Secular Stagnation and Non-standard Policy Measures

Gauti B. Eggertsson - based on joint work with Neil R. Mehrotra

Brown University

October, 2014, ECB

Secular Stagnation Hypothesis

Original hypothesis:

- Alvin Hansen (1938): Suggests a permanent demand recession
- Reduction in population growth and investment opportunities
- Concerns of insufficient demand ended with WWII and subsequent baby boom
Secular stagnation resurrected:
- Lawrence Summers (2013)
- Highly persistent decline in the natural rate of interest
- Chronically binding zero lower bound

Goal here:

- Formalize these ideas in a simple model
- Propose a OLG model in the spirit of Samuelson (1958)
- How does this change our view about policy?
- How does it change our view on non-standard policy measures?

Why ARE WE so CONFIDENT INTEREST RATE WILL RISE SOON?

Last time interest rate dropped in the US:

- Started falling in 1929 (reach zero 1932)....
- only to increase in 1947

Started droppin in Japan in 1994:

- still at zero today....

Why are we so confident interest rate are increasing in the next few years?

US Interest Rates, 1929-1951

Interest rate on 3-month Treasury bills

Source: NBER Macrohistory Database

Shortcomings of Some Existing Models

Representative agent models:

$$
r_{s s}=\frac{1}{\beta}
$$

- Real interest rate must be positive in steady state
- Households problem not well defined if $\beta \geq 1$
- ZLB driven by temporary shocks to discount rate (Eggertsson and Woodford (2003))

Patient-impatient agent models:

- Steady state typically pinned down by the discount factor of the representative saver (Eggertsson and Krugman (2012))
- Deleveraging only has temporary effect

This Paper

Overlapping generation model

- No representative saver.
- People change from being borrower to being saver over the lifecycle
- The steady state real interest rate no longer tied to anybodies discount fact, can be positive or negative
- Deleveraging shock has permanent effects
- A permanent slump theoretically possibile

Preview of Results

Negative natural rate of interest can be triggered by

- Deleveraging shock
- Slowdown in population growth
- Increase in income inequality
- Fall in relative price of investment

Unemployment steady state

- Permanently binding zero lower bound
- Permanent shortfall in output from potential

Policy responses

- Forward guidance of much more limited value.
- Law of the excluded middle - inflation better be high enough too low inflation target does nothing
- High enough inflation target by itself does not exclude the secular stagnation equilibrium
- Fiscal expansions (debt or spending) - unconventional monetary/fiscal policy should aim at increasing the supply of "safe" assets.

Outline for Presentation

1. Model

- Endowment economy
- Endogenous production

2. Monetary and fiscal policy
3. Capital

Economic Environment

Endowment ECONOMy

- Time: $t=0,1,2, \ldots$
- Goods: consumption good (c)
- Agents: 3-generations: $i \epsilon\{y, m, o\}$
- Assets: riskless bonds $\left(B^{i}\right)$
- Technology: exogenous borrowing constraint D

Households

Objective function:

$$
\max _{C_{t,, C_{t+1}^{m}, C_{t+2}^{o}} U=\mathbb{E}_{t}\left\{\log \left(C_{t}^{y}\right)+\beta \log \left(C_{t+1}^{m}\right)+\beta^{2} \log \left(C_{t+2}^{o}\right)\right\}, ~ \text {. }}
$$

Budget constraints:

$$
\begin{aligned}
C_{t}^{y} & =B_{t}^{y} \\
C_{t+1}^{m} & =Y_{t+1}^{m}-\left(1+r_{t}\right) B_{t}^{y}+B_{t+1}^{m} \\
C_{t+2}^{o} & =Y_{t+2}^{o}-\left(1+r_{t+1}\right) B_{t+1}^{m} \\
\left(1+r_{t}\right) B_{t}^{i} & \leq D_{t}
\end{aligned}
$$

Consumption And SAVIng

Credit-constrained youngest generation:

$$
C_{t}^{y}=B_{t}^{y}=\frac{D_{t}}{1+r_{t}}
$$

Saving by the middle generation:

$$
\frac{1}{C_{t}^{m}}=\beta \mathbb{E}_{t} \frac{1+r_{t}}{C_{t+1}^{o}}
$$

Spending by the old:

$$
C_{t}^{o}=Y_{t}^{o}-\left(1+r_{t-1}\right) B_{t-1}^{m}
$$

Determination of the Real Interest Rate

Asset market equilibrium:

$$
\begin{aligned}
N_{t} B_{t}^{y} & =-N_{t-1} B_{t}^{m} \\
\left(1+g_{t}\right) B_{t}^{y} & =-B_{t}^{m}
\end{aligned}
$$

