Inflation, Debt, and Default

Sewon Hur Illenin Kondo Fabrizio Perri
U. of Pittsburgh Board of Governors Minneapolis Fed

European Central Bank, November 292013

Conference on Heterogeneity in Currency Areas and Macroeconomic Policies

Motivation

Figure: Inflation and consumption growth co-movement in the U.S.

The question

How does the inflation process - in particular the co-movement of inflation and consumption growth - jointly affect interest rates, debt dynamics, and debt crises?

Why does inflation matter?

- The co-movement of inflation and consumption growth affects the risk of nominal debt
\Rightarrow Pro-cyclical inflation makes nominal debt
+ less risky to domestic lender: receives more in bad times
- more risky to domestic borrower: pays out more bad times

Why does inflation matter?

- The co-movement of inflation and consumption growth affects the risk of nominal debt
\Rightarrow Pro-cyclical inflation makes nominal debt
+ less risky to domestic lender: receives more in bad times
- more risky to domestic borrower: pays out more bad times
- Inflation affects debt pricing
- Debt pricing \rightarrow debt dynamics \rightarrow debt crises $\rightarrow \ldots$

Further evidence

- Inflation and connection to real yields on government debt
- Compute co-movement of inflation innovations and consumption growth innovations
- OECD 1970-2012 using overlapping windows
- Less pro-cyclical inflation is associated with higher yield

This paper

- Understand effects of the inflation process on borrowing costs, debt dynamics and debt crises
- Model of sovereign debt
- New ingredients:
- Inflation, exogenous
- Domestic, risk-averse lenders

Results preview

Co-movement of inflation and consumption growth affects

- Interest rates on debt significant and uniform across states
- Debt dynamics especially during crisis times \Rightarrow risky debt and precautionary motives

Related literature

- Sovereign default Eaton and Gersovitz (1981), Arellano (2008)
- Domestic default Reinhart and Rogoff (2011), D’Erasmo and Mendoza (2013)
- Default and inflation Aguiar, Amador, Farhi and Gopinath (2012), Sunder-Plassman (2013)
- Cyclicality of inflation

Boudoukh (1993), Ang, Bekaert, and Wei (2008)

- Nominal assets, monetary union and incomplete markets Neumeyer (1998)

Model

- Builds on standard sovereign debt model (Arellano 2008)
- Government borrows on behalf of domestic poor agents from domestic rich agents
- Both lenders and borrowers risk-averse

Model

- Builds on standard sovereign debt model (Arellano 2008)
- Government borrows on behalf of domestic poor agents from domestic rich agents
- Both lenders and borrowers risk-averse
- Nominal bonds randomly lose/gain value (exogenous inflation process)

Model

- Closed economy, discrete time $t=0,1,2, \ldots$, one good
- Endowments y and inflation π follow correlated processes
- Agents
- hand-to-mouth households (poor, impatient)
- lenders (high income, patient)
- government
- Government
- borrows from and defaults on domestic lenders, on behalf of poor households, using nominal bonds
- maximizes welfare of poor households

Government

- Given the option to default, the government chooses

$$
V^{o}(B, y)=\max _{c, d}\left\{V^{c}(B, y), V^{d}(y)\right\}
$$

where B is incoming assets and y is endowment shock

Government

- Given the option to default, the government chooses

$$
V^{o}(B, y)=\max _{c, d}\left\{V^{c}(B, y), V^{d}(y)\right\}
$$

where B is incoming assets and y is endowment shock

- The value of default is given by

$$
V^{d}(y)=u\left(y^{d e f}\right)+\beta \mathbf{E}_{y^{\prime}}\left[\theta V^{o}\left(0, y^{\prime}\right)+(1-\theta) V^{d}\left(y^{\prime}\right)\right]
$$

where θ is the probability that the government will regain access to credit markets, β the discount factor of the borrower/government, and

$$
y^{d e f}= \begin{cases}\hat{y} & \text { if } y>\hat{y} \\ y & \text { if } y \leq \hat{y}\end{cases}
$$

Government

- The value, conditional on not defaulting is given by

$$
\begin{aligned}
V^{c}(B, y)= & \max _{B^{\prime}}\left\{U\left(y-q\left(B, y, B^{\prime}\right) B^{\prime}+B\right)\right. \\
& \left.+\beta \mathbf{E}_{y^{\prime}}\left[V^{o}\left(\frac{B^{\prime}}{1+\pi\left(y^{\prime}, y\right)}, y^{\prime}\right)\right]\right\}
\end{aligned}
$$

where $q\left(B, y, B^{\prime}\right)$ is the bond price, $\pi\left(y^{\prime}, y\right)$ is inflation

- Real return on government debt is stochastic (even in absence of default)

