
Lower Bounds on Approximation Errors: Testing
the Hypothesis That a Numerical Solution Is

Accurate �

Kenneth L. Judd, Lilia Maliar and Serguei Maliar

August 20, 2014

Abstract

We propose a novel methodology for evaluating the accuracy of numeri-
cal solutions to dynamic economic models. Speci�cally, we construct a lower
bound on the size of approximation errors. A small lower bound on errors is
a necessary condition for accuracy: If a lower error bound is unacceptably
large, then the actual approximation errors are even larger, and hence, we
reject the hypothesis that a numerical solution is accurate. Our accuracy
analysis is logically equivalent to hypothesis testing in statistics. As an il-
lustration of our methodology, we assess approximation errors in the �rst-
and second-order perturbation solutions for two stylized models: a neoclas-
sical growth model and a new Keynesian model. The errors are small for
the former model but unacceptably large for the latter model under some
empirically relevant parameterizations.
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1 Introduction

Dynamic economic models do not typically admit closed-form solutions and must
be studied with numerical methods. A numerical method approximates the true
solution up to some degree of accuracy. The control over the quality of approxima-
tion is critical if we want to get valid inferences from numerical experiments. That
is, the constructed approximation must have a minimum acceptable quality for
the questions studied; otherwise, it could happen that our conclusions and policy
implications are simply driven by approximation errors (or some bugs in the code).
In this paper, we propose a novel methodology for evaluating the accuracy

of numerical solutions to dynamic economic models. Speci�cally, we construct a
lower bound on the size of approximation errors in the model�s variables (an ap-
proximation error is de�ned as a unit-free di¤erence between a true solution and
an approximation). A small lower bound on errors is a necessary condition for
accuracy: If a lower error bound is unacceptably large, then the actual approxi-
mation errors are even larger, and hence, we conclude that a numerical solution
is insu¢ ciently accurate. Our methodology of error analysis is very general: it is
independent of a speci�c solution method, and it is applicable to both dynamic
programming and equilibrium problems.
Our accuracy testing is logically equivalent to hypothesis testing in statistics.

We form a hypothesis that an approximate solution is accurate, and we test this
hypothesis by assuming an optimistic �best-case �scenario for the approximation
errors. If the approximation errors are unacceptable even under the best case sce-
nario, we reject the hypothesis that an approximate solution is accurate. However,
if a lower bound on errors is small and an approximate solution passes our accu-
racy check, we still cannot a¢ rm that the solution is accurate. As in statistics,
our accuracy testing is only meant to reject a hypothesis which is false but not to
accept a hypothesis which is true.
As an illustration, we apply our methodology to assess the size of approxima-

tion errors in the �rst- and second-order perturbation solutions for two stylized
models: a neoclassical optimal growth model and a new Keynesian model. For the
growth model, we �nd that the approximation errors of the �rst-order perturba-
tion solutions (linearization) are at most of order 0.1%, and they are even lower
for the second-order perturbation solution. These errors are su¢ ciently small, and
thus we cannot reject the hypothesis that perturbation methods are su¢ ciently
accurate for the studied model example. However, for the new Keynesian models,
the accuracy of the perturbation solutions depends on a speci�c parameterization
used: the approximation errors are low if the volatility of shocks is low, however,
they become unacceptably large when the volatility of shocks increases. The ap-
proximation errors can reach hundreds percent under some empirically relevant
parameterizations. This �nding shows that the accuracy implications obtained for
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one class of models cannot be taken for granted for other classes of models and that
accuracy evaluations are essential for every model studied. (In terms of hypothesis
testing, we can make the following parallel statement: if regression coe¢ cients are
signi�cant in one econometric model, it does not mean that they will signi�cant
in other econometric models).
There are three main approaches to accuracy evaluations in the literature. The

�rst approach is a forward error analysis that poses the following question: Given
an economic model, how much an approximate solution must be modi�ed to satisfy
all model�s conditions exactly? A conventional forward error analysis constructs an
upper bound on approximation errors by assuming the worst-case scenario. Upper
error bounds are derived for policy function iteration (Bertsekas and Tsitsiklis
(1996), p. 275), value-iterative methods (Santos and Vigo-Aguillar (1998), Santos
(2000) and Santos and Peralta-Alva (2005)), for perturbation methods (Schmitt-
Grohé and Uribe (2004)); see Santos and Peralta-Alva (2014) for a review. A
small upper bound on errors is a su¢ cient condition for accuracy: If an upper
error bound is small, then the actual approximation errors are even smaller, and
one can accept the hypothesis that a numerical solution is accurate.
Our lower bound error analysis is also a forward error analysis but it provides

a necessary rather than su¢ cient condition for accuracy. A potential shortcoming
of the conventional upper bound error analysis is that worst-case scenario can be
too pessimistic and may reject solutions that are su¢ ciently accurate. In turn,
our best case scenario can be too optimistic and may fail to reject solutions that
are insu¢ ciently accurate. However, these features are not speci�c to the analysis
of approximation errors but are common to all necessary and su¢ cient conditions
in general. The upper- and lower-bound tests can be viewed as complementary.
We shall also mention that lower error bounds are easy to construct, while upper
error bounds are derived for speci�c models and speci�c numerical methods; and
their extension to other applications is a non-trivial task.
The second approach to accuracy evaluation �a residual analysis � consists

in a numerical evaluation of residuals in the model�s equations such as �rst-order
conditions, Euler equations, Bellman equation, constraints and laws of motions of
exogenous shocks; see Judd (1992), Jin and Judd (2000), Aruoba et al. (2005),
Juillard and Villemot (2011), Judd et al. (2011a), among others; and also, see a
statistical residual test by Den Haan and Marcet (1994). The analysis of residuals
is simple, general and inexpensive but has an important shortcoming: A relation
between the size of the residuals and the size of approximation errors in model�s
variables is unknown with an exception of a special case of strongly concave in�nite-
horizon optimization problems studied in Santos (2000). In contrast, our lower
error bounds are constructed for approximation errors in the model�s variables �
our true objects of interest.
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Finally, the third approach to accuracy evaluation includes a backward error
analysis and a mixed forward-backward error analysis introduced in Wilkinson
(1963) and Higham (1996), respectively. A backward error analysis inverts the
question posed by a forward error analysis: Given an approximate solution, how
much an economic model itself (in terms of parameters) must be modi�ed in or-
der to make an approximate solution to satisfy all model�s equations? A mixed
forward-backward error analysis allows for modi�cations in equilibrium quanti-
ties, in addition to modi�cations in parameters. Kubler and Schmedders (2005)
show how these two approaches can be applied to assess the di¤erence between
approximate and exact equilibria in a life-cycle model with incomplete markets
and heterogeneous agents models. Sims (1990) proposes an accuracy test which is
similar in spirit to the backward error analysis: he argues that the di¤erence be-
tween approximate and exact equilibria can be measured by the di¤erence between
the distributions of the true stochastic shocks and the stochastic shocks that are
implied by the approximate solution. Finally, a recent paper of Kogan and Mitra
(2013) proposes a novel and promising technique of measuring the quality of ap-
proximation by welfare loss associated with inaccuracy of an approximate solution.
Backward accuracy measures have the same shortcoming as the analysis of resid-
uals, namely, they assess accuracy in terms of the model�s parameters and do not
always provide a simple way to make inferences about the size of approximation
errors in the model�s variables.
Our lower bound error analysis is in line with recent trends in science. In

particular, National Research Council (2012) of the US National Academy of Sci-
ences published a report with a research agenda on assessing the reliability of
computational methods. The report argues that understanding of computational
results can be obtained from three interrelated processes, veri�cation, validation
and uncertainty quanti�cation (VVUQ).1 Two goals of VVUQ that are empha-
sized by National Research Council (2012, p S-5) include: "... development of
goal-oriented a posteriori error-estimation methods ..." and "... development of
methods to estimate error bounds ...". This is precisely what we do in the paper.
The rest of the paper is organized as follows: In Section 2, we introduce the

framework of lower-error bound analysis and illustrate it with examples. In Sec-
tions 3 and 4, we perform the lower error-bound analysis for a neoclassical growth
model and for a new Keynesian model with Calvo pricing, respectively. In Section
5, we conclude.

1Veri�cation refers to the process of determining how accurately a computer code solves the
equations of the mathematical model. Validation is the process of determining the degree to
which the model is an accurate representation of the real world. Uncertainty quanti�cation is
the process of determining how precise the results are, given uncertainties in the model and
computations.
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2 A lower bound on approximation errors

We introduce a framework for constructing lower bounds on approximation errors,
and we discuss the relation of the lower bound error analysis to accuracy measures
used in the related literature.

2.1 Testing the hypothesis that a numerical solution is ac-
curate

We consider a system of n (possibly, nonlinear) equations with n unknowns:

Gi (x1; :::; xn) = 0; i = 1; :::; n; (1)

or in vector notations, we haveG (x) = 0, whereG : Rn ! Rn, n � 1. (This system
represents a collection of model�s equations and may include a Bellman equation,
Euler equations, market clearing conditions, budget constraints and laws of motion
for exogenous and endogenous shocks).
Let x� 2 Rn and bx 2 Rn be the exact and approximate solutions to system

(1), respectively (we assume that bx 6= 0). We de�ne an approximation error as a
compensation �� 2 Rn that is needed to make an approximate solution bx to satisfy
the model�s equations exactly,

G (bx (1+ ��)) = 0; (2)

where 1 2 Rn is a vector of ones. Systems of equations studied in economics are
often complex and �nding an exact value of �� satisfying (2) is infeasible. (In fact,
if we were able to �nd such a value, we would also be able to �nd an exact solution
x� using x� = bx (1+ ��)).
In the paper, we propose a technique for constructing a lower bound on �� for

those complex cases. As a �rst step, we remove n � m equations from system
(1), 1 � m < n that are most complex to solve. Without a loss of generality,
we assume that we removed the last n�m equations, and we denote the reduced
system by g � [G1; :::; Gm]:

gi (x1; :::; xn) = 0; i = 1; :::;m: (3)

Consider now a problem of �nding an approximation error � that satis�es the
reduced system of equations g (bx (1+ �)) = 0. By construction, the reduced system
(3) is underdetermined (it has n equations and m unknowns, m < n), and thus, it
has multiple solutions (e¤ectively a solution to (3) is a manifold). Consequently,
there are multiple compensations � that make an approximation bx to satisfy (3)
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exactly. Let us denote a set of all possible compensations satisfying (3) for a given
approximate solution bx by


 � f� 2 Rn : g (bx (1+ �)) = 0g : (4)

Our next step is to choose the smallest possible compensation b� 2 
 with respect
to a given norm k�k, i.e.,

min
�2Rn

k�k s.t. g (bx (1+ �)) = 0. (5)

The following proposition shows that the smallest possible compensation b� in the
constructed minimization problem can never be larger than compensation �� in
the original problem.

Proposition 1 For a given bx and a given norm k�k, we have k b� k� k��k, where
�� and b� are de�ned by (2) and (5), respectively.
Proof. Since the reduced system (3) is a sub-system of the original system (1),
any compensation �� satisfying (2) must be in the set of solutions 
. Hence, there
are two possibilities: i) �� is a solution to (5) in which case b� = �� and hence, we
have k b� k� k��k or ii) �� is not a solution to (5) in which case b� cannot not be
larger than �� since it is the smallest possible element 
 with respect to a given
norm. Both possibilities imply the claim of Proposition 1.

Proposition 1 allows us to form and test a hypothesis that a numerical solution is
accurate. By construction b� is a lower bound on the actual approximation error ��.
If even a lower bound b� is unacceptably large, we can reject the hypothesis that
a numerical solution bx is accurate since the actual errors �� can never be smaller
than their lower bound b�.
The constructed lower bound depends on speci�c n � m equations that we

removed from system (1). By removing di¤erent sets of equations from the original
system, we obtain di¤erent lower bounds. To show that a numerical solution is
inaccurate, it is su¢ cient to show that any of such lower bounds is unacceptably
large.
An important question is which equations should be removed from system (1).

