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This paper studies whether term structure models for US nominal bond yields should enforce
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estimating quadratic term structure models (QTSMs) and shadow rate models using the sequential

regression approach. Our findings suggest that the two models largely provide the same in-sample

fit, but loadings from ordinary and risk-adjusted Campbell-Shiller regressions are generally best
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1 Introduction

Nominal bond yields have reached historically low levels during the recent financial crisis, with short

rates at or close to the zero lower bound (ZLB) in several countries. This development has highlighted

a well-known shortcoming of Gaussian affi ne term structure models (ATSMs) as they are unable to

ensure positive bond yields. One way to account for the ZLB is to abandon the affi ne specification

of the policy rate and let this rate be quadratic in the pricing factors with appropriate restrictions.

Adopting this extension leads to the well-known class of quadratic term structure models (QTSMs)

studied in Ahn, Dittmar & Gallant (2002), Leippold & Wu (2002), Realdon (2006), among others.

Another way to enforce the ZLB is to restrict policy rates to be non-negative by the max-function

as done in the class of shadow rate models suggested by Black (1995). The two ways to account for

the ZLB imply different dynamics for bond yields but little is currently known about their relative

performance on US bond yields.1 That is, should dynamic term structure models (DTSMs) for US

bond yields enforce the ZLB by an appropriately specified quadratic policy rate or by relying on a

shadow rate?

The aim of this paper is to address this question by comparing the in- and out-of-sample per-

formance of QTSMs and shadow rate models. Our main focus is devoted to models with three la-

tent pricing factors for comparability with much of the existing literature, but models with two and

four factors are also studied when relevant. Following Dai & Singleton (2002), the performance of

DTSMs is commonly evaluated by their ability to match moments from ordinary and risk-adjusted

Campbell-Shiller regressions (the so-called LPY tests), as they capture key features of the physical

and risk-neutral distributions for bond yields. However, none of the ATSMs satisfying the LPY tests

in Dai & Singleton (2002) enforce the ZLB, and it is therefore unclear if DTSMs jointly can enforce

the ZLB and match key moments of the physical and risk-neutral distributions for bond yields. To

address this question special attention is devoted to the LPY tests when comparing the performance

of QTSMs and shadow rate models on US bond yields.

The non-linear DTSMs considered are estimated by the sequential regression (SR) approach of

Andreasen & Christensen (2014), where latent pricing factors are obtained by cross-section regres-

sions and model parameters are determined by a three-step moment-based estimation procedure. The

1Kim & Singleton (2012) explore a similar question on Japanese bond yields in models with two latent pricing factors.
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SR approach gives consistent and asymptotically normal estimates and these properties hold under

weaker restrictions than typically imposed in likelihood-based inference for DTSMs. For instance, the

SR approach allows measurement errors in bond yields to display heteroskedasticity and correlation in

both the cross-section and time series dimension. Building on the work of Andreasen & Christensen

(2014), we improve the finite sample properties of the SR approach by introducing a bias-adjustment

when estimating the physical dynamics of the pricing factors. Apart from these robust econometric

properties, the SR approach is also well-suited from a finance perspective, as the QTSMs and shadow

rate models considered only differ in their risk-neutral distributions which may be estimated indepen-

dently of their physical distributions in the SR approach. Hence, the ability of these models to match

in-sample bond yields reported below hold for any considered functional form of the market price of

risk.

The performance of DTSMs on US bond yields is typically studied using either a long sample

starting in the 1960s or a shorter sample from around 1990 and onwards. We find it informative

to include both samples because bond yields in the long sample attain very high values and display

frequent changes in conditional volatility, whereas bond yields in the short sample are lower and/or

have fairly stable conditional volatility. Hence, if one believes that the US in the future is likely to

experience very high bond yields and frequent changes in the conditional volatilities, the results from

our long sample is likely to be most informative on how to model the ZLB. On the other hand, if one

believes that such future bond yields are unlike, the results from our short sample are likely to be

more usefull for how to specify the ZLB in DTSMs.

We highlight the following results from our analysis on monthly US bond yields ending in December

2013. First, accounting for the ZLB by either a QTSM and shadow rate model gives largely the same

in-sample fit of US bond yields, with both models clearly outperforming the Gaussian ATSM. Second,

the three and four factor QTSMs generally struggle to match loadings from the Campbell-Shiller

regressions, whereas these moments are matched by the shadow rate models. The shadow rate models

are also more successful at matching the loadings from risk-adjusted Campbell-Shiller regressions

than the QTSMs, although the latter performs well in the full sample. Third, the fall in conditional

volatility of most bond yields when reaching the ZLB is nicely matched by the QTSM and the shadow

rate model, although both models struggle to reproduce the observed level of volatility before reaching

the ZLB. Fourth, in an out-of-sample forecasting study from January 2005 to December 2013, we find
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that the shadow rate model generally performs better than the QTSM, and that models accounting for

the ZLB do better than the Gaussian ATSM. The shadow rate model is also found to be more robust

and less subject to overfitting than the QTSM, as the forecasts in the shadow rate model generally

improves when moving from three to four pricing factors whereas the opposite holds for the QTSM.

Importantly, the QTSM and the shadow rate model ensure sensible forecasts as predicted bond yields

stay non-negative whereas they easily turn negative in the Gaussian ATSM.

Overall, our findings suggests that the best way to enforce the ZLB for US bond yields is to adopt

a shadow rate specification as oppose to considering a quadratic specification for the policy rate.

The rest of the paper is organized as follows. Section 2 presents the DTSMs considered, and we

describe how these models may be estimated by the SR approach in Section 3. In-sample results

are reported in Section 4 and the out-of-sample performance are presented in Section 5. Concluding

comments are provided in Section 6.

2 Dynamic term structure models

We start by describing the Gaussian ATSM in Section 2.1 which serves as our benchmark. The next

two subsections present the QTSM and the shadow rate model, respectively. The pricing factors are

here assumed to be Gaussian under both the risk-neutral and physical measure as in the benchmark

model. That is, we consider an affi ne specification for the market price of risk. We do not study the

multivariate version of the model by Cox, Ingersoll & Ross (1985) with independent pricing factors

or its extension with correlated factors as in the Am (m) models by Dai & Singleton (2000), although

such models also account for the ZLB. We omit these models from our analysis because thet are unable

to reproduce key moments of term premia in the US, whereas these moments are nicely matched by

the Gaussian ATSM as shown in Dai & Singleton (2002).2

2 In addition, Kim & Singleton (2012) find that the in-sample fit of the QTSM and the shadow rate model clearly
outperforms the Am (m) model on Japanese bond yields.
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2.1 The Gaussian ATSM

The discrete-time Gaussian ATSM is characterized by three equations. The first specifies the one-

period risk-free interest rate rt to be affi ne in nx pricing factors xt, i.e.

rt = α+ β′xt, (1)

where α is a scalar and β is an nx × 1 vector. This specification is typically motivated by referring to

a Taylor rule, where the policy rate is determined by a desire to stabilize the inflation and output gap

(see for instance Clarida, Gali & Gertler (2000)). The second equation describes the dynamics of the

pricing factors under the risk-neutral measure Q as a vector autoregressive (VAR) process, i.e.

xt+1 = Φµ+ (I−Φ) xt + ΣεQt+1, (2)

where εQt+1 ∼ NID (0, I). The mean level of the pricing factors is controlled by µ of dimension nx×1,

while the persistence and the conditional volatility of the factors are determined by the nx×nx matrices

Φ and Σ, respectively. In the absence of arbitrage, the price at time t of an k-period zero-coupon bond

is Pt,k = EQt [exp {−rt}Pt+1,k−1]. Given the assumptions in (1) and (2), bond prices are exponentially

affi ne in the factors, i.e.

Pt,k = exp
{
Ak + B′kxt

}
(3)

for k = 1, 2, ...,K, where the recursive formulae for Ak and Bk are easily derived.

The final equation specifies the functional form for the market price of risk f (xt) with dimension

nx × 1. The relationship between the physical measure P and the Q measure is given by εQt+1 =

εPt+1 + f (xt), and the factor dynamics under P are therefore

xt+1 = Φµ+ (I−Φ) xt + Σf (xt) + ΣεPt+1

with εPt+1 ∼ NID (0, I). To obtain an affi ne process for the pricing factors under P, we let f (xt) =

Σ−1 (f0 + f1xt), where f0 has dimension nx× 1 and f1 is an nx×nx matrix. This implies the following

P dynamics

xt+1 = Φµ+ f0+ (I−Φ + f1) xt + ΣεPt+1. (4)
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To obtain stationary bond yields with finite first and second unconditional moments, we require the

process for xt to be stationary, i.e. that all eigenvalues of I−Φ + f1 are inside the unit circle.

The pricing factors are considered to be latent (i.e. unobserved) and a set of normalization re-

strictions are therefore needed to identify the model. We require i) β = 1, ii) µ = 0, iii) Φ to be

diagonal, and iv) Σ to be triangular.3 This identification scheme constrains the Q dynamics for the

pricing factors whereas the P dynamics are unrestricted. The latter is convenient when the model is

estimated by the SR approach, as explained in Section 3.

2.2 The QTSM

The discrete-time QTSM differs from the Gaussian ATSM by letting the policy rate be quadratic in

the pricing factors, i.e.

rt = α+ β′xt + x′tΨxt, (5)

where Ψ is a symmetric nx × nx matrix. This specification may also be motivated from a Taylor

rule if it displays time-varying parameters as considered in Ang, Boivin, Dong & Loo-Kung (2011).

Following Kim & Singleton (2012), we adopt the decomposition Ψ = ADA′, where A is an nx × nx

lower triangular matrix with ones on the diagonal and D is an nx × nx diagonal matrix. Introducing

quadratic terms in the policy rate is useful because they allow the model to enforce the ZLB. The non-

negativity conditions for bond yields are i) α ≥ 1
4β
′Ψ−1β and ii) Ψ to be positive semi-definite (see

Realdon (2006)). This way of imposing the ZLB may be applied independently of the chosen dynamics

for the pricing factors, and a quadratic policy rule therefore serves as a mechanism to enforce the ZLB.

