Understanding the Great Recession

Lawrence Christiano Martin Eichenbaum Mathias Trabandt

December 15, 2014

Disclaimer: The views expressed are those of the authors and not necessarily those of the Federal Reserve Board or any other person associated with the Federal Reserve System.

The Great Recession and its Aftermath

- Extraordinary contractions in GDP, investment and consumption.
- Employment and labor force participation dropped substantially, with little/no recovery.
- Vacancies recovered but unemployment still above pre-recession levels ('shift in Beveridge curve').
- Despite severe economic weakness, decline in inflation relatively modest.

Questions

• What were key forces driving U.S. economy during the Great Recession?

2 Mismatch in the labor market?

3 Why was the drop in inflation so moderate?

Answering our Questions requires a Model

- Model must provide empirically plausible account of:
 - standard macro- and labor market data.
- Novel features of labor market
 - Endogenize labor force participation.
 - Derive wage inertia as an equilibrium outcome.
- Estimate model using pre-2008 data.
- Use estimated model to analyze post-2008 data.

Questions and Answers

- What forces drove real quantities in the Great Recession?
 - Shocks to financial markets key drivers, even for variables like labor force participation.
 - Financial wedge and consumption wedge.
- Mismatch in the labor market?
 - Not a first order feature of the Great Recession.
 - We account for 'shift' in the Beveridge curve without resorting to structural shifts in the labor market.

Questions and Answers

- Why was the drop in inflation so moderate?
 - Prolonged slowdown in TFP growth during the Great Recession.
 - Rise in cost of firms' working capital as measured by spread between corporate-borrowing rate and risk-free interest rate.
 - Both forces excert countervailing pressure on inflation.

- -Split between U and E determined by job-finding rate.

Alternating Offer Bargaining (AOB)

- Firms pay a fixed cost to meet a worker.
- Then, workers and firms bargain.
 - Disagreement leads to continued negotiations
- Hall-Milgrom (2008): if bargaining costs don't depend sensitively on state of economy, neither will wages.
- CET (2013): AOB outperforms Nash bargaining in empirical NK model (no Shimer puzzle)
 - after expansionary shock, rise in wages relatively small leading to substantial amplification.

Estimated Medium-Sized DSGE Model

- Standard empirical NK model (e.g., CEE, ACEL, SW):
 - Calvo price setting frictions, but no indexation.
 - Habit persistence.
 - Variable capital utilization.
 - Working capital.
 - Adjustment costs: investment, labor force.
 - Taylor rule.
- Our labor market structure.
- Estimation strategy: Bayesian impulse response matching.
 - Shocks to monetary policy, neutral and investment-specific technology.
 - Our model performs well relative to this metric.

Accounting for the Great Recession

- Use model to assess which shocks account for gap between:
 - What actually happened.
 - What would have happened in absence of the shocks.

The U.S. Great Recession

Deriving Target Gaps

- We adopt a simple and transparent procedure to characterize what the data would have looked like absent the shocks that caused the Great Recession.
- For each variable, we fit a linear trend from date x to 2008Q2, where $x \in \{1985Q1; 2003Q1\}$.
- We extrapolate the resulting trend lines for each variable from 2008Q3 to 2013Q2.
- We calculate the target gaps as the differences between the projected values of each variable and its actual value.

U.S. Great Recession: Target Gap Ranges

2009 2010 2011 2012 2013

2009 2010

2011 2012

Two Financial Market Shocks

• Consumption wedge, Δ_t^b : Shock to demand for safe assets ('Flight to safety', see e.g. Fisher 2014):

$$1 = (1 + \Delta_t^b) E_t m_{t+1} R_t / \pi_{t+1}$$

2 Financial wedge, $\tilde{\Delta}_t^k$: Reduced form of 'risk shock', Christiano-Davis (2006), Christiano-Motto-Rostagno (2014):

$$1 = (1 - \tilde{\Delta}_t^k) E_t m_{t+1} R_{t+1}^k / \pi_{t+1}$$

- Financial wedge also applies to working capital loans:
 - Interest charge on working capital: $R_t \left(1 + \hat{\Delta}_t^k\right)$
 - Estimated share of labor inputs financed with loans: 0.56.
 - Higher financial wedge directly increases cost to firms.

Measurement of Shocks

- Financial wedge, $\tilde{\Delta}_t^k$, measured using GZ spread data.
- **2** Consumption wedge, Δ_t^b , measured using the Euler equation for the risk-free asset and $E_t \pi_{t+1}$ and R_t data.
- 3 Neutral technology shock based on TFP data.
- $oldsymbol{4}$ Government shock measured using G data.

