Optimal Policy for Macro-Financial Stability

Gianluca Benigno¹ Huigang Chen² Christopher Otrok³ Alessandro Rebucci⁴ Eric R. Young⁵

¹London School of Economics

²MarketShare Partners

³University of Missouri and Federal Reserve Bank of St Louis

⁴Inter-American Development Bank

⁵University of Virginia

December 7, 2012

Macro-Prudential Policies

• No debate: We need to design policies to deal with financial crises

• Big debate 1: What policy tools should we use?

• Big debate 2: When should policy makers intervene?

 Popular view: Use capital controls as a preemptive intervention to avoid a crisis

• We develop a framework to study optimal policy in and out of crises

 Markov-Perfect optimal policy (no commitment) in a model with an endogenous borrowing constraint

- No debate: We need to design policies to deal with financial crises
- Big debate 1: What policy tools should we use?
- Big debate 2: When should policy makers intervene?
 - Popular view: Use capital controls as a preemptive intervention to avoid a crisis
- We develop a framework to study optimal policy in and out of crises
 - Markov-Perfect optimal policy (no commitment) in a model with an endogenous borrowing constraint

(日) (同) (三) (三)

- No debate: We need to design policies to deal with financial crises
- Big debate 1: What policy tools should we use?
- Big debate 2: When should policy makers intervene?
 - Popular view: Use capital controls as a preemptive intervention to avoid a crisis
- We develop a framework to study optimal policy in and out of crises
 - Markov-Perfect optimal policy (no commitment) in a model with an endogenous borrowing constraint

(日) (同) (三) (三)

- No debate: We need to design policies to deal with financial crises
- Big debate 1: What policy tools should we use?
- Big debate 2: When should policy makers intervene?
 - Popular view: Use capital controls as a preemptive intervention to avoid a crisis
- We develop a framework to study optimal policy in and out of crises
 Markov-Perfect optimal policy (no commitment) in a model with an
 - endogenous borrowing constraint

- No debate: We need to design policies to deal with financial crises
- Big debate 1: What policy tools should we use?
- Big debate 2: When should policy makers intervene?
 - Popular view: Use capital controls as a preemptive intervention to avoid a crisis

• We develop a framework to study optimal policy in and out of crises

• Markov-Perfect optimal policy (no commitment) in a model with an endogenous borrowing constraint

< 日 > < 同 > < 三 > < 三 >

- No debate: We need to design policies to deal with financial crises
- Big debate 1: What policy tools should we use?
- Big debate 2: When should policy makers intervene?
 - Popular view: Use capital controls as a preemptive intervention to avoid a crisis
- We develop a framework to study optimal policy in and out of crises
 - Markov-Perfect optimal policy (no commitment) in a model with an endogenous borrowing constraint

・ロト ・同ト ・ヨト ・ヨト

• Optimality of prudential policy depends on number of instruments

- One instrument: Intervene in a prudential manner
 - True whether a tax on capital or exchange rate intervention
- Two instruments: Intervene when the crisis occurs
- Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

(日)

• Optimality of prudential policy depends on number of instruments

- One instrument: Intervene in a prudential manner
 - True whether a tax on capital or exchange rate intervention
- Two instruments: Intervene when the crisis occurs
- Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

< ロ > < 同 > < 三 > <

• Optimality of prudential policy depends on number of instruments

• One instrument: Intervene in a prudential manner

• True whether a tax on capital or exchange rate intervention

- Two instruments: Intervene when the crisis occurs
- Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

< ロ > < 同 > < 三 > <

• Optimality of prudential policy depends on number of instruments

- One instrument: Intervene in a prudential manner
 - True whether a tax on capital or exchange rate intervention
- Two instruments: Intervene when the crisis occurs
- Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

<ロ> (日) (日) (日) (日) (日)

• Optimality of prudential policy depends on number of instruments

- One instrument: Intervene in a prudential manner
 - True whether a tax on capital or exchange rate intervention
- Two instruments: Intervene when the crisis occurs
- Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

- Optimality of prudential policy depends on number of instruments
 - One instrument: Intervene in a prudential manner
 - True whether a tax on capital or exchange rate intervention
 - Two instruments: Intervene when the crisis occurs
 - Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

・ロト ・同ト ・ヨト ・ヨト

- Optimality of prudential policy depends on number of instruments
 - One instrument: Intervene in a prudential manner
 - True whether a tax on capital or exchange rate intervention
 - Two instruments: Intervene when the crisis occurs
 - Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

・ロト ・同ト ・ヨト ・ヨト

- Optimality of prudential policy depends on number of instruments
 - One instrument: Intervene in a prudential manner
 - True whether a tax on capital or exchange rate intervention
 - Two instruments: Intervene when the crisis occurs
 - Limited ability of *ex post* policy to mitigate crisis dictates the use of *ex ante* policies
- *Ex ante* policies and capital controls are not needed to implement two "efficient" allocations:
 - Unconstrained allocation
 - Constrained allocation with planner that internalizes pecuniary externality