Demand and supply of loans:

$$
\begin{aligned}
& L_{t}^{d}=\frac{1+g_{t}}{1+r_{t}} D_{t} \\
& L_{t}^{s}=\frac{\beta}{1+\beta}\left(Y_{t}^{m}-D_{t-1}\right)+\frac{1}{1+\beta} \frac{Y_{t+1}^{o}}{1+r_{t}}
\end{aligned}
$$

Determination of the Real Interest Rate

Expression for the real interest rate:

$$
1+r_{t}=\frac{1+\beta}{\beta} \frac{\left(1+g_{t}\right) D_{t}}{Y_{t}^{m}-D_{t-1}}+\frac{1}{\beta} \frac{Y_{t+1}^{o}}{Y_{t}^{m}-D_{t-1}}
$$

Determinants of the real interest rate:

- Tighter collateral constraint reduces the real interest rate
- Lower rate of population growth reduces the real interest rate
- Higher middle age reduces real interest rate
- Higher old income increases real interest rate

Effect of a Deleveraging Shock

Impact effect:

- Collateral constraint tightens from D_{h} to D_{l}
- Reduction in the loan demand and fall in real rate
- Akin to Eggertsson and Krugman (2012)

Delayed effect:

- Next period, shift out in loan supply
- Further reduction in real interest rate
- Novel effect from Eggertsson and Krugman (2012)
- Potentially powerful propagation mechanism

Effect of a Deleveraging Shock

Income Inequality

Does inequality affect the real interest rate?

- Our result due to intergeneration inequality that triggers borrowing and lending
- What about inequality across a given cohort?

Generalization of endowment process:

- High-type households with high income in middle period
- Low-type households with low income in middle period
- Both types receive same income in last period

Income Inequality and Real Interest Rate

Credit constrained middle income:

- Fraction η_{s} of middle income households are credit constrainted
- True for low enough income in middle generation and high enough income in retirement
- Fraction $1-\eta_{s}$ lend to both young and constrained middle-generation households

Expression for the real interest rate:

$$
1+r_{t}=\frac{1+\beta}{\beta} \frac{\left(1+g_{t}+\eta_{s}\right) D_{t}}{\left(1-\eta_{s}\right)\left(Y_{t}^{m, h}-D_{t-1}\right)}+\frac{1}{\beta} \frac{Y_{t+1}^{o}}{\left(1-\eta_{s}\right)}\left(Y_{t}^{m, h}-D_{t-1}\right)
$$

Price Level Determination

Euler equation for nominal bonds:

$$
\begin{aligned}
\frac{1}{C_{t}^{m}} & =\beta E_{t} \frac{1}{C_{t+1}^{o}}\left(1+i_{t}\right) \frac{P_{t}}{P_{t+1}} \\
i_{t} & \geq 0
\end{aligned}
$$

Bound on steady state inflation:

$$
\bar{\Pi} \geq \frac{1}{1+r}
$$

- If steady state real rate is negative, steady state inflation must be positive
- No equilibrium with stable inflation
- But what happens when prices are NOT flexible and the central bank does not tolerate inflation?
- Then the central bank's refusal to tolerate high enough inflation will show up as a permanent recession.

Outline for Presentation

1. Model

- Endowment economy
- Endogenous production

2. Monetary and fiscal policy
3. Capital

Endogenous Production

Production and income:

$$
Y_{t}=L_{t}^{\alpha}
$$

- Labor as sole variable factor of production
- Firms are perfectly competitive
- Profits paid to middle-generation households

Labor supply:

- Constant inelastic labor supply from households
- Assume only middle-generation household supplies labor
- Possibility of unemployment due to wage rigidity

Aggregate Supply

Output and labor demand:

$$
\begin{aligned}
Y_{t} & =L_{t}^{\alpha} \\
\frac{W_{t}}{P_{t}} & =\alpha L_{t}^{\alpha-1}
\end{aligned}
$$

Labor supply:

- Middle-generation households supply a constant level of labor \bar{L}
- Implies a constant market clearing real wage $\bar{W}=\alpha \bar{L}^{\alpha-1}$
- Implies a constant full-employment level of output: $Y_{f e}=\bar{L}^{\alpha}$