Exogenous Processes

Assessing model's implication for TFP

Stochastic Simulation of the Model

- Feed the four shocks to the model and simulate the post 2008Q2 data.
- Observed GZ, Δ^b , TFP and G data are treated as realizations of a stochastic process.
- At each date t, agents observe period t and earlier obs. only.
 - At t they must forecast future values of the shocks.
 - They compute forecasts using time series models for the shocks.
- Solve nonlinear model, imposing certainty equivalence.

Monetary Policy in the Great Recession

- From 2008Q3 to 2011Q2:
 - Taylor-type feedback rule subject to the ZLB.
- Policy from 2011Q3-2012Q4:
 - Date-based forward guidance
 - Keep funds rate at zero for next 8 quarters.
- Policy from 2013Q1:
 - keep funds rate at zero until either unemployment falls below 6.5% or inflation rises above 2.5%.

The U.S. Great Recession: Data vs. Model

The U.S. Great Recession: Data vs. Model

Decomposing What Happened into Shocks

- Our shocks roughly reproduce the actual data.
- We investigate the effect of a shock by shutting it off.
 - Resulting decomposition is not additive because of nonlinearity.

• Results:

- Financial wedge accounts for the biggest effects on real quantitites.
- Consumption wedge less important than financial wedge.
- Government spending relatively small role.
- TFP plays an important role in preventing drop in inflation.

Phillips Curve

- Widespread skepticism that NK model can account for modest decline in inflation during the Great Recession.
- One response: Phillips curve got flat or always was very flat (e.g. Christiano, Eichenbaum and Rebelo, 2011).
- Alternative: standard Phillips curve misses sharp rise in costs
 - Unusually high cost of credit to finance working capital.
 - Fall in TFP.
 - \Rightarrow Both raise countervailing pressure on inflation.

Decomposition for Inflation

Beveridge Curve

- Much attention focused on 'sharp' rise in vacancies and relatively small fall in unemployment
 - Claim that fish hook shape is evidence of 'shift' in matching function.
 - Claim based on assumption that unemployment is at steady state.
- In our model, no shift occurs in the matching technology.
 - Still, our model accounts for the 'fish hook' shape of the Beveridge curve.

The Beveridge Curve: Data vs. Model

Model Predicts Fish Hook, Why?

• Simplest DMP-style model

$$U_{t+1} - U_t = (1 - \rho)(1 - U_t) - f_t U_t$$

solving for f_t :

$$f_t = (1 - \rho) \frac{(1 - U_t)}{U_t} - \frac{U_{t+1} - U_t}{U_t} \stackrel{\text{matching function}}{=} \sigma_t (\frac{V_t}{U_t})^{\alpha}$$

solving for V_t :

$$V_t = \left[(1-
ho) rac{(1-U_t)}{\sigma_t U_t^{1-lpha}} - rac{\overbrace{U_{t+1}-U_t}^{ ext{standard approximation sets this to zero}}^{ ext{standard approximation sets this to zero}}
ight]^{1/lpha}$$

Naturally implies a 'fish hook' pattern.

Conclusion

- Bulk of movements in economic activity during the Great Recession due to financial frictions interacting with the ZLB.
 - ZLB has caused negative shocks to aggregate demand to push the economy into a prolonged recession.
- Findings based on looking through lens of a NK model with unemployment and LFP.
- No (or little) evidence for 'mismatch' in labor market.
- Modest fall in inflation is not a puzzle once fall in TFP and risky working capital channel are taken into account.

Counterfactual Simulations

Results:

- No forward guidance economic activity would have dropped even more in the Great Recession.
- No zero lower bound economic activity would have contracted less (albeit modestly).
- No decline in labor force participation employment, consumption and output would have fallen substantially less in the Great Recession.

Assessing model's implication for TFP

Notes: Linear trend from 2001Q1-2008Q2 (dashed-dotted). Forecast 2008Q3 and beyond based on linear trend (dotted).

Effects of Labor Force Participation

- -Household labor force decision
- -Split between U and E determined by job-finding rate.

Estimation

- Bayesian impulse response matching.
- VAR based on pre-2008 data:
 - Macro variables and real wage, hours worked, unemployment, job finding rate, vacancies, labor force.
- Identify shocks to monetary policy, neutral and investment-specific technology.
- Parameter estimates minimize distances between model and VAR impulse responses.
 - Responses in our model resemble responses in data.

