dates, we also average over
estimation windows with minimum window vmin = 0.05.

Using each of these methods we construct one-period ahead forecasts and base
comparisons on the MSFE. We report the ratio of MSFEs relative to that of the
forecasts using equal weights, MSFEequal, so that for method i we have

rMSFEi =
MSFEi

MSFEequal
(48)

28



The results are based on 10,000 replications.

4.2 Monte Carlo Results

Continuous breaks DGP Table 2 reports the results for the DGP with con-
tinuous breaks. The first line reports the results for the infeasible optimal weights
forecasts based on the true δ, which produces forecasts with large improvements in
MSFE relative to the equal weights forecasts.

The second and third line contain the results for the optimal and ExpS weights
forecasts based on the estimated δ̂ and γ̂. As suggested by our theoretical results in
Section 2.1, these two forecasts are numerically identical. Table 3 reports the MSE
of the estimation of γ across the experiments, and it can be seen that the MSE
decreases foremost in T and to a lesser extent in γ. This is reflected in the forecast
results, which are close to those for known δ for larger T .

The next two lines report the results for γ = 0.95 and 0.98, which are set a
priori. The benefit of using a priori selected versus estimated values for γ depends
on the deviation of the selected γ from the true value and on the estimation un-
certainty around γ̂: ExpS with fixed parameter γ = 0.95 improves on its estimated
counterparts when the true γ is at least 0.9 for T = 50 and 100 or γ = 0.95 for
T = 200 as it avoids the estimation uncertainty. However, it can result in consider-
ably worse forecasts when the true γ is below 0.95. ExpS with γ = 0.98 improves
on the estimated counterpart when true γ is at least 0.95 when T = 50 and 100
but for T = 200 it requires the true γ to be 0.98. These results clearly show the
sensitivity of ExpS to the a priori choice of γ, even when the underlying break
process is continuous.

Amongst the methods that assume a discrete break, the robust weights generally
perform best. For smaller γ’s the robust weights integrating b over the range b = 0.75
and b̄ = 0.98 deliver the best forecasts. Notably, for true values of γ = 0.8 and 0.9
and T = 50, and for γ = 0.9 and T = 100 they deliver the best forecasts of all
feasible forecasts, including those based on the assumption of continuous breaks.
For larger γ’s the robust weights forecast performance remains close to that of the
methods that assume continuous breaks.

Forecasts based on optimal weights under the assumption of discrete breaks
perform well when γ = 0.8, that is when βt has a large variation. For larger γ the
performance deteriorates and for the γ = 0.98 it is generally worse than the equal
weights forecast. The results for the forecast from the optimal window are similar to
the optimal weights forecast. The post-break window forecast is the least favorable
forecasting methods in this setting and often leads to the highest MSFE.

Finally, the AveW forecasts perform well when γ = 0.95 and γ = 0.98, and
provide the best forecast for T = 50 and γ = 0.95 and the second best forecast for
T = 100 and γ = 0.98. However, when the true value of γ is small the AveW pro-
cedure performs poorly since it does not discount past observations heavily enough.
Still, it improves over ExpS with fixed gamma when T is 50 or 100.

Discrete breaks DGP Table 4 contains the results when the break in the under-
lying random walk process is discrete. Amongst the feasible forecasts the relative
performance depends foremost on the size of the break and then the sample size.
The second line reports the results using the estimated optimal weights. When
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Table 2: Monte Carlo results for the random walk model with continuous breaks

γ 0.8 0.9 0.95 0.98
δ 4.472 9.487 19.494 49.497

T = 50

opt.weight(cont.break; δ) 0.633 0.899 0.981 0.999

estim.opt.weight(cont.break; δ̂) 0.696 0.961 1.027 1.012
ExpS(γ̂) 0.696 0.961 1.027 1.012
ExpS(γ = 0.95) 0.778 0.922 0.980 1.003
ExpS(γ = 0.98) 0.897 0.962 0.988 0.999

estim.opt.weight(disc.break; b̂, λ̂) 0.698 1.007 1.095 1.103
robust weights(b = 0.75, b̄ = 0.98) 0.649 0.905 1.006 1.038
robust weights(b = 0, b̄ = 1) 0.725 0.908 0.982 1.010
robust weights(two breaks) 0.829 0.938 0.983 0.999

post-break obs.(b̂) 0.704 1.026 1.118 1.127

opt.window(b̂, λ̂) 0.684 0.968 1.055 1.061
AveW(wmin = 0.05) 0.744 0.912 0.980 1.007

T = 100

opt.weight(cont.break; δ) 0.444 0.772 0.956 0.999

estim.opt.weight(cont.break; δ̂) 0.455 0.794 0.995 1.022
ExpS(γ̂) 0.455 0.794 0.995 1.022
ExpS(γ = 0.95) 0.557 0.799 0.956 1.015
ExpS(γ = 0.98) 0.744 0.885 0.968 1.000

estim.opt.weight(disc.break; b̂, λ̂) 0.510 0.856 1.085 1.121
robust weights(b = 0.75, b̄ = 0.98) 0.508 0.781 0.963 1.029
robust weights(b = 0, b̄ = 1) 0.620 0.829 0.958 1.007
robust weights(two breaks) 0.761 0.888 0.969 1.000

post-break obs.(b̂) 0.511 0.864 1.105 1.144

opt.window(b̂, λ̂) 0.503 0.828 1.042 1.081
AveW(wmin = 0.05) 0.644 0.840 0.959 1.005

T = 200

opt.weight(cont.break; δ) 0.285 0.630 0.879 0.982

estim.opt.weight(cont.break; δ̂) 0.290 0.642 0.893 0.997
ExpS(γ̂) 0.290 0.642 0.893 0.997
ExpS(γ = 0.95) 0.351 0.647 0.879 0.995
ExpS(γ = 0.98) 0.511 0.733 0.901 0.982

estim.opt.weight(disc.break; b̂, λ̂) 0.368 0.685 0.953 1.081
robust weights(b = 0.75, b̄ = 0.98) 0.399 0.672 0.882 0.986
robust weights(b = 0, b̄ = 1) 0.533 0.745 0.906 0.982
robust weights(two breaks) 0.699 0.833 0.937 0.987

post-break obs.(b̂) 0.368 0.688 0.961 1.097

opt.window(b̂, λ̂) 0.368 0.675 0.926 1.052
AveW(wmin = 0.05) 0.562 0.762 0.912 0.983

Note: The table reports the ratio of MSFE of forecast method i relative to that using equal weights,

MSFEi/MSFEequal. The DGP is yt = βt + σεεt where βt = βt−1 + σvvt, δ = σε/σv, and δ =
√
γ/(1 − γ).

Forecast methods: (i) infeasible optimal weights as function of δ, (ii) optimal weights for continuous breaks where δ

is estimated from an MA(1) in the first difference of the data, (iii) ExpS with γ estimated from an MA(1) in the first

difference of the data, (iv) ExpS with fixed γ = 0.95 and (v) γ = 0.98. (vi) optimal weights based on point estimates

of b and λ for up to two breaks, (vii) robust weights (41) with b = 0.75 and b̄ = 0.98, (viii) robust weights (45),

(ix) robust weights for two breaks with ϕ(1), ϕ(2) ∈ (−2, 2), (x) post-break window based on b̂, (xi) optimal window

based on point estimates of b and λ for the last break, (xii) AveW forecasts with m = T (1− vmin) + 1 windows and

vmin = 0.05. The results are based on R = 10, 000 repetitions.
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Table 3: MSE of γ̂ in Monte Carlo experiments with continuous breaks

T\γ 0.8 0.9 0.95 0.98

50 0.013 0.012 0.009 0.004
100 0.005 0.003 0.005 0.002
200 0.003 0.002 0.002 0.001

Note: The table reports the MSE of the

estimation of the MA parameter γ in an

MA(1) model in the Monte Carlo experi-

ments reported in Table 2.

the break size, λ, is small, the detection of the break is difficult, using estimated
optimal weights leads to forecasts with a higher MSFE than most other forecasting
methods. However, when λ = 2 the estimated optimal weights produce MSFEs that
are among the smallest across all feasible methods. The benefit of using optimal
weights therefore depends on the ability to detect the break accurately.