Lenders

- Lenders take as given the policy functions of the government
- Lender's value function is given by

$$
\begin{aligned}
& W(b ; y, s, B)= \max _{b^{\prime}}\left\{u\left(c_{\ell}\right)\right. \\
&\left.+\widehat{\beta} \mathbf{E}_{y^{\prime}, s^{\prime}}\left[W\left(\frac{b^{\prime}}{1+\pi\left(y^{\prime}, y\right)} ; y^{\prime}, s^{\prime}, \frac{B^{\prime}}{1+\pi\left(y^{\prime}, y\right)}\right)\right]\right\} \\
& \text { s.t. } \quad c_{\ell}= \begin{cases}\alpha y+b-q\left(B, y, B^{\prime}(B, y)\right) b^{\prime} & \text { if } s=0 \\
\alpha y^{d e f} & \text { if } s=1\end{cases}
\end{aligned}
$$

where $s=0,1$ denotes the government having access to credit markets, $\widehat{\beta}$ the discount factor of the domestic lender, and $\alpha>1$.

Pricing kernel

- In this environment, the bond price satisfies

$$
q\left(B, y, B^{\prime}\right)=\mathbf{E}_{y^{\prime}}\left[\frac{1-d\left(\frac{B^{\prime}}{1+\pi\left(y^{\prime}, y\right)}, y^{\prime}\right)}{1+\pi\left(y^{\prime}, y\right)} m_{\ell}\left(y, y^{\prime}, B, B^{\prime}\right)\right]
$$

where

$$
m\left(y, y^{\prime}, B, B^{\prime}\right)=\widehat{\beta} \frac{u^{\prime}\left(c_{\ell}^{*}\left(\frac{B^{\prime}}{1+\pi\left(y^{\prime}, y\right)}, y^{\prime}, B^{*}\left(\frac{B^{\prime}}{1+\pi\left(y^{\prime}, y\right)}, y^{\prime}\right)\right)\right)}{u^{\prime}\left(c_{\ell}^{*}\left(B, y, B^{\prime}\right)\right)}
$$

Cyclicality of inflation and borrowing costs

- The bond price can be written as

$$
\begin{aligned}
q\left(B, y, B^{\prime}\right)= & \widehat{\beta} \mathbf{E}_{y^{\prime}}\left[\frac{1-d\left(\frac{B^{\prime}}{1+\pi\left(y^{\prime}, y\right)}, y^{\prime}\right)}{1+\pi\left(y^{\prime}, y\right)}\right] \mathbf{E}_{y^{\prime}}\left[\frac{u^{\prime}\left(c_{\ell}^{\prime}\right)}{u^{\prime}\left(c_{\ell}\right)}\right] \\
& +\widehat{\beta} \mathbf{c o v}_{y^{\prime}}\left[\frac{1-d\left(\frac{B^{\prime}}{1+\pi\left(y^{\prime}, y\right)}, y^{\prime}\right)}{1+\pi\left(y^{\prime}, y\right)}, \frac{u^{\prime}\left(c_{\ell}^{\prime}\right)}{u^{\prime}\left(c_{\ell}\right)}\right]
\end{aligned}
$$

- Default and inflation increase borrowing costs; so does countercyclical default (standard effects)
- Pro-cyclical inflation reduces borrowing costs (new channel).

Cyclicality of inflation and debt dynamics

- Consider the borrower's Euler equation in the absence of default

$$
\begin{aligned}
q\left(B, y, B^{\prime}\right) u^{\prime}(c)= & \beta \mathbf{E}_{y^{\prime}}\left[\frac{1}{1+\pi\left(y^{\prime}, y\right)}\right] \mathbf{E}_{y^{\prime}}\left[u^{\prime}\left(c^{\prime}\right)\right] \\
& +\beta \mathbf{c o v}_{y^{\prime}}\left[\frac{1}{1+\pi\left(y^{\prime}, y\right)}, u^{\prime}\left(c^{\prime}\right)\right]
\end{aligned}
$$

- Pro-cyclical inflation increases incentives to borrow more due to lower borrowing costs (lender's channel)
- However, pro-cyclical inflation also reduces borrower's incentive to take on more debt (riskier asset)

Quantitative experiment

- In the model with no default, assess impact of different inflation processes on interest rates
- In the full model, assess impact of different inflation processes on interest rates, debt dynamics, and crises

Functional forms

- Functional forms

$$
\begin{aligned}
u(c) & =\frac{c^{1-\gamma}}{1-\gamma} \\
\log y^{\prime} & =\rho \log y+\varepsilon \text { where } \varepsilon \sim N\left(0, \sigma_{y}^{2}\right)
\end{aligned}
$$

Functional forms

- Functional forms

$$
\begin{aligned}
& u(c)=\frac{c^{1-\gamma}}{1-\gamma} \\
& \log y^{\prime}=\rho \log y+\varepsilon \text { where } \varepsilon \sim N\left(0, \sigma_{y}^{2}\right) \\
& \pi\left(y^{\prime}, y\right)=\bar{\pi}+\frac{\eta}{v_{y}}\left[\log \left(\frac{y^{\prime}}{y}\right)-\mu_{y}\right] \\
& \text { where } \mu_{y}=\mathbf{E}_{y^{\prime} \mid y}\left[\log \left(\frac{y^{\prime}}{y}\right)\right] \text { and } v_{y}=\operatorname{var}_{y^{\prime} \mid y}\left[\log \left(\frac{y^{\prime}}{y}\right)\right]
\end{aligned}
$$