Labor Market

- Large number of identical households, with unit measure of members.
- Three types of activities:
 - $(1-L_t)$ people in home production, not in labor force.
 - l_t people are in labor force and employed.
 - $(L_t l_t)$ people unemployed, i.e. they're in labor force but don't have a job.

- At end of each period, $1-\rho$ percent of employed workers are separated from firm.
- Separated, unemployed worker have equal probability, 1-s, of exiting labor force.
- Job finding rate f_t: ratio of number of new hires divided by number of people searching for work
- e_t: rate at which workers transit from non-participation to being in labor force

- \bullet At end of each period, $1-\rho$ percent of employed workers are separated from firm.
 - So at end of period t-1, $(1-\rho)\,l_{t-1}$ workers separate from firms, ρl_{t-1} workers remain attached to their firm
- Let u_{t-1} denote unemployment rate at end of t-1.
- Sum of separated and unemployed workers is given by:

$$(1-\rho)l_{t-1} + u_{t-1}L_{t-1} = (1-\rho)l_{t-1} + \frac{L_{t-1} - l_{t-1}}{L_{t-1}}L_{t-1}$$
$$= L_{t-1} - \rho l_{t-1}.$$

- Separated, unemployed worker have equal probability, 1-s, of exiting labor force.
- So $s(L_{t-1} \rho l_{t-1})$ remain in labor force, search for work.
- Household chooses r_t , number of workers that it transfers from non-participation into labor force.
- Labor force in period t is:

$$L_t = s (L_{t-1} - \rho l_{t-1}) + \rho l_{t-1} + r_t.$$

- By its choice of r_t household in effect chooses L_t .
- e_t : rate at which workers transit from non-participation to being in labor force

$$e_t = \frac{r_t}{1 - L_{t-1}}$$

Law of motion for employment is:

$$l_t = (\rho + x_t) l_{t-1}.$$

where x_t is hiring rate.

 Job finding rate: ratio of number of new hires divided by number of people searching for work

$$f_t = \frac{x_t l_{t-1}}{L_t - \rho l_{t-1}}.$$

Modified version of Hall-Milgrom

- Firms pay a fixed cost to meet a worker.
- Then, workers and firms bargain.
 - Better off reaching agreement than parting ways.
 - Disagreement leads to continued negotiations.
- If bargaining costs don't depend sensitively on state of economy, neither will wages.
- After expansionary shock, rise in wages is relatively small.
 - See CET (2013), for intuition in a DSGE model with capital.

Modified version of Hall-Milgrom

- Bargaining protocol:
 - Day 1: firm makes opening offer. Worker can accept, reject and walk away or make counteroffer.
 - Day 2: worker makes counteroffer in case he rejected on first day. Firm can accept, reject and walk away or make counteroffer.
 - Day 3: firm makes counteroffer in case it rejected worker's counter offer...
 - Last day: worker makes take-it-or-leave-it offer.

• Opening offer is accepted.

Modified version of Hall-Milgrom

Bargaining costs:

- Direct cost of γ to firm of rejecting worker offer and preparing a counteroffer.
- Rejection risks total break down in negotiations with probability δ .
- Each day that negotations continue means firm loses production for that day and worker loses wage.

Value Functions (abstract from growth)

• J_t is the value to a firm of an employed worker:

$$J_t = \vartheta_t - w_t + \rho E_t m_{t+1} J_{t+1}.$$

- ϑ_t and m_{t+1} are determined in general equilibrium.
- Free entry and zero profits dictate:

$$\kappa = J_t$$
.

Value Functions

• Value of employment to a worker:

$$V_{t} = w_{t} + E_{t} m_{t+1} \left[\rho V_{t+1} + (1 - \rho) s \begin{pmatrix} f_{t+1} V_{t+1} + \\ (1 - f_{t+1}) U_{t+1} \end{pmatrix} \right].$$

$$(1 - \rho)(1 - s) N_{t+1}$$

- $f_{t+1}V_{t+1}$ are job-to-job transitions, N_{t+1} is value of being out of labor force.
- Employment law of motion and job finding rate:

$$l_t = (\rho + x_t) \, l_{t-1}$$
 and $f_t = \frac{x_t l_{t-1}}{1 - \rho l_{t-1}}$

 $-x_t$ denotes the hiring rate.

Value Functions

• Value of unemployment to a worker:

$$U_t = D + E_t m_{t+1} \begin{bmatrix} s f_{t+1} V_{t+1} + s (1 - f_{t+1}) U_{t+1} \\ + (1 - s) N_{t+1} \end{bmatrix}.$$

where ${\cal D}$ denotes unemployment benefits.