Preferences

• Households maximize:

$$U\equiv E_0\sum_{t=0}^{\infty}\left\{eta^trac{1}{1-
ho}\left(c_t-rac{h_t^{\delta}}{\delta}
ight)^{1-
ho}
ight\},$$

• Consumption basket *C* is a composite of tradable and nontradable goods:

$$c_{t} \equiv \left[\omega^{\frac{1}{\kappa}} \left(c_{t}^{T}\right)^{\frac{\kappa-1}{\kappa}} + (1-\omega)^{\frac{1}{\kappa}} \left(c_{t}^{N}\right)^{\frac{\kappa-1}{\kappa}}\right]^{\frac{\Lambda}{\kappa-1}}$$

• Total labor is sum of tradable and nontradable labor supply:

$$h_t = h_t^T + h_t^N$$

3

Preferences

• Households maximize:

$$U \equiv E_0 \sum_{t=0}^{\infty} \left\{ \beta^t \frac{1}{1-\rho} \left(c_t - \frac{h_t^{\delta}}{\delta} \right)^{1-\rho}
ight\},$$

• Consumption basket *C* is a composite of tradable and nontradable goods:

$$c_{t} \equiv \left[\omega^{\frac{1}{\kappa}} \left(c_{t}^{T}\right)^{\frac{\kappa-1}{\kappa}} + (1-\omega)^{\frac{1}{\kappa}} \left(c_{t}^{N}\right)^{\frac{\kappa-1}{\kappa}}\right]^{\frac{\kappa}{\kappa-1}}$$

• Total labor is sum of tradable and nontradable labor supply:

$$h_t = h_t^T + h_t^N$$

BCORY ()

3

Preferences

• Households maximize:

$$U \equiv E_0 \sum_{t=0}^{\infty} \left\{ \beta^t rac{1}{1-
ho} \left(c_t - rac{h_t^\delta}{\delta}
ight)^{1-
ho}
ight\},$$

• Consumption basket *C* is a composite of tradable and nontradable goods:

$$c_{t} \equiv \left[\omega^{\frac{1}{\kappa}} \left(c_{t}^{T}\right)^{\frac{\kappa-1}{\kappa}} + (1-\omega)^{\frac{1}{\kappa}} \left(c_{t}^{N}\right)^{\frac{\kappa-1}{\kappa}}\right]^{\frac{\kappa}{\kappa-1}}$$

• Total labor is sum of tradable and nontradable labor supply:

$$h_t = h_t^T + h_t^N$$

3

イロト イポト イラト イラト

• Access to international capital markets is not only incomplete

$$c_t^T + P_t^N c_t^N + b_{t+1} = \pi_t + W_t h_t + (1+i) b_t,$$

But also imperfect

$$b_{t+1} \ge -\frac{1-\phi}{\phi} \left[\pi_t + W_t h_t\right]$$

 Endogenous prices P^N_t and W_t directly affect constraint, as does individual h_t

BCORY ()

< 日 > < 同 > < 三 > < 三 >

- B

• Access to international capital markets is not only incomplete

$$c_t^T + P_t^N c_t^N + b_{t+1} = \pi_t + W_t h_t + (1+i) b_t$$

But also imperfect

$$b_{t+1} \geq -\frac{1-\phi}{\phi} \left[\pi_t + W_t h_t\right]$$

 Endogenous prices P^N_t and W_t directly affect constraint, as does individual h_t

BCORY ()

< 日 > < 同 > < 三 > < 三 >

- 34

• Access to international capital markets is not only incomplete

$$c_t^T + P_t^N c_t^N + b_{t+1} = \pi_t + W_t h_t + (1+i) b_t,$$

But also imperfect

$$b_{t+1} \geq -rac{1-\phi}{\phi} \left[\pi_t + W_t h_t
ight]$$

• Endogenous prices P_t^N and W_t directly affect constraint, as does individual h_t

- 3

Firms

• Production functions:

$$Y_t^N = A_t^N H_t^{1-\alpha^N}$$
$$Y_t^T = A_t^T H_t^{1-\alpha^T}$$

• Labor demand schedules:

$$W_t = \left(1 - \alpha^N\right) P_t^N A_t^N \left(H_t^N\right)^{-\alpha^N}$$
$$W_t = \left(1 - \alpha^T\right) A_t^T \left(H_t^T\right)^{-\alpha^T}$$

• Dividends to household are residual:

$$\pi_{t} = \alpha^{N} P_{t}^{N} A_{t}^{N} \left(H_{t}^{N} \right)^{1-\alpha^{N}} + \alpha^{T} A_{t}^{T} \left(H_{t}^{T} \right)^{1-\alpha^{T}}$$

э

< ロ > < 同 > < 回 > < 回 >

Firms

• Production functions:

$$Y_t^N = A_t^N H_t^{1-\alpha^N}$$
$$Y_t^T = A_t^T H_t^{1-\alpha^T}$$

• Labor demand schedules:

$$W_{t} = \left(1 - \alpha^{N}\right) P_{t}^{N} A_{t}^{N} \left(H_{t}^{N}\right)^{-\alpha^{N}}$$
$$W_{t} = \left(1 - \alpha^{T}\right) A_{t}^{T} \left(H_{t}^{T}\right)^{-\alpha^{T}}$$