Downward Nominal Wage Rigidity

Partial wage adjustment:

$$
\begin{aligned}
W_{t} & =\max \left\{\tilde{W}_{t}, P_{t} \alpha \bar{L}^{\alpha-1}\right\} \\
\text { where } \tilde{W}_{t} & =\gamma W_{t-1}+(1-\gamma) P_{t} \alpha \bar{L}^{\alpha-1}
\end{aligned}
$$

Wage rigidity and unemployment:

- \tilde{W}_{t} is a wage norm
- If real wages exceed market clearing level, employment is rationed
- Unemployment: $U_{t}=\bar{L}-L_{t}$
- Similar assumption in Kocherlakota (2013) and Schmitt-Grohe and Uribe (2013)

Derivation of Aggregate Supply

With inflation:

$$
\begin{aligned}
w_{t} & =\bar{W}=\alpha \bar{L}^{(\alpha-1)} \\
Y_{t} & =Y_{f e}
\end{aligned}
$$

With deflation:

$$
\begin{aligned}
w_{t} & =\gamma \frac{w_{t-1}}{\Pi_{t}}+(1-\gamma) \bar{W} \\
w_{t} & =\alpha L_{t}^{\alpha-1} \\
Y_{t} & =L_{t}^{\alpha}
\end{aligned}
$$

Steady State Aggregate Supply Relation

For positive steady state inflation:

$$
Y=Y_{f e}=\bar{L}^{\alpha}
$$

For steady state deflation:

$$
\frac{Y}{Y_{f e}}=\left(\frac{1-\frac{\gamma}{\Pi}}{1-\gamma}\right)^{\frac{\alpha}{1-\alpha}}
$$

- Upward sloping relationship between inflation and output
- Vertical line at full-employment

Aggregate Supply Relation

Derivation of Aggregate Demand

Monetary policy rule:

$$
1+i_{t}=\max \left(1,\left(1+i^{*}\right)\left(\frac{\Pi_{t}}{\Pi^{*}}\right)^{\phi_{\pi}}\right)
$$

Above binding ZLB:

$$
\frac{1+i^{*}}{\Pi_{t+1}}\left(\frac{\Pi_{t}}{\Pi^{*}}\right)^{\phi_{\pi}}=\frac{1+\beta}{\beta} \frac{\left(1+g_{t}\right) D_{t}}{Y_{t}-D_{t-1}}
$$

Binding ZLB:

$$
\frac{1}{\Pi_{t+1}}=\frac{1+\beta}{\beta} \frac{\left(1+g_{t}\right) D_{t}}{Y_{t}-D_{t-1}}
$$

Steady State Aggregate Demand Relation

Above binding ZLB:

$$
\frac{1+i^{*}}{\Pi}\left(\frac{\Pi}{\Pi^{*}}\right)^{\phi_{\pi}}=\frac{1+\beta}{\beta} \frac{(1+g) D}{Y-D}
$$

Binding ZLB:

$$
\frac{1}{\Pi}=\frac{1+\beta}{\beta} \frac{(1+g) D}{Y-D}
$$

Inflation rate at which ZLB binds:

$$
\Pi_{k i n k}=\Pi^{*}\left(\frac{1}{1+i^{*}}\right)^{\frac{1}{\phi \pi}}
$$

Full Employment Steady State

Effect of a Collateral Shock

Properties of the Stagnation Steady State

Long slump:

- Binding zero lower bound so long as natural rate is negative
- Deflation raises real wages above market-clearing level
- Output persistently below full-employment level

Existence and stability:

- Secular stagnation steady state exists so long as $\gamma>0$
- If $\Pi^{*}=1$, secular stagnation steady state is unique and determinate
- Contrast to deflation steady state emphasized in Benhabib, Schmitt-Grohe and Uribe (2001)

Paradox of Toil

Paradox of Flexibility

Outline for Presentation

1. Model

- Endowment economy
- Endogenous production

2. Monetary and fiscal policy
3. Capital

Monetary Policy Responses

Forward guidance:

- Extended commitment to keep nominal rates low?
- Ineffective if households/firms expect rates to remain low indefinitely

Raising the inflation target:

- For sufficiently high inflation target, full employment steady state
- Timidity trap (Krugman (2014))
- Multiple steady states