The next two lines report the results for the robust weights. For the smaller
breaks and T = 50 and 100, the forecasts that use the information that the break
is in the last quarter of the sample provide the best forecasts across all feasible
methods. For T = 200 it is second to the ExpS forecast with γ = 0.95. The
robust forecasts that integrate b over the last quarter of the sample always perform
better—and for larger breaks substantially—than those integrating over the entire
sample, which shows how powerful this additional information is for the resulting
forecasts. For large values of λ the robust weights still improve vastly over the equal
weights forecast but not as much as the estimated optimal weights.

Forecasts based on post-break observations (with an estimated break date) have
the highest MSFE when the break size is small, but their performance improves
dramatically when λ is large, where the post-break forecasts have MSFEs very
similar to the ones obtained for the estimated optimal weights. The optimal window
forecasts perform quite similar to the estimated optimal weights forecasts, and their
performance depends largely on the size of the break.

AveW forecasts perform well when T = 50 and the break is small but less good
when T is 100 or more. Still, in all examples, AveW offers substantial improvements
over the full sample equal weights forecasts.

Forecasts that incorrectly assume the break process is continuous also reduce the
MSFE relative to the full sample based forecasts, but as to be expected are generally
less efficient than those based on weights derived assuming a discrete break DGP.
However, as T increases these methods improve and are a good option when λ is
small.

The results in Table 5 show that the influence of a break in the error variance
is of negligible importance of the forecasts, which confirms our theoretical results.

Table 6 reports the results for the simple linear regression model. While the
magnitude of the relative MSFE results are affected by the additional uncertainty
introduced by the regressor, the relative ranking of the various forecasting methods
is very similar to that for the random walk model. A notable difference is that
the robust weights now also deliver the best forecasts for the largest breaks when
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Table 4: Monte Carlo results for random walk model with a discrete break, q = 1
b 0.95 0.9
λ 0.5 1 2 0.5 1 2

T = 50

opt.weight(disc.break; b, λ) 0.923 0.653 0.284 0.910 0.634 0.276

estim.opt.weight(disc.break; b̂, λ̂) 1.040 0.873 0.428 1.040 0.842 0.342
robust weights(b = 0.75, b̄ = 0.98) 0.948 0.782 0.604 0.927 0.717 0.480
robust weights(b = 0, b̄ = 1) 0.956 0.857 0.751 0.940 0.810 0.662

post-break obs.(b̂) 1.060 0.885 0.427 1.060 0.856 0.343

opt.window(b̂, λ̂) 1.004 0.847 0.451 1.003 0.813 0.349
AveW(wmin = 0.05) 0.966 0.888 0.805 0.948 0.836 0.709

estim.opt.weight(cont.break; δ̂) 0.994 0.961 0.798 0.992 0.930 0.577
ExpS(γ̂) 0.994 0.961 0.798 0.992 0.930 0.577
ExpS(γ = 0.95) 0.973 0.915 0.852 0.958 0.872 0.775
ExpS(γ = 0.98) 0.989 0.969 0.947 0.983 0.951 0.916

T = 100

opt.weight(disc.break; b, λ) 0.893 0.603 0.256 0.875 0.592 0.257

estim.opt.weight(disc.break; b̂, λ̂) 1.022 0.826 0.320 1.014 0.737 0.263
robust weights(b = 0.75, b̄ = 0.98) 0.934 0.796 0.648 0.901 0.705 0.480
robust weights(b = 0, b̄ = 1) 0.953 0.867 0.775 0.931 0.805 0.662

post-break obs.(b̂) 1.039 0.839 0.319 1.030 0.747 0.262

opt.window(b̂, λ̂) 0.991 0.800 0.329 0.986 0.722 0.268
AveW(wmin = 0.05) 0.965 0.900 0.830 0.940 0.831 0.706

estim.opt.weight(cont.break; δ̂) 0.992 0.944 0.666 0.984 0.847 0.337
ExpS(γ̂) 0.992 0.944 0.666 0.984 0.847 0.337
ExpS(γ = 0.95) 0.949 0.849 0.741 0.916 0.759 0.579
ExpS(γ = 0.98) 0.980 0.944 0.905 0.963 0.899 0.826

T = 200

opt.weight(disc.break; b, λ) 0.869 0.571 0.238 0.862 0.577 0.248

estim.opt.weight(disc.break; b̂, λ̂) 1.010 0.711 0.245 0.984 0.618 0.249
robust weights(b = 0.75, b̄ = 0.98) 0.924 0.788 0.643 0.892 0.697 0.474
robust weights(b = 0, b̄ = 1) 0.949 0.863 0.771 0.928 0.802 0.658

post-break obs.(b̂) 1.027 0.720 0.244 0.998 0.621 0.249

opt.window(b̂, λ̂) 0.984 0.695 0.249 0.966 0.613 0.251
AveW(wmin = 0.05) 0.962 0.899 0.831 0.937 0.828 0.704

estim.opt.weight(cont.break; δ̂) 0.989 0.898 0.391 0.973 0.727 0.265
ExpS(γ̂) 0.989 0.898 0.391 0.973 0.727 0.265
ExpS(γ = 0.95) 0.905 0.725 0.533 0.874 0.635 0.363
ExpS(γ = 0.98) 0.954 0.876 0.793 0.926 0.797 0.651

Note: The table reports the relative MSFEs for the DGP yt = βt + σtεt with a break in βt

and σt at Tb. Here, q = σ(1)/σ(2) = 1. The first forecast method uses optimal weights for a

discrete break with known b and λ. For the remaining forecast methods see Table 2.
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Table 5: Monte Carlo results for random walk model with a discrete break, q = 0.5
b 0.95 0.9
λ 0.5 1 2 0.5 1 2

T = 50

opt.weight(disc.break; b, λ) 0.927 0.656 0.284 0.915 0.637 0.277

estim.opt.weight(disc.break; b̂, λ̂) 1.042 0.853 0.411 1.048 0.835 0.333
robust weights(b = 0.75, b̄ = 0.98) 0.942 0.778 0.602 0.925 0.715 0.479
robust weights(b = 0, b̄ = 1) 0.955 0.856 0.750 0.940 0.810 0.662

post-break obs.(b̂) 1.065 0.864 0.410 1.073 0.850 0.334

opt.window(b̂, λ̂) 1.002 0.824 0.426 1.006 0.803 0.335
AveW(wmin = 0.05) 0.964 0.887 0.804 0.947 0.835 0.709

estim.opt.weight(cont.break; δ̂) 0.997 0.939 0.648 0.999 0.895 0.424
ExpS(γ̂) 0.997 0.939 0.648 0.999 0.895 0.424
ExpS(γ = 0.95) 0.972 0.914 0.852 0.958 0.872 0.774
ExpS(γ = 0.98) 0.989 0.968 0.947 0.983 0.951 0.916

T = 100

opt.weight(disc.break; b, λ) 0.896 0.605 0.257 0.878 0.593 0.257

estim.opt.weight(disc.break; b̂, λ̂) 1.031 0.807 0.311 1.021 0.731 0.262
robust weights(b = 0.75, b̄ = 0.98) 0.930 0.794 0.647 0.900 0.704 0.480
robust weights(b = 0, b̄ = 1) 0.952 0.866 0.774 0.931 0.805 0.662

post-break obs.(b̂) 1.054 0.821 0.311 1.042 0.742 0.261

opt.window(b̂, λ̂) 0.994 0.780 0.316 0.990 0.714 0.265
AveW(wmin = 0.05) 0.964 0.899 0.830 0.939 0.830 0.706

estim.opt.weight(cont.break; δ̂) 0.990 0.910 0.469 0.978 0.769 0.289
ExpS(γ̂) 0.990 0.910 0.469 0.978 0.769 0.289
ExpS(γ = 0.95) 0.946 0.847 0.740 0.916 0.758 0.579
ExpS(γ = 0.98) 0.979 0.943 0.905 0.963 0.899 0.826