• Dividends to household are residual:

$$\pi_{t} = \alpha^{N} P_{t}^{N} A_{t}^{N} \left(H_{t}^{N} \right)^{1-\alpha^{N}} + \alpha^{T} A_{t}^{T} \left(H_{t}^{T} \right)^{1-\alpha^{T}}$$

BCORY ()

< E

<ロト < 同ト < 三ト

э

Firms

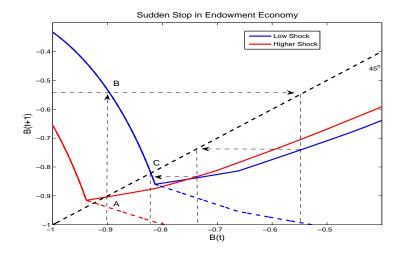
• Production functions:

$$Y_t^N = A_t^N H_t^{1-\alpha^N}$$
$$Y_t^T = A_t^T H_t^{1-\alpha^T}$$

• Labor demand schedules:

$$W_{t} = \left(1 - \alpha^{N}\right) P_{t}^{N} A_{t}^{N} \left(H_{t}^{N}\right)^{-\alpha^{N}}$$
$$W_{t} = \left(1 - \alpha^{T}\right) A_{t}^{T} \left(H_{t}^{T}\right)^{-\alpha^{T}}$$

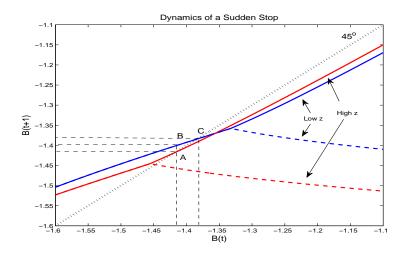
• Dividends to household are residual:


$$\pi_{t} = \alpha^{N} P_{t}^{N} A_{t}^{N} \left(H_{t}^{N} \right)^{1-\alpha^{N}} + \alpha^{T} A_{t}^{T} \left(H_{t}^{T} \right)^{1-\alpha^{T}}$$

3

글 🕨 🖌 글

A D > A A P > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


Sudden Stops

æ

→ □ → → 三 → → 三 →

Sudden Stops

BCORY ()

December 7, 2012 8 / 33

æ

< 同 > < 国 > < 国 >

- Want to study optimal policy without commitment (realistic, computationally easier)
- Various combinations of taxes:
 - Tax on new debt τ^B (capital control)
 - Tax on nontraded consumption au^N (exchange rate)
 - Tax on traded consumption τ^{+} (exchange rate)
 - Tax on labor income au^t
- τ^N and τ^T are equivalent, τ^B and τ^L are equivalent

- Want to study optimal policy without commitment (realistic, computationally easier)
- Various combinations of taxes:
 - Tax on new debt τ^B (capital control)
 - Tax on nontraded consumption τ^N (exchange rate)
 - Tax on traded consumption τ^{T} (exchange rate)
 - Tax on labor income τ^L
- $\bullet \ \tau^N$ and τ^T are equivalent, τ^B and τ^L are equivalent

- Want to study optimal policy without commitment (realistic, computationally easier)
- Various combinations of taxes:
 - Tax on new debt τ^B (capital control)
 - Tax on nontraded consumption τ^N (exchange rate)
 - Tax on traded consumption τ^{T} (exchange rate)
 - Tax on labor income τ^L
- $\bullet \ \tau^N$ and τ^T are equivalent, τ^B and τ^L are equivalent

- Want to study optimal policy without commitment (realistic, computationally easier)
- Various combinations of taxes:
 - Tax on new debt τ^B (capital control)
 - Tax on nontraded consumption τ^N (exchange rate)
 - Tax on traded consumption τ^{T} (exchange rate)
 - Tax on labor income τ^L
- $\bullet \ \tau^N$ and τ^T are equivalent, τ^B and τ^L are equivalent

- Want to study optimal policy without commitment (realistic, computationally easier)
- Various combinations of taxes:
 - Tax on new debt τ^B (capital control)
 - Tax on nontraded consumption τ^N (exchange rate)
 - Tax on traded consumption τ^{T} (exchange rate)
 - Tax on labor income τ^L
- $\bullet \ \tau^N$ and τ^T are equivalent, τ^B and τ^L are equivalent

- Want to study optimal policy without commitment (realistic, computationally easier)
- Various combinations of taxes:
 - Tax on new debt τ^B (capital control)
 - Tax on nontraded consumption τ^N (exchange rate)
 - Tax on traded consumption τ^{T} (exchange rate)
 - Tax on labor income τ^{L}
- τ^{N} and τ^{T} are equivalent, τ^{B} and τ^{L} are equivalent

