Monetary and Fiscal Policy Interactions: Leeper (1991) Redux Guido Ascari¹, Anna Florio² and Alessandro Gobbi³ - ¹ University of Oxford, guido.ascari@economics.ox.ac.uk - ² Politecnico di Milano, anna.florio@polimi.it - ³ Università Cattolica del Sacro Cuore, alessandro.gobbi@unicatt.it # Highlights of the paper - We study a model of monetary-fiscal policy interaction where both monetary and fiscal policy can switch between states - Extension of Leeper (1991) to Markov Switching and of Davig and Leeper (2007) to fiscal policy - We use the method developed by Foerster, Rubio Ramirez, Waggoner and Zha (2014) to study determinacy and to find all possible solutions # Findings - The Long-Run Taylor Principle (LRTP) in Davig and Leeper (2007) depends on the stance of fiscal policy - Fiscal Policy Frontier (FPF) and Monetary Policy Frontier (MPF), rather than LRTP - When both monetary and fiscal policy are switching many possible cases arise and the neatness of Leeper (1991) disappears - Implications for the IRF and expectation effects → dynamics: consistent with the literature - no expectation wealth effects if MP sufficiently active and FP sufficiently passive - In a PM/AF regime, agents should believe that the policy mix will be sufficiently "Ricardian" in the other regime to control inflation - → our contribution is to identify what "sufficiently" means through our determinacy analysis and the use of FPF and MPF # Motivations and research questions: Leeper (1991) redux Leeper (1991): equilibria under "active" and "passive" monetary and fiscal policies | | AM | PM | |----|-------------------------------|--| | AF | explosiveness | determinacy
non-Ricardian case (FTPL) | | PF | determinacy
Ricardian case | indeterminacy | - DL (2007): determinacy analysis under Markov switching, but only under passive fiscal policy. Main insights are: - cross-regime spillovers: the economy equilibrium properties are "contaminated" both by the characteristics of the other regimes and by the probability of shifting towards these alternative regimes - Long-Run Taylor Principle (LRTP): determinacy is possible "even while deviating from [the Taylor principle] substantially for brief periods or modestly for prolonged periods" → determinacy region is larger than in the constantparameter setup - Therefore, our paper addresses the following research questions: - 1. allow for shifts in fiscal policy \rightarrow what role for fiscal policy in equilibrium determinacy in a MS version of Leeper (1991)? - 2. analysing monetary-fiscal policy interaction and expectations spillovers effects across regimes # Model and methodology We consider a simple NK model with monetary and fiscal policy $$\begin{split} 1 &= \beta E_{t} \left(\frac{Y_{t} - G_{t}}{Y_{t+1} - G_{t+1}} \frac{R_{t}}{\Pi_{t+1}} \right), \\ (1 - \alpha)^{\frac{1}{\theta - 1}} \frac{\theta - 1}{\theta} \phi_{t} \left(1 - \alpha \Pi_{t}^{\theta - 1} \right)^{\frac{1}{1 - \theta}} \\ &= \mu Y_{t} + \alpha (1 - \alpha)^{\frac{1}{\theta - 1}} \beta \frac{\theta - 1}{\theta} E_{t} \left[\phi_{t+1} \Pi_{t+1}^{\theta} \left(1 - \alpha \Pi_{t+1}^{\theta - 1} \right)^{\frac{1}{1 - \theta}} \right], \\ \phi_{t} &= \frac{Y_{t}}{Y_{t} - G_{t}} + \alpha \beta E_{t} \left(\phi_{t+1} \Pi_{t+1}^{\theta - 1} \right), \\ b_{t} &= R_{t} \left(\frac{b_{t-1}}{\Pi_{t}} + G_{t} - \tau_{t} \right), \qquad with \quad b_{t} = R_{t} \frac{B_{t}}{P_{t}} \end{split}$$ and the following policy rules $$R_{t} = R_{SS} \left(\frac{\Pi_{t}}{\overline{\Pi}}\right)^{\gamma_{\pi,t}} e^{\varepsilon_{m,t}},$$ $$G_{t} = G_{SS}^{1-\rho_{g}} G_{t-1}^{\rho_{g}} e^{\varepsilon_{g,t}},$$ $$\tau_{t} = \tau_{SS} \left(\frac{b_{t-1}}{b_{SS}}\right)^{\gamma_{\tau,t}} e^{\varepsilon_{\tau,t}}.$$ ### Active and passive policies - We use the same notation as in Leeper (1991): - Monetary policy is active (AM) if $\gamma_{\pi} > 1$ - Fiscal policy is passive (PF) if $\gamma_{\tau} \in \left[(1 \beta) \frac{b_{SS}}{\tau_{cs}}, (1 + \beta) \frac{b_{SS}}{\tau_{cs}} \right] = [0.0196, 3.902]$ ### Solution method - We use the perturbation method by Foerster, Rubio Ramirez, Waggoner and Zha (2014). This method extends Schmitt-Grohe and Uribe (2004) to the MS framework. - ✓ direct perturbation of the original nonlinear model with MS parameters → other methods linearize the fixed coefficient model and then add MS dynamics - Groebner basis approach to tackle the quadratic polynomial equations that yield the solution: all solutions can be found \rightarrow other methods rely on numerical algorithms that generally find a subset of solutions (if they find any) #### Stability of the solutions - First-order approximate solutions are