T = 200

opt.weight(disc.break; b, λ) 0.871 0.572 0.238 0.863 0.578 0.248

estim.opt.weight(disc.break; b̂, λ̂) 1.024 0.704 0.243 0.992 0.613 0.249
robust weights(b = 0.75, b̄ = 0.98) 0.923 0.787 0.642 0.893 0.697 0.474
robust weights(b = 0, b̄ = 1) 0.949 0.863 0.771 0.928 0.802 0.658

post-break obs.(b̂) 1.047 0.714 0.243 1.010 0.616 0.248

opt.window(b̂, λ̂) 0.991 0.686 0.245 0.971 0.607 0.249
AveW(wmin = 0.05) 0.962 0.898 0.831 0.937 0.828 0.704

estim.opt.weight(cont.break; δ̂) 0.979 0.800 0.288 0.952 0.648 0.263
ExpS(γ̂) 0.979 0.800 0.288 0.952 0.648 0.263
ExpS(γ = 0.95) 0.903 0.724 0.533 0.875 0.635 0.363
ExpS(γ = 0.98) 0.954 0.876 0.793 0.926 0.797 0.651

Note: Here, q = σ(1)/σ(2) = 0.5. Otherwise see footnote of Tables 2 and 4.
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Table 6: Monte Carlo results for a single regressor and a discrete break, q = 1
b 0.95 0.9
λ 0.5 1 2 0.5 1 2

T = 50

opt.weight(disc.break; b, λ) 0.979 0.853 0.542 0.971 0.832 0.520

estim.opt.weight(disc.break; b̂, λ̂) 1.005 0.978 0.851 1.009 0.952 0.631
robust weights(b = 0.75, b̄ = 0.98) 0.981 0.898 0.753 0.975 0.869 0.673
robust weights(b = 0, b̄ = 1) 0.980 0.925 0.836 0.975 0.907 0.783

post-break obs.(b̂) 1.007 0.980 0.849 1.012 0.957 0.633

opt.window(b̂, λ̂) 1.007 0.980 0.850 1.012 0.957 0.634
AveW(wmin = 0.05) 0.982 0.933 0.854 0.977 0.911 0.794
ExpS(γ = 0.95) 0.985 0.950 0.896 0.981 0.933 0.851
ExpS(γ = 0.98) 0.993 0.979 0.959 0.991 0.972 0.941

T = 100

opt.weight(disc.break; b, λ) 0.961 0.800 0.499 0.952 0.796 0.502

estim.opt.weight(disc.break; b̂, λ̂) 1.003 0.913 0.607 1.003 0.877 0.520
robust weights(b = 0.75, b̄ = 0.98) 0.974 0.896 0.776 0.962 0.856 0.668
robust weights(b = 0, b̄ = 1) 0.979 0.929 0.854 0.972 0.903 0.783

post-break obs.(b̂) 1.006 0.916 0.608 1.006 0.881 0.520

opt.window(b̂, λ̂) 1.006 0.916 0.608 1.006 0.881 0.520
AveW(wmin = 0.05) 0.983 0.941 0.880 0.974 0.911 0.800
ExpS(γ = 0.95) 0.978 0.920 0.832 0.967 0.882 0.731
ExpS(γ = 0.98) 0.990 0.967 0.934 0.984 0.948 0.885

T = 200

opt.weight(disc.break; b, λ) 0.955 0.786 0.473 0.945 0.793 0.485

estim.opt.weight(disc.break; b̂, λ̂) 1.013 0.874 0.491 1.001 0.822 0.487
robust weights(b = 0.75, b̄ = 0.98) 0.972 0.894 0.757 0.957 0.853 0.649
robust weights(b = 0, b̄ = 1) 0.980 0.930 0.842 0.970 0.903 0.771

post-break obs.(b̂) 1.018 0.878 0.491 1.006 0.823 0.486

opt.window(b̂, λ̂) 1.018 0.878 0.491 1.006 0.823 0.486
AveW(wmin = 0.05) 0.984 0.945 0.878 0.973 0.913 0.796
ExpS(γ = 0.95) 0.966 0.865 0.685 0.951 0.824 0.573
ExpS(γ = 0.98) 0.982 0.936 0.856 0.969 0.901 0.766

Note: The results are for the simple linear regression model, yt = βtxt + σtεt with a single

break in βt at Tb. For definitions and forecasting procedures see the footnotes of Tables 2 and

4.
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T = 50 and 100 and the post-break window size is small. Also, the optimal weights
forecasts now dominate the optimal window forecasts when λ = 1.

Overall, the Monte Carlo results suggest that when the break size is small and/or
the sample is too small for an accurate estimation of the break process, the robust
weights developed in this paper deliver the most precise forecasts. This is true for
discrete as well as continuous break processes. When the break process is continuous
and the sample large, estimated optimal weights and ExpS forecasts with estimated
down-weighting parameter will result in the most precise forecasts for γ not too
close to unity. If true γ is large, robust weights forecasts dominate even in large
samples. ExpS forecasts can work well even when the break process is discrete, so
long as the break is small and the sample large. However, this relies on a priori
knowledge of the correct down-weighting parameter, which will not be available to
the forecaster in real time. Under discrete breaks that are large and easily identified,
the optimal weight forecasts will provide the best forecasts.

5 Application to the yield curve as a predictor of real
economic activity

5.1 The empirical model

The slope of the yield curve has emerged as a valuable leading indicator of GDP
growth; see Stock and Watson (2003) for a survey of the literature. However,
recent evidence suggests that the relationship between GDP growth and the yield
curve may be subject to structural breaks (Estrella, Rodrigues and Schich 2003,
Giacomini and Rossi 2006, Schrimpf and Wang 2010). We will use the forecasting
methods discussed in the previous sections to investigate whether they can improve
the forecasts of GDP growth with the slope of the yield curve as the predictor.

The forecasts are based on the regression model

yt,t+h = β0 + β1st + εt (49)

where yt,t+h = 100 ln(Yt+h/Yt), Yt is the level of real GDP at time t, and st = iLt −iSt ,
that is, st is the slope of the yield curve defined as the difference between the long
term interest rate, iLt , and the short term interest rate, iSt . This specification is the
most common in the literature (e.g., Estrella and Hardouvelis 1991, Estrella and
Mishkin 1997, and the literature cited above).

We evaluate the forecasts for horizons h = 1, 2, 3, 4 quarters. An issue involv-
ing direct forecasts with horizons greater than one is the overlap implicit in the
regressions. Pesaran, Pick and Timmermann (2011) show that accounting for the
overlap of observations can lead to gains in forecast accuracy but that these gains
materialize at forecast horizons that are larger than those considered here. In order
not to complicate the forecast exercise further, we restrict attention to estimation
that do not account for the overlap.

We take data on GDP, long and short term interest rates from the data set
available with the GVAR toolbox (Smith and Galesi 2010). The data set contains
quarterly observations for 33 countries. As not all countries have a long history of
GDP and interest rate data, we restrict attention to 9 industrialized countries with
long time series: Australia, Canada, France, Germany, Italy, Japan, Spain, UK,
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and USA. The data are quarterly, start in 1979Q1, and end in 2009Q4. Recursive
out-of-sample forecasts are constructed, and the first forecast uses the observations
up to 1993Q4 for the estimation.

We report results for the entire forecast period and for the sub-periods 1994Q1–
2000Q4, 2001Q1–2006Q4, and 2007Q1-2009Q4. The first period includes the build-
up of the dot-com bubble, the second contains the time after the dot-com bubble
burst and the build-up of the sub-prime mortgage market, the third contains the
observations following the collapse of the sub-prime mortgage market.

We will use the forecast methods outlined in Section 4. However, we do not
impose knowledge of the timing of the structural break on the optimal weights
as such knowledge may not be available to the researcher at the time. Due to
the computational complexity of estimating the down-weighting parameter γ when
applied to model (49), we set γ to 0.95 and 0.98, where we were careful not to use
ex post knowledge and selected these values a priori. Forecasts are compared based
on the relative MSFE defined in (48).

5.2 Results for GDP growth forecasts

Table 7 reports the results over the entire forecast period but separately for each
country in the sample. The first line shows the MSFE when using equal weights.
The second line gives the relative MSFE of the forecasts using optimal weights based
on the estimated break date and size. With the exception of Japan and Spain, the
optimal weights forecasts fail to improve on those using equal weights for h = 1 and
2. Given the results in the lines below, this suggests that, in general, the breaks are
difficult to estimate with sufficient accuracy.

The next two lines give the relative MSFEs for the forecasts using the robust
weights assuming one and two breaks, respectively. The robust weights deliver
better forecasts than equal weights in the overwhelming majority of countries and
forecast horizons. The robust forecasts perform the better the shorter the forecast
horizon. An exception is the case of Australia, where all forecasts except the AveW
forecast fare worse than the forecasts based on equal weights over the four forecast
horizons. Across countries the robust weights for one break produce better forecasts
than the robust weights for two breaks for h = 1. For larger h this distinction is
less clear cut.