There are two considerations here: from one side, we want to remove as few equa-
tions as possible (to make the lower error bound close to the true approximation
error) and from the other side, we need to remove su¢ ciently many equations to
guarantee that a solution to optimization problem (5) can be constructed very
accurately (otherwise, approximation errors in error bounds may invalidate our
inferences about accuracy). In Section 3, we illustrate the construction of the
reduced system by way of examples.
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A convenient choice for problem (5) is an L2 norm since it allows us to use �rst-
order conditions (FOC), namely, we �nd the smallest compensation b� by solving
the following least-squares problem:

min
�2Rn

�>� s.t. g (bx (1+ �)) = 0. (6)

A necessary condition for the existence of a local minimum b� in (6) follows by a
version of the well-known Theorem of Lagrange: (i) g

�bx�1+ b��� must be full
ranked in a neighborhood of bx�1+ b��; and (ii) bx�1+ b�� must be a critical point
of the Lagrange function, �>�+�g (bx (1+ �)), where � 2 Rm is a vector of Lagrange
multipliers, i.e.,

2b� + �rg �bx�1+ b��� bx = 0; (7)

where rg denotes a gradient of g. Furthermore, a su¢ cient condition for a local
minimum is that the Lagrangian function is convex on a subset of Rn de�ned by
Z
�b�� = nz 2 Rn : rg �bx�1+ b��� z = 0o; see, e.g., Sundaram (1996, Theorems

5.1 and 5.4) for proofs of these results.
Instead of L2, we can use other norms for measuring compensations, for ex-

ample, a least absolute deviation L1 or a maximum error L1. Furthermore, in
some economic applications, we can tolerate large approximation errors in some
variables but we need very accurate solutions in other variables. In this case, the
approximation errors can be weighted by a measure of their economic signi�cance
in the objective function. For example, the objective function in (6) can be mod-
i�ed to �>W�, where W is an n � n matrix of weights (this case is similar to a
weighted least-squares in econometrics).

2.2 Two-dimensional case

We now illustrate a construction of a lower bound on approximation errors in a
two-dimensional case. Let (x�1; x

�
2) and (bx1; bx2) denote the exact and approximate

solutions to a two-dimensional version of the system (1), namely, Gi (x1; x2) =
0, i = 1; 2 (again, we assume that (bx1; bx2) 6= 0). Following (2), we de�ne the
approximation error

�
��x1 ; �

�
x2

�
by Gi

�
x�1
�
1 + ��x1

�
; x�2
�
1 + ��x1

��
= 0, i = 1; 2.

To construct a lower bound on approximation errors, we remove equation
G2 (x1; x2) = 0 and we focus on the reduced system composed of just one equation
g (x1; x2) � G1 (x1; x2) = 0. Following (4), we de�ne a set of compensations 

that are consistent with a restriction g:


 �

8><>:(�x1 ; �x2) 2 R2 : g
0B@bx1 (1 + �x1)| {z }

=x�1

; bx2 (1 + �x2)| {z }
=x�2

1CA = 0

9>=>; : (8)
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As we mentioned earlier, the reduced system of equations g is underdetermined
and there are multiple compensations �x1 and �x2 that are consistent with (8). As
an illustration, consider a special case when g is linear, i.e.,

g (x1; x2) = a1x1 + a2x2; (9)

where a1 and a2 are constant coe¢ cients. To describe all compensations satisfying
(8), we can �x any �x1, and we can �nd �x2 from (8) using (9) as follows:

�x2 =
a1bx1
a2bx2 (1 + �x1)� 1. (10)

From all possible compensations satisfying (10), we select the smallest one with
respect to the least-squares norm by solving a two-dimensional version of the least-
squares problem (6):

min
�x1 ;�x2

�2x1 + �
2
x2

(11)

s.t. g (bx1 (1 + �x1) ; bx2 (1 + �x2)) = 0: (12)

An interior solution of (11), (12) satis�es

�x1
�x2

=
gx1 (bx1 (1 + �x1) ; bx2 (1 + �x2)) bx1
gx2 (bx1 (1 + �x1) ; bx2 (1 + �x2)) bx2 . (13)

Hence, to construct the smallest possible approximation errors, we must solve a
system of two equations (12), (13) with respect to two unknowns �x1 and �x2.
For the case of a linear equation (9), we can solve this system in a closed form,

b�xi = � aibxi (a1bx1 + a2bx2)
(a1bx1)2 + (a2bx2)2 ; i = 1; 2; (14)

where to derive (14), we used the fact that gx1 (�) = a1 and gx2 (�) = a2.
However, for a general nonlinear restriction g (x1; x2) = 0, system (12), (13)

does not admit a closed form representation. If approximation errors are small, a
su¢ ciently accurate solution to (12), (13) can be obtained by using a �rst-order
Taylor expansion:

g (bx1 (1 + �x1) ; bx2 (1 + �x2)) �
g (bx1; bx2) + gx1 (bx1; bx2) bx1�x1 + gx2 (bx1; bx2) bx2�x2 : (15)

Combining (15) with FOC (13) evaluated in (bx1; bx2) yields:b�xi = � gxi (bx1; bx2) bxig (bx1; bx2)
[gx1 (bx1; bx2)]2 (bx1)2 + [gx2 (bx1; bx2)]2 (bx2)2 ; i = 1; 2: (16)

If approximation (16) is not su¢ ciently accurate, we need to either construct
a Taylor expansions of a higher order or to �nd a non-linear solution to (12),
(13) using a numerical solver such as a Newton method. In that case, a linear
approximation (16) can be used as an initial guess for a numerical solver.
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2.3 Relation of lower bound error analysis to other notions
of approximation errors in the literature

There are three main approaches to accuracy evaluation in economic literature: a
forward error analysis, an analysis of residuals and a backward error analysis. A
forward error analysis assesses an approximation error in the solution of a given
model. (Hence, our lower bound error analysis is a variant of a forward error
analysis). Analysis of residuals consists in evaluating residuals in model�s equations
for a given approximate solution. Finally, a backward error analysis proceed in a
reverse manner: it takes an approximate solution as given and asks how much the
model itself must be modi�ed to make an approximate solution to satisfy all the
model�s equations. Below we discuss the relation of these three approaches to our
lower bound error analysis.

2.3.1 A conventional forward error analysis

A conventional forward error analysis aims to construct an upper bound on the size
of the approximation errors, see, e.g., Bertsekas and Tsitsiklis (1996) , Santos and
Vigo-Aguillar (1998), Santos (2000), Schmitt-Grohé and Uribe (2004), and Santos
and Peralta-Alva (2005), among others; see Santos and Peralta-Alva (2014) for a
review of this literature. The upper error bound corresponds to a pessimistic �
worst case �scenario. The following question is addressed: What are the largest
possible approximation errors that are consistent with a given numerical solution?
The upper bound error analysis provides a su¢ cient condition for accuracy: If
an upper bound on approximation errors is still acceptable, we conclude that an
approximate solution is su¢ ciently accurate since the actual errors can never be
larger.
In contrast, our lower-error bound analysis focuses on optimistic �best-case

� scenarios. Here, we ask: How small approximation errors can potentially be
made if we allow to violate some of the model�s equations? If the resulting lower
error bound is still unacceptably large, we conclude that a numerical solution is
inaccurate since the actual approximation errors can never be smaller. Hence, our
lower bound error analysis provides a necessary condition for accuracy.
The upper and lower error-bound analyses are analogous to necessary and

su¢ ciency tests in econometrics. A lower bound error test can be used to reject
the hypothesis that a numerical solution is accurate (when the errors are large
even under the most optimistic view) but not to accept it (because errors that
are small under an optimistic view can be unacceptably large under a pessimistic
view). To accept the hypothesis that a numerical solution is accurate, we need
more stringent accuracy tests such as an upper bound error analysis. In practice,
upper error bound tests tend to be too pessimistic and they reject many accurate
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solutions, while our lower bound error test can be too optimistic and may fail to
reject inaccurate solutions. We view the upper and lower bound error analysis as
complementary.
Finally, an important limitation of conventional forward error analysis is that it

is restricted to dynamic programing problems. The construction of upper bounds
in the literature relies on the fact that the Bellman operator is a contraction
mapping. This kind of error analysis is not directly applicable to non-optimal
equilibrium problems such as a new Keynesian model studied in the present paper.
In turn, our lower bound error analysis is applicable to both optimal dynamic
programing problems and non-optimal equilibrium problems.

2.3.2 An analysis of residuals in the model�s equations

A commonly used accuracy measure in the literature is residuals in the model�s
equations (such as a Bellman equation, Euler equations, market clearing con-
ditions, budget constraints and laws of motion for exogenous and endogenous
shocks); see, e.g., Judd (1992), Jin and Judd (2000), Aruoba et al. (2005), Juillard
and Villemot (2011), Judd et al. (2011a); and also, see a statistical test of residuals
by Den Haan and Marcet (1994).
We de�ne residuals in a unit-free way. First, we rewrite equations Gi (x) = 0;

i = 1; :::; n; of the system (1) in the form xi = Hi (x�i) ; i = 1; :::; n; where x�i
denotes a set of all model�s variables with an exception of xi (we assume that
it is possible to do). Then, we de�ne residuals R � (R1; :::;Rn) in the model�s
equations of system (1) to satisfy

bxi �1 +Ri
�
� Hi (bx�i) ; i = 1; :::; n: (17)

Under de�nition (17), a residual Ri shows how large would an approximation
error in a given variable xi be if we assume that approximation errors in all other
variables x�i are zeros. Even though R resembles the true approximation errors ��
de�ned in (2), there is an important di¤erence: �� is constructed in a way that is
consistent with all model�s equations, while R is not. For example, to compute R1

in the two-dimensional case, we assume that x2 is computed without errors, while
to compute R2, we assume that x1 is computed without errors, which cannot be
true simultaneously.
The following proposition shows that residuals in the model�s equations con-

stitute neither upper nor lower bounds on approximation errors.

Proposition 2 For �� =
�
��x1 ; :::; �

�
xn

�
and R = (R1; :::;Rn) de�ned in (2) and

(17), respectively, we have
����x1�� T jRij for i = 1; :::; n.
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Proof. We prove the proposition by way of example. Consider a system of linear
equations

a1x1 + a2x2 = 1; (18)

b1x1 + b2x2 = 1; (19)

where a1, a2, b1, b2 are constant coe¢ cients. According to de�nition (2), the
approximation errors ��x1 and �

�
x2
satisfy

a1bx1 �1 + ��x1�+ a2bx2 �1 + ��x2� = 1; (20)

b1bx1 �1 + ��x1�+ b2bx2 �1 + ��x2� = 1: (21)

Following (17), we construct residuals R1 and R2 as

a1bx1 �1 +R1
�
+ a2bx2 = 1; (22)

b1bx1 + b2bx2 �1 +R2
�
= 1: (23)

By combining (20)�(23), we get

��x1 + v1�
�
x2

= R1; (24)

v2�
�
x1
+ ��x2 = R2; (25)

where v1 � a2bx2
a1bx1 and v2 � b1bx1

b2bx2 . Without a loss of generality, let us assume v1 > 0
and v2 > 0, and let us analyze a relation between R1 and ��x1. If �

�
x1
; ��x2 > 0, then

we have jR1j >
����x1��. Furthermore, if ��x1 > 0; ��x2 < 0 and ��x1 + v1�

�
x2
> ���x1,

then we have jR1j <
����x1��. Finally, if ��x2 = 0, then we have jR1j =

����x1��.
Proposition 2 shows that residuals and approximation errors cannot be ranked,
namely, residuals can be either larger or smaller or equal to approximation errors
in absolute value (even if we de�ne them in a comparable way). Moreover, the
di¤erence between residuals and approximation errors can be made arbitrary large
by varying the coe¢ cients a1, a2, b1, b2 in the system (18), (19). Thus, small resid-
uals in the model�s equations do not necessarily imply small approximation errors.
The relation between the residuals and approximation errors is established in the
literature only for a special case of strongly concave in�nite-horizon optimization
problems by Santos (2000) who shows that approximation errors in policy func-
tions are of the same order of magnitude as the size of the Euler equation residuals.
In general, such a relation is not known.
An example used in the proof of Proposition 2 has another interesting im-

plication, namely, if ��x1 = �v1��x2, then the residual in (24) is zero jR1j = 0.
Thus, zero residuals in some model�s equation are consistent with arbitrary large
approximation errors as long as these errors have o¤set one another.
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Finally, the residual measure of accuracy (17) has another undesirable feature,
namely, it is not invariant to reordering of equations and variables in (1). For
example, we would obtain di¤erent residuals if instead of expressing x1 and x2 from
G1 (x) = 0 and G2 (x) = 0, respectively, we express x1 and x2 from G2 (x) = 0 and
G1 (x) = 0, respectively. In contrast, our lower error bounds are independent of a
speci�c way in which the system (1) is written.