- Want to study optimal policy without commitment (realistic, computationally easier)
- Various combinations of taxes:
 - Tax on new debt τ^B (capital control)
 - Tax on nontraded consumption τ^N (exchange rate)
 - Tax on traded consumption τ^{T} (exchange rate)
 - Tax on labor income τ^{L}
- $\tau^{\textit{N}}$ and $\tau^{\textit{T}}$ are equivalent, $\tau^{\textit{B}}$ and $\tau^{\textit{L}}$ are equivalent

Optimal Policy

Government solves

$$V\left(B,A^{T}\right) = \max_{\psi_{\rho},\psi_{g}} \left\{ \begin{array}{c} \frac{1}{1-\rho} \left(C - \frac{1}{\delta} \left(H_{T} + H_{N}\right)^{\delta}\right)^{1-\rho} + \\ \beta E\left[V\left(B',A^{T'}\right) \middle| A^{T}\right] \end{array} \right\}$$

• Constraints are complete set of equilibrium conditions (including complementary slackness)

BCORY ()

December 7, 2012 10 / 33

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal Policy

Government solves

$$V\left(B,A^{T}\right) = \max_{\psi_{\rho},\psi_{g}} \left\{ \begin{array}{c} \frac{1}{1-\rho} \left(C - \frac{1}{\delta} \left(H_{T} + H_{N}\right)^{\delta}\right)^{1-\rho} + \\ \beta E\left[V\left(B',A^{T'}\right) \middle| A^{T}\right] \end{array} \right\}$$

• Constraints are complete set of equilibrium conditions (including complementary slackness)

BCORY ()

A B + A B +

э

Constraints for Government

• τ_N affects intratemporal allocation between C^T and C^N :

$$(1+\tau_t^N)P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(C_t^N\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• τ_B affects intertemporal allocation between C^T today and tomorrow:

$$\lambda_{t} = (1 - \tau_{t}^{B})\mu_{t} - \beta (1 + i) E_{t} \left[\mu_{t+1}\right]$$

• Because of pecuniary externality taxation can improve welfare

• Presence of μ_{t+1} in constraint set implies potential time inconsistency, so we look for Markov-perfect equilibrium

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constraints for Government

• τ_N affects intratemporal allocation between C^T and C^N :

$$(1+\tau_t^N)P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(C_t^N\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• τ_B affects intertemporal allocation between C^T today and tomorrow:

$$\lambda_{t} = (1 - \tau_{t}^{B})\mu_{t} - \beta (1 + i) E_{t} \left[\mu_{t+1}\right]$$

Because of pecuniary externality taxation can improve welfare

• Presence of μ_{t+1} in constraint set implies potential time inconsistency, so we look for Markov-perfect equilibrium

< ロ > < 同 > < 回 > < 回 > < □ > <

Constraints for Government

• τ_N affects intratemporal allocation between C^T and C^N :

$$(1+\tau_t^N)P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(C_t^N\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• τ_B affects intertemporal allocation between C^T today and tomorrow:

$$\lambda_{t} = (1 - \tau_{t}^{B})\mu_{t} - \beta (1 + i) E_{t} \left[\mu_{t+1}\right]$$

• Because of pecuniary externality taxation can improve welfare

• Presence of μ_{t+1} in constraint set implies potential time inconsistency, so we look for Markov-perfect equilibrium

イロト 不得 トイヨト イヨト 二日

Constraints for Government

• τ_N affects intratemporal allocation between C^T and C^N :

$$(1+\tau_t^N)P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(C_t^N\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• τ_B affects intertemporal allocation between C^T today and tomorrow:

$$\lambda_{t} = (1 - \tau_{t}^{\mathcal{B}})\mu_{t} - \beta \left(1 + i\right) \mathcal{E}_{t} \left[\mu_{t+1}\right]$$

• Because of pecuniary externality taxation can improve welfare

• Presence of μ_{t+1} in constraint set implies potential time inconsistency, so we look for Markov-perfect equilibrium

Markov-Perfect Equilibrium

A Markov-perfect equilibrium is a value function $V^*(B, A^T)$, government policy functions $\psi_g^*(B, A^T)$, and private sector equilibrium functions $\psi_p^*(B, A^T)$ such that

L Given
$$\widehat{V}(B_{t+1}, A_{t+1}^{T})$$
 and $\widehat{\psi}_{p}(B_{t+1}, A_{t+1}^{T})$, $(\psi_{g}^{*}, \psi_{p}^{*})$ solves

$$\left(\psi_{g}^{*},\psi_{p}^{*}\right)\left(B_{t},A_{t}^{T}\right) = \underset{\psi_{g},\psi_{p}}{\operatorname{argmax}} \left\{ \begin{array}{c} u\left(C\left(\psi_{p},\psi_{g}\right),H\left(\psi_{p},\psi_{g}\right)\right)+\\ \beta E\left[\widehat{V}\left(B'\left(\psi_{p},\psi_{g}\right),A_{t+1}^{T}\right)\right] \end{array} \right\}$$

subject to the equilibrium conditions, and

$$V^* \left(B_t, A_t^T \right) = u \left(C \left(\psi_g^*, \psi_p^* \right), H \left(\psi_g^*, \psi_p^* \right) \right) + \beta E \left[\widehat{V} \left(B' \left(\psi_g^*, \psi_p^* \right), A_{t+1}^T \right) \right];$$