• Value of non-participation

$$N_t = E_t m_{t+1} \left[e_{t+1} (f_{t+1} V_{t+1} + (1 - f_{t+1}) U_{t+1}) \right] + (1 - e_{t+1}) N_{t+1}$$

where e_t is probability of being selected to join labor force.

Medium-Sized NK-DSGE Model (CEE, ACEL)

- Final homogeneous market good, Y_t , produced by competitive, 'retailer' firms, $Y_t = \left[\int_0^1 \left(Y_{j,t}\right)^{\frac{1}{\lambda}} dj\right]^{\lambda}$
- Y_{j,t} produced by monopolist retailer, using capital, intermediate goods, subject to neutral and investment specific technology shocks.
 - Retailer must borrow a share \varkappa cost of intermdiate goods at time t interest rate
 - Calvo price setting frictions, but no indexation.
- Intermediate good produced using labor.

Medium-Sized DSGE Model

- Habit persistence in preferences
- Variable capital utilization.
- Adjustment costs.
 - Investment
 - Number of people in home sector.
- Taylor rule
 - Inflation relative to target, output relative to growth path, year-to-year-growth rate of output, lagged interest rate.

Identifying Assumptions at VAR stage

- Only variable that monetary policy shock affects contemporaneously is Federal Funds Rate.
- The only shocks that affect labor productivity in long-run are innovations to neutral technology and investment specific technology shocks.
- Only shock that affects relative price of investment in long-run is innovation to investment technology shock.

Estimated Parameters, Pre-2008 Data

- Estimation by impulse response matching, Bayesian methods.
- Prices change on average every 4 quarters.
- δ : roughly 0.15% chance of a breakup after rejection.
- γ : cost to firm of preparing counteroffer roughly 0.6 day's production.
- Posterior mode of hiring cost: 0.5% of GDP
- Elasticity of substitution between home and market goods: 3.
 - set a priori, see Aguiar-Hurst-Karabarbounis (2012).

Responses to a Monetary Policy Shock

Responses to a Neutral Technology Shock

Responses to Invest.-Specific Tech. Shock.

Background

- GDP appears to have suffered a permanent fall since 2008.
- Trend decline in labor force participation accelerated after the 'end' of the recession in 2009.
- Unemployment rate persistently high
 - recent fall primarily reflects the fall in labor force participation.
- Employment rate fell sharply with little evidence of recovery.
- Vacancies have risen, but unemployment has fallen relatively little ('shift in Beveridge curve', 'mismatch').
- Investment and consumption persistently low.

What Sort of Model do we Need?

- The labor market is a big part of the puzzle.
 - need a model with endogenous labor force participation, unemployment, vacancies, etc.
- Need investment and capital.
- Incorporate price-setting frictions.
 - Hard to get a big recession out of 'deleveraging' and financial market frictions if market prices move efficiently.
 - We stress interaction of shocks with zero lower bound (ZLB).
 - Hard to get ZLB to matter in a model with flexible prices.
- Work with a modified New Keynesian DSGE model.
 - Forces are captured in the form of 'wedges'.
 - That is, we avoid microfounding the shocks.

Outline

- Mostly, a standard 'medium-sized' DSGE model
- Must adapt the labor market side of the model:
 - adopt DMP-style matching and bargaining.
 - to account for observed labor market volatility,
 - environment must be characterized by wage inertia.
 - adopt alternating offer bargaining as described in Christiano-Eichenbaum-Trabandt 2013 (build on Hall-Milgrom).
 - no need to make wages exogenously 'sticky'.
- Estimate model using pre-2008 data.
- Use estimated model to analyze post-2008 data.

Effects of Financial Wedge Shock

- Accounts for the biggest effect on real quantities.
- Rise in financial wedge represents tax on intertemporal margin.
- With efficient markets: substitution from investment to consumption.
 - Accomplished by large drop in interest rate.
 - BUT: drop not feasible when ZLB is hit.
 - So, consumption not stimulated -> recession.
 - Drop in investment and consumption -> GDP must fall.
 - Households see terrible labor market -> keep people at home.
 - Labor force drops less than employment -> unemployment rises.
 - Recession leads to lower marginal costs -> inflation falls.