2.3.3 A backward and mixed forward-backward error analysis

A backward error analysis introduced inWilkinson (1963) poses the following ques-
tion: How much the parameters of a model must be modi�ed in order to make an
approximate solution to satisfy the model�s equation exactly? A mixed forward-
backward analysis introduced in Higham (1996) is an extension of backward analy-
sis which allows for changes in both equilibrium quantities and the model�s para-
meters. Sims (1990) proposed an accuracy test which is similar in spirit to the
backward error analysis: he measures accuracy by how far the distribution of the
true stochastic shocks is situated from the distribution of stochastic shocks that is
implied by the approximate solution. Kubler and Schmedders (2005) shows how
a backward and a mixed backward-forward analyses can be used to evaluate the
accuracy of numerical solutions in a life-cycle model with incomplete markets and
heterogeneous agents. Finally, Kogan and Mitra (2013) propose to measure the
quality of approximation in terms of a welfare loss that results from inaccuracy
of an approximate solution. They construct a supplementary model with perfect
foresight and assess the di¤erence in welfare between that supplementary model
and the true stochastic model with an approximate solution�this provides an upper
bound on the welfare loss.
A backward error analysis can be incorporated in the framework of Section

2.1 as follows: Let us assume that G in (1) depends not only on x but also on
a vector of parameters b, i.e., the original system modi�es to G (x; b) = 0, where
G : Rn � Rp ! Rn. We then ask: How much must the parameter vector b be
modi�ed to make a given approximate solution bx to become an exact solution, i.e.,
we have G

�bx;bb� = 0. Provided that we �nd a vector of parameters bb that satis�es
the latter condition, we measure the accuracy by the distance




bb� b


.
The backward and mixed forward-backward accuracy measures are also indi-

rect measures of accuracy and are generally subject to the same critique as the
analysis of residuals. Namely, they do not show the distance between the true and
approximate solutions, x and bx, but the distance between the parameters b andbb or some mixture of the parameters and solutions. Furthermore, it is not clear
whether or not for any given model and for any approximate solution, one can �nd
a supplementary model (parameter vector bb) that leads to zero approximation er-
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rors. In Section 3.4, we illustrate the construction of backward accuracy measures
in the context of a neoclassical stochastic growth model.

3 Application 1: the optimal growth model

In this section, we show how to construct lower bounds on approximation errors for
the standard neoclassical stochastic growth model. We then assess such bounds for
numerical solutions produced by a �rst- and second-order perturbation methods.

3.1 The model

The representative agent solves

max
fkt+1;ctgt=0;:::;1

E0

1X
t=0

�tu (ct) (26)

s.t. ct + kt+1 = (1� d) kt + exp (�t)Af (kt) ; (27)

�t+1 = ��t + �t+1; �t+1 � N
�
0; �2

�
; (28)

where (k0; �0) is given; Et is the expectation operator conditional on information at
time t; ct, kt and �t are consumption, capital and productivity level, respectively;
� 2 (0; 1) is the discount factor; d 2 (0; 1] is the depreciation rate of capital;
� 2 (�1; 1) is the autocorrelation coe¢ cient of the productivity level; � � 0 is the
standard deviation of the productivity shock; A > 0 is a normalizing constant in
output; u and f are strictly increasing, continuously di¤erentiable and concave; u0

and f 0 denote the �rst derivatives of u and f , respectively.
The Euler equation of (26)�(28) is

u0 (ct) = �Et fu0 (ct+1) [1� d+ exp (�t+1)Af 0 (kt+1)]g : (29)

A solution to the model is policy functions ct = C (kt; �t) and kt+1 = K (kt; �t)
that satisfy (27), (28) and (29) for all (kt; �t) within the relevant domain.

3.2 State-contingent approximation errors

We �rst show a de�nition of approximation errors in the sense (2). Let us consider
a numerical solution to (26)�(28) in the form of an approximation to consumption
and capital functions, bC � C and bK � K, respectively.
We de�ne approximation errors �C and �K as state contingent functions satis-

fying the model�s equations (27) and (29):

bC (k; �) (1 + �C (k; �))+ bK (k; �) (1 + �K (k; �)) = (1� d) k+exp (�)Af (k) ; (30)
13



u0
� bC (k; �) (1 + �C (k; �))� = �Et nu0 � bC (k0; �0) (1 + �C (k0; �0))��h

1� d+ exp (�0)Af 0
� bK (k; �) (1 + �K (k; �))�io : (31)

Finding �C and �K exactly from (30) and (31) is generally infeasible. It is possible
to compute �C and �K numerically up to some degree of accuracy. However, if the
error functions �C and �K are constructed with errors themselves, we would not
be able to tell whether such functions measure the accuracy of numerical solutionbC and bK or they measure the errors in their own approximation b�C � ��C andb�K � ��K . That is, having approximation errors in approximation errors would
contaminate the error bound analysis and invalidate the accuracy inferences.

3.3 A lower bound on approximation error

Given that a construction of state contingent error functions is infeasible, we focus
on constructing their lower bounds.

3.3.1 De�ning a lower error bound

We evaluate approximation errors in equilibrium quantities in a point-by-point
manner without exploiting a state-contingent structure of the error functions.
We �rst write budget constraint (27) for t � 0 as

bct (1 + �ct)| {z }
=ct

+ bkt+1 �1 + �kt+1�| {z }
=kt+1

= exp (�t)Af (kt) + (1� d) kt; (32)

where �ct and �kt+1 are the approximation errors that show how much an approx-
imate solution bct and bkt+1 must be modi�ed to become the true solution ct and
kt+1, respectively.
We then represent Euler equation (29) for t � 0 as

u0(bct (1 + �ct))| {z }
=ct

= �Et

8><>:u0�bct+1 �1 + �ct+1��| {z }
=ct+1

�

26641� d+ exp (��t + �t+1)Af 0�bkt+1 �1 + �kt+1��| {z }
=kt+1

3775
9>>=>>; ; (33)

where �ct and �kt+1 are de�ned as in (32); and �ct+1 represents an approximation
error in calculating the conditional expectation, namely, it shows how much the
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approximate solution bct+1 must be modi�ed on average to make the Euler equation
(33) to be satis�ed exactly (under given �kt+1). Hence, our error analysis disregards
the fact that �ct and �ct+1 are given by the same state contingent function de�ned
by (30) and (31), i.e., �ct = �C (kt; �t) and �ct+1 = �C (kt+1; �t+1), respectively.
Instead, we will choose �ct and �ct+1 in the way that makes them as small as
possible subject to the constraints (32), (33).
System (32), (33) is underdetermined and does not identify �ct, �kt+1 and �ct+1

uniquely (we have two equations with three unknowns). In particular, �xing ar-
bitrary one out three unknowns, let us say �kt+1, enables us to �nd the remaining
unknowns �ct and �ct+1 to satisfy (32), (33) exactly (in other words, a solution to
(32), (33) is a manifold). To construct a lower error bound, we solve the least-
squares problem of type (6):

min
�ct ;�kt+1 ;�ct+1

�2ct + �
2
kt+1

+ �2ct+1 s.t. (32), (33). (34)

Problem (34) determines the lower error bound and provides a necessary con-
dition for accuracy. If the lower error bound produced by (34) is still large,
the actual errors given by the state contingent functions �ct = �C (kt; �t) and
�ct+1 = �C (kt+1; �t+1) must be even larger, and we conclude that a numerical
solution is inaccurate.

3.3.2 Numerical experiments

We use Dynare to compute the �rst- and second-order perturbation solutions,
referred to as PER1 and PER2, respectively; for a description of this software,
see Adjemian et al. (2011). We parameterize the model (26)�(28) by assuming

u (ct) =
c1�
t �1
1�
 with 
 2

�
1
10
; 1; 10

	
and f (kt) = k�t with � = 0:33. We set

� = 0:99, d = 0:025, � = 0:95 and � = 0:01, and we normalize the steady state of
capital to one by assuming A = 1=��(1�d)

�
.

To simulate a time series solution, we draw a sequence of shocks f��gT�=1 from
N (0; �2) with T = 10; 200, construct f��gT�=0 using (28), and compute the series
of capital and consumption using the perturbation solutions (we disregard the
�rst 200 observations to eliminate the e¤ect of initial conditions). To compute
expectation in (33), we use a 10-point Gauss-Hermite quadrature integration rule.
We solve minimization problem (34) numerically for each state (kt; �t) realized

on a stochastic simulation. To �nd initial guesses for �ct, �kt+1, �ct+1, we compute
�rst-order Taylor expansions of (32), (33) around �ct ! 0, �kt+1 ! 0, �ct+1 ! 0, and
we minimize the squared sum of errors subject to the obtained linear constraints
(the resulting problem is a quadratic programming problem); see Appendix A1
for details. We subsequently use a Newton solver to compute a highly accurate



nonlinear solution (34) using the �rst-order approximation as an initial guess; see
Appendix A2 for details. The results are provided in Table 1.

Table 1: Approximation errors in the equilibrium allocations in the neoclassical
stochastic growth model


 = 1
10


 = 1 
 = 10

Errors �ct �kt+1 �ct+1 �ct �kt+1 �ct+1 �ct �kt+1 �ct+1

PER1
L1 -3.96 -4.07 -3.94 -4.80 -4.11 -4.65 -4.35 -3.75 -4.44
L1 -2.90 -2.98 -2.88 -4.02 -3.04 -3.77 -3.55 -2.62 -3.88
PER2
L1 -5.63 -5.75 -5.62 -6.30 -5.68 -6.25 -5.57 -4.75 -5.59
L1 -4.53 -4.39 -4.52 -5.15 -4.43 -4.99 -4.42 -3.65 -4.28

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; L1 and L1
are, repectively, the average and maximum of absolute values of the lower bounds on approxima-
tion errors across optimality condition and test points (in log10 units) on a stochastic simulation
of 10,000 observations; and 
 is the coe¢ cient of risk aversion.

Across all the cases, highest maximum approximation errors are 10�2:62 �
0:25% and 10�3:65 � 0:025% for PER1 and PER2, respectively, which corresponds
to the case of a large risk aversion coe¢ cient, 
 = 10. These numbers are su¢ -
ciently low, which allows us to conclude that if we take an optimistic view, the
approximation errors are acceptable in size. Again, our test is a necessary condi-
tion for accuracy and does not allow us to conclude that perturbation solutions are
accurate. We can only say that we cannot reject the hypothesis that perturbation
methods are su¢ ciently reliable for the standard growth model on the basis of our
numerical experiments.

3.3.3 Modi�cations and extensions of lower bound error analysis

We now discuss possible modi�cations and extensions of the constructed accuracy
measures.

Choice of error functions to construct. There are many possible ways to
de�ne approximation errors. First, we could consider errors in other model�s vari-
ables, for example, errors in the investment or output functions instead of those
in capital or consumption functions. Second, there are di¤erent ways of modeling
approximation errors in conditional expectations, for example, we can represent
errors in Euler equation (29) as

u0 (bct (1 + �ct)) = � (1 + �Et) bEt| {z };
=Et[u0(ct+1)(1�d+exp(��t+�t+1)Af 0(kt+1))]

(35)
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where �Et is an approximation error in conditional expectation function Et [�]. We
can use a new condition (35) as a restriction in the least-squares problem (34)
instead of (33) by changing the objective function to �2ct + �

2
kt+1

+ �2Et.
A potential shortcoming of this alternative representation is that the error in

Et [�] depends on a speci�c representation of the utility function, so that �2ct ; �
2
kt+1
;

�2Et are not expressed in comparable units, and introducing a trade-o¤ between
these errors in the objective function may not lead to a meaningful accuracy cri-
teria. In contrast, our baseline representation �2ct + �

2
kt+1

+ �2ct+1 in (33) contains
approximation errors in comparable quantities and is not subject to this short-
coming. Kubler and Schmedders (2005) also measure the error in the conditional
expectation function �Et by the average adjustment to the future consumption
�ct+1 as is done under our baseline representation (33).