Raising the Inflation Target

Fiscal Policy

Fiscal policy and the real interest rate:

$$
\begin{aligned}
L_{t}^{d} & =\frac{1+g_{t}}{1+r_{t}} D_{t}+B_{t}^{g} \\
L_{t}^{s} & =\frac{\beta}{1+\beta}\left(Y_{t}^{m}-D_{t-1}-T_{t}^{m}\right)-\frac{1}{1+\beta} \frac{Y_{t+1}^{o}-T_{t+1}^{o}}{1+r_{t}}
\end{aligned}
$$

Government budget constraint:

$$
B_{t}^{g}+T_{t}^{y}\left(1+g_{t}\right)+T_{t}^{m}+\frac{1}{1+g_{t-1}} T_{t}^{o}=G_{t}+\frac{1+r_{t}}{1+g_{t-1}} B_{t-1}^{g}
$$

Fiscal instruments:

$$
G_{t}, B_{t}^{g}, T_{t}^{y}, T_{t}^{m}, T_{t}^{o}
$$

Temporary Increase in Public Debt

Under constant population and set $G_{t}=T_{t}^{y}=B_{t-1}^{g}=0$:

$$
\begin{aligned}
T_{t}^{m} & =-B_{t}^{g} \\
T_{t+1}^{o} & =\left(1+r_{t}\right) B_{t}^{g}
\end{aligned}
$$

Implications for natural rate:

- Loan demand and loan supply effects cancel out
- Temporary increases in public debt ineffective in raising real rate
- Temporary monetary expansion equivalent to temporary expansion in public debt at the zero lower bound
- Effect of an increase in public debt depends on beliefs about future fiscal policy

Permanent Increase in Public Debt

Consider steady state following fiscal rule:

$$
\begin{aligned}
T^{o} & =\beta(1+r) T^{m} \\
L^{d} & =\frac{1+g}{1+r} D+B^{g} \\
L^{s} & =\frac{\beta}{1+\beta}\left(Y^{m}-D\right)-\frac{1}{1+\beta} \frac{Y^{o}}{1+r}
\end{aligned}
$$

Implications for natural rate:

- Changes in taxation have no effects on loan supply
- Permanent rise in public debt always raises the real rate
- Equivalent to helicopter drop at the zero lower bound
- Public debt circumvents the tightening credit friction (Woodford (1990))

Government Purchases Multiplier

Slope of the AD and AS curves:

$$
\begin{aligned}
\psi & =\frac{1+\beta}{\beta}(1+g) D \\
\kappa & =\frac{1-\alpha}{\alpha} \frac{1-\gamma}{\gamma}
\end{aligned}
$$

Purchases multiplier at the zero lower bound:

Financing	Multiplier	Value
Increase in public debt	$\frac{1+\beta}{\beta} \frac{1}{1-\kappa \psi}$	>2
Tax on young generation	0	0
Tax on middle generation	$\frac{1}{1-\kappa \psi}$	>1
Tax on old generation	$-\frac{1+g}{\beta} \frac{1}{1-\kappa \psi}$	<0

Expansionary Fiscal Policy

Outline for Presentation

1. Model

- Endowment economy
- Endogenous production

2. Monetary and fiscal policy
3. Capital

Households

Objective function:

$$
\max _{C_{t,}^{y}, C_{t+1}^{m}, C_{t+2}^{o}} U=\mathbb{E}_{t}\left\{\log \left(C_{t}^{y}\right)+\beta \log \left(C_{t+1}^{m}\right)+\beta^{2} \log \left(C_{t+2}^{o}\right)\right\}
$$

Budget constraints:

$$
\begin{aligned}
C_{t}^{y} & =B_{t}^{y} \\
C_{t+1}^{m}+p_{t+1}^{k} K_{t+1}+\left(1+r_{t}\right) B_{t}^{y} & =w_{t+1} L_{t+1}+r_{t+1}^{k} K_{t+1}+B_{t+1}^{m} \\
C_{t+2}^{o}+\left(1+r_{t+1}\right) B_{t+1}^{m} & =p_{t+2}^{k}(1-\delta) K_{t+1}
\end{aligned}
$$

Characterization

Capital supply (perfect foresight):

$$
\left(p_{t}^{k}-r_{t}^{k}\right) \frac{1}{C_{t}^{m}}=\beta p_{t+1}^{k}(1-\delta) \frac{1}{C_{t+1}^{o}}
$$

