A Discussion of Arouba, Cuba-Borda and Schorfheide: "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries"

Morten O. Ravn, University College London, Centre for Macroeconomics and CEPR

This paper

- Solves small-scale NK model with ZLB globally with non-linear solver allowing for piece-wise smooth decision rules. Nice.
- Estimates key structural parameters from pre-liquidity trap samples for US and Japan based on 2nd order pertubation. Nice.
- Oraws inference on shocks using decision rules using global method in step 1 and parameters estimated in step 2. OK.
- Examines implications for fiscal policy. OK.

Model

 Block 1: Almost standard model with money in the utility function and Rotemberg price adjustment costs:

$$\mathbf{V}_0 = \mathbb{E}_0 \sum_{t=0}^{\infty} eta^t \left[rac{\left(rac{C_t}{A_t}
ight)^{1- au} - 1}{1- au} - \chi_H rac{H_t^{1+1/\eta}}{1+1/\eta} + \chi_M \mathbf{W} \left(rac{M_t}{P_t A_t}
ight)
ight]$$

$$\mathbf{Y}_{t}^{1-v} = \int_{j} \mathbf{Y}_{t} (j)^{1-v} dj$$

$$\mathbf{Y}_{t} (j) = A_{t} H_{t} (j)$$

$$\mathbf{AC}_{t} (j) = \frac{\phi}{2} \left(\frac{P_{t} (j)}{P_{t-1} (j)} - \overline{\pi} \right)^{2}$$

M.O. Ravn (U(C,L))

Discussion

Model

• Block 2: Interest rate rule plus demand shocks

$$\begin{array}{lcl} R_t & = & \max\left(1, \left[r\pi_*\left(\frac{\pi_t}{\pi_*}\right)^{\psi_1}\left(\frac{Y_t}{\gamma Y_{t-1}}\right)^{\psi_2}R_t^{\rho_R}\mathbf{e}_t^{\sigma_R\epsilon_{R,t}}\right]\right) \\ G_t & = & \left(1-\frac{1}{g_t}\right)Y_t \\ c_t & = & \left[\frac{1}{g_t}-\frac{\phi}{2}\left(\pi_t-\overline{\pi}\right)^2\right]y_t \end{array}$$

- the "max" operator imposes the ZLB
- G_t (not government spending): An autonomous, non-endogenous component of aggregate demand

Shocks

Model driven by fundamental and possibly non-fundamental shocks:

$$\begin{array}{lll} \varepsilon_t &=& \left(\varepsilon_{R,t},\varepsilon_{z,t},\varepsilon_{g,t}\right)' \sim \mathit{iidN}\left(0,\boldsymbol{\mathsf{I}}\right) \\ \log A_t &=& \log \gamma A_{t-1} + \log z_t \\ \log z_t &=& \rho_z \log z_{t-1} + \sigma_z \varepsilon_{z,t} \\ \log g_t &=& \left(1-\rho_g\right) \log g_* + \rho_g \log g_{t-1} + \sigma_g \varepsilon_{g,t} \\ s_t &\in& \left(0,1\right) \text{ with transition matrix } P = \left(\begin{array}{cc} \rho_{00} & 1-\rho_{00} \\ 1-\rho_{11} & \rho_{11} \end{array}\right) \end{array}$$

- g_t : exogenous demand shocks. Perhaps it would be good to discipline these.
- s_t is a stochastic variable, no impact on decision rules if there is a unique equilibrium
- If stochastic sunspot exists, s_t impacts on decision rules

M.O. Ravn (U(C,L)) Discussion 5 / 31

ZLB

ZLB may be binding for two reasons:

- A. Fundamental shocks: Large fall in demand ⇒ fall in inflation ⇒
 fall in nominal interest rate which may go all the way to ZLB ⇒
 sudden drop in output to restore equilibrium because falling inflation
 stimulates real interest rate
- B. Stochastic sunspot equilibria sentiment driven self-fulfilling temporary deviations from 'normal' equilibrium: Agents become negative expecting low future real income ⇒ fall in inflation ⇒ fall in nominal interest rate which may go all the way to ZLB ⇒ sudden drop in output to restore equilibrium - expectations therefore self-fulfilling
- A exist if shocks to demand are large (and not too persistent)
- B exist if negative sentiments are sufficiently persistent (LT steady state always exists)