- This process for inflation satisfies

1. $\mathbf{E}_{y^{\prime} \mid y}\left[\pi\left(y^{\prime}, y\right)\right]=\bar{\pi}$
2. $\operatorname{cov}_{y^{\prime} \mid y}\left[\log \left(\frac{y^{\prime}}{y}\right), \pi\left(y^{\prime}, y\right)\right]=\eta$

Parameters

Discount factors	$\beta=0.953$
	$\widehat{\beta}=0.983$
Inflation process	$\bar{\pi}=0$
	$\eta \in\{ \pm 0.0005, \pm 0.0010\}$
Risk aversion	$\gamma=2$
Endowment process	$\rho=0.95, \sigma_{y}=0.02$
Lender endowment	$\alpha \in\{10,100\}$
Probability of re-entry	$\theta=0.282$

- We compare borrowing costs and debt dynamics for
$+\eta>0$ (pro-cyclical inflation)
- $\eta<0$ (countercyclical inflation)

Model with no default

- Borrowing costs are lower with pro-cyclical inflation

Table: Difference in Borrowing Costs

	$r_{-\eta}-r_{\eta}$ (in percent)	
	$\eta=0.0005$	$\eta=0.0010$
$\alpha=10$	0.83	1.56
$\alpha=100$	0.85	2.22

- The difference is larger with more risk aversion

Model with default

- Borrowing costs are lower with pro-cyclical inflation
- Yet, debt is also lower with pro-cyclical inflation
- So are default rates

Table: Debt and Default

	Positive co-movement $(\eta=+0.0010)$	Negative co-movement $(\eta=-0.0010)$
Default prob. (percent)	2.52	3.04
Spreads (percent)	2.81	3.52
Debt (percent)	4.29	5.48

Inflation and debt dynamics: precautionary motives

Inflation and debt dynamics: precautionary motives

- Precautionary motives from pro-cyclical inflation increase with debt (i.e. as the borrower gets poorer)
- Meanwhile, lenders uniformly demand lower yield

Inflation and debt dynamics: a Pyrrhic victory?

Inflation and debt dynamics: a Pyrrhic victory?

- On average lower rates, debt, and default with pro-cyclicality
- But more volatile rates: riskier debt precisely in bad times

Inflation and debt dynamics: a Pyrrhic victory?

- On average lower rates, debt, and default with pro-cyclicality
- But more volatile rates: riskier debt precisely in bad times
... a tale of periphery EMU accession?

Conclusion

- Model of sovereign debt with risk averse domestic lenders and borrowers
- Inflation pro-cyclicality can be important in explaining the observed cross section of government debt, interest rates, and debt crises
- Our findings are relevant for the debate on the costs and benefits of joining a monetary union
appendix

Conditional co-movement between inflation and consumption growth

- Follow Boudoukh (1993)
- VAR country by country on quarterly data

$$
\left[\begin{array}{l}
\pi_{i t} \\
g_{i t}^{c}
\end{array}\right]=A_{i}\left[\begin{array}{l}
\pi_{i t-1} \\
g_{i t-1}^{c}
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{\pi i t} \\
\varepsilon_{g i t}
\end{array}\right]
$$

- Compute conditional co-movement between $\varepsilon_{\pi i t}$ and $\varepsilon_{g i t}$ using overlapping five-year windows

Conditional correlation between inflation and consumption growth

Inflation cyclicality and real interest rates

Real yield on government debt

	(1)	(2)	(3)
Inflation co-movement: $\operatorname{cov}\left(\varepsilon_{\pi}, \varepsilon_{g_{c}}\right)$	$\begin{gathered} -1.379^{* *} \\ (0.576) \end{gathered}$	$\begin{gathered} -2.007^{* * *} \\ (0.504) \end{gathered}$	$\begin{gathered} -2.066^{* * *} \\ (0.636) \end{gathered}$
Variance of inflation: $\operatorname{var}\left(\varepsilon_{\pi}\right)$	$\begin{gathered} 0.418 \\ (0.313) \end{gathered}$	$\begin{gathered} 0.721^{* * *} \\ (0.222) \end{gathered}$	$\begin{gathered} 0.211 \\ (0.256) \end{gathered}$
Inflation: π	$\begin{gathered} 1.979^{* * *} \\ (0.302) \end{gathered}$		$\begin{gathered} 2.392^{* * *} \\ (0.338) \end{gathered}$
Public debt (percent of GDP)		$\begin{aligned} & 0.00281 \\ & (0.0107) \end{aligned}$	$\begin{gathered} 0.0104 \\ (0.00765) \end{gathered}$
adj. R^{2}	0.897	0.871	0.917
N	2394	2049	2049

Standard errors in parentheses. All regressions include country and year fixed effects.

Default probabilities