Weighting approximation errors by their relative importance. In appli-
cations, one may want to approximate some variables more accurately than others.
For example, in a model, aimed at explaining consumption growth, one may want
to get a more accurate approximation for consumption function than for capital
function. This case can be incorporated into our analysis by modifying (34) to
minimize a weighted sum of squared approximation errors:

min
�ct ;�kt+1 ;�ct+1

w1�
2
ct + w2�

2
kt+1

+ w3�
2
ct+1

s.t. (32), (33), (36)

where w1; w2; w3 2 [0;1) are given weights. By changing the weights, one can
vary the relative importance attached to errors in di¤erent variables. We can then
ask the following question: How much error can be hided at most in variables
that we care less about? We perform experiments in which we set one of the
three approximation errors to zero (equivalently, we set its weight to a very large
number), and we then compute the remaining two errors; see Appendix A3 for a
detailed description of these experiments.
We �nd that if a lower error bound on either current or future consumption

is restricted to be zero, the resulting lower bounds are very similar to the unre-
stricted bounds in Table 1. However, if we set �kt+1 = 0, our best-case scenario
worsens considerably and a lower error bound increases by an order of magnitude
to 10�1:65 � 2% and 10�2:65 � 0:2% for PER1 and PER2, respectively; see Tables
7, 8 and 9 in Appendix A3 for these results. That is, if we want to believe that
our capital function is computed very accurately, we must accept the fact that our
consumption function is quite inaccurate.
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3.4 Alternative accuracy measures for the growth model

In Section 2.3, we described three alternative accuracy measures in the literature:
a forward error analysis, an analysis of residuals and a mixed forward-backward
error analysis. We now illustrate these accuracy measures in the context of the
studied growth model.

A forward error analysis. An upper bound forward error analysis for the
standard growth model is carefully implemented in Santos (2000). His analysis
relies on the fact that the standard growth model (26)�(28) can be reformulated
as a dynamic programing problem. A contraction mapping property of the Bellman
operator makes it possible to construct the upper bound on errors analytically.
The analysis of Santos (2000) shows that a worst-case scenario can often be too

pessimistic and may lead to a rejection of numerical solutions that are su¢ ciently
accurate. For example, under the standard calibration of the optimal growth
model, Santos (2000, Table I) obtains an upper error bound on a policy function
of order 103. Consequently, he shows that this error bound can be reduced by
about three orders of magnitude by using some additional information from a
speci�c numerical solution.

Analysis of residuals in model�s equations. We de�ne unit-free residuals in
a point (kt; �t) by re-writing (29) and (27) as follows:

R1 (kt; �t) �
u0�1

h
�Et

n
u0 (bct+1) h1� d+ exp (��t + �t+1)Af 0 �bkt+1�ioibct � 1;

(37)

R2 (kt; �t) �
exp (�t)Af (kt) + (1� d) kt � bctbkt+1 � 1; (38)

where bct+1 = bC (kt+1; �t+1) = bC � bK (kt; �t) ; ��t + �t+1�, bct = bC (kt; �t), and bkt+1 =bK (kt; �t). Here, we express R1 and R2 in terms of consumption and capital
units, respectively, which is parallel to the de�nitions of approximation errors
�ct and �kt+1 in our lower error-bound analysis. Namely, R1 (kt; �t) is the same
as �ct if we assume that ct+1 and kt+1 are computed without errors (i.e., we set
�kt+1 = �ct+1 = 0) and R2 (kt; �t) is the same as �kt+1 if we assume that ct is
computed without errors (i.e., we set �ct = 0).
We compute R1 (kt; �t) and R2 (kt; �t) on a set of simulated points (for the

details of the simulation procedure, see Section 3.3.2). The results are provided in
Table 2.



Table 2: Residuals of the equilibrium conditions in the neoclassical stochastic
growth model


 = 1
10


 = 1 
 = 10
Residuals R1 R2 R1 R2 R1 R2

PER1
L1 �3:61 �4:12 �4:40 �4:12 �4:09 �3:74
L1 �2:55 �3:02 �3:55 �3:04 �3:52 �2:61
PER2
L1 �5:29 �5:80 �5:96 �5:69 �5:30 �4:75
L1 �4:20 �4:41 �4:74 �4:44 �4:05 �3:65

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; L1 and
L1 are, repectively, the average and maximum of absolute values of residuals in the model�s
equations across optimality condition and test points (in log10 units) on a stochastic simulation
of 10,000 observations; and 
 is the coe¢ cient of risk aversion.

As we can see, the maximum residuals across the two equilibrium conditions
are below 1

3
% � 10�2:55 for PER1 and about 1

45
% � 10�3:65 for PER2. Thus, both

PER1 and PER2 produce relatively small residuals in this model. A comparison
with Table 1 shows that the maximum approximation errors are somewhat smaller
than the maximum residuals. This tendency was robust in our experiments, how-
ever, it cannot be viewed as a generic property of the model and / or solution
methods; in general, residuals and approximation errors cannot be ranked as an
example in Section 2.3.2 shows.

A backward error analysis. There are many possible ways to implement a
backward error analysis for the optimal growth model (26)�(28). We choose one
such a way by measuring the accuracy in the Euler equation (29) and budget con-
straint (27) by the implied values of the parameters � and �, denoted by � (kt; �t)
and d (kt; �t), respectively

� (kt; �t) = Et

�
u0 (bct+1)
u0 (bct)

h
1� d+ exp (��t + �t+1)Af 0

�bkt+1�i��1 ; (39)

d (kt; �t) �
(
1� bct + bkt+1 � exp (�t)Af (kt)

kt

)
; (40)

We compute � (kt; �t) and d (kt; �t) on the same set of simulated points as all
our previous statistics; see Section 3.3.2. The results are provided in Table 3. The
accuracy implications here are similar to those in Tables 1 and 2. The least accurate
solution is obtained under 
 = 10, in particular, PER1 implies that � (kt; �t) and
d (kt; �t) range within [:9870; :9894] and [:0225; :0261] which correspond to up to
0:3% and 10% deviations from their true values � = :99 and d = :025, respectively.



Table 3: The implied parameter values in the neoclassical stochastic growth model


 = 1
10


 = 1 
 = 10
Parameters � (kt; �t) d (kt; �t) � (kt; �t) d (kt; �t) � (kt; �t) d (kt; �t)

PER1
mean .9900 .0251 .9900 .0251 .9892 .0249
min .9897 .0249 .9857 .0248 .9870 .0225
max .9901 .0259 .9900 .0259 .9894 .0261
PER2
mean .9900 .0250 .9900 .0250 .9900 .0250
min .9900 .0250 .9900 .0250 .9892 .0248
max .9900 .0250 .9900 .0250 .9909 .0251

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; "mean",
"min" and "max" are, repectively, the average, minimum and maximum of the value of the
corresponding model�s parameter on a stochastic simulation of 10,000 observations; and 
 is the
coe¢ cient of risk aversion.

PER2 is more accurate than PER1, in particular, under 
 2
�
1
10
; 1
	
, the parameter

values implies by PER2 coincide with their true values at least up to four digits.
Our results illustrate a shortcoming of the backward error analysis, namely, it

is not clear how to interpret the implied deviations in the parameters. Percentage
di¤erences in the parameter values may be not an informative statistic for the
accuracy of solutions. For example, we know that the equilibrium quantities are
typically very sensitive to � and that they are less sensitive to d, so it could be
that 0:3% deviation in � implies more accuracy decline than 10% deviation in d.
Hence, we must have some knowledge of how sensitive the model�s variables are to
the parameters. Our forward lower error-bound analysis delivers more tractable
results.

4 Application 2: a new Keynesian model

We now assess the approximation errors in the conventional new Keynesian model
with Calvo-type price frictions and a Taylor (1993) rule; see, e.g., Christiano,
Eichenbaum and Evans (2005), Smets and Wouters (2003, 2007), Del Negro et al.
(2007). The above literature estimates the model�s parameters using data on actual
economies, and more recent literature also calibrates and solves such models; e.g.,
Judd et al. (2011b, 2012), Fernández-Villaverde et al. (2012), Maliar and Maliar
(2013), Aruoba and Schorfheide (2013), Gavion et al. (2013); also, see Maliar and
Maliar (2014) for a review of numerical method for large scale dynamic economic
models. In particular, Judd et al. (2011b, 2012) assess accuracy of non-linear
and perturbation methods by constructing residuals in the model�s equations and
argue that perturbation methods are unreliable for new Keynesian models. In this
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section, we perform a direct assessment of accuracy of perturbation methods in the
context of new Keynesian models by constructing lower bounds on approximation
errors.

4.1 The model

The economy is populated by households, �nal-good �rms, intermediate-good
�rms, monetary authority and government; see Galí (2008, Chapter 3) for a de-
tailed description of the baseline new Keynesian model.
Households. The representative household solves

max
fCt;Lt;Btgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� �C1�
t � 1

1� 
 � exp
�
�L;t
� L1+#t � 1
1 + #

�
(41)

s.t. PtCt +
Bt

exp
�
�B;t
�
Rt
+ Tt = Bt�1 +WtLt +�t; (42)

where
�
B0; �u;0; �L;0; �B;0

�
is given; Ct, Lt, and Bt are consumption, labor and

nominal bond holdings, respectively; Pt, Wt and Rt are the commodity price,
nominal wage and (gross) nominal interest rate, respectively; �u;t and �L;t are
exogenous preference shocks to the overall momentary utility and disutility of
labor, respectively; �B;t is an exogenous premium in the return to bonds; Tt is
lump-sum taxes; �t is the pro�t of intermediate-good �rms; � 2 (0; 1) is the
discount factor; 
 > 0 and # > 0 are the utility-function parameters. The processes
for shocks are

�u;t+1 = �u�u;t + �u;t+1; �u;t+1 � N
�
0; �2u

�
; (43)

�L;t+1 = �L�L;t + �L;t+1; �L;t+1 � N
�
0; �2L

�
; (44)

�B;t+1 = �B�B;t + �B;t+1; �B;t+1 � N
�
0; �2B

�
; (45)

where �u, �L, �B are the autocorrelation coe¢ cients, and �u, �L, �B are the
standard deviations of disturbances.
Final-good �rms. Perfectly competitive �nal-good �rms produce �nal goods

using intermediate goods. A �nal-good �rm buys Yt (i) of an intermediate good
i 2 [0; 1] at price Pt (i) and sells Yt of the �nal good at price Pt in a perfectly
competitive market. The pro�t-maximization problem is

max
Yt(i)

PtYt �
Z 1

0

Pt (i)Yt (i) di (46)

s.t. Yt =
�Z 1

0

Yt (i)
"�1
" di

� "
"�1

; (47)
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where (47) is a Dixit-Stiglitz aggregator function with " � 1.
Intermediate-good �rms. Monopolistic intermediate-good �rms produce inter-

mediate goods using labor and are subject to sticky prices. The �rm i produces
the intermediate good i. To choose labor in each period t, the �rm i minimizes
the nominal total cost, TC (net of government subsidy v),

min
Lt(i)

TC (Yt (i)) = (1� v)WtLt (i) (48)

s.t. Yt (i) = exp
�
�a;t
�
Lt (i) ; (49)