Given the policy rate in (5), it is convenient to adopt the same specification for the pricing factors

as in (2), because it gives a closed-form solution for zero-coupon bonds, i.e.

Pt,k = exp
{
Ãk + B̃′kxt + x′tC̃kxt

}
(6)

for k = 1, 2, ...,K, with the recursive formulae for Ãk, B̃k, and C̃k derived in Realdon (2006). Hence,

the quadratic terms in (5) imply that all bond yields yt,k ≡ − 1
k logPt,k are quadratic in the pricing

factors and bond yields therefore display heteroskedasticity.

3There exist other normalization schemes, for instance the one recently suggested by Joslin, Singleton & Zhu (2011).
We prefer the considered normalization scheme because it is closely related to the one adopted for the QTSM.
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For comparability with the Gaussian ATSM, we maintain the affi ne specification for the market

price of risk, meaning that the P dynamics for the pricing factors in the QTSM are given by (4). As

in the Gaussian ATSM, not all parameters are identified in the QTSM with latent pricing factors. We

therefore follow Ahn et al. (2002) and impose the restrictions: i)Ψ is symmetric with diagonal elements

equal to one, ii) µ ≥ 0, iii) β = 0, iv) Φ is diagonal, and v) Σ is triangular. This normalization scheme

implies an unrestricted P dynamics for the pricing factors and that the ZLB may be enforced by letting

α = 0.

2.3 The shadow rate model

The ZLB may alternatively be enforced in DTSMs by introducing a shadow interest rate s (xt) as

suggested by Black (1995).4 This shadow rate is unconstrained by the ZLB and may therefore attain

negative values. Absent any transaction and storing costs for money, Black (1995) observes that

the nominal interest rate cannot be negative because investors may always decide to hold cash. In

other words, the nominal interest rate has an option element. This argument leads to the following

specification

rt = max (0, s (xt)) , (7)

where the policy rate rt is the non-negative part of the shadow rate. As with the quadratic policy

rule, the concept of a shadow rate serves as a mechanism to enforce the ZLB and may be applied

independently of the functional form for s (xt) and the considered factor dynamics.

For comparability with the benchmark ATSM, we let the shadow rate be affi ne in the pricing

factors, i.e.

s (xt) = α+ β′xt, (8)

but other specifications may also be considered. For the same reason, we also restrict focus to affi ne

processes for the pricing factors under the Q and P measures as in the Gaussian ATSM, but other

specifications could be considered. That is, we impose (2) and (4) in the shadow rate model. Finally,

the identification conditions for the shadow rate model are identical to those for the Gaussian ATSM

in Section 2.1.

Shadow rate models do not attain closed-form expressions for bond prices, except for one-factor

4The idea of considering a shadow rate is also briefly mentioned in Rogers (1995).
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models with a Gaussian or a square-root process driving s (xt) as shown by Gorovoi & Linetsky

(2004). Given that one-factor models typically are considered too stylized, numerical approximations

are therefore needed when studying multi-factor shadow rate models. We apply the second-order

approximation advocated by Priebsch (2013), which delivers a fast and highly accurate approximation

to bond yields when s (xt) is Gaussian under the Q measure.5

3 The estimation procedure

One way to estimate non-linear DTSMs with latent pricing factors as implied by QTSMs and shadow

rate models is to approximate the unknown likelihood function by sequential Monte Carlo methods

(see Doucet, de Freitas & Gordon (2001) and Rossi (2004)). This procedure is very time consuming

for multi-factor DTSMs and therefore rarely attempted. A computational more feasible alternative is

to use a non-linear extension of the Kalman filter and a quasi-maximum likelihood (QML) approach,

but its asymptotic properties are generally unknown.6 We overcome these diffi culties by using the

sequential SR approach, which has known asymptotic properties and is even faster to implement than

the QML approach (see Andreasen & Christensen (2014)). We also emphasize that the asymptotic

properties of the SR approach hold under weaker restrictions than typically considered for likelihood-

based inference. This robust nature of the SR approach is particularly attractive in our context because

all considered DTSMs differ only in their Q dynamics which may be estimated independently of the P

dynamics in the SR approach. Hence, the models’abilities to match in-sample bond yields reported

below apply for any functional form of the market price of risk f (xt).

We next present the SR approach and describe how the latent pricing factors and model parameters

are estimated in the models considered.
5Other approximation methods used in the literature include i) lattices (Ichiue & Ueno (2007)), ii) finite-difference

methods (Kim & Singleton (2012)), iii) Monte Carlo integration (Bauer & Rudebusch (2014)), iv) an option pricing
approximation (Krippner (2012), Christensen & Rudebusch (2013)), and v) ignoring Jensen’s inequality term to solve a
Gaussian model by a truncated normal distribution (Ichiue & Ueno (2013)).

6Recent applications of the procedure in DTSMs enforcing the ZLB may be found in Ichiue & Ueno (2007), Kim &
Singleton (2012), Bauer & Rudebusch (2014), Christensen & Rudebusch (2013), and Ichiue & Ueno (2013). For certain
ATSMs without the ZLB restriction, the findings by Duan & Simonato (1999) and de Jong (2000) suggest that the bias
in a QML approach based on the extended Kalman filter may be small. We refer to Andreasen (2013) for a discussion
of the asymptotic properties related to a QML approach when estimating non-linear state space models.
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3.1 The SR approach

The SR approach may be applied to DTSMs where bond yields are potentially non-linear functions of

latent pricing factors and measured with errors vt,k, i.e.

yt,k = gk (xt;θ1) + vt,k, (9)

where the subscript k index the maturity of the bond yields. The functional relationship between the

pricing factors and bond yields is parameterized by θ1 ≡
[
θ′11 θ′12

]′
containing the risk-neutral

paramters. Elements in θ11 may only be determined from the measurement equations in (9), whereas

θ12 may be obtained from (9) and the factor dynamics under the P measure. For the Gaussian ATSM,

the g-function is linear in the pricing factors, i.e. gATSMk

(
xt;θ

ATSM
1

)
≡ − 1

k (Ak + B′kxt), and we

have θATSM11 ≡
[
α diag(Φ)′

]′
with θATSM12 ≡

[
vech (Σ)′

]′
. The QTSM induces a slightly more

complicated expression for bond yields because gQTSMk

(
xt;θ

QTSM
1

)
≡ − 1

k

(
Ãk + B̃′kxt + x′tC̃kxt

)
,

and for this model θQTSM11 ≡
[ (
θATSM1

)′
µ′ vech (Ψ)′

]′
with θQTSM12 = θATSM12 . In the shadow

rate model, gSHk
(
xt;θ

SH
1

)
is an unknown non-linear mapping from the pricing factors to bond yields

with θSH1 = θATSM1 . It is important to stress that the SR approach does not impose any distributional

assumptions on the measurement errors vt,k, which furthermore may display heteroskedasticity and

correlation in both the cross-section and the time series dimension.

The SR approach allows the pricing factors under the P measure to evolve according to a general

Markov process of the form

xt+1 = h
(
xt, ε

P
t+1;θ11,θ2

)
. (10)

The h-function may depend on θ11 and θ2 ≡
[
θ′22 θ′12

]′
, where θ22 must be determined from the

factor dynamics in (10). All the DTSMs considered have a linear and unrestricted transition function

which we represent by

xt+1 = h0 + hxxt + ΣεPt+1, (11)

where h0 ≡ Φµ+ f0, hx ≡ I−Φ + f1, and εPt+1 ∼ NID (0, I). Hence, given the parametrization of

the h-function in (11), we have θ22 ≡
[

h′0 vec (hx)′
]′
for all the models considered.

The subsequent sections describe how the latent pricing factors {xt}Tt=1 and the model parameters
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(θ1,θ2) are estimated in the SR approach using a three-step procedure.

3.1.1 The SR approach: Step 1

The latent pricing factors are estimated by running the cross-section regressions

x̂t (θ1) = arg min
xt∈Xt

Qt =
1

2ny,t

ny,t∑
k=1

(yt,k − gk (xt;θ1))2 (12)

for t = 1, 2, ..., T , where ny,t refers to the number of bond yields in time period t. The estimated factors

are denoted {x̂2,t (θ1)}Tt=1 because they are computed for a given θ1. These regressions have a closed-

form solution for the Gaussian ATSM with gATSMk being linear in the pricing factors. For the QTSM

and the shadow rate model, the regressions in (12) are non-linear and solved using the Levenberg-

Marquardt method with the pricing factors from the previous time period x̂2,t−1 (θ1) serving as ideal

starting values for t = 2, 3, ..., T .7

The model parameters θ1 are obtained by pooling all squared residuals from (12) and minimizing

their sum with respect to θ1, i.e.

θ̂
step1
1 = arg min

θ1∈Θ1

Qstep11:T =
1

2N

T∑
t=1

ny,t∑
k=1

(yt,k − gk (x̂t (θ1) ;θ1))2 , (13)

where N ≡
∑T

t=1 ny,t. Given standard regularity conditions, Andreasen & Christensen (2014) show

consistency and asymptotic normality of θ̂
step1
1 , i.e.

√
N
(
θ̂
step1
1 − θo1

)
d−→ N

(
0,
(
Aθ1
o

)−1
Bθ1
o

(
Aθ1
o

)−1
)
, (14)

where the superscript "o" denotes the true value. These asymptotic properties are derived by letting

the number of bond yields in each time period ny,t tend to infinity, implying N → ∞. The expected

value of the average Hessian matrix Aθ1
o may be estimated consistently by

Âθ1 =
1

N

T∑
t=1

ny,t∑
k=1

(
Ψ̂θ1
t,k

)(
Ψ̂θ1
t,k

)′
, (15)

7The main input for Levenberg-Marquardt optimizer is the jacobian ∂g (xt;θ1) /∂x′t which is available in closed form
for the QTSM. For the shadow rate model, the jacobian is obtained by numerical differentiation using a first-order
approximation as in Ichiue & Ueno (2013) but otherwise the second-order approximation by Priebsch (2013) is applied
in the optimizer. Using the second-order approximation to also compute the jacobian in the optimizer gives identical
results but is somewhat slower than the adopted our procedure.
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where

Ψθ1
t,k (θ1) ≡

∂x̂′2,t (θ1)

∂θ1

∂gk (x̂2,t (θ1) ;θ1)

∂x2,t (θ1)
+
∂gk (x̂2,t (θ1) ;θ1)

∂θ1
(16)

and Ψ̂θ1
t,k ≡ Ψθ1

t,k

(
θ̂
step1
1

)
. The average of the score function Bθ1

o is estimated using an extension

of the Newey-West estimator that is robust to heteroskedasticity, cross-section correlation, and au-

tocorrelation in vt,k. The most general specification considered in Andreasen & Christensen (2014)

is

B̂θ1 =
1

N

T∑
t=1

ny,t∑
k=1

wT∑
kT=−wT

wD∑
kD=−wD

(
1− |kT |

1 + wT

)(
1− |kD|

1 + wD

)
(17)

×
(
Ψ̂θ1
t,k

)(
Ψ̂θ1
t+kT ,j+kD

)′ ̂̃vt,k̂̃vt+kT ,k+kD .