Effects of Financial Wedge

Effects of Spread on Working Capital

Effects of Consumption Wedge

Effects of Neutral Technology

Effects of Forward Guidance

Effects of Government Consumption

Effects of the Zero Lower Bound

Effects of Labor Force Participation

Government Consumption Played only a Small Role

- Estimated multiplier around 1.6 during early period (American Recovery and Reinvestment Act of 2009)
 - But, rise in G then too small to have a substantial effect.
- Recent decline in G is large, but has small multiplier effect.
 - consistent with ZLB analysis of Christiano-Eichenbaum-Rebelo (JPE2012).
 - G movements expected to last beyond ZLB have very small multiplier effects.
 - G beyond ZLB has negative impact on ZLB, because of depressive wealth effects on consumption.

The Government Consumption Multiplier

Notes: Stimulus lasts for 3 or 6 years with AR(1)=0.6 thereafter. 3 years constant nominal interest rate. Perfect foresight.

Gilchrist-Zakrajšek Corporate Spread

Other Labor Market Variables: Vacancies.

- Empirical measure of vacancies (JOLTS):
 - position posted by an establishment, which it would fill if it met a suitable candidate.
 - compare vacancies in model with JOLTS.
- Vacancies in our model.
 - vacancies costless, but firm must post them to hire.
 - if firm wants to hire h workers it must post

$$v = \frac{h}{Q}$$

vacancies (it takes Q as given).

- vacancies posted at the level of the establishment (firm has many establishments).
 - if a vacancy produces a suitable candidate, he/she is hired.
- O determined in the 'normal way':

$$Q = \frac{\text{agg hires}}{\text{agg vacancies}} = \text{constant} \times \left(\frac{\text{agg job searchers}}{\text{agg vacancies}}\right)^{\sigma}$$

Other Labor Market Variables: Job Finding Rate.

• Job finding rate:

$$f = \frac{\text{agg hires}}{\text{agg job searchers}}$$

- To assess how economy would have evolved absent large shocks driving Great Recession:
 - With five exceptions, we fit linear trend from 2001Q1 to 2008Q2.
 - Extrapolate trend line for each variable.
 - Our model implies all nonstationary variables are difference stationary.
 - Our linear extrapolation procedure implicitly assumes that shocks in 2001-2008 were small relative to drift terms in time series.
- Same procedure as in Hall (2014) except the starts trend in 1990, obtains similar results

Monetary Policy in the Great Recession

- From 2008Q3 to 2011Q2:
 - Taylor-type rule

$$\ln(Z_t) = \ln(R) + 0.25 \stackrel{1.667}{r_{\pi}} \ln\left(\pi_t^A/\pi^A\right) + 0.25 \stackrel{0.247}{r_{\Delta y}} \ln\left(\mathcal{Y}_t/(\mathcal{Y}_{t-4}\mu_{\mathcal{Y}}^A)\right) + \sigma_R \varepsilon_{R,t}.$$

– The actual policy rate, R_t :

 $\ln(R_t) = \max \left\{ \ln(R/1.004825), \overbrace{\rho_R}^{0.751} \ln(Z_{t-1}) + (1 - \rho_R) \ln(Z_t) \right\}$

Policy from 2013Q1:
keep funds rate at zero until either unemployment falls below
6.5% or inflation rises above 2.5%.

Magnitude of Fish Hook in DMP Model

$$(
ho=0.97, lpha=0.6, \sigma=0.84, ext{monthly})$$

Magnitude of Fish Hook in DMP Model

$$(
ho=0.97, lpha=0.6, \sigma=0.84, ext{monthly})$$

Magnitude of Fish Hook in DMP Model

$$(
ho=0.97, lpha=0.6, \sigma=0.84, ext{ monthly})$$

End of Period Labor Market Flows

• Unemployed and just-separated workers at end of t-1:

separated workers at end of
$$t-1$$
 unemployed in $t-1$ abor force in $t-1$ (1 $-\rho$) l_{t-1} + L_{t-1} $-l_{t-1}$ = $(1-\rho) l_{t-1} + L_{t-1} - l_{t-1}$ = $L_{t-1} - \rho l_{t-1}$.