�a;t+1 = �a�a;t + �a;t+1; �a;t+1 � N
�
0; �2a

�
; (50)

where Lt (i) is the labor input; exp
�
�a;t
�
is the productivity level; �a is the auto-

correlation coe¢ cient; and �a is the standard deviation of the disturbance. The
�rms are subject to Calvo-type price setting: a fraction 1�� of the �rms sets prices
optimally, Pt (i) = ePt, for i 2 [0; 1], and the fraction � is not allowed to change the
price and maintains the same price as in the previous period, Pt (i) = Pt�1 (i), for
i 2 [0; 1]. A reoptimizing �rm i 2 [0; 1] maximizes the current value of the pro�t
over the time when ePt remains e¤ective,

maxePt
1X
j=0

�j�jEt

n
�t+j

h ePtYt+j (i)� Pt+jmct+jYt+j (i)io (51)

s.t. Yt (i) = Yt

�
Pt (i)

Pt

��"
; (52)

where (52) is the demand for an intermediate good i following from (46), (47);
�t+j is the Lagrange multiplier on the household�s budget constraint (42); mct+j is
the real marginal cost of output at time t+ j (which is identical across the �rms).
Government. Government �nances a stochastic stream of public consumption

by levying lump-sum taxes and by issuing nominal debt. The government budget
constraint is

Tt +
Bt

exp
�
�B;t
�
Rt
= Pt

GYt

exp
�
�G;t
� +Bt�1 + vWtLt; (53)

where GYt
exp(�G;t)

= Gt is government spending, vWtLt is the subsidy to the intermediate-

good �rms, and �G;t is a government-spending shock,

�G;t+1 = �G�G;t + �G;t+1; �G;t+1 � N
�
0; �2G

�
; (54)

where �R is the autocorrelation coe¢ cient, and �R is the standard deviation of
disturbance.
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Monetary authority. The monetary authority follows a Taylor rule:

Rt = R�

�
Rt�1
R�

�� "�
�t
��

��� � Yt
YN;t

��y#1��
exp

�
�R;t
�
; (55)

where R� is the long-run value of the gross nominal interest rate; �� is the target
in�ation; YN;t is the natural level of output; and �R;t is a monetary shock,

�R;t+1 = �R�R;t + �R;t+1; �R;t+1 � N
�
0; �2R

�
; (56)

where �R is the autocorrelation coe¢ cient, and �R is the standard deviation of
disturbance.
Natural level of output. The natural level of output YN;t is the level of output

in an otherwise identical economy but without distortions. It is a solution to the
following planner�s problem

max
fCt;Ltgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� �C1�
t � 1

1� 
 � exp
�
�L;t
� L1+#t � 1
1 + #

�
(57)

s.t. Ct = exp
�
�a;t
�
Lt �Gt; (58)

where Gt = GYt
exp(�G;t)

is given, and �u;t+1, �L;t+1, �a;t+1, and �G;t follow the processes

(43), (44), (50), and (54), respectively.

4.2 A lower bound on approximation error

We de�ne lower bounds on approximation errors for a new Keynesian model, and
we assess such bounds numerically.

4.2.1 De�ning a lower error bound

The FOCs of the above model are derived in Appendix B1; see the system of six
equations (B36)�(B41). The approximation errors of the equilibrium quantities
satisfy the following six equations:

exp
�
�u;t + �L;t

��
exp

�
�a;t
��#+1

�
G�1t bCt�1+# (1 + �Ct)1+#�b�t

�#
(1 + ��t)

#

+��Et

nb�"t+1 �1 + ��t+1�" bSt+1 �1 + �St+1�o� bSt (1 + �St) = 0; (59)

23



exp
�
�u;t
�
G�1t

bC1�
t (1 + �Ct)
1�


+��Et

nb�"�1t+1

�
1 + ��t+1

�"�1 bFt+1 �1 + �Ft+1�o� bFt (1 + �Ft) = 0; (60)

bSt (1 + �St)bFt (1 + �Ft) =
"
1� �b�"�1t (1 + ��t)

"�1

1� �

# 1
1�"

; (61)

24(1� �)"1� �b�"�1t (1 + ��t)
"�1

1� �

# "
"�1

+ �
b�"t (1 + ��t)"

�t�1

35�1
�b�t (1 + ��t) = 0; (62)

�
exp

�
�B;t
�

exp
�
�u;t
� bRt (1 + �Rt)Et

" bC�
t+1 �1 + �Ct+1��
 exp ��u;t+1�b�t+1 �1 + ��t+1�
#

� bC�
t (1 + �Ct)
�
 = 0; (63)

R�

�
Rt�1
R�

�� 24�b�t (1 + ��t)
��

���  G�1t bCt (1 + �Ct)
YN;t

!�y351��
exp

�
�R;t
�
� bRt (1 + �Rt) = 0; (64)

where hats on the variables denote their approximated values; St and Ft are supple-
mentary variables; �t is a measure of price dispersion across �rms (see Appendix
B1 for details).
We identify the lower error bounds to minimize the least-squares criterion for

each t

min
xt
�2Ct + �

2
Ft + �

2
�t + �

2
�t+1

+ �2�t + �
2
St + �

2
St+1

+ �2Ft+1 + �
2
Rt + �

2
Ct+1

(65)

s.t. (59)�(64),

where xt �
�
�Ct ; �Ft ; ��t ; ��t+1 ; ��t ; �St ; �St+1 ; �Ft+1 ; �Rt ; �Ct+1

	
.

4.2.2 Numerical experiments

We set the discount factor at � = 0:99. To parameterize Taylor rule (55), we use
the steady-state interest rate R� = ��

�
. For the remaining parameters, we consider

three alternative parameterizations. The �rst parameterization mostly corresponds
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to the estimated values of the parameters in Smets and Wouters (2003). The
second parameterization is mostly taken from the estimates of Del Negro et al.
(2007). In the �nal parameterization, we vary some parameters values relative
to the second parameterization; namely, we use the value of �L = 1%, which is
signi�cantly lower than Del Negro�s et al. (2007) lower bound on this parameter
�L = 18:21%, and we use the value of target in�ation, �� = 1 (a zero net target
in�ation); see Table 4.

Table 4: Alternative parameterizations of the new Keynesian model

Parameterization 1 Parameterization 2 Parameterization 3

min max point min max point min max point

 0.959 1.902 1.391 1 1
# 1.603 3.481 2.503 0.95 3.19 2.09 0.95 3.19 2.09
" 2.493 4.236 3.096 3.94 5.16 4.45 3.94 5.16 4.45
�y 0.037 0.169 0.098 0.03 0.10 0.07 0.03 0.10 0.07
�� 1.526 1.844 1.688 1.79 2.63 2.21 1.79 2.63 2.21
� 0.932 0.974 0.956 0.78 0.86 0.82 0.78 0.86 0.82
G 0.18 0.20 0.26 0.23 0.20 0.26 0.23
� 0.888 0.922 0.905 0.79 0.87 0.83 0.79 0.87 0.83
�� 1 1.0461 1.0738 1.0598 1.0461 1.0738 1
�a 0.697 0.910 0.697 0.94 0.97 0.95 0.94 0.97 0.94
�u 0.772 0.894 0.772 0.86 0.97 0.92 0.86 0.97 0.86
�G 0.900 0.977 0.900 0.93 0.97 0.95 0.93 0.97 0.93
�L 0.773 0.952 0.773 0.11 0.37 0.25 0.11 0.37 0.11
�a 0.469 0.874 0.469 0.41 0.50 0.45 0.41 0.50 0.41
�u 0.237 0.631 0.237 0.36 0.71 0.54 0.36 0.71 0.36
�G 0.292 0.385 0.292 0.34 0.42 0.38 0.34 0.42 0.34
�L 2.313 5.845 2.313 18.21 64.08 18.21 18.21 64.08 1
�R 0.060 0.125 0.090 0.25 0.31 0.28 0.25 0.31 0.25

Notes: Alternative 1 is in line with the estimates of Smets and Wouter (2003), and Alternatives 2 and 3 are in
line with the estimates of Del Negro et al. (2006); volatilities are expressed in percentage terms "min" and "max"
show the interval of the estimated values of the parameter and "point" is the most plausible value.

We simulate the perturbation solutions using the Dynare�s representation of the
state space which includes the current endogenous state variables f�t�1; Rt�1g, the
past exogenous state variables

�
�u;t�1; �L;t�1; �B;t�1; �a;t�1; �R;t�1; �G;t�1

	
and the

current disturbances f�u;t; �L;t; �B;t; �a;t; �R;t; �G;tg. The length of stochastic simula-
tion is 10,200 observations (we eliminate the �rst 200 observations). To compute
the conditional expectation, we use a monomial rule with 2N2 + 1 nodes where
N = 6 is the number of exogenous shocks (see Judd et al., 2011a, for details).
We report the size of approximation errors in Table 5.
The size of approximation errors depends signi�cantly on a speci�c parame-

terization. Under Parameterization 3 with a low �L, we got a lower bound on
approximation errors of order 0:001% � 10�2:86. However, under the other two
parameterizations, the errors are much larger. In particular, under Parameteriza-



Table 5: Approximation errors of the equilibrium allocations in the new Keynesian
model

Errors �Ct �Ft ��t ��t+1 ��t �St �St+1 �Ft+1 �Rt �Ct+1 All

Parameterization 1
PER1 L1 -2.47 -2.76 -2.72 -2.49 -2.48 -3.59 -2.64 -2.88 -2.67 -2.70 -2.67

L1 -0.65 -0.63 -1.65 -0.83 -0.60 -1.92 -1.68 -0.97 -1.29 -0.96 -0.60
Parameterization 2
PER1 L1 -1.40 -1.56 -1.65 -1.59 -1.59 -1.96 -1.90 -1.48 -1.46 -1.86 -1.61

L1 0.21 0.01 0.00 -0.33 -0.32 -0.66 0.05 0.13 0.11 0.12 0.21
Parameterization 3
PER1 L1 -3.01 -3.66 -3.64 -4.19 -3.84 -4.60 -3.45 -3.37 -3.52 -3.90 -3.54

L1 -1.98 -2.25 -2.67 -2.48 -2.52 -2.88 -2.31 -2.17 -2.52 -3.01 -1.98
PER2 L1 -3.66 -4.47 -3.98 -4.44 -5.19 -4.80 -3.39 -3.83 -3.64 -4.54 -3.91

L1 -2.86 -3.44 -3.50 -3.97 -3.99 -4.46 -2.98 -3.21 -3.46 -3.79 -2.86

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; L1 and L1
are, repectively, the average and maximum of absolute values of the lower bounds on approxima-
tion errors across optimality condition and test points (in log10 units) on a stochastic simulation
of 10,000 observationsolution (in seconds).

tion 2, the lower error bounds for PER1 reaches 160% � 100:21. Moreover, under
Parameterizations 1 and 2, PER2 solutions are numerically unstable (explosive)
in simulation. The fact that errors are so huge even under our optimistic scenario
makes these numerical solutions inacceptable for any application!
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4.3 Analysis of residuals in model�s equations

We consider the following six unit-free residuals in the model�s FOCs:

R1
t (xt) =

1bSt
264exp ��u;t + �L;t��
exp

�
�a;t
��#+1

�
G�1t bCt�1+#�b�t

�# + ��Et

nb�"t+1 bSt+1o
375� 1; (66)

R2
t (xt) =

1bFt
h
exp

�
�u;t
�
G�1t

bC1�
t + ��Et

nb�"�1t+1
bFt+1oi� 1; (67)

R3
t (xt) =

1b�t
241
�
+

�
1� 1

�

�" bStbFt
#1�"35 1

"�1

� 1; (68)

R4
t (xt) =

1b�t

"
(1� �)

�
1� �b�"�1t

1� �

� "
"�1

+ �
b�"t
�t�1

#�1
� 1; (69)

R5
t (xt) =

1bCt
(
� exp

�
�B;t
�

exp
�
�u;t
� bRtEt " bC�
t+1 exp ��u;t+1�b�t+1

#)�1=

� 1; (70)

R6
t (xt) =

R�bRt
�
Rt�1
R�

�� 24�b�t
��

���  G�1t bCt
YN;t

!�y351�� exp ��R;t�� 1: (71)