Here, wD is the bandwidth for bond yields in the cross-section dimension when ordered by duration

(i.e. maturity) and wT is the corresponding bandwidth for the time series dimension.

3.1.2 The SR approach: Step 2

We estimate θ2 in (11) using {x̂t}Tt=1 and moment conditions accounting for the uncertainty {ut}
T
t=1

in the estimated pricing factors, i.e. x̂t = xot + ut where xot denotes the true factor value. As in

Andreasen & Christensen (2014), we modify the standard moment conditions for VAR models to

account for uncertainty in {x̂t}Tt=1 and consider

qT (θ2) ≡ 1

T − 1

T−1∑
t=1

qt (θ2) = 0, (18)

where

qt (θ2) ≡



ŵt+1

vec (ŵt+1x̂
′
t − Cov (ut+1,ut) + hxV ar (ut))

vech

 ŵt+1ŵ
′
t+1 − V ar (ŵt+1)− V ar (ut)− hxV ar (ut) h′x

+Cov (ut+1,ut) h′x + hxCov (ut,ut+1)




and

ŵt+1 ≡ Σε̂Pt+1 ≡ x̂t+1 − h0 − hxx̂t.
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Note that ε̂Pt+1 refers to the residuals using the true values of h0 and hx but the estimated pricing factors

x̂t. Consistent estimators of V ar (ut), Cov (ut+1,ut), and Cov (ut,ut+1) are provided in Andreasen

& Christensen (2014) using output from the first estimation step, and θ2 can therefore be estimated

consistently by generalized methods of moments when the number of time periods T tends to infinity.

All models considered in the present paper have unrestricted P dynamics, and the moment conditions

in (18) may then be solved in closed form. The solution is obtained by correcting all second moments

for estimation uncertainty in {x̂t}Tt=1 and running the regression

[
ĥstep2x ĥstep20

]
=

(
T−1∑
t=1

[
x̂t+1x̂

′
t − Ĉov (ut+1,ut) x̂t+1

])
(19)

×

T−1∑
t=1

 x̂tx̂
′
t − V̂ ar (ut) x̂t

x̂′t 1



−1

and

V̂ ar (ŵt+1)step2 =
1

T − 1− nx − 1

T−1∑
t=1

( ̂̂wt+1

( ̂̂wt+1

)′
(20)

− 1

T − 1

T−1∑
t=1

(
V̂ ar (ut) + ĥxV̂ ar (ut) ĥ′x

)
+

1

T − 1

T−1∑
t=1

(
Ĉov (ut+1,ut) ĥ′x + ĥxĈov (ut,ut+1)

)
,

with Σ̂step2 obtained from a Cholesky decomposition of V̂ ar (ŵt+1)step2. When T tends to infinity,

Andreasen & Christensen (2014) show that the asymptotic distribution of θ2 is

√
T
(
θstep22 − θo2

)
d−→ N

(
0,

(
Rθ2
o S−1

o

(
Rθ2
o

)′)−1
)

(21)

when using the optimal weighting matrix. Here, Rθ2
o ≡

∂qT (θo2)′

∂θ2
and So≡

∞∑
ν=−∞

E
[
qt (θo2) qt−ν (θo2)′

]
.

We estimate Rθ2
o using numerical differentiation and So by the Newey-West estimator.

For persistent processes it is well-known that the standard moment conditions for estimating VAR

models, extended in (18) to account for generated regressors, induce a negative bias for ĥx in finite

samples (see for instance Sherman and Stine (1988), UPDATE REF). Bauer, Rudebusch & Wu (2012)

show that this bias may be substantial for Gaussian ATSMs and have sizeable effects on the estimated
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term premium. A popular method to reduce this bias is to apply a bootstrap procedure. The bias is

then estimated by h̄x−ĥx, where h̄x denotes the average of ĥx in the bootstrap, and the bias-adjusted

estimate is then given by ĥadjx = ĥx −
(
h̄x − ĥx

)
. Appendix A outlines how the bootstrap procedure

for VAR models can be extended to account for generated regressors as implied by the SR approach.

Given the persistent nature of the pricing factors in DTSMs, the bias-adjusted estimate ĥadjx is

nearly always pushed into the non-stationary region. To induce stationarity, Kilian (1998) therefore

suggests to down-scale the bias-adjustment until all eigenvalues of ĥadjx are inside the unit circle. That

is, consider δi+1 = δi − 0.01 with δ1 = 1 and iterate on

ĥadj,Bx (δ) = ĥx − δ ×
(
h̄x − ĥx

)
(22)

until all eigenvalues of ĥadj,Bx (δi) are inside the unit circle. This is a simple method to induce sta-

tionarity and also the one adopted in Bauer et al. (2012). It should be noted, however, that the

size of the recursive reduction in δi is not derived from any optimality conditions or a data-driven

selection criteria. Moreover, the largest eigenvalue of ĥadj,Bx (δi) may be made arbitrarily close to one

by changing the grid for δi appropriately.

Although Killian’s method to induce stationarity may have minor effects on conditional moments

in VAR models, as used for impulse response functions in Kilian (1998) and term premia in Bauer et al.

(2012), it has substantial effects on any unconditional moments. To realize this, suppose we select

the grid for δi such that the length of the largest eigenvalue of ĥadj,Bx (δi) is arbitrarily close to one.

Given this alternative grid, the process for xt approaches a non-stationarity VAR model with infinite

unconditional second moments. In other words, Killian’s method implies that unconditional moments

in the VAR model depend on an arbitrary grid for δi and are in this way not uniquely determined.

As a supplement to Killian’s method, we therefore suggest a data-driven method to determine δ.

Our method is based on the observation that the standard estimator of the unconditional variance

in xi,t, i.e. σ2
i,Data = 1/ (T − 1)

∑T
t=1 (xi,t − x̄i)2 with x̄i = 1/T

∑T
t=1 xi,t, is unbiased when xt is

Gaussian. We therefore suggest to determine δ in (22) by minimizing the distance between σ2
i,Data and

the variance of xi,t in the VAR model across all variables, i.e. for i = 1, 2, ..., nx. The latter estimate

13



is computed for a given value of δ and is therefore denoted σ2
i,V AR (δ). More formally, we let

δ̂ = arg min
δ∈[δlower,1]

∑nx
i=1

(
σ2
i,V AR (δ)− σ̂2

i,Data

σ̂2
i,Data

)2

. (23)

Monte Carlo evidence in Table 1 suggest that down-scaling the bias and the initial estimate of hx

gives slightly lower bias than only down-scaling the estimated bias when δ is determined using (23).

The better performance is related to δ̂, which in the former procedure tends to be larger than the

scaling parameter related to ĥadj,Bx (δ), implying that more of the bias-adjustment is preserved in the

former procedure. For instance, when using the Gaussian ATSM from the full sample and T = 250

in our Monte Carlo study, the average of δ̂ across all draws is 0.9921 when down-scaling the bias and

ĥx, whereas the average of δ̂ falls to 0.6950 when only the bias is down-scaled. Hence, we prefer the

adjustment

ĥadj,∗x (δ) = δ ×
(
ĥx −

(
h̄x − ĥx

))
, (24)

and determine δ using (23). As expected, the Monte Carlo study in Table 1 also shows that the data-

driven methods to determine δ give smaller bias in the unconditional standard deviations of the pricing

factors compared to Killian’s method. Another advantage of considering (24) is that it always ensures

stationarity of VAR models, contrary to the specification in (22). Our method to induce stationarity is

summarized in Appendix B, which also describes how to account for measurement errors in xt. Unless

stated otherwise, we use the bias-adjustment in (24) throughout the paper.

< Table 1 about here >

3.1.3 The SR approach: Step 3

The elements in Σ appear in θ1 and θ2 and are therefore estimated in both the first and second

estimation step. These estimates may be combined in an optimal way to reduce any potential effi ciency

loss from the use of sequential identification as shown by Andreasen & Christensen (2014). We

generally find that Σ̂step1 is estimated very inaccurately compared to Σ̂step2, meaning that the time

series estimate Σ̂step2 cannot be improved by adding cross-section information from Σ̂step1.8 Hence,

the adopted estimate of Σ after the first two steps is given by Σ̂step2.
8Adopting the notation in Andreasen & Christensen (2014), we generally find Λ ≈ 0.
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Based on the more accurate estimate of Σ from the second step, it is natural to re-estimate θ11

when conditioned on Σ̂step2. That is

θ̂
step3
11 = arg min

θ11∈Θ11

Qstep31:T =
1

2N

T∑
t=1

ny,t∑
k=1

(
yt,k − gk

(
x̂t

(
θ11, Σ̂

step2
)

;θ11, Σ̂
step2

))2
. (25)

Andreasen & Christensen (2014) show consistency and asymptotic normality of θ̂
step3
11 with

V̂ ar
(
θ̂
step3
11

)
=

V̂step3
θ11

(
Σ̂step2

)
N

+ K̂V̂ ar
(
Σ̂step2

)
K̂′. (26)

The first term V̂step3
θ11

(
Σ̂step2

)
/N is given by (14) when used on the subset of θ1 corresponding to θ11.