• Some thrown exogenously into non-employment:

stay and search for jobs go into non-employment
$$s$$
 $(L_{t-1}-\rho l_{t-1})$, $(1-s)$ $(L_{t-1}-\rho l_{t-1})$

Beginning of Period Job Search

Labor force at start of time t :

$$L_t = \overbrace{s\left(L_{t-1} - \rho l_{t-1}\right)}^{\text{period } t-1 \text{ unemployed and separated who stay in labor force}}$$
 people that were employed in previous period and remain attached
$$+ \overbrace{\rho l_{t-1}}^{\text{people sent to labor force from non-employment}} + \overbrace{r_t}^{\text{people sent non-employment}}$$

Number of people searching for jobs at start of time t :

$$r_t + s (L_{t-1} - \rho l_{t-1}) = L_t - \rho l_{t-1}.$$

Job Finding

Total meettings between workers and firms at start of t :

$$l_t = (\rho + x_t) l_{t-1} = \rho l_{t-1} + f_t \underbrace{(L_t - \rho l_{t-1})}_{r_t + s(L_{t-1} - \rho l_{t-1})},$$

where

$$f_t = rac{\overbrace{x_t l_{t-1}}}{L_t -
ho l_{t-1}}.$$

- Workers and firms that meet, begin to bargain.
 - In equilibrium, meetings turn into matches.

Other Labor Market Variables: Vacancies.

- Empirical measure of vacancies (JOLTS):
 - position posted by an establishment, which it would fill if it met a suitable candidate.
 - compare vacancies in model with JOLTS.
- Vacancies in our model.
 - vacancies costless, but firm must post them to hire.
 - if firm wants to hire h workers it must post

$$v = \frac{h}{Q}$$

vacancies (it takes Q as given).

- vacancies posted at the level of the establishment (firm has many establishments).
 - if a vacancy produces a suitable candidate, he/she is hired.
- O determined in the 'normal way':

$$Q = \frac{\text{agg hires}}{\text{agg vacancies}} = \text{constant} \times \left(\frac{\text{agg job searchers}}{\text{agg vacancies}}\right)^{\sigma}$$

Value functions for Workers and Firms

• Worker value functions:

$$V_{t} = w_{t} + E_{t} m_{t+1} [\rho V_{t+1} + (1 - \rho) s (f_{t+1} \bar{V}_{t+1} + (1 - f_{t+1}) U_{t+1}) + (1 - \rho) (1 - s) N_{t+1}].$$

$$U_{t} = D + E_{t} m_{t+1} [s f_{t+1} V_{t+1} + s (1 - f_{t+1}) U_{t+1} + (1 - s) N_{t+1}]$$

$$N_{t} = E_{t} m_{t+1} [e_{t+1} (f_{t+1} V_{t+1} + (1 - f_{t+1}) U_{t+1}) + (1 - e_{t+1}) N_{t+1}]$$

$$e_{t} = \frac{r_{t}}{1 - I_{t+1}}$$

• Firm value function:

$$J_t = \vartheta_t - w_t + \beta E_t m_{t+1} J_{t+1}$$

Rest of Model is Standard, Medium-Sized DSGE

- Competitive final goods production: $Y_t = \begin{bmatrix} \int\limits_0^1 Y_{j,t}^{\frac{1}{\lambda_f}} dj \end{bmatrix}^{\lambda_f}$.
- jth input produced by monopolistic 'retailers':
 - Production: $Y_{j,t} = k_{i,t}^{\alpha} (z_t h_{j,t})^{1-\alpha} \phi$.
 - Homogeneous good, $h_{j,t}$, purchased in competitive
 - markets for real price, ϑ_t .
 - Retailers prices subject to Calvo sticky price frictions (no price indexation).
- Homogeneous input good h_t produced by the firms in our labor market model, 'wholesalers'.
- Taylor rule.

Very persistent decline in TFP

Notes: Linear trend from 2001Q1-2008Q2 (dashed-dotted). Forecast 2008Q3 and beyond based on linear trend (dotted).

Components representation for technology shock

- We adopt unobserved components time series representation for growth rate of $ln(z_t)$.
- Growth rate is sum of permanent, transitory component.
- When there's shock to $\ln{(z_t)}$, agents don't know whether it reflects permanent or temporary component.
 - Must solve signal extraction problem.
- Still, growth rate of technology is roughly a random walk.
 - Process as simple as a random walk can have components that are very different from a random walk.

Components representation for technology

- One-time shock to permanent component of $\ln{(z_t)}$ in 2008Q3.
- If agents knew in 2008Q3 that fall in TFP would be so persistent, model generates counterfactual surge in inflation.
 - We infer agents only gradually became aware of persistence in decline of TFP.
 - When estimating model we mpose prior that standard deviation of transitory shock is substantially larger than that of permanent shock.
- Notion that it took agents time to realize that drop in TFP was highly persistent is consistent with other evidence (e.g. Swanson and Williams).

The U.S. Great Recession: Data Targets