We report the residuals in Table 6. The accuracy implications from residuals

Table 6: Residuals of the equilibrium equations in the new Keynesian model

Residuals R1 R2 R3 R4 R5 R6 All

Parameterization 1
PER1 L1 -2.00 -2.76 -2.80 -2.39 -2.61 -4.81 -2.48

L1 -0.48 -1.62 -1.99 -0.36 -1.42 -3.57 -0.36
Parameterization 2
PER1 L1 -1.77 -1.35 0.07 -1.69 -2.16 -3.40 -0.67

L1 -0.24 2.13 3.92 -0.12 -0.87 -1.35 3.92
Parameterization 3
PER1 L1 -3.27 -3.71 -3.73 -3.68 -3.85 -5.22 -3.67

L1 -2.29 -2.87 -2.72 -2.41 -2.68 -4.14 -2.29
PER2 L1 -3.42 -4.15 -3.82 -4.70 -5.34 -6.66 -3.98

L1 -2.90 -3.55 -3.66 -3.42 -4.07 -5.05 -2.90

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; L1 and L1
are, repectively, the average and maximum of absolute values of residuals in the model�s equations
errors across optimality condition and test points (in log10 units) on a stochastic simulation of
10,000 observations.



in the model�s equations are similar to those from the approximation errors. The
maximum residuals are quite low, 0:1% � 10�2:29, for a PER2 solution obtained
under Parameterization 3, however, they are enormous, 800000% � 103:92, for
a PER1 solution obtained under Parameterization 2 with a high �L. For all
parameterizations, the maximum residuals in Table 6 are substantially larger than
lower bounds on approximation errors in Table 5.
As in the optimal growth model, for the new Keynesian model, we de�ne the

residuals in model�s equations (66)-(71) in a way that is comparable to approxi-
mation errors in the corresponding model�s variables (59)-(64). Again, in the case
of the residuals, we compute an approximation error in each variable by assuming
that approximation errors in all other variables are zeros which is mutually incon-
sistent. In turn, lower bounds are constructed in the way that is consistent with
all model�s equations and that minimizes approximation errors in all the variables.
The di¤erence between the residuals and lower error bounds is very large in some of
our experiments. Our results suggest that in the presence of strong nonlinearities,
the analysis of residuals and lower error-bound analysis may lead to qualitatively
di¤erent inferences about the accuracy of numerical solutions.

5 Conclusion

The conventional upper error-bound analysis focuses on worst case scenarios and
provides su¢ cient conditions for accuracy of numerical solutions. In this paper,
we introduce a complementary lower error-bound analysis that focuses on certain
best-case scenarios and provides a necessary condition for accuracy of numerical
solutions. We speci�cally construct the smallest possible (optimistic) approxima-
tion errors that are consistent with some subset of model�s equations. Even if these
optimistic errors are too large, we conclude that a numerical solution is inaccurate.
A potential shortcoming of our test is that it may fail to reject inaccurate

solutions because some inaccurate solutions may appear to be su¢ ciently accurate
under best-case scenarios. But one of the two studied models - a stylized new
Keynesian model - failed to pass even this relatively undemanding test under
some empirically relevant parameterizations. Upper error bounds are unknown
for new Keynesian models but they are also unnecessary in those cases when an
approximate solution fails to satisfy even necessary conditions for accuracy. Thus,
our simple accuracy test is powerful enough to detect and to discard inaccurate
solutions in practically relevant applications.
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Supplement to "Lower Bounds on
Approximation Errors: Testing the Hypothesis
That a Numerical Solution Is Accurate":

Appendices
Kenneth L. Judd
Lilia Maliar
Serguei Maliar

In Appendices A and B, we describe details of numerical experiments for the
neoclassical stochastic growth model and the new Keynesian model studied in
Sections 3 and 4, respectively.

Appedix A: Neoclassical stochastic growth model
In this section, we describe the construction of a lower bound on approxima-

tion errors in a neoclassical stochastic growth model. We �rst construct a rough
approximation for such a bound using linearized model�s equations. We then
construct a lower bound more accurately using nonlinear model�s equations. We
�nally describe additional experiments in which we weigh approximation errors in
di¤erent variables by di¤erent weights.

A1. Constructing approximation errors using linearized
model�s equations

Euler equation. Let us assume a CRRA utility function u (c) = c1�
�1
1�
 . Under

this utility function, Euler equation (33) is

bc�
t (1 + �ct)
�
 � �Et

nbc�
t+1 �1 + �ct+1��

�
h
1� d+ � exp (�t+1)Abk��1t+1

�
1 + �kt+1

���1io
= 0: (A1)

Finding a �rst-order Taylor expansion of (A1) around �ct ! 0, �ct+1 ! 0, �kt+1 !
0 (in particular, using (1 + x)� ' 1 + �x) and omitting a second-order term
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�ct+1�kt+1 � 0, we have

bc�
t � 
�ctbc�
t � �Et
nbc�
t+1 �1� d+ � exp (�t+1)Abk��1t+1

�o
+ �Et

nbc�
t+1
�ct+1 �1� d+ � exp (�t+1)Abk��1t+1

�o
� �Et

nbc�
t+1 �� exp (�t+1)Abk��1t+1 (�� 1) �kt+1
�o

= 0:

In terms of �ct+1, the previous equation can be written as

1� 
�ct �X1t + 
�ct+1X1t � (�� 1) �kt+1X2t = 0;

where

X1t � �Et
�bc�
t+1bc�
t

�
1� d+ � exp (�t+1)Abk��1t+1

��
;

X2t � �Et
�bc�
t+1bc�
t

�
� exp (�t+1)Abk��1t+1

��
:

Combining the terms yields a linear equation in ��s,

a11t �ct + a
12
t �kt+1 + a

13
t �ct+1 = b

1
t ; (A2)

where a11t � �
, a12t � � (�� 1)X2t, a13t � 
X1t, and b1t � X1t � 1. Therefore,
we obtain an equation for �ct+1 in terms of �ct and �kt+1

�ct+1 =
b1t
a13t

� a
11
t

a13t
�ct �

a12t
a13t
�kt+1 : (A3)

Budget constraint. We rewrite budget constraint (32) as

bct + �ctbct + bkt+1 + �kt+1bkt+1 � (1� d) kt � exp (�t)Ak�t = 0: (A4)

Thus, we have
a21t �ct + a

22
t �kt+1 = b

21
t ;

where a21t � bct, a22t � bkt+1, and b21t � (1� d) kt + exp (�t)Ak�t � bct � bkt+1, so we
write

�kt+1 =
b21t
a22t

� a
21
t

a22t
�ct : (A5)

Note that substituting �kt+1 from (A5) into (A2), we obtain a relation between
�ct+1 and �ct

�ct+1 =
1

a13t

�
b1t �

a12t
a22t
b2

�
+
1

a13t

�
a12t a

21
t

a22t
� a11t

�
�ct : (A6)
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Minimization problem. The minimization problem (34) in period t is given
by

min
�ct ;�kt+1 ;�ct+1

�2ct + �
2
kt+1

+ �2ct+1 s.t. (A5), (A6). (A7)

There are two possible ways of solving (A7). One option is to �nd FOC of (A7)
analytically and to solve for a minimum in a closed form and the other option is
to solve (A7) numerically.
To implement the �rst option, we �nd the FOC with respect to �ct,

2�ct + 2�kt+1
d�kt+1
d�ct

+ 2�ct+1
d�ct+1
d�ct

= 0:

After deriving
d�ct+1
d�ct

and
d�kt+1
d�ct

from (A5), (A6) and substituting them into the
above FOC, we obtain

�ct = �Qt=Wt;

where

Qt =
1

(a13t )
2

�
a12t a

21
t

a22t
� a11t

� �
b1 �

a12
a22
b2

�
� b2

a21

(a22)
2 ;

Wt = 1 +
1

(a13t )
2

�
a12t a

21
t

a22t
� a11t

�2
+

�
a21t
a22t

�2
:

Thus, we get an explicit expression for �ct. The approximation errors �ct+1 and
�kt+1 are determined by (A5) and (A6).
To implement the second option, i.e., to solve problem (A7) numerically, we

use a quadratic programming routine (speci�cally, "quadprog" in MATLAB) . We
use approximation errors which we obtain from linearizing conditions as an initial
guess for a nonlinear procedure, discussed in Appendix A2.

A2. Constructing approximation errors using nonlinear model�s
equations

Budget constraint (A4) yields

�kt+1 =
(1� d) kt + exp (�t)Ak�t � bct (1 + �ct)bkt+1 � 1: (A8)

From budget constraint (A4), we also gethbkt+1 �1 + �kt+1�i��1 = [(1� d) kt + exp (�t)Ak�t � bct (1 + �ct)]��1 :
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Substituting the latter equation into Euler equation (A1), we have

bc�
t (1 + �ct)
�
 = �Et

nbc�
t+1 �1 + �ct+1��
 (1� d)o
+ [(1� d) kt + exp (�t)Ak�t � bct (1 + �ct)]��1

� �Et
nbc�
t+1 �1 + �ct+1��
 � exp (�t+1)Ao :

Expressing �ct+1 yields

�ct+1 = bct (1 + �ct) � �Et �bc�
t+1 (1� d)	
+ [(1� d) kt + exp (�t)Ak�t � bct (1 + �ct)]��1

� �Et
�bc�
t+1� exp (�t+1)A	1=
 � 1: (A9)

Therefore, problem (34) becomes

min
�ct ;�kt+1 ;�ct+1

�2ct + �
2
kt+1

+ �2ct+1 s.t.( A9), (A8). (A10)

This representation is more convenient relative to (34) because the resulting mini-
mization problem contains just one unknown, �ct. To solve problem (A10), we use
a nonlinear optimization routine (speci�cally, "fminsearch" in MATLAB).

A3. Weighting approximation errors in di¤erent variables
by their relative importance

As is argued in the main text, we can construct a lower bound on approximation
errors to minimize the weighted sum of squared approximation errors (36). By
changing weights, we can vary the relative importance attached to the errors in
di¤erent variables. Within this general framework, we can consider three limiting
sets of weights (i) w1 ! 1, w2 = w3, (ii) w2 ! 1, w1 = w3, and (iii) w3 ! 1,
w1 = w2 in which cases, respectively, �ct, �kt+1 and �ct+1 are forced to be zero and
the remaining two errors are minimized according to the least-squares criterion.
How can this modi�cation e¤ect the lower bound? Clearly, the resulting lower

bound can increase but not decrease. To see the point observe that in the baseline
case (34), we split approximation errors between three variables in the way which
is most favorable for accuracy. Now, we split approximation errors between two
variables forcing the remaining error to be equal to zero. As a result, the size of
the approximation errors will increase in the two variables that are assumed to be
computed with errors. For example, case (iii) would make sense if we believe that
we have obtained a true distribution of future consumption ct+1, and then all the



Table 7: Approximation errors under the assumption of zero approximation errors
in current consumption


 = 1
10


 = 1 
 = 10

Errors �ct �kt+1 �ct+1 �ct �kt+1 �ct+1 �ct �kt+1 �ct+1

PER1
L1 �1 -4.12 -3.64 �1 -4.12 -4.42 �1 -3.74 -4.09
L1 �1 -3.02 -2.59 �1 -3.04 -3.58 �1 -2.61 -3.51
PER2
L1 �1 -5.80 -5.32 �1 -5.69 -5.98 �1 -4.75 -5.30
L1 �1 -4.41 -4.22 �1 -4.44 -4.76 �1 -3.65 -4.05

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; L1 and L1
are, repectively, the average and maximum of absolute values of the lower bounds on approxima-
tion errors across optimality condition and test points (in log10 units) on a stochastic simulation
of 10,000 observations; and 
 is the coe¢ cient of risk aversion.