The second term in (26) corrects for estimation uncertainty in Σ̂step2 withK ≡∂θ̂step311 (Σ) /∂vech (Σ)′.

We estimate K as suggested in Andreasen & Christensen (2014) and refer to their paper for further

details.

Given the estimated pricing factors
{

x̂t

(
θstep311 , Σ̂step2

)}T
t=1

from (25), we finally update our esti-

mates of θ2 using (19) and (20). These estimates are denoted ĥstep30 , ĥstep3x , and Σ̂step3 and we refer

to them as θstep32 .

4 Empirical results: In-sample performance

This section estimates the Gaussian ATSM, the QTSM, and the shadow rate model on US data. Our

analysis is structured as follows. Section 4.1 presents the data, and our estimates for models with

three pricing factors are discussed in Section 4.2. The two subsequent sections explore how well the

models match various moments not included in the estimation.

4.1 Data

We use end-of-month nominal bond yields in the US from July 1961 to December 2013 as provided

by Gürkaynak, Sack & Wright (2007). The SR approach is constructed for a setting where many

observables are available each time period, and we therefore include more bond yields than typically

used in the literature when taking DTSMs to the data. Simulation results for the SR approach by
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Andreasen & Christensen (2014) suggest that about 15 bond yields are suffi cient and that any effi ciency

loss of the SR approach compared to Maximum Likelihood may be small with 25 bond yields. Given

our interest in the 10-year term structure, we include bond yields in the 0.5-3.0 year maturity range

at maturities three months apart, whereas bond yields in the remaining segment of the term structure

are included at maturities six months apart.9 In total, we thus have 25 points on the yield curve in

each time period. Due to a lack of long-term Treasury notes before September 1971, bonds yields in

the 7-10 year maturity range are not available before this date. We address this problem by explicitly

accounting for missing values in the SR approach.

As mentioned above, we test the performance of the DTSMs considered on a long and a short

sample for US bond yields. The full sample is from July 1961 to December 2013 (T = 631), whereas

the short sample starts in January 1990 and ends in December 2013 (T = 288).

4.2 Model estimates

A preliminary estimation of the three-factor models suggests that they are badly identified in the SR

approach given the standard normalization restrictions listed above. To realize this for the Gaussian

ATSM, recall that bond yields are given by yt,k = − 1
k (Ak + B′kxt) for k = 1, 2, ...,K. The well-known

solution to the Gaussian ATSM with our normalization is

Ak = −α+Ak−1 +
1

2
B′k−1ΣΣ′Bk−1 ≈ −α+Ak−1, (27)

because ΣΣ′ is very small, and

B′k = −1′ + B′k−1 (I−Φ) . (28)

Hence, to estimate the latent factors xt by the regression filter it follows from (28) that all eigenvalues

of Φ must be distinct. Moreover, given that Σ is badly identified from the cross-section dimension of

bond yields due to (27), the ordering of the factors is therefore also badly identified.10 That is, we

obtain nearly identical values for the objective functions in first and third step of the SR approach by

changing the order of the eigenvalues in Φ. To eliminate this identification issue we therefore require

9These bond yields are computed using the estimated parametric form for the yield curve in Gürkaynak et al. (2007).
Ongoing work explores the robustness of our results when using non-parametric estimation methods to extract the yield
curves from coupon bonds.
10A similar finding is reported in Ait-Sahalia & Kimmel (2010) using likelihood inference.
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that all eigenvalues of Φ are strictly increasing.11 A similar lack of identification is observed for the

QTSM and the shadow rate model, and we therefore also require that the eigenvalues of Φ are strictly

increasing in these models.

The estimation results for the three-factor models in the full sample are reported in Table 2. The

Gaussian ATSM displays the usual properties with stationary and highly persistent factors under both

the Q and P measure as all diagonal elements of Φ are positive and the largest eigenvalue of hx is

0.9914. Similar properties hold for the pricing factors in the QTSM, where Ψ enforces the ZLB by

having strictly positive eigenvalues of 0.0008, 0.0099, and 2.9893, although the smallest eigenvalue if

very close to zero.12 The estimates in the shadow rate model are very similar to those in the Gaussian

ATSM, but we also observe some differences, particularly for hx. To quantify these differences, the

Gaussian ATSM implies that the unconditional correlation between the first and second pricing factors

is 0.21 and −0.88 between the second and third pricing factors. The corresponding correlations in the

shadow rate model are 0.36 and −0.96, respectively, and hence somewhat larger in absolute terms.

< Table 2 about here >

Table 3 reveals that the pricing factors for all models in the short sample are slightly less persistent

than in the full sample when measured by the largest eigenvalue of hx. In the QTSM, the estimates of

Ψ imply eigenvalues of 0.0017, 0.0202, and 2.9780, meaning that the short rate is primarily controlled

by one pricing factor as in the long sample, given our normalization with β = 0. We also see that the

estimates of hx and Σ for the Gaussian ATSM differ substantially from the corresponding estimates

in the shadow rate model, contrary to the findings in Bauer & Rudebusch (2014). Hence, our results

suggests that one should be cautious of directly using parameters from the Gaussian ATSM in the

shadow rate model to explore the implications of the ZLB.

< Table 3 about here >

11This empirical observation is related to Hamilton & Wu (2012), showing that eigenvalues under the Q measure must
be decreasing in Gaussian ATSMs with observed factors to ensure identification.
12This implies that the estimates of the Q parameters are close to the boundary of their domain, implying that the

conventional asymptotic distribution cannot be applied for inference. Ongoing work aims to compute these standard
errors using a bootstrap procedure.
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4.3 Goodness of in-sample fit

This section studies the in-sample fit of the three models. We start by focusing on the objective

functions from the first step which for convenience is reported as Q̃step11:T ≡ 100
√

2×Qstep11:T . This

implies that the scaled objective functions denote the standard deviation in basis points of all residuals

in the sample. The top part of Table 4 to the left shows that Q̃step11:T = 2.90 for the Gaussian ATSM,

meaning that average pricing errors for this model is 2.90 basis points. Accounting for the ZLB by the

shadow rate model delivers a sizable improvement in the fit with Q̃step11:T = 2.74. A further improvement

is seen for the QTSM which marginally provides the best fit in the full sample with Q̃step11:T = 2.70. This

is in line with our prior expectations, given that the three-factor QTSM has five additional parameters

compared to the Gaussian ATSM and the shadow rate model.

For the short sample starting in 1990, Table 4 also shows that all three-factor models provide a

better fit to bond yields. In this shorter sample, the shadow rate model with Q̃step11:T = 1.69 clearly

outperforms the Gaussian ATSM where Q̃step11:T = 1.81, and the best in-sample fit is once again obtained

by the QTSM having Q̃step11:T = 1.61.

The right part of Table 4 reports the scaled objective functions from the third step in the SR

approach, i.e. Q̃step31:T ≡ 100
√

2×Qstep31:T , where Σ is estimated from the time-series dimension instead

of the cross-section dimension as in the first step. For all models and in both samples, Q̃step31:T is only

marginally larger than Q̃step11:T , meaning that the in-sample fit of bond yields is almost unaffected by

the alternative estimator of Σ. It is therefore reasonable to believe that the dependence on the P

dynamics through Σ is minimal in our case and that results in the third step of the SR approach

largely remain robust to the chosen functional form of f (xt). Unreported results show that the in-

sample fit is also robust to omitting the bias-adjustment of θ2, partly because Σ is badly identified

from the cross-section dimension of bond yields, and partly because the bias-adjustment in Σ̂step2

typically is small.

< Table 4 about here >

A more careful inspection of the in-sample fit for the full sample is provided in Figure 1, where the

first chart shows recursively computed objective functions for all three-factor models, i.e.
{
Q̃step31:t

}T
t=1
.

We find that the fit of all models deteriorates during the 1970s and improves afterwards, and that the

relative performance of the models is fairly stable throughout the sample. To study the performance
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of these models in greater detail when bond yields are close to the ZLB, the second chart in Figure 1

displays the recursively computed objective functions from January 2005 and onwards.13 The Gaussian

ATSM delivers the best fit going into the financial crisis in 2008, but its performance deteriorates

steadily compared to the shadow rate model and the QTSM after November 2008, where the policy

rate approaches the ZLB. The corresponding plot in Figure 2 shows the same pattern for the Gaussian

ATSM when the sample starts in 1990. This finding indicates that the three-factor Gaussian ATSM

struggles to match bond yields close to the ZLB.

Another way to explore the in-sample fit of bond yields is provided in the third chart of Figure

1 and 2, showing the standard deviation of the residuals by maturity, i.e. σk = 100
√

1
T

∑T
t=1 v

2
t,k for

k = 1, 2, ...,K. For both samples, all three-factor models deliver relative low standard errors between

2 and 3 basis points, but when compared to intermediate bond yields we also observe minor spikes in

the pricing errors at the short and long end of the term structure with σ0.25y = 7 and σ10y = 4 basis

points in the long sample and σ0.25y = 4 and σ10y = 3 basis points in the short sample

< Figures 1 and 2 about here >

An obvious way to improve the in-sample fit of these models is to add a fourth pricing factors.14

The bottom part of Table 4 shows that including a fourth pricing factors roughly reduces the objective

function and hence the in-sample fit by more than 50% for all models across both samples. Importantly,

the shadow rate model now marginally outperforms the QTSM in the two samples and hence provides

the best in-sample fit. We consider this a somewhat surprising finding, given that the QTSM with four

pricing factors has nine additional parameters compared to the four-factor shadow rate model. The

last charts in the second row of Figure 1 and 2 show that the better in-sample performance mainly

is due to a closer fit of short and long-term bond yields, where the standard deviation of the pricing

errors now are within 2 basis points. In other words, a fourth pricing factors helps to match short-term

and long-term bond yields in all models.

Based on these findings we conclude that accounting for the ZLB by either QTSMs and shadow

rate models clearly gives a better in-sample fit of US bond yields when compared to the Gaussian

13The Federal Open Market Committee has since December 2008 set a target range of 0 to 0.25% for the effective
Federal Funds Rate.
14The estimated model parameters for these four factor models are available on request.