M.O. Ravn (U(C,L)) Discussion 6 / 31

Fundamental LT

Expectational LT

It Matters: spending

It Matters: taxes

Estimation

Solve model with 2nd order pertubation (around intended steady-state) and calibrate subset

The Following Parameters Were Fixed During Estimation

$100 \ln \gamma$	Quarterly growth rate of technology	0.48	0.56
$400(1-1/\beta)$	Annualized discount rate	0.87	1.88
$400 \ln \pi^*$	Annualized inflation rate	2.52	1.28
$(G/Y)_*$	SS consumption/output ratio	0.15	0.16
η	Frisch elasticity	0.85	0.72
ψ_2	Taylor rule: weight on output growth	0.80	0.30
ν	EOS intermediate inputs	0.10	0.10
p_{00}	Prob of staying in deflation regime	0.95	0.95
p_{11}	Prob of staying in targeted-inflation regime	0.99	0.99

Observables

Parameter estimates

		1984	1984:Q1-2007:Q4		1981:Q1-1994:Q4	
Parameters	Description		U.S.		Japan	
τ	Inverse IES	2.23	(1.85, 2.66)	1.14	(0.72, 1.70)	
κ	Slope (linearized) Phillips curve	0.26	(0.16, 0.39)	0.55	(0.36, 0.77)	
ψ_1	Taylor rule: weight on inflation	1.52	(1.45, 1.60)	1.49	(1.41, 1.58)	
ρ_R	Interest rate smoothing	0.59	(0.51, 0.68)	0.6	(0.47, 0.71)	
$ ho_g$	Persistence: demand shock	0.92	(0.88, 0.94)	0.88	(0.82, 0.94)	
ρ_z	Persistence: technology shock	0.16	(0.05, 0.30)	0.04	(0.01, 0.09)	
$100\sigma_R$	Std dev: monetary policy shock	0.23	(0.18, 0.30)	0.23	(0.17, 0.30)	
$100\sigma_g$	Std dev: demand shock	0.54	(0.41, 0.70)	1.02	(0.71, 1.51)	
$100\sigma_z$	Std dev: technology shock	0.54	(0.44, 0.66)	1.02	(0.82, 1.26)	

M.O. Ravn (U(C,L)) Discussion 13

Ergodic distributions

Sources of the Liquidity Trap

Draw inference on the probability of $s_t = 0$

$$egin{array}{lcl} u_t &=& \mathbf{F}_1\left(x_t
ight) + v_t \ x_t &=& \mathbf{F}_{2,s_t}\left(x_{t-1},arepsilon_t
ight) \ \mathbb{P}\left(s_t = 1
ight) &=& \left\{egin{array}{ll} 1 -
ho_{00} & ext{if } s_t = 0 \
ho_{11} & ext{if } s_t = 1 \end{array}
ight. \end{array}$$

- ullet ${f F}_1$ and ${f F}_{2,s_t}$ are determined by the estimated parameters
- Use particle filter to extract estimates of latent states and filtered probabilities

Sources of the Liquidity Trap

Summary and Implications

- Japanese LT most likely due to expectations
- US LT most likely due to fundamental "demand" shock
- Implies that
- US monetary policy successful in stabilizing expecations and Obama right to provide fiscal stimulus
- Japan unsuccessful in stabilizing expectations and wrong to attempt fiscal stimuli

Discussion

- 1 Inflation and Inference on Equilibria
- Estimation: Peso problems an estimation problem?
- Usefulness for policy: Limited?

Inference on Equilibria

The Inference on the sources of the liquidity traps rest on the inflation dynamics

- In the expectations driven LT steady-state: Deflation at the rate of the discount factor $(\pi = \beta < 1)$
- In the sunspot limit: $\pi < \beta$
- In the fundamental LT: $\pi \leq 1$ depending on parameters
- ullet In the US: Essentially no deflation this implies $\mathbb{P}\left(s_t=0
 ight)=0$

Inference on Equilibria

Problems:

- There may be near-observational equivalence between fundamental and non-fundamental equilibria in the absence of intervention.
 - The degree of similarity between the regimes depend on parameters some of which Frank and coauthors calibrate.
- There may be inflation even in non-fundamental liquidity traps
 - Transitional dynamics the argument about deflation relates to the sunspot limit, this may take a long time to occur. See Mertens and Ravn, ReStud, 2014.
 - More complicated sunspot processes (3 states) may imply inflation in non-fundamental equilibria.