Table 8: Approximation errors under the assumption of zero approximation errors
in capital


 = 1
10


 = 1 
 = 10

Errors �ct �kt+1 �ct+1 �ct �kt+1 �ct+1 �ct �kt+1 �ct+1

PER1
L1 -3.03 �1 -2.93 -3.03 �1 -3.02 -2.69 �1 -2.70
L1 -1.94 �1 -1.85 -1.95 �1 -1.94 -1.65 �1 -1.66
PER2
L1 -4.71 �1 -4.61 -6.30 �1 -4.59 -3.66 �1 -3.66
L1 -3.33 �1 -3.27 -3.35 �1 -3.33 -2.65 �1 -2.66

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; L1 and L1
are, repectively, the average and maximum of absolute values of the lower bounds on approxima-
tion errors across optimality condition and test points (in log10 units) on a stochastic simulation
of 10,000 observations; and 
 is the coe¢ cient of risk aversion.
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Table 9: Approximation errors under the assumption of zero approximation errors
in future consumption


 = 1
10


 = 1 
 = 10

Errors �ct �kt+1 �ct+1 �ct �kt+1 �ct+1 �ct �kt+1 �ct+1

PER1
L1 -3.65 -4.03 �1 -4.42 -4.11 �1 -4.09 -3.75 �1
L1 -2.60 -2.94 �1 -3.58 -3.03 �1 -3.51 -2.62 �1
PER2
L1 -5.33 -5.71 �1 -5.98 -5.68 �1 -5.30 -4.74 �1
L1 -4.23 -4.37 �1 -4.76 -4.43 �1 -4.05 -3.65 �1

a Notes: PER1 and PER2 denote the �rst- and second-order perturbation solutions; L1 and L1
are, repectively, the average and maximum of absolute values of the lower bounds on approxima-
tion errors across optimality condition and test points (in log10 units) on a stochastic simulation
of 10,000 observations; and 
 is the coe¢ cient of risk aversion.

errors are absorbed by ct and kt+1. The results for cases (i), (ii), (iii) distinguished
above are provided in Tables 7, 8 and 9, respectively.
The comparison of the three tables shows that the lower error bound is the

largest when we set �kt+1 = 0, namely, it is 10
�1:65 = 2% and 10�2:65 = 0:2% for

PER1 and PER2, respectively. As is seen from Tables 7 and 9, when �ct = 0 and
�ct+1 = 0, the results are almost identical to those in Table 1. For example, when
�ct+1 = 0, the lower bounds on the size of the errors in the model�s variables are
10�2:6 = 0:25% and 10�3:65 = 0:023% for PER1 and PER2, respectively.

Appendix B: New Keynesian model
In this appendix, we derive FOCs of the new Keynesian model outlined in

Section 4, and we describe the details of our error bound analysis. Again, we �rst
construct a rough approximation of the lower bound on approximation errors using
linearized model�s equations, and we then construct such a bound accurately using
nonlinear model�s equations.
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B1. Deriving FOCs

Households. The FOCs of the household�s problem (41)�(45) with respect to
Ct, Lt and Bt are

�t =
exp

�
�u;t
�
C�
t

Pt
; (B1)

exp
�
�u;t + �L;t

�
L#t = �tWt; (B2)

exp
�
�u;t
�
C�
t = � exp

�
�B;t
�
RtEt

"
exp

�
�u;t+1

�
C�
t+1

�t+1

#
; (B3)

where �t is the Lagrange multiplier associated with the household�s budget con-
straint (42). After combining (B1) and (B2), we get

exp
�
�L;t
�
L#tC



t =

Wt

Pt
: (B4)

Final-good producers. The FOC of the �nal-good producer�s problem (46),
(47) with respect to Yt (i) yields the demand for the ith intermediate good

Yt (i) = Yt

�
Pt (i)

Pt

��"
: (B5)

Substituting the condition (B5) into (47), we obtain

Pt =

�Z 1

0

Pt (i)
1�" di

� 1
1�"

: (B6)

Intermediate-good producers. The FOC of the cost-minimization problem
(48)�(50) with respect to Lt (i) is

�t =
(1� v)Wt

exp
�
�a;t
� ; (B7)

where �t is the Lagrange multiplier associated with (49). The derivative of the
total cost in (48) is the nominal marginal cost, MCt (i),

MCt (i) �
dTC (Yt (i))
dYt (i)

= �t: (B8)

The conditions (B7) and (B8) taken together imply that the real marginal cost is
the same for all �rms,

mct (i) =
(1� v)
exp (�at )

� Wt

Pt
= mct: (B9)
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The FOC of the reoptimizing intermediate-good �rm with respect to ePt is
Et

1X
j=0

(��)j �t+jYt+jP
"+1
t+j

" ePt
Pt+j

� "

"� 1mct+j

#
= 0 (B10)

From the household�s FOC (B1), we have

�t+j =
exp

�
�u;t+j

�
C�
t+j

Pt+j
: (B11)

Substituting (B11) into (B10), we get

Et

1X
j=0

(��)j exp
�
�u;t+j

�
C�
t+jYt+jP

"
t+j

" ePt
Pt+j

� "

"� 1mct+j

#
= 0: (B12)

Let us de�ne �t;j such that

�t;j �
�
1 if j = 0

1
�t+j ��t+j�1����t+1 if j � 1

: (B13)

Then �t;j = �t+1;j�1 � 1
�t+1

for j > 0. Therefore, (B12) becomes

Et

1X
j=0

(��)j exp
�
�u;t+j

�
C�
t+jYt+j�

�"
t;j

�eept�t;j � "

"� 1mct+j
�
= 0; (B14)

where eept � ePt
Pt
. We express eept from (B14) as follows

eept =
Et

1X
j=0

(��)j exp
�
�u;t+j

�
C�
t+jYt+j�

�"
t;j

"
"�1mct+j

Et

1X
j=0

(��)j exp
�
�u;t+j

�
C�
t+jYt+j�

1�"
t;j

� St
Ft
: (B15)
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Let us �nd recursive representations for St and Ft. For St, we have

St � Et
1X
j=0

(��)j exp
�
�u;t+j

�
C�
t+jYt+j�

�"
t;j

"

"� 1mct+j

=
"

"� 1 exp
�
�u;t
�
C�
t Ytmct

+��Et

( 1X
j=1

(��)j�1 exp
�
�u;t+j

�
C�
t+jYt+j

�
�t+1;j�1
�t+1

��"
"

"� 1mct+j

)
=

"

"� 1 exp
�
�u;t
�
C�
t Ytmct

+��Et

(
1

��"t+1

1X
j=0

(��)j exp
�
�u;t+1+j

�
C�
t+1+jYt+1+j�

�"
t+1;j

"

"� 1mct+1+j

)
=

"

"� 1 exp
�
�u;t
�
C�
t Ytmct

+��Et

(
1

��"t+1
Et+1

 1X
j=0

(��)j exp
�
�u;t+1+j

�
C�
t+1+jYt+1+j�

�"
t+1;j

"

"� 1mct+1+j

!)
=

"

"� 1 exp
�
�u;t
�
C�
t Ytmct + ��Et

�
�"t+1St+1

	
:

Substituting mct from (B9) into the above recursive formula for St, we have

St =
"

"� 1 exp
�
�u;t
�
C�
t Yt

(1� v)
exp

�
�a;t
� � Wt

Pt
+ ��Et

�
�"t+1St+1

	
: (C16)

Substituting Wt

Pt
from (B4) into (C16), we get

St =
"

"� 1 exp
�
�u;t
�
Yt
(1� v)
exp

�
�a;t
� � exp ��L;t�L#t + ��Et ��"t+1St+1	 : (B16)

For Ft, the corresponding recursive formula is

Ft = exp
�
�u;t
�
C�
t Yt + ��Et

�
�"�1t+1Ft+1

	
: (B17)

Aggregate price relationship. The condition (B6) can be rewritten as

Pt =

�Z 1

0

Pt (i)
1�" di

� 1
1�"

=�Z
reopt.

Pt (i)
1�" di+

Z
non-reopt.

Pt (i)
1�" di

� 1
1�"

; (B18)
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where "reopt." and "non-reopt." denote, respectively, the �rms that reoptimize
and do not reoptimize their prices at t.
Note that

R
non-reopt. Pt (i)

1�" di =
R 1
0
P (j)1�" !t�1;t (j) dj, where !t�1;t (j) is the

measure of non-reoptimizers at t that had the price P (j) at t � 1. Furthermore,
!t�1;t (j) = �!t�1 (j), where !t�1 (j) is the measure of �rms with the price P (j)
in t� 1, which impliesZ

non-reopt.
Pt (i)

1�" di =

Z 1

0

�P (j)1�" !t�1 (j) dj = �P
1�"
t�1 : (B19)

Substituting (B19) into (B18) and using the fact that all reoptimizers set eP 1�"t ,
we get

Pt =
h
(1� �) eP 1�"t + �P 1�"t�1

i 1
1�"
: (B20)

We divide both sides of (B20) by Pt,

1 =

"
(1� �)eep1�"t + �

�
1

�t

�1�"# 1
1�"

;

and express eept eept = �1� ��"�1t

1� �

� 1
1�"

: (B21)

Combining (B21) and (B15), we obtain

St
Ft
=

�
1� ��"�1t

1� �

� 1
1�"

: (B22)

Aggregate output. Let us de�ne aggregate output

Y t �
Z 1

0

Yt (i) di =

Z 1

0

exp
�
�a;t
�
Lt (i) di = exp

�
�a;t
�
Lt; (B23)

where Lt =
R 1
0
Lt (i) di follows by the labor-market clearing condition. We substi-

tute demand for Yt (i) from (B5) into (B23) to get

Y t =

Z 1

0

Yt

�
Pt (i)

Pt

��"
di = YtP

"
t

Z 1

0

Pt (i)
�" di: (B24)

Let us introduce a new variable P t,�
P t
��" � Z 1

0

Pt (i)
�" di: (B25)
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Substituting (B23) and (B25) into (B24) gives us

Yt � Y t
�
P t
Pt

�"
= exp

�
�a;t
�
Lt�t; (B26)

where �t is a measure of price dispersion across �rms, de�ned by

�t �
�
P t
Pt

�"
: (B27)

Note that if Pt (i) = Pt (i0) for all i and i0 2 [0; 1], then �t = 1, that is, there is no
price dispersion across �rms.

Law of motion for price dispersion �t. By analogy with (B20), the variable
P t, de�ned in (B25), satis�es

P t =
h
(1� �) eP�"t + �

�
P t�1

��"i� 1
"
: (B28)

Using (B28) in (B27), we get

�t =

0B@
h
(1� �) eP�"t + �

�
P t�1

��"i� 1
"

Pt

1CA
"

: (B29)

This implies

�
1
"
t =

"
(1� �)

 ePt
Pt

!�"
+ �

�
P t�1
Pt

��"#� 1
"

: (B30)

In terms of eept � ePt
Pt
, the condition (B30) can be written as

�t =

"
(1� �)eep�"t + �

P
�"
t�1
P�"t

� P
�"
t�1
P�"t�1

#�1
: (B31)

By substituting eept from (B21) into (B31), we obtain the law of motion for �t,

�t =

"
(1� �)

�
1� ��"�1t

1� �

�� "
1�"

+ �
�"t
�t�1

#�1
: (B32)
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Aggregate resource constraint. Combining the household�s budget constraint
(42) with the government budget constraint (53), we have the aggregate resource
constraint

PtCt + Pt
GYt

exp
�
�G;t
� = (1� v)WtLt +�t: (B33)

Note that the ith intermediate-good �rm�s pro�t at t is �t (i) � Pt (i)Yt (i) �
(1� v)WtLt (i). Consequently,

�t =

Z 1

0

�t (i) di =

Z 1

0

Pt (i)Yt (i) di�(1� v)Wt

Z 1

0

Lt (i) di = PtYt�(1� v)WtLt;

where PtYt =
R 1
0
Pt (i)Yt (i) di follows by a zero-pro�t condition of the �nal-good

�rms. Hence, (B33) can be rewritten as

PtCt + Pt
G

exp
�
�G;t
�Yt = PtYt: (B34)

In real terms, the aggregate resource constraint (B34) becomes

Ct =

 
1� G

exp
�
�G;t
�!Yt: (B35)

Summary. The set of equilibrium conditions derived above can be summarized
by six FOCs

St =
exp

�
�u;t + �L;t

��
exp

�
�a;t
��#+1

�
G�1t Ct

�1+#
(�t)

#
+ ��Et

�
�"t+1St+1

	
; (B36)

Ft = exp
�
�u;t
�
C1�
t G�1t + ��Et

�
�"�1t+1Ft+1

	
; (B37)

St
Ft

=

�
1� ��"�1t

1� �

� 1
1�"

; (B38)

�t =

"
(1� �)

�
1� ��"�1t

1� �

� "
"�1

+ �
�"t
�t�1

#�1
; (B39)

C�
t = �
exp

�
�B;t
�

exp
�
�u;t
�RtEt "C�
t+1 exp ��u;t+1�

�t+1

#
; (B40)

Rt = R�

�
Rt�1
R�

�� "�
�t
��

��� � Yt
YN;t

��y#1��
exp

�
�R;t
�
; (B41)
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where YN;t follows from problem (57), (58),

YN;t =

"
exp

�
�a;t
�1+#�

exp
�
�G;t
���


exp
�
�L;t
�#

1
#+


: (B42)

Here, St and Ft are supplementary variables; �t is a measure of price dispersion
across �rms. The condition in terms of approximated quantities and approximation
errors corresponding to FOCs (B36), (B37), (B38)�(B40) and (B41) are given
by (59)�(64), respectively. The problem of minimization of the sum of squared
approximation errors is given by (65).