19



ATSM. With three pricing factors, the QTSM marginally provides the best in-sample fit, whereas

the shadow rate model marginally outperforms the QTSM with four pricing factors. We therefore

conclude that the two mechanisms to enforce the ZLB largely provide the same in-sample fit of US

bond yields. However, the shadow rate specification is more parsimonious than the quadratic policy

function and could therefore be preferred for this reason.

4.4 Matching key moments for bond yields

This section tests the models on their ability to match moments not directly included in the estimation.

The first set of moments we consider are the unconditional means and standard deviations of bond

yields. Following Campbell & Shiller (1991), we run the regressions

yt+1,k−1 − yt,k = δk +
φk
k − 1

(yt,k − rt) + ut,k (29)

for k = 2, ..,K where ut,k ∼ IID (0, V ar (ut,k)).15 We then explore if the DTSMs can reproduce

the empirical pattern in {φk}Kk=2 and hence capture key moments of the P dynamics for bond yields,

also known as the LPY(i) test. Following Dai & Singleton (2002), a risk-adjusted version of the

Campbell-Shiller regressions in (29) is given by

yt+1,k−1 − yt,k − (ct+1,k−1 − ct,k−1) +
1

k − 1
θt,k−1 = δQk +

φQk
k − 1

(yt,k − rt) + uQt,k (30)

where uQt,k ∼ IID
(

0, V ar
(
uQt,k

))
, ct,k ≡ yt,k − 1

k

∑k−1
i=0 Et [rt+i] is the spot term premium, and

θt,k ≡ ft,k − Et [rt+k] is the forward term premium with ft,k ≡ − log (Pt,k+1/Pt,k).16 If term premia

are correctly specified by the DTSMs, then φQk = 1 for k = 2, 3, ...,K. The ability of DTSMs to

match these moments is the LPY(ii) test and studies if the models can capture key moments of the Q

dynamics for bond yields.

The ability of the three-factor models to match these four sets of unconditional moments in the

15 In practice we run the regressions yt+m,k−m− yt,k = δk +φk
m

k−m (yt,k − yt,m)+ut,k with m = 6, i.e. the regressions
are done for bi-annually excess returns. We run these regressions on empirical bond yields and on simulated data from
each of the models to obtain the model-implied regression loadings.
16As for (29), in practice we run the regressions yt+m,k−m − yt,k − (ct+m,k−m − ct,k−m) + m

k−mθt,k−m = δQk +

φQk
m

k−m (yt,k − yt,m)+u
Q
t,k with m = 6, i.e. the regressions are done for bi-annually risk-adjusted excess returns. We run

these regressions using empirical bond yields and model-implied estimates of term premia obtained at {x̂t}Tt=1.
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full sample is examined in Figure 3. To explore the impact of the bias-adjustment in θ2, charts to the

left report the model-implied moments using the unadjusted estimates of θ2, whereas the adjustment

is imposed in charts to the right. The first row in Figure 3 shows that all models underestimate the

average level of the yield curve when θ2 is not bias-adjusted, whereas these moments are matched

when correcting for the bias in θ2. The unconditional standard deviations of bond yields are also

matched by the Gaussian ATSM and the shadow rate model, but not by the QTSM. We further

observe that only the Gaussian ATSM and the shadow rate model reproduce the downward sloping

pattern in {φk}Kk=2, whereas the estimated QTSM cannot match this aspect of bond yields and hence

pass the LPY(i) test. The QTSM is more successful at satisfying the LPY(ii) test with φQk close to one

along all maturities, whereas the two other models imply slightly larger deviations of φQk from one.

< Figure 3 about here >

Figure 4 explores how well the three models match the same set of moments for the short sample

starting in 1990. Due to the bias-adjustment in θ2, all models match the average level of the yield and

we also see that they pass the LPY(i) test. The unconditional standard deviations of bond yields are

slightly underestimated in the Gaussian ATSM and the shadow rate model, whereas these moments

are matched by the QTSM. The last row in Figure 4 suggests that the Gaussian ATSM and the

shadow rate model are able to pass the LPY(ii) with φQk close to one, whereas the QTSM shows clear

deviations from one.

< Figure 4 about here >

We next examine if models with four pricing factors are more successful at matching the moments

considered. To conserve space, focus is here devoted to moments from models estimated with the bias-

adjustment in θ2. For the full sample in Figure 5, we see marginal improvements for the Gaussian

ATSM and the shadow rate model in matching LPY(i) and LPY(ii), whereas the performance of the

QTSM is largely unaffected. Figure 6 shows that the fourth pricing factor has also minor effects in

the short sample, as this additional factor only helps the Gaussian ATSM and the shadow rate model

to match the unconditional standard deviations of bond yields.

< Figure 5 and 6 about here >
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These findings lead us to the following conclusions. First, the three and four factor QTSMs

generally struggle to match loadings from the Campbell-Shiller regressions, whereas these moments

are matched by the shadow rate models. Second, the shadow rate models are generally also more

successful at passing the LPY(ii) test than the QTSMs, although the latter performs well in the

full sample. From a methodological perspective, we document that bias-adjusting θ2 has a significant

impact on unconditional moments of bond yields, and our results therefore supplements those of Bauer

et al. (2012), focusing on conditional moments and term premia.

4.5 Matching conditional volatilities in bond yields

The QTSM allows for heteroskedasticity in bond yields through the quadratic terms in the policy rate,

and the model may therefore generate time-variation in the conditional volatility of bond yields when

these yields are close to the ZLB and when this bound is not binding. The shadow rate model also

introduces heteroskedasticity in bond yields, but only when the policy rate is close to zero and its

variation is compressed by the ZLB. Hence, the two mechanisms to enforce the ZLB imply different

implications for the conditional volatility of bond yields, and this section therefore studies how well

the QTSM and the shadow rate model with three pricing factors match this feature of the data.17

We use two measures of conditional volatility in the data. The first is the rolling standard deviation

of bond yields (denoted σRollingt,k ) computed from daily observations with a six month lookback.18 As

a supplement to these non-parametric estimates we also provide the conditional volatility from a

GARCH(1,1) model when applied to changes in monthly bond yields (denoted σGARCHt,k ). Figure 7

shows these estimates for four selected maturities and the model-implied volatilities in the full sample.

Overall, the two measures of volatitily in the data are fairly similar, although σRollingt,k is more noisy

than σGARCHt,k . The QTSM captures most of the gradual increase in volatility during the 1960s and

1970s but does not match the elevated levels in the early 1980s. The gradual fall in volatility from the

end of 2008 when the policy rate approaches the ZLB is also largely matched by the QTSM. However,

the model is unable to reproduce the increase in volatility for the 0.5-, 2-, and 5-year bond yield just

before approaching the ZLB, as emphasized by the second part of Figure 7 focusing on volatility after

17The model-implied estimates of conditional volatility in bond yields in the corresponding four-factor models are
nearly identical to those from the three factor models and therefore not reported.
18These daily bond yields are also computed using the estimated parametric form for the yield curve in Gürkaynak

et al. (2007).
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2005. The shadow rate model predicts constant volatility when the policy rate is far from the ZLB,

and the model is therefore unable to capture the overall changes in volatility before 2008. Volatility

becomes time-varying when the policy rate approaches the ZLB and the shadow rate model is here

able to reproduce the lower volatility level.

< Figure 7 about here >

For the short sample starting in 1990, the QTSM is generally less succesful in matching volatility

according to Figure 8. To see why, observe that volatility in the QTSM is closely related the level

factor and hence the short rate. As shown in Figure 7, this relationship is able to explain much of

the variation in volatility from the 1960s to the 1980s but less succesfull after 1990. For the shadow

rate model, the constant volatility before 2008 performs well given the stable volatility regime, and

the model matches the fall in volatility after 2008 when policy rates are constrained by the ZLB.

< Figure 8 about here >

To summarize the relative performance of two models, we regress volatility in the data on a constant

and the model-implied volatility. Table 5 confirms our impression from above that the QTSM provides

the best fit in the full sample but not in the short sample where the shadow rate model dominates. The

low R2 in these regressions also suggests that both models generally struggle to capture the volatility

of bond yields. This may indicate that a more flexible functional form for the policy rate is required

in models with Gaussian pricing factors or that the dynamics of the pricing factors should display

heteroskedasticity, for instance induced by stochastic volatility.

< Table 5 about here >

5 Empirical results: performance out-of-sample

This section studies the ability of the models considered to predict future bond yields from January

2005 to December 2013. This forecasting sample is particularly challenging as it contains bond yields

i) far from zero, ii) when hitting the ZLB, and iii) a prolonged period at the lower bound. We focus

on models with three and four pricing factors as above, but two-factor models are also considered
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because parsimonious models often perform well out of sample. The forecasting study is carried out

by recursively re-estimating all nine models every month to forecasts bond yields up to 12 months

ahead. We do so when starting the sample in 1961 and in 1990.19

Figure 9 reports the root mean squared prediction errors (RMSPE) by maturity when the estima-

tion is started in 1961. Columns in Figure 9 refer to the number of pricing factors and rows refer to

the forecast horizon of 1, 3, 6, and 12 months, respectively. Starting with the two-factor models, the

QTSM clearly outperforms the Gaussian ATSM at the 1 and 3 month forecast horizons for all matu-

rities, whereas the two models display roughly similar performance when forecasting 6 and 12 months

ahead. The two-factor shadow rate model delivers even better forecasts for short- and medium-term

bond yields at the 3, 6, and 12 month horizons, but the model struggles when predicting long-term

bond yields. Turning to three-factor models, the QTSM and the shadow rate model have very similar

forecasting abilities and dominate the Gaussian ATSM for nearly all maturities and forecast horizons.

Importantly, the forecasts of the shadow rate model generally improves when including a fourth pricing

factor whereas the opposite applies for the QTSM. This suggests that the parsimonous mechanism in

shadow rate models to enforce the ZLB is more robust and less likely to overfitting the data than the

quadratic specification. A careful inspection of Figure 9 reveals that the three-factor QTSM and the

three- and four-factor shadow rate models outperform the random walk for short-term bond yields at

all forecast horizons. For medium and long-term bond yields, the models are unable to out-forecast

the random walk which is a commen finding in the literature. Note also that the forecasting ability of

all models generally decline with the forecast horizon, which is qualitatively in line with the findings

of Pooter, Ravazzolo & van Dijk (2010).