Markov-Perfect Equilibrium

A Markov-perfect equilibrium is a value function $V^*(B, A^T)$, government policy functions $\psi_g^*(B, A^T)$, and private sector equilibrium functions $\psi_p^*(B, A^T)$ such that

2 Subgame perfection holds:

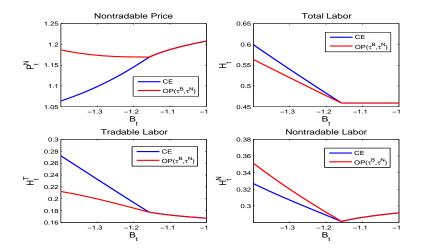
$$\widehat{V}\left(B_{t}, A_{t}^{T}\right) = V^{*}\left(B_{t}, A_{t}^{T}\right)$$
$$\widehat{\psi}_{\rho}\left(B_{t}, A_{t}^{T}\right) = \psi_{\rho}^{*}\left(B_{t}, A_{t}^{T}\right).$$

BCORY ()

• With two instruments, only intervene if constraint is binding

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



December 7, 2012

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Optimal Policy

BCORY ()

Macro-Prudential Policies

December 7, 2012

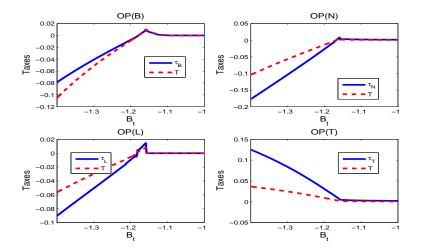
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

16 / 33

æ

• With two instruments, only intervene if constraint is binding

- $\bullet\,$ Note that lump-sum tax ${\cal T}$ here is zero, not generally though
- Optimal taxes support nontraded price P^N
- With only one instrument, intervene in opposite directions if constraint is and is not binding

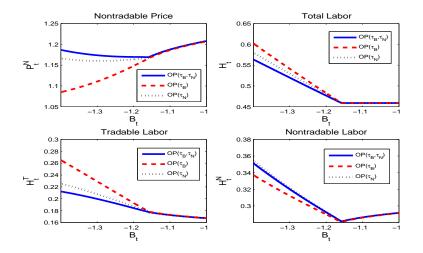

| 4 同 1 4 三 1 4 三 1

- With two instruments, only intervene if constraint is binding
 - $\bullet\,$ Note that lump-sum tax ${\cal T}$ here is zero, not generally though
 - Optimal taxes support nontraded price P^N
- With only one instrument, intervene in opposite directions if constraint is and is not binding

| 4 同 1 4 三 1 4 三 1

- With two instruments, only intervene if constraint is binding
 - Note that lump-sum tax \mathcal{T} here is zero, not generally though
 - Optimal taxes support nontraded price P^N
- With only one instrument, intervene in opposite directions if constraint is and is not binding

・ 同 ト ・ ヨ ト ・ ヨ ト



BCORY ()

Macro-Prudential Policies

18 / 33

æ

BCORY ()

Macro-Prudential Policies

December 7, 2012

- 4 同 ト 4 目 ト 4 目 ト

19 / 33

æ

- With two instruments, only intervene if constraint is binding
- With only one instrument, intervene in opposite directions if constraint is and is not binding
- Intuition:
 - Use τ^N to increase P^N (subsidize nontraded consumption) and undo effect of constraint
 - Now working too much, so use \(\tau^B\) to reduce labor supply (tax new debt)

< ロ > < 同 > < 回 > < 回 >

- With two instruments, only intervene if constraint is binding
- With only one instrument, intervene in opposite directions if constraint is and is not binding
- Intuition:
 - Use τ^N to increase P^N (subsidize nontraded consumption) and undo effect of constraint
 - Now working too much, so use τ^B to reduce labor supply (tax new debt)

イロト イポト イヨト イヨト

- With two instruments, only intervene if constraint is binding
- With only one instrument, intervene in opposite directions if constraint is and is not binding
- Intuition:
 - Use τ^N to increase ${\cal P}^N$ (subsidize nontraded consumption) and undo effect of constraint
 - Now working too much, so use τ^B to reduce labor supply (tax new debt)

(人間) (人) (人) (人) (人) (人)

- With two instruments, only intervene if constraint is binding
- With only one instrument, intervene in opposite directions if constraint is and is not binding
- Intuition:
 - Use τ^N to increase P^N (subsidize nontraded consumption) and undo effect of constraint
 - Now working too much, so use τ^B to reduce labor supply (tax new debt)

- Want to study decisions of a planner that internalizes pecuniary externalities
- Wage is required to equal marginal product of labor
- Two possibilities for P^N :