With the exception of Japan, forecasts based on the post-break sample (using
the estimated break date) do not consistently improve on the equal weight forecasts.
This contrasts with the AveW forecasts, which lead to improvements over the equal
weights forecasts in many cases, even if the improvements are usually smaller than
the robust weights forecasts. However, when these forecasts perform poorly the
AveW forecasts usually perform better, so that AveW forecasts can be seen as a
conservative forecasting strategy that generally leads to modest gains.

The ExpS forecasts with γ a priori set to 0.95 perform well and together with
the robust forecasts for one break delivers the best forecasts for most countries
and forecast horizons. However, in the case of Australia, ExpS(γ = 0.95) produces
the worst forecasts for all horizons. It is the least conservative forecasting method
delivering often the best but, in particular at h = 4 also often the worst forecasts.
ExpS with γ = 0.98 is more conservative with forecasts that are rarely the best but
also rarely the worst forecasts. The difference between the ExpS forecasts for the
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two γ’s demonstrates the sensitivity of the forecasts to the choice of γ, which needs
to be selected by the forecaster without the benefit of hindsight.

Tables 8 reports the results for the first subsample of forecasts, 1994Q1–2000Q4.
In this subsample the gains from accounting for breaks are very large for US GDP
growth. Robust weights forecasts, for example, have MSFE that is just over half
as large as that of equal weights for h = 3. In contrast, none of the forecasts for
France improves over those from equal weights. The cases of Germany and Italy
show how inaccurate estimates of break dates can lead to highly imprecise forecasts
when the forecasting method relies on the estimated breaks dates. In both cases the
forecasts using optimal weights and, in particular, the post-break sample forecasts
have a considerably higher MSFE than the equal weights forecast. In contrast,
robust weights lead to considerable improvements in forecast accuracy.

The forecasts for the second subsample, 2001Q1–2006Q4, which are in Table 9,
show that during this period structural breaks are a minor problem for forecasting
GDP growth in the USA and the UK, and only small gains are made for France and
Australia. Also, where gains from taking breaks into account are made, such as for
Japan and Germany, they are smaller than in the first subsample. The exception is
Canada, where gains increase in this subsample.

The results for the last subsample, 2007Q1–2009Q4, are in Table 10. The first
line, which reports the MSFE of the equal weights forecast, shows that GDP growth
is much harder to forecast in this subsample. This is not surprising given the collapse
of GDP in many countries following the subprime mortgage market crisis. The poor
equal weights forecasts are also partially due to breaks because the robust weight
forecasts and the ExpS forecasts vastly improve over the equal weights forecast.
The exception is Australia where the equal weights forecast cannot systematically
be beaten.

Table 11 reports averages across countries over the whole sample and over the
three subsamples. For both country weights, the estimated optimal weights fore-
casts cannot improve over the equal weights forecasts and, in general, while they
have a lower MSFE than the post-break forecasts, they are less precise than the
remaining forecast methods. This reiterates that breaks are not identified with suf-
ficient accuracy. The robust weights, in contrast, deliver vastly improved forecasts
compared to equal weights. In fact, they provide the best forecasts for h = 2, 3, 4
and the second most precise forecast for h = 1. Allowing for one break appears
sufficient as the MSFE is generally smaller than that for robust weights for two
breaks.

Post-break window forecasts are substantially worse than equal weights fore-
casts and result in the least precise forecasts out of all methods considered. AveW
forecasts improve over the equal weights forecasts when considering equal weights
across countries. Finally, ExpS(γ = 0.95) delivers relatively precise forecasts for all
forecast horizons: for h = 1 it is the most precise and for the other forecast horizons
it is second to the robust weights. ExpS(γ = 0.98) also performs well but is less
precise overall except for h = 4 when applying equal weights to all countries. When
considering the subsamples separately some interesting additional patterns emerge.
We see that in the first subsample with forecasts for the period 1994Q1–2000Q4 the
robust forecasts with one break deliver the best forecasts for all forecast horizons
irrespective of how the country results are averaged. The ExpS forecasts also per-
form well and the forecasts that rely on estimated break dates perform very poorly.
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Table 7: Predictive power of the yield curve: Relative forecast accuracy per country (all
forecasts: 1994Q1–2009Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.063 1.000 0.328 1.000 0.250 1.000 0.141 0.031 0.625

equal weight(MSFE) 0.463 1.097 0.682 0.469 0.293 0.542 0.343 0.444 0.350

estim.opt.weight 1.083 0.921 1.084 0.998 1.163 1.191 0.978 1.083 0.999
rob.weight(1 break) 0.877 0.874 0.941 0.853 0.957 0.914 0.915 0.905 0.999
rob.weight(2 breaks) 0.934 0.922 0.964 0.930 0.979 0.952 0.954 0.938 1.002
post-break 1.046 0.892 1.120 0.962 1.425 1.014 1.803 1.276 1.000
AveW 1.001 0.982 0.980 0.985 0.996 0.986 0.998 1.003 0.985
ExpS(γ = 0.95) 0.877 0.850 0.949 0.831 0.958 0.867 0.933 0.898 1.021
ExpS(γ = 0.98) 0.932 0.925 0.971 0.921 0.985 0.946 0.979 0.948 0.992

h = 2
prop. breaks 0.047 0.875 0.453 0.969 0.094 0.969 0.047 0.000 0.000

equal weight(MSFE) 1.533 3.139 1.871 1.635 0.874 1.627 1.248 1.615 0.724

estim.opt.weight 0.999 0.953 1.152 1.031 1.039 1.141 0.999 1.000 1.000
rob.weight(1 break) 0.852 0.849 0.997 0.947 1.000 0.913 0.988 0.906 1.058
rob.weight(2 breaks) 0.923 0.904 0.977 0.977 0.995 0.947 0.988 0.932 1.025
post-break 1.349 0.944 1.159 1.011 1.077 1.027 1.891 1.000 1.000
AveW 1.007 0.981 0.995 1.003 0.999 0.983 0.999 1.003 0.993
ExpS(γ = 0.95) 0.857 0.829 1.019 0.938 1.012 0.854 1.064 0.902 1.087
ExpS(γ = 0.98) 0.911 0.909 1.001 0.979 1.002 0.940 1.009 0.935 1.011

h = 3
prop. breaks 0.063 0.095 0.587 0.048 0.095 0.968 0.016 0.000 0.000

equal weight(MSFE) 3.059 5.751 3.473 3.240 1.722 3.146 2.598 3.284 1.144

estim.opt.weight 1.014 1.004 1.275 1.033 1.078 1.065 1.005 1.000 1.000
rob.weight(1 break) 0.896 0.844 1.041 1.003 1.035 0.938 1.009 0.921 1.066
rob.weight(2 breaks) 0.942 0.894 0.987 1.002 1.009 0.958 1.007 0.933 1.030
post-break 1.187 0.983 1.423 1.022 1.105 1.039 1.006 1.000 1.000
AveW 1.001 0.979 1.000 1.004 1.001 0.993 1.000 1.003 0.996
ExpS(γ = 0.95) 0.901 0.830 1.072 1.019 1.047 0.869 1.044 0.922 1.094
ExpS(γ = 0.98) 0.933 0.899 1.019 1.009 1.017 0.954 1.016 0.937 1.012

h = 4
prop. breaks 0.097 0.403 0.710 0.661 0.113 0.952 0.000 0.000 0.000

equal weight(MSFE) 4.780 9.121 5.232 4.913 2.738 5.029 4.200 5.095 1.513

estim.opt.weight 0.973 1.000 1.188 1.097 0.995 1.073 1.000 1.000 1.000
rob.weight(1 break) 0.931 0.834 1.074 1.029 1.063 0.980 1.019 0.951 1.058
rob.weight(2 breaks) 0.953 0.883 0.990 1.011 1.021 0.977 1.019 0.943 1.025
post-break 0.976 1.051 1.430 1.053 1.016 1.055 1.000 1.000 1.000
AveW 0.996 0.978 1.007 1.010 1.004 1.010 1.001 1.002 0.990
ExpS(γ = 0.95) 0.940 0.823 1.106 1.048 1.077 0.911 1.024 0.962 1.101
ExpS(γ = 0.98) 0.953 0.889 1.030 1.028 1.029 0.980 1.018 0.951 1.006