< Figure 9 about here >

The forecasting results when the estimation is started in 1990 are provided in Figure 10. The overall

results are very similar to those obtained in Figure 9 and we therefore only highligh the following.

First, the two-factor shadow rate model generally benefits from the shorter estimation window as its

RMSPEs are lower than the two other models or very close to the best performing model. Second,

the QTSM and the shadow rate model with three pricing factors display roughly similar performance.

19Given that the last 12 months of data are reserved for evaluating the final forecasts, each of the nine models
is estimated 96 times on both data sets. Such an extensive forecasting study is very demanding to carry out with
conventional estimation methods, but easily done in our case due to the computational effi ciency of the SR approach.
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Third, forecasts generally improve in the shadow rate model when additing a fourth factor whereas

the opposite holds for the QTSM. Finally, regardless of the considered number of pricing factors,

the QTSM and the shadow rate model outperform the Gaussian ATSM at nearly all maturites and

forecasts horizons.

< Figure 10 about here >

In addition to providing more accurate forecasts than the Gaussian ATSM, the QTSM and the

shadow rate model also ensure sensible forecasts as predicted bond yields stay non-negative. The same

cannot be garanteed in the Gaussian ATSM as we illustrate in Figure 11 by showing forecasts for the

0.5-year bond yield on two occations. The first is the end of December 2008 where the policy rate

reached the ZLB. Predicted bond yields in the three-factor Gaussian ATSM barely stay positive at

the considered forecast horizons but not in the four-factor version, where the 0.5-year bond yield is

predicted to turn negative after 5 months, i.e. after the end of May 2009. The second row of Figure

11 for the end of May 2010 shows that negative forecasts in the Gaussian ATSM may happen with

two, three, and four pricing factors and even when the policy rate has been at the ZLB for several

years. The shortcoming of the Gaussian ATSM is even more severe when considering density forecasts,

as a substantial part of its predictive distribution is in the negative domain according to Figure 12.

Note also that probabilities above 50% in this figure denote negative level forecasts, which happens

frequently when the estimation is started in 1961 but less often when starting in 1990.

< Figure 11 about here >

< Figure 12 about here >

We summarize the forecasting performance of the three models in Table 6 by reporting the average

RMSPEs for all bond yields (i.e. the entire yield curve) at various horizons. To facilitate the reading

of this table we adopt two color coding schemes. The first uses bold to indicate the model with the

lowest RMSPEs when conditioning on the number of pricing factors and the starting point for the

estimation. The shadow rate model has 16 bold figures, the QTSM has 8, and the Gaussian ATSM

has none. Based on this finding and the results in Figure 9 and 10 we conclude that the shadow rate

model generally performs best out of sample, and that both models accounting for the ZLB do better

than the Gaussian ATSM.
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Our second color coding scheme in Table 6 applies blue to the model with the lowest RMSPEs when

comparing its forecasts across the starting point for the estimation, i.e. when comparing individual

elements in part A and B of Table 6. We surprisingly find that starting the estimation in 1961 leads to

the most accurate forecasts, as part A of Table 6 has 25 blue figures whereas part B only has 11. That

is, the best forecasts are generally obtained by using a long sample for the estimation, particularly for

the shadow rate model. Any finite sample bias in the estimated P parameters is unlikely to explain

this finding as we bias-adjust θ̂2 regardless of the starting point for the estimation. Instead, the

better forecasting performance from using a long sample is likely to be driven by two features. First,

the pricing factors and hence bond yields are more persistent in the long sample compared to the

shorter sample (see Section 4.2) and this is likely to improve forecasts, given the strong forecasting

performance of the random walk on bond yields. Second, bond yields in the 1960s were fairly low

compared to their average level, meaning that the long sample includes bond yields closer to the levels

seen after 2008 than a sample starting in 1990.

< Table 6 about here >

6 Conclusion

This paper studies the performance of QTSMs and shadow rate models on post-war US bond yields.

Accounting for the ZLB by either a QTSM and shadow rate model gives largely the same in-sample fit

of US bond yields, with both models clearly outperforming the Gaussian ATSM. The three and four

factor QTSMs generally struggle to match loadings from the Campbell-Shiller regressions, whereas

these moments are matched by the shadow rate models. In an out-of-sample forecasting study from

January 2005 to December 2013, we find that the shadow rate model generally performs better than

the QTSM, and that models accounting for the ZLB do better than the Gaussian ATSM. The shadow

rate model is also found to be more robust and less subject to overfitting than the QTSM, as the

forecasts in the shadow rate model generally improves when moving from three to four pricing factors

whereas the opposite holds for the QTSM. Importantly, the QTSM and the shadow rate model ensure

sensible forecasts as predicted bond yields stay non-negative whereas they easily turn negative in the

Gaussian ATSM.
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A Bias-adjusting the second step in the SR approach: A bootstrap
procedure

The standard bootstrap proceedure for a VAR model without measurement errors in the pricing
factors generates the sampling distribution for moments involving x̂t and ̂̂wt+1 in (19) and (20). The
variability in the remaining moments in (19) and (20) related to the measurement errors is accounted

for by resampling with replace from
{
V̂ ar (ut)

}T
t=1
,
{
Ĉov (ut+1,ut)

}T−1

t=1
, and

{
Ĉov (ut,ut+1)

}T−1

t=1
.

The suggested the bootstrap procedure for a VAR model with measurement errors in the pricing
factors is therefore:

1. Use (19) and (20) to obtain θ̂2. Compute the residuals, i.e. ̂̂wt+1 = x̂t+1 − ĥ0 − ĥxx̂t for
t = 1, 2, ..., T − 1. Let b = 1.

2. Generate a bootstrap sample of length T − 1 by resampling with replacement from
{ ̂̂wt+1

}T−1

t=1
.

The boostrap sample is generated as

x∗t+1 = ĥ0 + ĥxx
∗
t + ̂̂w∗t+1 for t = 1, 2, ..., T − 1. (31)

where ̂̂w∗t+1 denote draws from
{ ̂̂wt+1

}T−1

t=1
.

3. Generate
{
V̂ ar (ut)

∗
}T
t=1
,
{
Ĉov (ut+1,ut)

∗
}T−1

t=1
, and

{
Ĉov (ut,ut+1)∗

}T−1

t=1
by resampling with

replacement from
{
V̂ ar (ut)

}T
t=1
,
{
Ĉov (ut+1,ut)

}T−1

t=1
, and

{
Ĉov (ut,ut+1)

}T−1

t=1
.

4. Use the draws from step 2 and 3 in (19) and (20) to obtain ĥ
(b)
0 , ĥ

(b)
x , and Σ̂(b).

5. If b < B, then b = b+ 1 and go to step 2.

6. Calculate the average of the estimates across all bootstrap samples, i.e.

h̄x =
1

B

∑B
b=1 ĥ

(b)
x (32)

7. Calculate the bootstrap bias-adjusted estimates as

ĥadjx = ĥx −
(
h̄x − ĥx

)
= 2ĥx − h̄x (33)

The bias-adjusted estimates of h0 and Σ are obtained as in Engsted & Pedersen (2012). That is,
we obtain an unbiased estimate of h0 by letting

ĥadj0 =
(
I− ĥadjx

)
Ê [x̂t] ,

where Ê [x̂t] ≡ 1/T
∑T

t=1 x̂t remains an unbiased estimator of the sample mean as E [ut] = 0, given a
suffi ciently large cross-section panel of bond prices as required in the SR approach. I.e. this property
follows from consistency of the regression-filter when the cross-section dimension tends to infinity.
Finally, the bias-adjusted estimate of Σ̂adj is computed using

̂̂wadj

t+1 = x̂t+1 − ĥadj0 − ĥadjx x̂t for t = 1, 2, ..., T − 1 (34)
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and a direct modification of (20), i.e.

V̂ ar (wt+1) =
1

T − 1− nx − 1

T−1∑
t=1

̂̂wadj

t+1

( ̂̂wadj

t+1

)′
(35)

− 1

T − 1

T−1∑
t=1

(
V̂ ar (ut) + ĥadjx V̂ ar (ut)

(
ĥadjx

)′)
+

1

T − 1

T−1∑
t=1

(
Ĉov (ut+1,ut)

(
ĥadjx

)′
+ ĥadjx Ĉov (ut,ut+1)

)
where we have imposed the standard degree of freedom adjustment. Hence, Σ̂ is then obtained from
a Cholesky decomposition of V̂ ar (wt+1). The standard errors for the bias-adjusted estimates are

computed using output from the bootstrap in a standard way, i.e. from
{

ĥ
(b)
0 , ĥ

(b)
x , Σ̂(b)

}B
b=1
.

B Inducing stationarity in VAR models: A data driven method

This section presents a data-driven metod to determine δ, by minimizing the distance between the
unconditional variances of the factors in the sample {x̂t}Tt=1 and the unconditional variances implied
by the VAR model. To compute the variance of xi,t by the bias-adjusted VAR model, we consider

ĥadjx (δ) = δ ×
(
ĥx −

(
h̄x − ĥx

))
and

ĥadj0 (δ) =
(
I− ĥadjx (δ)

)
Ê [x̂t] .