Inference on Equilibria

Possibilities:

- Interventions help identify: Higher g spur inflation (deflation) in the fundamental (expectational) liquidity trap: Problem is that interventions are endogenous. Regional variation in Japan is helpful though.
- Ouration of LT is informative.
 - Non-fundamental LT's need to be sufficiently long in expected duration to exist. Consistent both with Japan and US.
 - Fundamental LT's need to be short in expected duration to exist. Probability of long LT's goes to zero as duration increases since it requires a long sequence of surprise shocks.
- Financial shocks also informative.

Estimation and Peso-type Problems

- ZLB never binds during the sample that is used for estimation
- But non-fundamental equilibrium still affects observed equilibrium: Inflation and activity in fundamental equilibrium depends on inflation and output in non-fundamental equilibrium none of which are observed in the estimation sample:

 $\Theta = \Theta \left(\mathsf{state} \ \mathsf{not} \ \mathsf{observed} \ \mathsf{in} \ \mathsf{sample} \right)$

- Here this relates to p_{00} and p_{11} which are calibrated: Can only be estimated if estimation sample includes ZLB episodes
- In general, problem much worse because dynamics in non-fundamental equilibrium can impact on sample paths in very non-linear manner - intrinsic sunspots

Usefulness for policy

Two problems:

- 1. Near observational equivalence: In the absence of interventions, the paths of output and inflation may be near identical in the two equilibria it is the intervention that helps identify.
- 2. When would policy maker have known?
 - At the beginning of the crisis, how would you have known if it was a fundamental or non-fundamental LT?
 - Interventions much more powerful early on
 - But "wrong treatment" would only have made things worse
 - Perhaps need for experimentation?

Expectational LT

Blue = constant policy, red = government spending increase, black = tax cut

M.O. Ravn (U(C,L)) Discussion 24 / 31

Fundamental LT

Blue = constant policy, red = government spending increase, black = tax cut

M.O. Ravn (U(C,L)) Discussion 25 / 31

More Policy Implications:

- Make ZLB irrelevant: Can be done with sufficiently rich set of fiscal instruments.
- Quling out Non-Fundamental Equilibria: Can be done with monetary or fiscal policies (Benhabib, Schmitt-Grohe and Uribe) but policies are sort of crazy (threaten with default, pure monetary targeting forever)
- Making Liquidity Trap Less Likely:
 - Increase inflation target: Larger fundamental shock required to take economy to ZLB. But makes non-fundamental liquidity trap more dramatic.
 - Respond more aggressively to inflation: Stabilizes expectations
- Unconventional policies?

Conclusions

It is a great paper!!!

Solving the model

Impose a minimum state variable assumption

$$u_{t} = \mathbf{F}(S_{t}, \Theta)$$

$$S_{t} = (R_{t-1}, y_{t-1}; g_{t}, z_{t}, \epsilon_{R t})$$

$$(R_{t-1}, y_{t-1}, c_{t}) = \mathbf{G}(S_{t}, \Theta)$$

- ullet solve for ${f F}$ and ${f G}$ given $oldsymbol{\Theta}$ using global solver specifying piece-wise smooth decision rules
- Judd, Maliar and Maliar, Mertens and Ravn

This paper

- Solves a small-scale DSGE model that can move between target inflation equilibrium and deflationary equilibrium
- Two reasons why it might be at the ZLB
 - successive exogenous shocks in first equilibrium
 - switch to second equilibrium
- Estimate structural parameters and draw inference
 - US: ZLB due to shocks, Fed was aggressive
 - Japan: ZLB due to switch to second equilibrium, Bank of Japan unable to coordinate expectations (too weak response to shocks)
- Fiscal multipliers small in Japan's ZLB but large in US

Steady-states

Model has "two" steady-states

- A: Intended steady-state where $R=r\pi_*>1$ and inflation rate is on target $\pi=\pi_*$
- B. Unintended liquidity trap steady-state where R=1 and $\pi=1/r$

Solving the model

Impose a minimum state variable assumption

$$u_t = \mathbf{F}(S_t, \Theta)$$

$$S_{t+1} = (S_t, \Theta)$$

$$S_t = (R_{t-1}, y_{t-1}; g_t, z_t, \epsilon_{R_t})$$

- solve for ${\bf F}$ and ${\bf G}$ given ${\bf \Theta}$ using global solver specifying piece-wise smooth decision rules
- Judd, Maliar and Maliar, Mertens and Ravn