• "Constrained efficient I":

$$P_t^N = \frac{\left(1 - \omega\right)^{\frac{1}{k}} \left(A_t^N \left(H_t^N\right)^{1 - a^N}\right)^{-\frac{1}{k}}}{\omega^{\frac{1}{k}} \left(C_t^T\right)^{-\frac{1}{k}}}$$

• "Constrained efficient II":

$$P_t^N = f^{CE} \left(B_t, A_t^T, A_t^N \right)$$

• We use I here (answers differ)

- Want to study decisions of a planner that internalizes pecuniary externalities
- Wage is required to equal marginal product of labor
- Two possibilities for P^N :

"Constrained efficient I"

$$P_t^N = \frac{\left(1 - \omega\right)^{\frac{1}{k}} \left(A_t^N \left(H_t^N\right)^{1 - \alpha^N}\right)^{-\frac{1}{k}}}{\omega^{\frac{1}{k}} \left(C_t^T\right)^{-\frac{1}{k}}}$$

• "Constrained efficient II":

$$P_t^N = f^{CE}\left(B_t, A_t^T, A_t^N\right)$$

• We use I here (answers differ)

BCORY ()

Macro-Prudential Policies

- Want to study decisions of a planner that internalizes pecuniary externalities
- Wage is required to equal marginal product of labor
- Two possibilities for P^N :

• "Constrained efficient I":

$$P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(A_t^N \left(H_t^N\right)^{1-\alpha^N}\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• "Constrained efficient II":

$$P_t^N = f^{CE} \left(B_t, A_t^T, A_t^N \right)$$

• We use I here (answers differ)

BCORY ()

Macro-Prudential Policies

- Want to study decisions of a planner that internalizes pecuniary externalities
- Wage is required to equal marginal product of labor
- Two possibilities for P^N :
 - "Constrained efficient I":

$$P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(A_t^N \left(H_t^N\right)^{1-\alpha^N}\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• "Constrained efficient II":

$$P_t^N = f^{CE} \left(B_t, A_t^T, A_t^N \right)$$

• We use I here (answers differ)

BCORY ()

- Want to study decisions of a planner that internalizes pecuniary externalities
- Wage is required to equal marginal product of labor
- Two possibilities for P^N :
 - "Constrained efficient I":

$$P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(A_t^N \left(H_t^N\right)^{1-\alpha^N}\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• "Constrained efficient II":

$$P_t^N = f^{CE} \left(B_t, A_t^T, A_t^N \right)$$

• We use I here (answers differ)

BCORY ()

- Want to study decisions of a planner that internalizes pecuniary externalities
- Wage is required to equal marginal product of labor
- Two possibilities for P^N :
 - "Constrained efficient I":

$$P_t^N = \frac{(1-\omega)^{\frac{1}{\kappa}} \left(A_t^N \left(H_t^N\right)^{1-\alpha^N}\right)^{-\frac{1}{\kappa}}}{\omega^{\frac{1}{\kappa}} \left(C_t^T\right)^{-\frac{1}{\kappa}}}$$

• "Constrained efficient II":

$$P_t^N = f^{CE} \left(B_t, A_t^T, A_t^N \right)$$

• We use I here (answers differ)

BCORY ()