For given values of ĥadjx (δ) and ĥadj0 (δ), we may then compute the residuals as

̂̂wadj

t+1 (δ) = x̂t+1 − ĥadj0 (δ)− ĥadjx (δ) x̂t for t = 1, 2, ..., T − 1

and estimate the variance of the innovations by

V̂ ar (wt+1 (δ))adj =
1

T − 1− nx − 1

T−1∑
t=1

̂̂wadj

t+1 (δ)
( ̂̂wadj

t+1 (δ)
)′

− 1

T − 1

T−1∑
t=1

(
V̂ ar (ut) + ĥadjx (δ) V̂ ar (ut)

(
ĥadjx (δ)

)′)
+

1

T − 1

T−1∑
t=1

(
Ĉov (ut+1,ut)

(
ĥadjx (δ)

)′
+ ĥadjx (δ) Ĉov (ut,ut+1)

)
Hence, the unconditional variance in the VAR model is given by

vec (Vxt (δ)) =
(
Im2 − ĥadjx (δ)⊗ ĥadjx (δ)

)−1
vec

(
V̂ ar (wt+1 (δ))adj

)
,

where the diagonal of Vxt (δ) gives the variance of xt in the VAR model, denoted σ2
i,V AR (δ) for

i = 1, 2, ..., nx.
To compute the model-independent unconditional variances of the factors as implied by {x̂t}Tt=1,
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the unconditional mean of the i’th pricing factor is estimated by Ê [x̂i,t]. We also have

1

T − 1

∑T
t=1

(
x̂i,t − Ê [x̂i]

)2

=
1

T − 1

∑T
t=1

(
xoi,t + ui,t − Ê [x̂i]

)2

=
1

T − 1

∑T
t=1

(
xoi,t − Ê [x̂i]

)2
+

1

T − 1

∑T
t=1 u

2
i,t + 2

1

T − 1

∑T
t=1

(
xoi,t − Ê [x̂i]

)
ui,t

=
1

T − 1

∑T
t=1

(
xoi,t − Ê [x̂i]

)2
+

1

T − 1

∑T
t=1 V ar (ui,t) + 2

1

T − 1

∑T
t=1

(
xoi,t − Ê [x̂i]

)
ui,t

for i = 1, 2, ..., nx, where the last line follows by considering u2
i,t as a point estimate of V ar (ui,t). A

similar argument is used when computing White’s heteroskedastic consistent standard errors. Clearly,
1

T−1

∑T
t=1

(
xoi,t − Ê [x̂i]

)2 p−→ V ar
(
xoi,t

)
as T −→∞. We also have for T −→∞, that

1

T − 1

∑T
t=1

(
xoi,t − Ê [x̂i]

)
ui,t

p−→ E
[(
xoi,t − E

[
xoi,t
])
ui,t
]

= E
[
xoi,tui,t

]
,

as E [ui,t] = 0 for i = 1, 2, ..., nx. We next recall that the measurement errors in the factors ui,t
are a function of the measurement errors in the yields, denoted vt. Moreover, vt is by assumption
uncorrelated with the innovations to the factors εt at all leads and lags, which drives the evolution of

xt. Hence, E
[
xoi,tui,t

]
= 0, at least up to a first-order approximation. Thus,

1

T − 1

∑T
t=1

(
x̂i,t − E

[
xoi,t
])2 p−→ V ar

(
xoi,t
)

+ E [V ar (ui,t)] .

This implies that the unconditional variance of i’th pricing factor from the sample may be estimated
by

σ̂2
i,Data =

1

T − 1

∑T
t=1

(
x̂i,t − Ê [x̂i]

)2
− 1

T

∑T
t=1 V ar (ui,t) .

We then suggest to let the scaling parameter δ be given by

δ̂ = arg min
δ∈[δlower,1]

∑nx
i=1

(
σ2
i,V AR (δ)− σ̂2

i,Data

σ̂2
i,Data

)2

(36)

where δlower > 0. The constraint on the domain of δ is imposed because at δ = 0, we have
ĥadjx (δ = 0) = 0 and ĥadj0 (δ = 0) = E [xt], meaning that the two estimators of the unconditional
variances in (36) coincide.

C Bias-adjusting the first and third step in the SR approach: A
bootstrap procedure

[To be completed]
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Table 1: Monte Carlo study: Bias-adjustment in VAR models
The Monte Carlo study is implemented without measurement errors in the pricing factors and with M = 5.000
draws, where each bootstrap correction is computed with B = 5.000 bootstrap replications. The data
generating processes (DGP) are the estimated VAR models for the pricing factors under physical measure in
the benchmark ATSM reported in Table 2 and Table 3. The notation Bias(h0) indicates the total absolute
bias for h0 and similarly for the other rows. When computing the total absolut bias in the unconditional
standard deviation in the pricing factors, denoted Bias({σxi}

nx
i=1), only the stationary draws are used. Bold

figures indicate the lowest bias among the two data-driven methods.

OLS Standard Killian’s Data-driven methods:
bootstrap method ĥadj,Bx (δ) ĥadj,∗x (δ)

DGP: ATSM from 1961-2013
T = 250 Bias(h0) 0.0004 0.0002 0.0002 0.0003 0.0003

Bias(hx) 0.1563 0.0547 0.0642 0.0850 0.0747
Bias(Σ× 100) 0.0012 0.0006 0.0006 0.0007 0.0007
Bias

(
{σxi}

nx
i=1

)
0.0015 0.0017 0.0278 0.0010 0.0008

Pct of nonstationary draws 0.48 30.98 0.48 0.48 0.00

T = 500 Bias(h0) 0.0002 0.0001 0.0001 0.0001 0.0001
Bias(hx) 0.0676 0.0115 0.0152 0.0234 0.0190
Bias(Σ× 100) 0.0005 0.0002 0.0003 0.0003 0.0003
Bias

(
{σxi}

nx
i=1

)
0.0008 0.0021 0.0249 0.0023 0.0017

Pct of nonstationary draws 0.14 20.16 0.14 0.14 0.00

DGP: ATSM from 1990-2013
T = 250 Bias(h0) 0.0086 0.0027 0.0032 0.0043 0.0031

Bias(hx) 3.7685 1.2012 1.4260 1.8965 1.2938
Bias(Σ× 100) 0.0129 0.0045 0.0062 0.0077 0.0068
Bias

(
{σxi}

nx
i=1

)
0.0092 0.0280 0.2913 0.0211 0.0196

Pct of nonstationary draws 0.22 25.78 0.22 0.22 0.00

T = 500 Bias(h0) 0.0035 0.0006 0.0006 0.0007 0.0006
Bias(hx) 1.5484 0.2233 0.2394 0.2949 0.2334
Bias(Σ× 100) 0.0037 0.0017 0.0018 0.0019 0.0019
Bias

(
{σxi}

nx
i=1

)
0.0050 0.0193 0.0853 0.0192 0.0187

Pct of nonstationary draws 0.00 5.28 0.00 0.00 0.00
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Table 2: Estimation results for three-factor models: sample from 1961-2013
Robust standard errors for elements in θ̂

step3

11 are computed using (26) and (17) with wD = 10 and wT = 10.

For elements in θ̂
step3

2 , robust standard errors are computed using (21) with S obtained by the Newey-West
estimator with a bandwidth of 5. Estimates with one or two stars denote significance at the 5 percent and 1
percent level, respectively.

ATSM QTSM Shadow rate
Estimate SE Estimate SE Estimate SE

α 0.0124∗∗ 0.0016 - - 0.0153∗∗ 0.0027
A12 - - 0.9917 - -
A13 - - 0.9931 - -
A23 - - 0.8638 - -
Φ11 0.0022∗∗ 1.30× 10−4 0.0011 0.0013∗∗ 7.10× 10−5

Φ22 0.0355∗∗ 0.0027 0.0402 0.0427∗∗ 0.0028
Φ33 0.0685∗∗ 0.0034 0.0811 0.0666∗∗ 0.0030
µ1 - - 0.0251 - -
µ2 - - 6.39× 10−11 - -
µ3 - - 0.1090 - -
h0 (1, 1) −1.03× 10−4 7.91× 10−5 −8.51× 10−4 −1.67× 10−4 1.01× 10−4

h0 (2, 1) 3.83× 10−4 2.53× 10−4 −0.0085 9.15∗ × 10−4 5.45× 10−4

h0 (3, 1) −4.69∗∗ × 10−4 9.16× 10−5 0.0136 −0.0010∗∗ 1.29× 10−4

hx (1, 1) 0.9847∗∗ 0.0029 0.9722 0.9822∗∗ 0.0021
hx (1, 2) 0.0252∗∗ 0.0094 0.0082 0.0216∗ 0.0088
hx (1, 3) 0.0186∗∗ 0.0060 0.0042 0.0188∗∗ 0.0032
hx (2, 1) 0.0489∗∗ 0.0100 0.0726 0.0906∗∗ 0.0124
hx (2, 2) 0.9668∗∗ 0.0312 1.0284 1.0097∗∗ 0.0500
hx (2, 3) 0.0611∗∗ 0.0188 0.1074 0.0866∗∗ 0.0169
hx (3, 1) −0.0557∗∗ 0.0034 −0.0829 −0.1004∗∗ 0.0028
hx (3, 2) −0.0151 0.0113 −0.0615 −0.0637∗∗ 0.0119
hx (3, 3) 0.8685∗∗ 0.0071 0.8328 0.8452∗∗ 0.0042
Σ11 3.56∗∗ × 10−4 1.61× 10−5 0.0021 3.30∗∗ × 10−4 1.46× 10−5

Σ21 −6.22∗∗ × 10−4 5.85× 10−5 −0.0025 −6.49∗∗ × 10−4 9.46× 10−5

Σ22 0.0011∗∗ 4.97× 10−5 0.0096 0.0018∗∗ 7.37× 10−5

Σ31 3.95∗∗ × 10−4 2.51× 10−5 0.0011 4.54∗∗ × 10−4 2.50× 10−5

Σ32 −0.0010∗∗ 3.41× 10−5 −0.0094 −0.0017∗∗ 3.40× 10−5

Σ33 4.31∗∗ × 10−4 2.65× 10−5 0.0029 4.40∗∗ × 10−4 2.66× 10−5
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Table 3: Estimation results for three-factor models: sample from 1990-2013
Robust standard errors for elements in θ̂

step3

11 are computed using (26) and (17) with wD = 10 and wT = 10.

For elements in θ̂
step3

2 , robust standard errors are computed using (21) with S obtained by the Newey-West
estimator with a bandwidth of 5. Estimates with one or two stars denote significance at the 5 percent and 1
percent level, respectively.