Note: The table reports the MSFE of the forecasts with equal weights and for all other forecast meth-

ods the ratio of MSFEs, that is, the MSFE of forecast method i relative to that using equal weights,

MSFEi/MSFEequal, for different forecast horizons, h. Forecast methods: (i) equal weights, (ii) optimal

weights for discrete breaks based on point estimates of b and λ for up to two breaks, (iii) robust weights that

integrate the break date over the entire sample, (iv) robust weights for two breaks with ϕ(1), ϕ(2) ∈ (−2, 2),

(v) post-break window, (vi) AveW forecasts with m = T (1− vmin) + 1 windows and vmin = 0.05 ExpS with

(vii) γ = 0.95 and (viii) γ = 0.98. The line denoted “prop. break” reports the proportion of forecasts where a

break was detected by the Bai and Perron (1997,2003) test. The countries are: USA, Japan, Germany, UK,

France, Italy, Spain, Canada, and Australia. The dates given above denote the periods for which one-period

ahead forecasts are made. The h = 2 forecast makes the first forecast for the observation one quarter later,

the h = 3 forecast for that two periods later, and the h = 4 forecast for that three quarters later.
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Table 8: Predictive power of the yield curve: Relative forecast accuracy per country
(subsample 1: 1994Q1–2000Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.000 1.000 0.143 1.000 0.357 1.000 0.214 0.000 0.143

equal weight(MSFE) 0.317 0.834 0.404 0.156 0.187 0.300 0.199 0.292 0.482

estim.opt.weight 1.000 0.987 1.163 0.994 1.143 1.270 1.024 1.000 0.997
rob.weight(1 break) 0.794 0.800 0.955 0.773 1.020 1.116 0.787 0.978 0.979
rob.weight(2 breaks) 0.904 0.861 0.985 0.935 1.011 1.024 0.915 0.974 0.996
post-break 1.000 0.951 1.272 0.729 1.231 1.216 1.059 1.000 1.003
AveW 1.003 0.970 0.950 1.003 1.000 1.041 0.977 1.016 0.978
ExpS(γ = 0.95) 0.811 0.802 0.982 0.786 1.053 1.091 0.796 0.993 0.989
ExpS(γ = 0.98) 0.901 0.897 0.984 0.872 1.027 1.054 0.878 1.023 0.982

h = 2
prop. breaks 0.037 0.889 0.222 1.000 0.222 1.000 0.074 0.000 0.000

equal weight(MSFE) 0.962 2.280 0.813 0.561 0.534 0.504 0.635 1.088 0.792

estim.opt.weight 1.005 0.782 1.588 0.988 1.149 1.470 1.017 1.000 1.000
rob.weight(1 break) 0.611 0.721 1.022 0.777 1.121 1.292 0.788 0.981 1.010
rob.weight(2 breaks) 0.827 0.806 0.993 0.976 1.057 1.046 0.940 0.951 1.006
post-break 1.066 0.859 1.759 0.734 1.295 1.512 1.021 1.000 1.000
AveW 1.028 0.968 0.983 0.980 1.002 1.136 0.978 1.020 0.987
ExpS(γ = 0.95) 0.633 0.726 1.070 0.787 1.157 1.228 0.805 0.992 1.008
ExpS(γ = 0.98) 0.832 0.866 1.022 0.868 1.071 1.119 0.872 1.009 0.978

h = 3
prop. breaks 0.115 0.038 0.423 0.000 0.231 1.000 0.038 0.000 0.000

equal weight(MSFE) 2.090 4.085 1.566 1.133 1.150 0.779 1.239 2.546 1.193

estim.opt.weight 1.050 1.104 2.193 1.000 1.278 1.976 1.023 1.000 1.000
rob.weight(1 break) 0.552 0.690 1.084 0.790 1.158 1.444 0.792 0.990 0.982
rob.weight(2 breaks) 0.819 0.768 1.010 1.001 1.070 1.070 0.967 0.937 0.993
post-break 1.016 1.113 3.028 1.000 1.377 1.713 1.032 1.000 1.000
AveW 1.003 0.963 0.997 0.972 1.004 1.283 0.980 1.019 0.990
ExpS(γ = 0.95) 0.569 0.689 1.129 0.811 1.197 1.348 0.821 1.003 0.973
ExpS(γ = 0.98) 0.821 0.840 1.038 0.886 1.083 1.180 0.876 1.002 0.956

h = 4
prop. breaks 0.240 0.840 0.440 0.320 0.280 0.960 0.000 0.000 0.000

equal weight(MSFE) 3.744 7.274 2.453 1.839 1.976 1.284 2.023 4.490 1.650

estim.opt.weight 0.915 0.998 1.557 1.122 0.983 1.860 1.000 1.000 1.000
rob.weight(1 break) 0.570 0.697 1.147 0.820 1.184 1.506 0.819 1.019 0.922
rob.weight(2 breaks) 0.836 0.767 1.021 1.025 1.085 1.087 0.998 0.943 0.965
post-break 0.925 1.168 2.965 1.059 1.054 1.703 1.000 1.000 1.000
AveW 0.974 0.969 1.018 0.978 1.006 1.331 0.981 1.017 0.979
ExpS(γ = 0.95) 0.591 0.691 1.182 0.868 1.225 1.401 0.862 1.034 0.927
ExpS(γ = 0.98) 0.843 0.844 1.055 0.921 1.094 1.201 0.894 1.011 0.926

Note: See footnote of Table 7. The dates given above denote the periods for which one-period ahead

forecasts are made. The h = 2 forecast makes the first forecast for the observation one quarter later, the

h = 3 forecast for that two periods later, and the h = 4 forecast for that three quarters later.
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Table 9: Predictive power of the yield curve: Relative forecast accuracy per country
(subsample 2: 2001Q1–2006Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.000 1.000 0.333 1.000 0.083 1.000 0.000 0.000 1.000

equal weight(MSFE) 0.227 0.430 0.265 0.072 0.139 0.181 0.070 0.197 0.199

estim.opt.weight 1.000 1.099 1.108 1.054 1.182 0.824 1.000 1.000 1.008
rob.weight(1 break) 1.041 0.955 0.823 1.053 1.040 0.886 0.913 0.938 1.005
rob.weight(2 breaks) 1.010 0.950 0.903 1.014 1.020 0.978 0.925 0.961 1.002
post-break 1.000 1.121 1.152 1.009 1.276 0.811 1.000 1.000 0.988
AveW 1.001 0.984 0.959 1.002 0.993 0.921 0.986 0.992 0.981
ExpS(γ = 0.95) 1.095 0.959 0.828 1.088 1.062 0.931 0.969 0.991 1.014
ExpS(γ = 0.98) 1.021 0.955 0.912 1.007 1.029 0.927 0.893 0.947 0.976

h = 2
prop. breaks 0.000 0.958 0.542 1.000 0.000 1.000 0.000 0.000 0.000

equal weight(MSFE) 0.614 1.181 0.849 0.145 0.281 0.497 0.185 0.681 0.495

estim.opt.weight 1.000 1.143 0.996 1.203 1.000 0.738 1.000 1.000 1.000
rob.weight(1 break) 1.184 0.980 0.885 1.087 1.070 0.831 0.942 0.892 1.090
rob.weight(2 breaks) 1.039 0.950 0.915 0.989 1.025 0.970 0.922 0.924 1.036
post-break 1.000 1.107 0.947 1.072 1.000 0.724 1.000 1.000 1.000
AveW 0.999 0.982 0.987 0.980 0.996 0.847 0.979 0.993 0.996
ExpS(γ = 0.95) 1.298 1.003 0.896 1.146 1.111 0.892 1.024 0.964 1.105
ExpS(γ = 0.98) 1.036 0.955 0.949 0.973 1.047 0.889 0.871 0.886 1.015