B2. Constructing approximation errors using linearized model�s
equations

Condition (59). Let us rewrite condition (59) as

exp
�
�u;t + �L;t

��
exp

�
�a;t
��#+1 �G�1t bCt�1+# (1 + �Ct)1+# �b�t

��#
(1 + ��t)

�#

+ ��Et

nb�"t+1 �1 + ��t+1�" bSt+1 �1 + �St+1�o� bSt (1 + �St) = 0:
Finding a �rst-order Taylor expansion (again, we use (1 + x)� ' 1 + �x) of the
last equation and omitting second-order terms, we have

exp
�
�u;t + �L;t

��
exp

�
�a;t
��#+1 �G�1t bCt�1+# (1 + (1 + #) �Ct)�b�t

��#
(1� #��t)

+ ��Et

nb�"t+1 �1 + "��t+1 + �St+1� bSt+1o� bSt (1 + �St) = 0:
Since (1 + (1 + #) �Ct) (1� #��t) = 1� #��t + (1 + #) �Ct, we have

[1� #��t + (1 + #) �Ct ]
exp

�
�u;t + �L;t

��
exp

�
�a;t
��#+1

�
G�1t bCt�1+# �b�t

��#
bSt

+
�
1 + "��t+1 + �St+1

�
��Et

(b�"t+1 bSt+1bSt
)
� 1� �St = 0:
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For convenience, we introduce the following compact notation:

q1t �
exp

�
�u;t + �L;t

��
exp

�
�a;t
��#+1

�
G�1t bCt�1+# �b�t

��#
bSt ;

q2t � ��Et

(b�"t+1 bSt+1bSt
)
:

Then, we have

[(#+ 1) �Ct � #��t ] q1t +
�
"��t+1 + �St+1

�
q2t � �St +R1

t = 0; (B43)

where R1
t is the residual of this FOC, given by (66) in the main text. Introducing

compact notation for (B43), we get

a11t �Ct + a
13
t ��t+1 + a

15
t ��t + a

16
t �St + a

17
t �St+1 + b

1
t = 0; (B44)

where a11t � (#+ 1) q1t , a13t � "q2t , a15t � �#q1t , a16t � �1, a17t � q2t and b1t � R1
t .

Condition (60). By �nding a �rst-order Taylor expansion in errors of condition
(60) and by taking into account that �Ft+1��t+1 � 0, we obtain

exp
�
�u;t
�
G�1t

bC1�
t [1 + (1� 
) �Ct ]

+ ��Et

nb�"�1t+1
bFt+1 �1 + ("� 1) ��t+1 + �Ft+1�o� bFt � �Ft bFt = 0:

Introducing compact notations, we get

a21t �Ct + a
22
t �Ft + a

24
t ��t+1 + a

28
t �Ft+1 + b2 = 0; (B45)

where a21t � (1� 
) with q4t � exp
�
�u;t
�
G�1t

bC1�
tbFt , a22t � �1, a24t � ("� 1) q3t with
q3t � ��Et

n b�"�1t+1
bFt+1bFt
o
, a28t � q3t , b2t � R2

t and where R2
t is the residual in equation

(67) in the main text.

Condition (61). A �rst-order Taylor expansion of (61) yields�
1� �b�"�1t [1 + ("� 1) ��t ]

1� �

� 1
1�" bFt (1 + �Ft)� bSt (1 + �St) = 0:

Equivalently, we write

bStbFt =
�
1� �b�"�1t

1� � � �b�"�1t [("� 1) ��t ]
1� �

� 1
1�" (1 + �Ft)

(1 + �St)
: (B46)
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The residual of this equation is given in (68). Using the last expression, we
write bStbFt =

�
1� �b�"�1t

1� �

� 1
1�" �

R3
t + 1

��1
: (B47)

Using (B47) in (B46), we obtain�
1� �b�"�1t

1� �

� 1
1�" �

R3
t + 1

��1
=

�
1� �b�"�1t

1� � � �b�"�1t [("� 1) ��t ]
1� �

� 1
1�" (1 + �Ft)

(1 + �St)
:

The latter condition can be rewritten as�
R3
t + 1

��1
(1 + �St) = 1 + �Ft �

1

1� "
�b�"�1t ("� 1) ��t
1� �b�"�1t

;

which yields

�|{z}
�a32

�Ft +
�b�"�1t

1� �b�"�1t| {z }
�a33

��t +
�
R3
t + 1

��1| {z }
�a36

�St +
�
R3
t + 1

��1 � 1| {z }
�b3

= 0:

Finally, we obtain
a32�Ft + a33��t + a36�St + b3 = 0: (B48)

Condition (62). A �rst-order Taylor expansion of (62) yields

(1� �)
�
1� �b�"�1t

1� �

� "
1�"
�
1� "

("� 1)
�b�"�1t ("� 1) ��t
1� �b�"�1t

�
+�b�"t��1

t�1 [1 + "��t � ��t ]� b��1
t (1� ��t) = 0:

In more compact notation, this equation can be written as

q5t

�
1� "�b�"�1t ��t

1� �b�"�1t

�
+ q6t [1 + "��t � ��t ]� b��1

t (1� ��t) = 0;

where

q5t � (1� �)
�
1� �b�"�1t

1� �

� "
1�"

; q6t � �b�"t��1
t�1:

By introducing further simplifying notations, we write

a43t ��t + a
45
t ��t + b

4
t = 0; (B49)

where

a43t � "q6t � q5t
"�b�"�1t

1� �b�"�1t

; a45t � b��1
t � q6t ; b4t � q5t + q6t � b��1

t :
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Condition (63). A �rst-order Taylor expansion of (63) implies

�
exp

�
�B;t
�

exp
�
�u;t
� bRt (1 + �Rt)Et nexp ��u;t+1� bC�
t+1b��1t+1 �1� 
�Ct+1 � ��t+1�o

� bC�
t (1� 
�Ct) = 0:

This expression can be re-written as

�
exp

�
�B;t
�

exp
�
�u;t
� bRt (1 + �Rt) �1� 
�Ct+1 � ��t+1�Et nexp ��u;t+1� bC�
t+1b��1t+1o

� bC�
t (1� 
�Ct) = 0;

which after rearranging the terms becomes

�
1 + �Rt � 
�Ct+1 � ��t+1

�
�
exp

�
�B;t
�

exp
�
�u;t
� bRtbC�
t Et

n
exp

�
�u;t+1

� bC�
t+1b��1t+1o
� (1� 
�Ct) = 0:

The latter equation, combined with the de�nition of R5
t in (70) implies�

�Rt � 
�Ct+1 � ��t+1
�
q7t + 
�Ct +R5

t = 0;

where

q7t � �
exp

�
�B;t
�

exp
�
�u;t
� bRtbC�
t Et

n
exp

�
�u;t+1

� bC�
t+1b��1t+1o :
Introducing further shorter notation, we have

a51t �Ct + a
54
t ��t+1 + a

59
t �Rt + a

5;10
t �Ct+1 + b

5
t = 0; (B50)

where
a51t � 
; a54t � �q7; a59t � q7; a5;10t � �q7
; b5t � R5

t :

Condition (64). A �rst-order Taylor expansion of (64) leads us to

R1���

�
����� Y

��y
N;t

�1��
(Rt�1)

�
hb���t bC�yt G��yt

i1��
�
�
1 + �� (1� �) ��t + �y (1� �) �Ct

�
exp

�
�R;t
�

� bRt (1 + �Rt) = 0:
In terms of R6

t introduced in (71), the considered equation becomes�
R6
t + 1

� �
1 + �� (1� �) ��t + �y (1� �) �Ct

�
� 1� �Rt = 0:
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Introducing short notation, we get

a61t �Ct + a
63
t ��t + a

69
t �Rt + b

6
t = 0; (B51)

where

a61t � �y (1� �)
�
R6
t + 1

�
; a63t � �� (1� �)

�
R6
t + 1

�
; a69t � �1; b6t � R6

t :

Minimization problem. The minimization problem with linearized constraints
is given by:

min
xt
�2Ct + �

2
Ft + �

2
�t + �

2
�t+1

+ �2�t + �
2
St + �

2
St+1

+ �2Ft+1 + �
2
Rt + �

2
Ct+1

s.t. (B44), (B45), (B48)�(B51).

Again, we solve this problem to obtain initial guesses on ��s to be used as an input
for a solver that �nds approximation errors from nonlinear FOCs.

B3. Constructing approximation errors using nonlinear model�s
equations

Instead of linearizing FOCs, we now focus on their nonlinear (original) versions.
To simplify the analysis, we obtain (wherever possible) explicit conditions for ap-
proximation errors. In particular from six equations (59)�(64), we get explicit
formulas for �2�t, �

2
St, �

2
St+1

, �2Ft+1, �
2
Rt, �

2
Ct+1

. Speci�cally, we have
�from (62)

��t =
1b�t

24(1� �)"1� �b�"�1t (1 + ��t)
"�1

1� �

# "
"�1

+ �
b�"t (1 + ��t)"

�t�1

35�1 � 1; (B52)

�from (61)

�St =

"
1� �b�"�1t (1 + ��t)

"�1

1� �

# 1
1�" bFtbSt (1 + �Ft)� 1; (B53)

�from (59)

�St+1 =

bSt (1 + �St)� exp(�u;t+�L;t)

[exp(�a;t)]
#+1

(G�1t bCt)1+#(1+�Ct)1+#
(b�t)#(1+��t)#�

1 + ��t+1
�"
��Et

nb�"t+1 bSt+1o � 1; (B54)
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�from (60)

�Ft+1 =
bFt (1 + �Ft)� exp ��u;t�G�1t bC1�
t (1 + �Ct)

1�
�
1 + ��t+1

�"�1
��Et

nb�"�1t+1
bFt+1o � 1; (B55)

�from (64)

�Rt = R1���

�
����� Y

��y
N;t

�1���Rt�1bRt
�� �b���t �G�1t bCt��y 1bRt

�1��
(B56)

� exp
�
�R;t
� h
(1 + ��t)

�� (1 + �Ct)
�y
i1��

� 1;

�from (63)

�Ct+1 =

2664 (1 + �Ct)
�
 �1 + ��t+1� bC�
t

(1 + �Rt)
exp(�B;t)
exp(�u;t)

bRt�Et � bC�
t+1 exp(�u;t+1)b�t+1
�
3775
� 1



� 1: (B57)

We substitute the above expressions into the objective function (65). As a
result, we have a minimization problem with four unknowns, �2Ct, �

2
Ft, �

2
�t, �

2
�t+1

min
�2Ct

;�2Ft
;�2�t ;�

2
�t+1

�2Ct+�
2
Ft+�

2
�t+�

2
�t+1

+�2�t + �
2
St + �

2
St+1

+ �2Ft+1 + �
2
Rt + �

2
Ct+1| {z }

given by (B52)�(B57)

: (B58)

This problem was solved to produce the results in Table 5.
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