December 7, 2012 21 / 33

• Resource constraint on tradables

$$C_t^T = Y_t^T - B_{t+1} + (1+i) B_t$$

• Resource constraint on nontradables

$$C^{N} = Y^{N} = A_{t}^{N} \left(H_{t}^{N} \right)^{1-\alpha^{N}}$$

• Credit constraint

$$B_{t+1} \ge -\frac{1-\phi}{\phi} \left[Y^T + P_t^N Y^N \right]$$

• Pricing condition

3

• Resource constraint on tradables

$$C_t^T = Y_t^T - B_{t+1} + (1+i) B_t$$

• Resource constraint on nontradables

$$C^{N} = Y^{N} = A_{t}^{N} \left(H_{t}^{N} \right)^{1-\alpha^{N}}$$

• Credit constraint

$$B_{t+1} \ge -\frac{1-\phi}{\phi} \left[Y^T + P_t^N Y^N \right]$$

• Pricing condition

3

• Resource constraint on tradables

$$C_t^T = Y_t^T - B_{t+1} + (1+i) B_t$$

• Resource constraint on nontradables

$$C^{N} = Y^{N} = A_{t}^{N} \left(H_{t}^{N}\right)^{1-\alpha^{N}}$$

Credit constraint

$$B_{t+1} \ge -rac{1-\phi}{\phi} \left[Y^{\mathcal{T}} + P_t^N Y^N
ight]$$

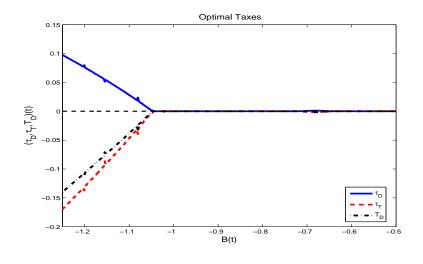
• Pricing condition

3

• Resource constraint on tradables

$$C_t^T = Y_t^T - B_{t+1} + (1+i) B_t$$

• Resource constraint on nontradables


$$C^{N} = Y^{N} = A_{t}^{N} \left(H_{t}^{N} \right)^{1-\alpha^{N}}$$

Credit constraint

$$B_{t+1} \ge -rac{1-\phi}{\phi} \left[Y^{\mathcal{T}} + P_t^N Y^N
ight]$$

• Pricing condition

• Can implement SP using taxes on tradable consumption τ^T and nontradable output τ^D , and lump-sum tax on profits T^D , with lump-sum tax T^C to clear government budget

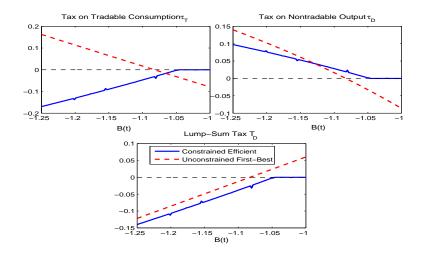
BCORY ()

December 7, 2012

24 / 33

문 🛌 🖻

- Can implement SP using taxes on tradable consumption τ^T and nontradable output τ^D , and lump-sum tax on profits T^D , with lump-sum tax T^C to clear government budget
- Only intervene if constraint is currently binding, tax nontraded sector, subsidize traded sector and profit
- Alternative implementation uses labor income tax instead of lump-sum profit tax


- Can implement SP using taxes on tradable consumption τ^T and nontradable output τ^D , and lump-sum tax on profits T^D , with lump-sum tax T^C to clear government budget
- Only intervene if constraint is currently binding, tax nontraded sector, subsidize traded sector and profit
- Alternative implementation uses labor income tax instead of lump-sum profit tax

Implementation of Unconstrained Allocation

- Unconstrained allocation dominates SP (by a lot)
- Government commits to subsidizing nontradables if the constraint binds, resulting in constraint never binding

Implementation of Unconstrained Allocation

BCORY ()

December 7, 2012

- ∢ ⊒ →

< (□)

э

Welfare

Calibration

• Calibrated to Mexico with quarterly data from 1993:1-2007:4

- Evaluated on both business cycle and 1995 Tequila crisis
- Fluctuations are too small, so welfare gains may be lower bound

3

Welfare

Calibration

- Calibrated to Mexico with quarterly data from 1993:1-2007:4
- Evaluated on both business cycle and 1995 Tequila crisis
- Fluctuations are too small, so welfare gains may be lower bound

BCORY ()

3

- Calibrated to Mexico with quarterly data from 1993:1-2007:4
- Evaluated on both business cycle and 1995 Tequila crisis
- Fluctuations are too small, so welfare gains may be lower bound

Calibration

- Elast. of sub. (tradable and non-tradable goods) $\kappa = 0.76$
- Weight of tradable and non-tradable goods $\omega = 0.32076$
- Utility curvature $\rho = 2$
- Labor supply elasticity $\delta = 1.75$
- Labor share in production $\alpha^T = \alpha^N = 0.66$
- Borrowing constraint 117% of GDP
- Persistence/volatility shock: $\rho_{\tau} = 0.553, \sigma_{T} = 0.028$
- Home real interest rate i = 0.01587
- Unconditional probability of sudden stop 2% per guarter

29 / 33

Welfare Gains

• Crisis probabilities

CE	SP	ΟΡ(τ _N , τ _B)	ΟΡ(<i>τ_N</i>)	ΟΡ(<i>τ</i> _{<i>B</i>})
1.96	1.63	0.09	0.60	0.00

• Average welfare gains over CE

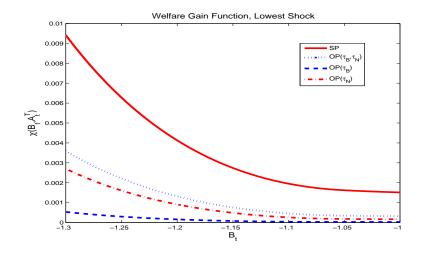
	Overall	In crisis states
CE	na	na
SP	0.18%	0.22%
ΟΡ(<i>τ</i> _{<i>N</i>} , <i>B</i>)	0.04%	0.05%
$OP(\tau_N)$	0.02%	0.03%
$OP(\tau_B)$	0.003%	0.005%

<ロ> <部> < 部> < き> < き> < き</p>

30 / 33

Welfare Gains

• Crisis probabilities


CE	SP	ΟΡ(τ _N , τ _B)	ΟΡ(τ _N)	ΟΡ(<i>τ</i> _{<i>B</i>})
1.96	1.63	0.09	0.60	0.00

• Average welfare gains over CE

	Overall	In crisis states
CE	na	na
SP	0.18%	0.22%
ΟΡ(<i>τ</i> _{<i>N</i>} , _{<i>B</i>})	0.04%	0.05%
$OP(\tau_N)$	0.02%	0.03%
ΟΡ(<i>τ</i> _{<i>B</i>})	0.003%	0.005%