assessed using the mean square stability criterion suggested by Farmer, Waggoner and Zha (2009) - The determinacy region corresponds to all those parameterizations where a single, mean square stable solution exists - when multiple stable solutions exist \rightarrow indeterminacy - when no stable solution exists \rightarrow explosiveness # Results: determinacy analysis #### Always PF: the LRTP of Davig and Leeper (2007) applies - monetary policy allowed to be temporarily passive (indeterminate equilibrium for fixed coefficients) if *sufficiently* active in the other regime - asymmetric mean duration expands the determinacy region in favor of the more transient regime #### Always AF: extending Davig and Leeper (2007) - Generalization of the LRTP to an active fiscal policy: - monetary policy allowed to be temporarily active (explosive equilibrium for fixed coefficients) if sufficiently passive in the other regime - asymmetric mean duration results are confirmed - Monetary Policy Frontier (MPF) that defines determinacy and as in Leeper (1991) depends on the fiscal policy stand - Intuition, mixing Leeper (1991) and Davig and Leeper (2007): - if PF, MP should be *sufficiently active on average* between the two regimes - if AF, MP should be *sufficiently passive on average* between the two regimes ### Switching fiscal policy - What happens to determinacy if we allow for shifts from AF to PF? - everything can happen → the clear-cut results of Leeper (1991) are lost - MS b/w two determinate regimes can trigger indeterminacy (point A) - double active to double passive can return determinacy (point D) ### The Fiscal Policy Frontier: case always AM - Same intuition of the LRTP: temporary active fiscal is consistent with determinacy - ...but not too much: determinacy requires to satisfy the FPF which is again a hyperbole # The Fiscal Policy Frontier: case always PM $(p_{11}, p_{22}) = (0.95, 0.95); (y_{\pi_1}, y_{\pi_2}) = (0.80, 0.80)$ #### The Fiscal Policy Frontier: switching monetary policy - Left panel: $\gamma_{\pi,i} > p_{ii}$, for $i = 1,2 \rightarrow$ monetary policy is above the MPF - same frontier as in the case of always AM - Right panel: $\gamma_{\pi,1} < p_{11} \rightarrow \text{MP}$ is below the MPF but on average active - determinacy requirement: fiscal policy must switch among regimes and must be *on average* passive - relation between the MPF and the FPF: - if MP is always passive \rightarrow determinacy to the left of the FPF (i.e., FP sufficiently active on average) - If MP is above the MPF \rightarrow determinacy to the right of the FPF (i.e., FP sufficiently passive on average) - If MP is below the MPF but on average active → determinacy with FP below the FPF, but on average passive (above the line that discriminates between average active or passive fiscal policy) - note that for the MPF, it matters only the FPF \rightarrow if FP on the right of the FPF then MP should be on the right of the MPF and vice-versa - recall that the frontiers are conditional on the given "other" policy # Expectation effects - Chung et al. (2007): the existence of a non-Ricardian regime is sufficient to generate wealth effects, through expectation channel. Therefore, the FTPL is always at work if agents attach a positive probability of moving towards active FP - → we find this is not true if MP to the right of the MPF and fiscal policy to the right of FPF - Liu et al. (2009) find asymmetric expectations effects => This is true even considering fiscal policy FP - → we find this is true even considering fiscal policy # Response to a tax shock: MS vs fixed coefficients model - Red lines: fixed coefficients model - Blue lines: MS model - Left panel: $(\gamma_{\tau,1}, \gamma_{\tau,2}) = (0, 0.2); (\gamma_{\pi,1}, \gamma_{\pi,2}) = (0.97, 2.5)$ → right of MPF and FPF - 1. look at blue lines: in the PM/AF regime, the possibility to go towards the Ricardian regime (with $p_{12}=0.05$) makes the IRFs (except for debt) behave as in the Ricardian regime (i.e. inflation does not increase) - 2. Not only expectation effects are asymmetric (larger under PM/AF than under AM/PF) but in the AM/PF regime when MP is above the MPF (and there is determinacy) there are no expectation wealth effects - → Intuition: being to the right of FPF means that fiscal policy is "on average passive". Hence, on average, fiscal policy does not cause wealth effects - Right panel: $(\gamma_{\tau,1}, \gamma_{\tau,2}) = (0, 0.045); (\gamma_{\pi,1}, \gamma_{\pi,2}) = (0.9, 2.5)$ → determinacy but left of MPF - 1. does not hold anymore (i.e. inflation increases) - 2. expectation effects are asymmetric and in the AM/PF regime there are wealth effects