h = 3
prop. breaks 0.000 0.208 0.625 0.000 0.000 1.000 0.000 0.000 0.000

equal weight(MSFE) 1.096 1.905 1.711 0.253 0.460 0.831 0.355 1.290 0.843

estim.opt.weight 1.000 0.789 0.928 1.000 1.000 0.721 1.000 1.000 1.000
rob.weight(1 break) 1.523 0.977 0.922 1.035 1.129 0.871 1.077 0.854 1.134
rob.weight(2 breaks) 1.140 0.930 0.919 0.947 1.046 1.008 0.974 0.893 1.052
post-break 1.000 0.602 0.885 1.000 1.000 0.718 1.000 1.000 1.000
AveW 1.002 0.975 0.992 0.960 1.001 0.815 0.978 0.995 1.000
ExpS(γ = 0.95) 1.695 1.020 0.926 1.082 1.195 0.955 1.160 0.916 1.151
ExpS(γ = 0.98) 1.137 0.938 0.961 0.913 1.068 0.919 0.908 0.842 1.038

h = 4
prop. breaks 0.000 0.167 0.875 0.917 0.000 1.000 0.000 0.000 0.000

equal weight(MSFE) 1.569 2.457 2.645 0.373 0.660 1.084 0.568 1.989 1.020

estim.opt.weight 1.000 1.002 1.027 1.204 1.000 0.816 1.000 1.000 1.000
rob.weight(1 break) 1.703 0.963 0.939 0.922 1.200 1.023 1.141 0.848 1.172
rob.weight(2 breaks) 1.176 0.889 0.906 0.871 1.071 1.084 1.004 0.885 1.057
post-break 1.000 0.963 0.888 0.967 1.000 0.801 1.000 1.000 1.000
AveW 1.010 0.964 1.001 0.933 1.006 0.853 0.983 0.998 1.002
ExpS(γ = 0.95) 1.888 1.021 0.931 0.952 1.263 1.127 1.210 0.883 1.187
ExpS(γ = 0.98) 1.156 0.899 0.963 0.828 1.090 1.016 0.931 0.830 1.056

Note: See footnote of Table 7. The dates given above denote the periods for which forecasts are made at

all horizons.
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Table 10: Predictive power of the yield curve: Relative forecast accuracy per country
(subsample 3: 2007Q1-2009Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.333 1.000 0.750 1.000 0.333 1.000 0.250 0.167 1.000

equal weight(MSFE) 1.277 3.046 2.168 1.997 0.850 1.831 1.227 1.294 0.346

estim.opt.weight 1.161 0.828 1.043 0.995 1.167 1.234 0.957 1.153 0.993
rob.weight(1 break) 0.866 0.899 0.964 0.854 0.898 0.843 0.964 0.856 1.059
rob.weight(2 breaks) 0.924 0.953 0.970 0.924 0.948 0.920 0.971 0.912 1.022
post-break 1.089 0.790 1.046 1.001 1.573 0.977 2.176 1.506 1.003
AveW 1.000 0.990 0.998 0.980 0.995 0.977 1.007 1.000 1.009
ExpS(γ = 0.95) 0.838 0.849 0.964 0.820 0.875 0.768 0.980 0.820 1.132
ExpS(γ = 0.98) 0.919 0.934 0.980 0.924 0.948 0.909 1.027 0.910 1.045

h = 2
prop. breaks 0.154 0.692 0.769 0.846 0.000 0.846 0.077 0.000 0.000

equal weight(MSFE) 4.656 8.984 6.297 7.033 2.825 6.414 4.752 4.669 1.031

estim.opt.weight 0.997 1.001 1.067 1.031 1.000 1.145 0.993 1.000 1.000
rob.weight(1 break) 0.877 0.888 1.020 0.972 0.934 0.858 1.052 0.872 1.110
rob.weight(2 breaks) 0.936 0.948 0.989 0.976 0.963 0.926 1.008 0.925 1.049
post-break 1.574 0.950 1.041 1.058 1.000 0.987 2.221 1.000 1.000
AveW 0.999 0.988 1.001 1.008 0.998 0.977 1.007 0.998 1.003
ExpS(γ = 0.95) 0.844 0.842 1.037 0.956 0.931 0.782 1.145 0.836 1.207
ExpS(γ = 0.98) 0.915 0.921 1.009 0.999 0.964 0.916 1.062 0.911 1.064

h = 3
prop. breaks 0.077 0.000 0.846 0.231 0.000 0.846 0.000 0.000 0.000

equal weight(MSFE) 9.086 17.054 11.129 13.781 5.487 12.903 10.032 8.870 1.640

estim.opt.weight 0.999 1.000 1.102 1.040 1.000 0.990 1.000 1.000 1.000
rob.weight(1 break) 0.916 0.895 1.064 1.039 0.963 0.881 1.062 0.898 1.129
rob.weight(2 breaks) 0.955 0.951 1.001 1.004 0.974 0.937 1.020 0.942 1.066
post-break 1.317 1.000 1.098 1.027 1.000 0.992 1.000 1.000 1.000
AveW 1.000 0.987 1.004 1.011 1.001 0.978 1.007 0.995 1.000
ExpS(γ = 0.95) 0.876 0.861 1.099 1.054 0.954 0.795 1.096 0.874 1.226
ExpS(γ = 0.98) 0.940 0.920 1.030 1.034 0.978 0.929 1.060 0.924 1.072

h = 4
prop. breaks 0.000 0.000 0.923 0.846 0.000 0.846 0.000 0.000 0.000

equal weight(MSFE) 13.360 26.297 16.192 20.399 8.480 20.720 15.997 12.569 2.214

estim.opt.weight 1.000 1.000 1.123 1.088 1.000 0.998 1.000 1.000 1.000
rob.weight(1 break) 0.961 0.889 1.095 1.072 0.983 0.908 1.063 0.932 1.163
rob.weight(2 breaks) 0.969 0.948 1.008 1.013 0.982 0.951 1.025 0.960 1.087
post-break 1.000 1.000 1.123 1.056 1.000 0.998 1.000 1.000 1.000
AveW 1.005 0.987 1.005 1.019 1.002 0.984 1.007 0.992 0.998
ExpS(γ = 0.95) 0.921 0.863 1.140 1.086 0.976 0.825 1.053 0.934 1.292
ExpS(γ = 0.98) 0.969 0.913 1.045 1.055 0.988 0.947 1.056 0.945 1.084

Note: See footnote of Table 7. The dates given above denote the periods for which forecasts are made at

all horizons.
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Table 11: Predictive power of the yield curve: Relative forecast accuracy averaged
across countries

GDP weighted ave. Equally weighted ave.

h 1 2 3 4 1 2 3 4

All forecasts: 1994Q1–2009Q4

equal weight(MSFE) 0.560 1.731 3.343 5.218 0.521 1.585 3.046 4.736

estim.opt.weight 1.070 1.032 1.055 1.027 1.056 1.035 1.053 1.036
rob.weight(1 break) 0.906 0.912 0.945 0.970 0.915 0.946 0.973 0.993
rob.weight(2 breaks) 0.953 0.953 0.966 0.973 0.953 0.963 0.974 0.980
post-break 1.103 1.226 1.144 1.056 1.171 1.162 1.085 1.065
AveW 1.005 1.010 1.009 1.008 0.991 0.996 0.997 1.000
ExpS(γ = 0.95) 0.901 0.915 0.949 0.977 0.909 0.951 0.978 0.999
ExpS(γ = 0.98) 0.954 0.952 0.966 0.979 0.956 0.966 0.977 0.987

Subsample 1: 1994Q1–2000Q4

equal weight(MSFE) 0.380 1.041 2.074 3.619 0.352 0.908 1.753 2.970

estim.opt.weight 1.051 1.076 1.239 1.084 1.064 1.111 1.292 1.160
rob.weight(1 break) 0.866 0.798 0.785 0.807 0.911 0.925 0.943 0.965
rob.weight(2 breaks) 0.939 0.906 0.903 0.916 0.956 0.956 0.960 0.970
post-break 1.042 1.125 1.294 1.234 1.051 1.138 1.364 1.319
AveW 1.005 1.024 1.022 1.015 0.993 1.009 1.023 1.028
ExpS(γ = 0.95) 0.880 0.813 0.796 0.822 0.923 0.934 0.949 0.976
ExpS(γ = 0.98) 0.941 0.915 0.912 0.929 0.958 0.960 0.965 0.977