ATSM QTSM Shadow rate
Estimate SE Estimate SE Estimate SE

α 0.0093∗∗ 0.0008 - - 0.0099∗∗ 7.10× 10−4

A12 - - 0.9807 - -
A13 - - 0.9897 - -
A23 - - 0.6829 - -
Φ11 0.0043∗∗ 0.0003 0.0029 0.0035∗∗ 1.41× 10−4

Φ22 0.0488∗∗ 0.0025 0.0460 0.0475∗∗ 0.0047
Φ33 0.0517∗∗ 0.0022 0.0724 0.0558∗∗ 0.0022
µ1 - - 0.0073 - -
µ2 - - 6.70× 10−10 - -
µ3 - - 0.0971 - -
h0 (1, 1) −2.81× 10−4 2.23× 10−4 6.23× 10−4 −3.32× 10−4 2.32× 10−4

h0 (2, 1) 0.0078 0.0060 −0.0111 0.0037 0.0026
h0 (3, 1) −0.0079∗∗ 8.04× 10−5 0.0159 −0.0039∗∗ 9.00× 10−5

hx (1, 1) 0.9530∗∗ 0.0071 0.9430 0.9474∗∗ 0.0070
hx (1, 2) −0.0216 0.0226 −0.0063 −0.0230 0.0207
hx (1, 3) −0.0237∗∗ 9.89× 10−4 −0.0231 −0.0285∗∗ 0.0024
hx (2, 1) 1.2792∗∗ 0.2267 0.1616 0.5884∗∗ 0.0921
hx (2, 2) 2.4472∗∗ 0.6265 1.0599 1.5625∗∗ 0.2385
hx (2, 3) 1.5652∗∗ 0.0278 0.1724 0.6813∗∗ 0.0282
hx (3, 1) −1.3025∗∗ 0.0023 −0.1840 −0.6150∗∗ 0.0025
hx (3, 2) −1.5152∗∗ 0.0084 −0.0972 −0.6272∗∗ 0.0082
hx (3, 3) −0.6356∗∗ 3.65× 10−4 0.7619 0.2476∗∗ 9.27× 10−4

Σ11 3.92∗∗ × 10−4 2.88× 10−5 0.0028 3.73× 10−4 2.64× 10−5

Σ21 −0.0049∗∗ 9.40× 10−4 −0.0028 −0.0018∗∗ 3.70× 10−4

Σ22 0.0108∗∗ 5.32× 10−4 0.0118 0.0042∗∗ 1.97× 10−4

Σ31 0.0046∗∗ 9.36× 10−6 1.82× 10−4 0.0014∗∗ 9.62× 10−6

Σ32 −0.0108∗∗ 1.09× 10−5 −0.0117 −0.0042∗∗ 1.14× 10−5

Σ33 1.66× 10−5 1.10× 10−5 0.0024 1.69× 10−4 1.14× 10−4
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Table 4: In-sample fit: The objective functions
This table reports 100

√
2×Qstep11:T and 100

√
2×Qstep31:T for the first and third step in the SR approach.

Figures in bold highlight the best in-sample fit for a given estimation step.

Step 1 Step 3
ATSM QTSM Shadow rate ATSM QTSM Shadow rate

Three pricing factors
Sample: 1961-2013 2.895 2.704 2.735 2.896 2.719 2.786
Sample: 1990-2013 1.807 1.614 1.692 1.829 1.632 1.754

Four pricing factors
Sample: 1961-2013 1.057 1.030 1.013 1.058 1.034 1.025
Sample: 1990-2013 0.802 0.766 0.749 0.806 0.772 0.763

Table 5: Conditional volatility of bond yields
This table reports the slope and R2 of regressing volatility in the data on a constant and model-implied
volatility. In the left part of the table, conditional volatility in the data is obtained using a rolling standard
deviation of daily bond yields in the past six months, denoted σRollingt . In the right part of the table,
conditional volatility in the data is obtained by a GARCH(1,1) model for changes in monthly bond yields,
denoted σGARCHt . The model-implied conditional volatilities one-month ahead at time t are computed from a
local linearization of bond yields at x̂t−1. Bold figures indicate the preferred model for a given measure of
volatility and for a given sample.

Data: σRollingt Data: σGARCHt

QTSM Shadow rate QTSM Shadow rate
Slope R2 Slope R2 Slope R2 Slope R2

Sample: 1961-2013
0.5-year bond yield 1.37 0.28 1.21 0.07 1.21 0.33 0.92 0.06
2-year bond yield 1.20 0.29 1.19 0.09 1.16 0.38 1.00 0.09
5-year bond yield 0.94 0.24 0.95 0.07 0.84 0.34 0.72 0.07
10-year bond yield 0.75 0.14 0.59 0.02 0.51 0.24 0.37 0.02

Sample: 1990-2013
0.5-year bond yield 0.44 0.09 2.69 0.17 0.21 0.06 1.47 0.16
2-year bond yield 0.48 0.15 1.99 0.24 0.30 0.17 1.49 0.41
5-year bond yield 0.34 0.09 1.47 0.18 0.18 0.11 0.98 0.35
10-year bond yield 0.02 0.00 0.44 0.01 -0.05 0.01 0.18 0.01
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Table 6: Average forecasting results
The figure reports the average root mean squared prediction errors (RMSPEs) across all bond yields in the
forecasting study from January 2005 to December 2013. The RMSPEs are generated from models estimated
recursively from 1961 or 1990 to the month before the forecast. The forecasted bond yields in the shadow rate
models are computed by Monte Carlo integration using 10.000 draws. For a given number of pricing factors
and a given starting point for the model estimation, bold figures indicate the model with the lowest RMSPEs.
Figures marked by blue denote the lowest RMSPEs for a given model when comparing part A and B of the
table.

Part A: Model estimation from 1961 Part B: Model estimation from 1990
Forecasting horizon Forecasting horizon

1 mth 3 mths 6 mths 12 mths 1 mth 3 mths 6 mths 12 mths
Random walk 25.87 49.66 72.54 94.76 25.87 49.66 72.54 94.76

2-factor models
ATSM 41.50 59.97 78.40 104.92 41.04 62.83 87.41 128.27
QTSM 27.92 51.78 76.81 106.47 27.61 55.41 86.43 122.09
Shadow rate 39.27 55.68 76.01 99.98 27.17 52.74 81.12 119.98

3-factor models
ATSM 40.51 60.86 80.48 108.02 40.50 62.83 88.79 133.05
QTSM 26.62 53.00 79.46 110.32 26.49 53.49 83.02 123.55
Shadow rate 26.70 52.33 78.09 109.41 27.30 54.32 84.48 126.35

4-factor models
ATSM 40.20 59.71 77.85 104.32 41.33 64.73 90.10 128.61
QTSM 27.50 56.01 89.04 131.55 27.10 55.59 85.30 124.66
Shadow rate 26.32 50.73 74.65 102.61 30.26 51.37 76.08 110.10
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Figure 1: Sample from 1961-2013: In-sample fit for three- and four-factor models
Charts in the first column report 100

√
2×Qstep31:T . Charts in the second column report 100

√
2×Qstep32005:T and

the final column reports σk estimated using residuals from 1961-2013.
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Figure 2: Sample from 1990-2013: In-sample fit for three- and four-factor models
Charts in the first column report 100

√
2×Qstep31:T . Charts in the second column report 100

√
2×Qstep32005:T and

the final column reports σk estimated using residuals from 1990-2013.
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Figure 3: Sample from 1961-2013: Unconditional moments in three-factor models
All model-based moments are obtained from simulated time series of 100,000 observations. Empirical moments
are computed from September 1971 to December 2013 to avoid missing observations for long bond yields.
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Figure 4: Sample from 1990-2013: Unconditional moments in three-factor models
All model-based moments are obtained from simulated time series of 100,000 observations. Empirical moments
are computed from January 1990 to December 2013.
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Figure 5: Sample from 1961-2013: Unconditional moments in four-factor models
All model-based moments are obtained from simulated time series of 100,000 observations using the estimates
from Tables 1 to 3.
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Figure 6: Sample from 1990-2013: Unconditional moments in four-factor models
All model-based moments are obtained from simulated time series of 100,000 observations using the estimates
from Tables 1 to 3.
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Figure 7: Sample from 1961-2013: Conditional volatilities for bond yields
Black lines denote the rolling standard deviation of bond yields computed from daily observations with a six
month lookback. Green lines refer to the conditional volatilities from a GARCH(1,1) model applied to changes
in monthly bond yields. Blue lines with squares and black lines with stars denote the one step ahead
conditional volatilities in the QTSM and the shadow rate model, respectively, where the volatility at time t is
computed from a local linearization of bond yields at x̂t−1.
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Figure 8: Sample from 1990-2013: Conditional volatilities for bond yields
Black lines denote the rolling standard deviation of bond yields computed from daily observations with a six
month lookback. Green lines refer to the conditional volatilities from a GARCH(1,1) model applied to changes
in monthly bond yields. Blue lines with squares and black lines with stars denote the one step ahead
conditional volatilities in the QTSM and the shadow rate model, respectively, where the volatility at time t is
computed from a local linearization of bond yields at x̂t−1.
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Figure 9: Forecasting results by maturity: model estimation starting in 1961
This figure reports the root mean squared prediction errors (RMSPEs) for out-of-sample forecasts from
January 2005 to December 2013. The RMSPEs are generated from models estimated recursively from 1961 to
the month prior to the forecast. The forecasted bond yields in the shadow rate models are computed by Monte
Carlo integration using 10.000 draws.
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Figure 10: Forecasting results by maturity: model estimation starting in 1990
This figure reports the root mean squared prediction errors (RMSPEs) for out-of-sample forecasts from
January 2005 to December 2013. The RMSPEs are generated from models estimated recursively from 1990 to
the month prior to the forecast. The forecasted bond yields in the shadow rate models are computed by Monte
Carlo integration using 10.000 draws.
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Figure 11: Forecasting illustration for the 0.5-bond yield
The forecasts generated from models estimated recursively from 1961 to the month prior to the forecast. The
forecasted bond yields in the shadow rate models are computed by Monte Carlo integration using 10.000 draws.
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Figure 12: ATSM: Fraction of forecast distribution below zero
The charts report the fraction of the forecast distribution for the 0.5-year bond yield which are below zero. All
forecast distributions are computed using recursively estimated parameters, starting in 1961 or 1990.
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ATSM: Starting in 1961 ATSM: Starting in 1990
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