Loan supply and demand:

$$
\begin{aligned}
L_{t}^{d} & =\frac{1+g_{t}}{1+r_{t}} D_{t} \\
L_{t}^{s} & =\frac{\beta}{1+\beta}\left(Y_{t}-D_{t-1}\right)-\frac{\beta}{1+\beta}\left(p_{t}^{k}+p_{t+1}^{k} \frac{1-\delta}{\beta\left(1+r_{t}\right)}\right) K_{t}
\end{aligned}
$$

Capital and Secular Stagnation

Rental rate and real interest rate:

$$
\begin{aligned}
& r_{t}^{k}=p_{t}^{k}-p_{t+1}^{k} \frac{1-\delta}{1+r_{t}} \geq 0 \\
& r_{s s} \geq-\delta
\end{aligned}
$$

- Negative real rate now constrained by fact that rental rate must be positive

Relative price of capital goods:

- Decline in relative price of capital goods lowers the real rate
- Global decline in price of capital goods (Karabarbounis and Neiman, 2014)
- Consistent with argument proposed by Summers (2014)

Effect of a Shock to Price of Capital Goods

Paradox of Thrift

Effect of A discount rate shock

Positive natural rate

Negative natural rate

Conclusions

Policy implications:

- Higher inflation target needed
- Limits to forward guidance
- Role for fiscal policy
- Possible implications for financial stability

Key takeaway:

- NOT that we will stay in a slump forever
- Slump of arbitrary duration
- OLG framework to model interest rates

Additional Slides

US Interest Rates, 1929-1951

Interest rate on 3 -month Treasury bills

Source: NBER Macrohistory Database

Parameter Values in Numerical Examples

Description	Parameter	Value
Population growth	g	0.2
Collateral constraint	D	0.28
Discount rate	β	0.77
Labor share	α	0.7
Wage adjustment	γ	0.3
Taylor coefficient	ϕ_{π}	2
Gross inflation target	Π^{*}	1.01
Labor supply	L	1
Depreciation	δ	0.79

Dynamic Efficiency

Planner's optimality conditions:

$$
\begin{aligned}
\frac{C_{o}}{C_{m}} & =\beta(1+g) \\
(1-\alpha) K^{-\alpha} & =1-\frac{1-\delta}{1+g} \\
D(1+g)+C_{m}+\frac{1}{1+g} C_{o} & =K^{1-\alpha} \bar{L}^{\alpha}-K\left(1-\frac{1-\delta}{1+g}\right)
\end{aligned}
$$

Implications:

- Competitive equilibrium does not necessarily coincide with constrained optimal allocation
- If $r>g$, steady state of our model with capital is dynamically efficient
- Negative natural rate only implies dynamic inefficiency if population growth rate is negative

Dynamic Efficiency

Is dynamic efficiency empirically plausible?

- Classic study in Abel, Mankiw, Summers and Zeckhauser (1989) says no
- Revisited in Geerolf (2013) and cannot reject condition for dynamic inefficiency in developed economies today

Absence of risk premia:

- No risk premia on capital in our model
- Negative short-term natural rate but positive net return on capital
- Abel et al. (2013) emphasize that low real interest rates not inconsistent with dynamic efficiency

LAND

Land with dividends:

$$
p_{t}^{l a n d}=D_{t}+\frac{p_{t+1}^{l a n d}}{1+r_{t}}
$$

- Land that pays a real dividend rules out a secular stagnation

Land without dividends:

- If $r>0$, price of land equals its fundamental value
- If $r<0$, price of land is indeterminate and land offers a negative return r

Absence of risk premia:

- No risk premia on land
- Negative short-term natural rate but positive net return on capital

Linearized Equilibrium Conditions

Linearized AS and AD curves:

$$
\begin{aligned}
i_{t} & =E_{t} \pi_{t+1}-s_{y}\left(y_{t}-g_{t}\right)+\left(1-s_{w}\right) E_{t}\left(y_{t+1}-g_{t+1}\right)+s_{w} d_{t}+s_{d} d_{t-1} \\
y_{t} & =\gamma_{w} y_{t-1}+\gamma_{w} \frac{\alpha}{1-\alpha} \pi_{t}
\end{aligned}
$$

Elements:

- Exogenous shocks: g_{t}, d_{t}
- Retains forward-looking intertemporal IS curve of New Keynesian model
- IS curve is "less" forward-looking" than New Keynesian version