Subsample 2: 2001Q1–2006Q4

equal weight(MSFE) 0.232 0.637 1.123 1.584 0.198 0.547 0.971 1.374

estim.opt.weight 1.041 1.029 0.958 1.017 1.030 1.009 0.938 1.006
rob.weight(1 break) 1.001 1.079 1.245 1.336 0.962 0.996 1.058 1.101
rob.weight(2 breaks) 0.996 1.008 1.054 1.066 0.974 0.975 0.990 0.994
post-break 1.050 1.010 0.928 0.981 1.040 0.983 0.912 0.958
AveW 0.999 0.995 0.993 0.997 0.980 0.973 0.969 0.972
ExpS(γ = 0.95) 1.038 1.152 1.349 1.445 0.993 1.049 1.122 1.162
ExpS(γ = 0.98) 0.997 1.002 1.046 1.052 0.963 0.958 0.969 0.974

Subsample 3: 2007Q1–2009Q4

equal weight(MSFE) 1.637 5.469 10.533 15.817 1.559 5.185 9.998 15.137

estim.opt.weight 1.093 1.027 1.022 1.029 1.059 1.026 1.015 1.023
rob.weight(1 break) 0.902 0.929 0.962 0.992 0.911 0.954 0.983 1.007
rob.weight(2 breaks) 0.950 0.965 0.980 0.991 0.949 0.969 0.983 0.994
post-break 1.138 1.328 1.166 1.027 1.240 1.204 1.048 1.020
AveW 1.007 1.009 1.010 1.013 0.995 0.998 0.998 1.000
ExpS(γ = 0.95) 0.876 0.910 0.942 0.976 0.894 0.953 0.982 1.010
ExpS(γ = 0.98) 0.949 0.957 0.975 0.993 0.955 0.974 0.988 1.000

Note: The GDP weighted average uses weights wi = Yi/(
∑N

j=1 Yj), where Yi is the 2008 GDP in

purchasing power terms for country i available from the GVAR data base and N = 9. The equal

weights average uses wi = 1/9. For other details see the footnote of Table 7.
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The second subsample 2001Q1–2006Q4 offers a different picture. Most forecasting
methods cannot improve on the equal weights forecasts. The exception are the
AveW forecasts and, with equal weighted averages across countries, robust weights
for two breaks and ExpS(γ = 0.98). The reason for this difference is the poor
performance of the forecasting methods for the USA. AveW is the only forecasting
method that delivers improvements irrespective of horizon and country weights. In
the last subsample, 2007Q1–2009Q4, GDP growth is much harder to forecast and
forecasts based on robust weights and ExpS weights can improve the forecast by
over 10%. The relative performance is similar to that of the first sub-period: the
robust forecasts and the ExpS forecasts deliver the best results, whereas forecast
that require estimates of break dates perform poorly.

Overall, forecasting methods that rely on estimates of break points perform
poorly in this application. AveW leads to modest but consistent improvements over
equal weights forecasts. ExpS forecasts lead to larger improvements but depend on
the choice of γ. Finally, robust weights forecasts also lead to large improvements
over equal weights forecasts, and only require a decision on the potential number of
breaks.

6 Conclusion

This paper presents a new approach to forecasting in the presence of structural
breaks. Under continuous break processes our approach recovers the exponential
smoothing weights that have long been considered in the literature. Under discrete
breaks, our approach delivers new forecasts based on optimal weights. In practice,
dates and sizes of breaks are unknown and their estimates can be unreliable. For
such cases we derive robust weights that do not require a priori knowledge of the
break dates or their sizes.

We evaluate the forecast performance of the different weighting schemes in
Monte Carlo experiments and in an application to forecasts of GDP growth us-
ing the slope of the yield curve. Forecasts based on robust weights, which do not
require knowledge of the break dates or a downweighting parameter, lead to fore-
casts that perform better than other feasible alternatives in a wide range of settings.
In contrast, using only post-break data leads to highly inefficient forecasts unless
the break date can be determined with great precision. The optimal weights fore-
casts developed in this paper also require precise knowledge of the dates and sizes
of the structural breaks to deliver good forecasts.
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A Appendix: Mathematical details

A.1 MSFE of post-break and optimal window

For the window that contains Tv of T observations the one-step ahead forecast is

ŷT+1 =
1

T − Tv + 1

T∑
s=Tv

ys =
1

T − Tv + 1

Tb∑
s=Tv

ys +
1

T − Tv + 1

T∑
s=Tb+1

ys

=
(Tb − Tv + 1)µ(1) + µ(2)(T − Tb)

T − Tv + 1
+

1

T − Tv + 1

T∑
s=Tv

σεεs.

Set v = T−Tv+1
T so that Tv = T (1− v) + 1, and re-write the above as

ŷT+1 = µ(2){1− I[v − (1− b)]}

+ I[v − (1− b)]

{
(1− b)µ(2) + [v − (1− b)]µ(1)

v

}
+

1

Tv

T∑
s=Tv

σεεs

where I(c) is an indicator function equal to 1 if c > 0 and equal to 0 otherwise. The
one-step ahead forecast error is

êT+1 = (µ(2) − µ(1))

[
1− (1− b)

v

]
I[v − (1− b)] + σεεT+1 −

1

Tv

T∑
s=Tv

σεεs.

The expected squared forecast error normalized by σ2ε is

E
(
σ−2
ε ê2T+1

)
= 1 +

(µ(2) − µ(1))
2

σ2

[
1− (1− b)

v

]2
I[v − (1− b)] +

1

Tv

= 1 + λ2
[
1− (1− b)

v

]2
I[v − (1− b)] +

1

Tv
(50)

Initially consider windows that do not contain the break. The window with all
observations after the break will minimize the MSFE, so vov≤(1−b) = (1− b) and

E
[
σ−2
ε ê2T+1|v = (1− b)

]
= 1 +

1

T (1− b)
(51)

This is also the MSFE of the forecast using the post-break window observations.
Now consider windows that include the break so that I[v − (1− b)] = 1 in (50).

The first order condition is

λ2
[
2(1− b)

v2
− 2(1− b)2

v3

]
− 1

Tv2
= 0, (52)

Then from (52), the expression for the optimal window (among those containing a
break) is

vo =
2(1− b)2λ2

2(1− b)λ2 − 1
T

= (1− b)
1

1− 1
2λ2(1−b)T

(53)

It can be seen that the optimal window is the distance to break scaled by an
expression that is larger the smaller the break and the smaller the distance to
break. A condition of the optimal window is that it cannot exceed 1. Therefore

vo = 2(1−b)2λ2
2(1−b)λ2− 1

T

6 1, if λ2 < T
2(T−Tb)Tb the optimal window contains all observations.

Using (53) in the MSFE (50) yields the results in (14).
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A.2 Derivation of optimal weights for multiple regression model
with a single break

Using β̂T (w) in (18) we can write

β̂T (w)− β(2) = S−1(w)S1(w(1))(β(1) − β(2)) + S−1(w)

T∑
t=1

wtxtσtεt,

where S(w) = S1(w(1))+S2(w(2)), S1(w(1)) =
∑Tb

t=1wtxtx
′
t, S2(w(2)) =

∑T
t=Tb+1wtxtx

′
t.

Hence,

eT+1(w) = yT+1 − x′
T+1β̂T (w)

= −x′
T+1

[
β̂T (w)− β(2)

]
+ σεT+1,

= σT+1εT+1 − x′
T+1S

−1(w)S1(w(1))(β(1) − β(2))

−x′
T+1S

−1(w)

T∑
t=1

wtxtσtεt

Deviding by σ2(2) and taking expectations of the squared forecast error yields (19).

In order to obtain the optimal weights we minimize (19) with respect to w
subject to ι′Tw = 1. Using θ as the Lagrange multiplier associated with ι′Tw = 1, the
first order conditions for the above optimization problem are given by the following.
For t ≤ Tb[

q2x′
T+1S

−1(w)AtS
−1(w)xT+1

]
wt

= θ/2 +
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
T+1S

−1(w)AtS
−1(w)S1(w(1))λ

]
+x′

T+1S
−1(w)AtS

−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xT+1

−
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
T+1S

−1(w)Atλ
]
.

where At = xtx
′
t and for t ≥ Tb + 1[

x′
T+1S

−1(w)AtS
−1(w)xT+1

]
wt

= θ/2 +
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
T+1S

−1(w)AtS
−1(w)S1(w(1))λ

]
+x′

T+1S
−1(w)AtS

−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xT+1.