- 34

Welfare Gains

BCORY ()

December 7, 2012

æ

31 / 33

• With insufficient instruments (one), *ex ante* and *ex post* interventions are optimal:

- Subsidize nontraded sector during crisis, tax it when crisis has positive probability tomorrow
- Subsidize new debt during crisis, tax it when crisis has positive probability tomorrow
- With sufficient instruments (two), only use *ex post* interventions:
 - Subsidize nontraded sector and tax new debt during crisis, do nothing otherwise
- Taxes that implement constrained efficient allocations can also implement unconstrained allocation
 - Do not require any ex ante intervention or capital control

< ロ > < 同 > < 三 > <

- With insufficient instruments (one), *ex ante* and *ex post* interventions are optimal:
 - Subsidize nontraded sector during crisis, tax it when crisis has positive probability tomorrow
 - Subsidize new debt during crisis, tax it when crisis has positive probability tomorrow
- With sufficient instruments (two), only use *ex post* interventions:
 - Subsidize nontraded sector and tax new debt during crisis, do nothing otherwise
- Taxes that implement constrained efficient allocations can also implement unconstrained allocation
 - Do not require any ex ante intervention or capital control

< ロ > < 同 > < 三 > < 三 >

- With insufficient instruments (one), *ex ante* and *ex post* interventions are optimal:
 - Subsidize nontraded sector during crisis, tax it when crisis has positive probability tomorrow
 - Subsidize new debt during crisis, tax it when crisis has positive probability tomorrow
- With sufficient instruments (two), only use *ex post* interventions:
 - Subsidize nontraded sector and tax new debt during crisis, do nothing otherwise
- Taxes that implement constrained efficient allocations can also implement unconstrained allocation
 - Do not require any ex ante intervention or capital control

・ロト ・同ト ・ヨト ・ヨト

- With insufficient instruments (one), *ex ante* and *ex post* interventions are optimal:
 - Subsidize nontraded sector during crisis, tax it when crisis has positive probability tomorrow
 - Subsidize new debt during crisis, tax it when crisis has positive probability tomorrow
- With sufficient instruments (two), only use *ex post* interventions:
 - Subsidize nontraded sector and tax new debt during crisis, do nothing otherwise
- Taxes that implement constrained efficient allocations can also implement unconstrained allocation
 - Do not require any ex ante intervention or capital control

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- With insufficient instruments (one), *ex ante* and *ex post* interventions are optimal:
 - Subsidize nontraded sector during crisis, tax it when crisis has positive probability tomorrow
 - Subsidize new debt during crisis, tax it when crisis has positive probability tomorrow
- With sufficient instruments (two), only use *ex post* interventions:
 - Subsidize nontraded sector and tax new debt during crisis, do nothing otherwise
- Taxes that implement constrained efficient allocations can also implement unconstrained allocation
 - Do not require any ex ante intervention or capital control

・ロト ・同ト ・ヨト ・ヨト

- With insufficient instruments (one), *ex ante* and *ex post* interventions are optimal:
 - Subsidize nontraded sector during crisis, tax it when crisis has positive probability tomorrow
 - Subsidize new debt during crisis, tax it when crisis has positive probability tomorrow
- With sufficient instruments (two), only use *ex post* interventions:
 - Subsidize nontraded sector and tax new debt during crisis, do nothing otherwise
- Taxes that implement constrained efficient allocations can also implement unconstrained allocation
 - Do not require any *ex ante* intervention or capital control

イロト 不得 とくほ とくほ とうほう

- With insufficient instruments (one), *ex ante* and *ex post* interventions are optimal:
 - Subsidize nontraded sector during crisis, tax it when crisis has positive probability tomorrow
 - Subsidize new debt during crisis, tax it when crisis has positive probability tomorrow
- With sufficient instruments (two), only use *ex post* interventions:
 - Subsidize nontraded sector and tax new debt during crisis, do nothing otherwise
- Taxes that implement constrained efficient allocations can also implement unconstrained allocation
 - Do not require any *ex ante* intervention or capital control

32 / 33

イロト 不得 とくほ とくほ とうほう

General Lessons

• Ex ante and ex post policy options are jointly determined

• If *ex post* interventions are effective, no need for *ex ante* ones

Less effective "damage control" implies more need for preemptive policy

イロト 不得 とくほ とくほ とうほう

General Lessons

- Ex ante and ex post policy options are jointly determined
- If ex post interventions are effective, no need for ex ante ones
 - Less effective "damage control" implies more need for preemptive policy

イロト イポト イヨト イヨト 二日

General Lessons

- Ex ante and ex post policy options are jointly determined
- If *ex post* interventions are effective, no need for *ex ante* ones
 - Less effective "damage control" implies more need for preemptive policy

3

- 4 同 6 4 日 6 4 日 6