Multiplying both sides of the above two expressions by wt and aggregating across
t = 1, 2, . . . , T it is again easily seen that θ = 0. The above expressions are T highly
non-linear equations in the T unknown weights, wt, t = 1, 2, . . . , T .

If At = 0 the solution for wt is indeterminate and without loss of generality can
be set to 0. So we consider solutions where At ̸= 0, which yields for t ≤ Tb
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wt =

[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S1(w(1))λ
]

q2x′
T+1S

−1(w)xt
(54)

+
x′
tS

−1(w)
(∑Tb

t=1 q
2w2

txtx
′
t +
∑T

t=Tb+1w
2
txtx

′
t

)
S−1(w)xT+1.

q2x′
T+1S

−1(w)xt

−
[
x′
T+1S

−1(w)S1(w(1))λ
]
[x′
tλ]

q2x′
T+1S

−1(w)xt
.

and for t ≥ Tb + 1

wt =

[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S1(w(1))λ
]

x′
T+1S

−1(w)xt
(55)

+
x′
tS

−1(w)
(∑Tb

t=1 q
2w2

txtx
′
t +
∑T

t=Tb+1w
2
txtx

′
t

)
S−1(w)xT+1

x′
T+1S

−1(w)xt
.

The last result follows since[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S1(w(1))λ
]
−
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tλ
]

= −
[
x′
T+1S

−1(w)S1(w(1))λ
]
x′
t

[
Ik − S−1(w)S1(w(1))

]
λ

= −
[
x′
T+1S

−1(w)S1(w(1))λ
]
x′
tS

−1(w)
[
S(w)− S1(w(1))

]
λ

= −
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S2(w(2))λ
]

Rearranging (54) and (55) yields the results in (20) and (21).

A.3 MSFE for robust weights

Consider the MSFE associated with the robust optimal weights defined (41). For
these weights we need to compute

∑Tb
t=1wt,

∑Tb
t=1w

2
t , and

∑T
t=1w

2
t . Note that when

T and Tb are relatively large we can use the following approximations (noting that
by assumption b ≤ b ≤ b̄)

Tb∑
t=1

wt ≈
−1(
b̄− b

) ∫ b

b
log

(
1− a

1− b

)
da

Tb∑
t=1

w2
t ≈

1

T
(
b̄− b

)2 ∫ b

b

[
log

(
1− a

1− b

)]2
da

T∑
t=1

w2
t ≈

1

T
(
b̄− b

)2 ∫ b̄

b

[
log

(
1− a

1− b

)]2
da+

(1− b̄)

T
(
b̄− b

)2 [log(1− b̄

1− b

)]2
First, note that

Tb∑
t=1

wt ≈
−1(
b̄− b

) ∫ b

b
log(1− a)da+

(b− b)(
b̄− b

) log(1− b) =
b− b

b̄− b
+

1− b

b̄− b
log

(
1− b

b̄− b

)
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Also,

Tb∑
t=1

w2
t ≈ 1

T
(
b̄− b

)2 ∫ b

b

[
log

(
1− a

1− b

)]2
da

=
1

T
(
b̄− b

)2 ∫ b

b
[log (1− a)]2 da− 2 log(1− b)

T
(
b̄− b

)2 ∫ b

b
log (1− a) da

+
[log(1− b)]2 (b− b)

T
(
b̄− b

)2 ,

and ∫ b

b
log (1− a) da = −(1− b) log(1− b) + (1− b) log(1− b) + b− b

∫ b

b
[log (1− a)]2 da = −(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

+(1− b) [log(1− b)]2 − 2(1− b) log(1− b)− 2b.

Similarly,

T∑
t=1

w2
t ≈ 1

T
(
b̄− b

)2 ∫ b̄

b

[
log

(
1− a

1− b

)]2
da+

(1− b̄)

T
(
b̄− b

)2 [log(1− b̄

1− b

)]2
=

1

T
(
b̄− b

)2 ∫ b̄

b
[log (1− a)]2 da− 2 log(1− b)

T
(
b̄− b

)2 ∫ b̄

b
[log (1− a)] da

+
[log(1− b)]2 (b̄− b)

T
(
b̄− b

)2 +
(1− b̄)

T
(
b̄− b

)2 [log(1− b̄

1− b

)]2
The above expressions simplify considerably if we set b = 0. We have

Tb∑
t=1

wt ≈
b

b̄
+

(1− b) log(1− b)

b̄
,

Tb∑
t=1

w2
t ≈

−(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

T b̄2

and
T∑
t=1

w2
t ≈

2b̄+ 2(1− b̄) log(1− b̄)

T b̄2

Using these results in (29), we have

ω2
x

x2T+1

[
E
(
e2T+1/σ

2
(2)

)
− 1
]
≈ ϕ2

(
Tb∑
t=1

wt

)2

+
(
q2 − 1

) Tb∑
t=1

w2
t +

T∑
t=1

w2
t

= ϕ2
[
b

b̄
+

(1− b) log(1− b)

b̄

]2
+
(
q2 − 1

) [−(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

T
(
b̄
)2

]

+
2b̄+ 2(1− b̄) log(1− b̄)

T b̄2
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In practice if we choose b̄ to be very close to unity but not unity then (1− b̄) log(1−
b̄) ≈ 0 and (1− b̄)[log(1− b̄)]2 ≈ 0 and the result in (46) follows.

A.4 Robust weights with higher order terms

Consider now the second order term in (40) and let

Tϕ2H(b, a) = − 1

(1− b)2
+

1

b(1− b)2
I(b− a),

and note that for a < b

Tϕ2
∫ b

0
H(b, a) = 0 when a < b,

since by assumption the probability of drawing b less than b is zero. Consider now
the value of the integral when b ≤ a ≤ b̄, and note that

Tϕ2
∫ b̄

b
H(b, a) = −

∫ b̄

b

1

(1− b)2
db+

∫ b̄

b

1

b(1− b)2
I(b− a)db

= −
∫ a

b

1

(1− b)2
db−

∫ b̄

a

1

(1− b)2
db+

∫ b̄

a

1

b(1− b)2
db

= −
∫ a

b

1

(1− b)2
db+

∫ b̄

a

1

b(1− b)
db

= − a− b

(1− a)(1− b)
+ log

(
b̄

b

)
+ log

(
1− b̄

1− a

)
.

Finally, for a > b̄ we have

Tϕ2H(b, a) = −
∫ b̄

b

1

(1− b)2
db+

∫ b̄

b

1

b(1− b)2
I(b− a)db = − b̄− b

(1− b̄)(1− b)
.

Combining these results, we obtain

w(a) ≈



0 for a < b
−1

T(b̄−b)
log
(
1−a
1−b

)
+ 1

T 2ϕ2(b̄−b)
×

×
[

−(a−b)
(1−a)(1−b) + log

(
b̄
a

)
+ log

(
1−b̄
1−a

)]
for b ≤ a ≤ b̄

−1
T(b̄−b)

log
(
1−b̄
1−b

)
− 1

T 2ϕ2(b̄−b)
b̄−b

(1−b̄)(1−b) for a > b̄

and the discrete time version is

wt ≈



0 for t < Tb
−1

T(b̄−b)
log
(
1−t/T
1−b

)
+ 1

T 2ϕ2(b̄−b)
×

×
[

−[(t/T )−b]
(1−t/T )(1−b) + log

(
b̄(1−b̄)

(t/T )(1−t/T )

)]
for Tb ≤ t ≤ T b̄

−1
T(b̄−b)

log
(
1−b̄
1−b

)
− 1

T 2ϕ2
1

(1−b̄)(1−b) for t > T b̄

(56)
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In the case where b = 0, and b̄T = T − 1, or b̄ = 1− 1/T we have for 1 ≤ t ≤ T − 1

w∗
t =

−1

T − 1
log (1− t/T )− 1

T (T − 1)ϕ2

[
t

T − t
− log

(
(T − 1)

t(T − t)

)]
, (57)

and for the final date using the last part of (56) we obtain

w∗
T =

log(T )

T − 1
− 1

Tϕ2
. (58)

The scaled version of these weights (that sum up to unity) are given by

wt =
w∗
t∑T

s=1w
∗
s

, for t = 1, 2, . . . , T.

In practice, one could set ϕ2 = 1/2 or 1.
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