Federal Reserve Tools for Managing Rates and Reserves

David Skeie*
Federal Reserve Bank of New York

(with Antoine Martin, James McAndrews and Ali Palida)

Frankfurt School of Finance and Management October 2, 2013

^{*} The views expressed are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of New York or the Federal Reserve System.

Large Quantity of Reserves

- Reserves are assets, issued by the Fed and held by banks
- Large level of reserves is by-product of Fed's LSAPs (QE)

Rates are below IOER and are negatively correlated with reserves

- Reserves receive interest on excess reserves (IOER) rate
- IOER rate = 25 bps has not acted as a floor for short term rates
- How does the Fed control rates when IOER is raised to 100 bps?
 500 bps?

New Federal Reserve Tools

TDF

- o Term Deposit Facility
- Banks can deposit reserves with the Fed for a term maturity

RRP

- Reverse Repo
- Non-banks such as money market mutual funds can do collateralized repo lending to the Fed

FRFA ON RRP

o Fixed-rate, full-allocation overnight RRP

Research Questions

- Theory question
 - o How are interest rates determined?
- Policy question
 - o What is the effect of these tools?
 - o Which are most effective at managing rates?
 - o How should these tools be used?

Research Approach

Theory

- General equilibrium model of banking and monetary policy implementation
- o Key drivers in the model:
 - Bank balance sheet costs
 - Bank liquidity shocks
 - Interbank lending costs

Policy

- o For a given IOER rate, we contrast:
 - Fixed-rate vs. fixed-quantities RRPs
 - Term vs. overnight RRPs
 - RRPs vs. TDF

Outline

- 1. Model
- 2. Benchmark equilibrium with balance sheet costs
- 3. Equilibrium results with liquidity shocks
- 4. Comparison of tools and results with interbank lending
- 5. Conclusion

Participants in the Economy

- Banks (**B**)
- Firms (*F*)
- Money Market Funds (MMF)
- Households (H)
 - The rest of the economy
- Central Bank (CB)
- Government (G)

Assets

- Three periods: dates *t*=0,1,2
- Bank deposits
 - o Term deposits at date 0 (D^0) and overnight deposits at date 1 (D^1)
 - Held by households
- Loans (*L*)
 - From banks to firms
- Government bonds (B)
 - o T-bills
 - o Held by the central bank (BCB)
 - o Held through shares in MMFs by households (BH)
- Money (*M*)
 - o Reserves
- Market returns on assets: R^{DO}, R^{D1}, R^L, R^B
 - o $R^M \equiv IOER$

Sectors and Competition

- Two "sectors" of the economy
 - Each has a representative household, bank, and firm that transact with each other
 - Banks behaves competitively within sectors, but face limited competition across sectors
 - o Simplify: no credit risk
- Bonds can be held across both sectors

Timeline

Date t=0: Initial bonds, deposits, and loans

Bonds, deposits and loans have term (two-period) maturities

Date t=1: One sector has a liquidity shock

- o Probability of shock is one-half for each sector
- Fraction (λ) of depositors from liquidity-shocked sector must relocate to the other sector
 - Return of one on early withdrawal of term deposits
- Depositors can make new (one-period) overnight deposits at the bank in the other sector
 - Otherwise invest in MMF shares when available
- Banks can engage in interbank trading to fund withdrawals
- o In the benchmark case, $\lambda = 0$ (there is no shock)

Date t=2: Assets mature and consumption occurs

• 11

Outline

- 1. Model
- 2. Benchmark results with balance sheet costs
- 3. Results with liquidity shocks
- 4. Comparison of tools
- 5. Conclusion

Benchmark Equilibrium

Quantities

Bonds

Term Deposits

Loans

Term Deposit Market

- $C(D^0)$ is a bank's marginal balance sheet cost
 - $C(D^0)$ increases with the size D^0 of a bank's balance sheet
- Balance sheet cost includes:
 - shadow price of leverage requirements
 - deposit insurance
- $C(D^0)$ pushes banks' demand curve for deposits D^D below R^M
 - The balance sheet cost is pushed onto depositors

Benchmark Equilibrium

Example: Increase in Reserves

Bond Market

 D^{S}

An increase in M: Increases BCB Decreases BH

Increases:

Term deposits and balance sheet size and costs $C(D^0)$

Decreases:

Bond rate R^B Term deposit rate RDO

Loan Market

16

Outline

- 1. Model
- 2. Benchmark results with balance sheet costs
- 3. Results with liquidity shocks
- 4. Comparison of the tools
- 5. Conclusion

Overnight Deposit Market (t=1) Liquidity shock

Liquidity shock creates a need for new overnight deposits

- D^1 are new overnight deposits at t=1 for the bank with a liquidity shock inflow
 - R^{D1} is the rate on new overnight deposits (one-period, t=1 to t=2)
 - $R^{D1} < R^{D0}$ because accumulative balance sheet costs $C(D^0 + D^1) > C(D^0)$
- $R^B < R^{D0}$ because bonds can be held across sectors
 - Bonds have a liquidity premium (rate discount)
- Note: $\sqrt{R^M}$ is 1-period IOER; R^M is cumulative 2-period IOER

Outline

- 1. Model
- 2. Benchmark results with balance sheet costs
- 3. Results with liquidity shocks
- 4. Comparison of tools
- 5. Conclusion

Fixed-rate vs. fixed quantity RRPs

- Overnight (one-period) RRP
 - Offered by the central bank at t=1
- Fixed-quantity RRP
 - o Auctions the quantity RRPFQ
 - Equilibrium stop-out rate is R^{FQ}
- Fixed-rate, full-allotment RRP
 - o Sets rate RFR
 - o Equilibrium quantity is RRPFR

Overnight Deposit Market (t=1)

Overnight RRP (fixed-quantity)

- Smaller overnight deposits D_1 reduce $C(D_0 + D_1)$, raising R^{D1}
 - The RRP stop-out rate R^{FQ} equals the overnight deposit rate R^{D1} in equilibrium
 - The t=0 bond rate R^B in equilibrium increases with R^{D1}
- Fixed-quantity o/n RRP can set a floor on rates
- But if λ is uncertain
 - Then upwards volatility of rates

Overnight Deposit Market (t=1)

Overnight RRP (fixed-rate)

- Fixed-rate R^{FR} set at the equilibrium rate R^{FQ} for the fixed-quantity RRP
 - Provides an equivalent floor on rates, and can raise rates
- With uncertain λ
 - Fixed-rate RRP dampens volatility of rates

Term RRP

- Term (two-period) RRP offered by the central bank at t=0
 - o Either fixed-quantity RRP or fixed-rate RRP
 - o The equilibrium quantity is RRP^{TM} and the rate is R^{TM}

Term Deposit Market (t=0) Term RRPs

Term RRP:

- Reduces the size of the bank's balance sheet at date and thus reduces balance sheet costs
 - Provides a floor on the date-0 term deposit rate: $R^{D0} = R^{TM}$
 - Can raise term and overnight deposit rates
- But does not provide a floor on date-1 overnight rates R^{D1}
 - Term RRP not available for date-1 liquidity-shock needs
 - Overnight RRPs provide a stronger floor for overnight rates

24

RRPs vs. TDF

Term (two-period) RRP and/or TDF offered to banks by the central bank at t=0

- Either fixed-quantity RRP/TDF or fixed-rate RRP/TDF
- The equilibrium quantity is RRP^{TM}/TDF and the rate is R^{TM}/R^{TDF}

Two channels to increase deposit rates:

- Balance sheet cost channel
- Interbank market channel

Which channel is stronger?

Are RRPs or TDF most effective at raising rates?

Balance Sheet Costs Impact on Deposit Rates (t=0) RRP vs. TDF

- RRPs decrease reserves by the same amount as equal-sized TDF
- RRPs (with non-bank counterparties, e.g. MMFs):
 - Draw bank term deposits into MMFs
 - Reduce banks' balance sheet size
 - TDF replaces reserves and balance sheet size is unchanged
- Raises overnight & term deposit rates through lower balance sheet costs 26
 - The TDF does not

Interbank Market Impact on Deposit Rates (t=0)

Large-size RRP vs. TDF

- RRP and TDF reduce reserves that could be used by banks for liquidity shocks
 - Large-enough size RRP/TDF creates an active interbank market
 - Interbank monitoring costs raise banks' asset rates, pulling up deposit rates
- RRPs reduce banks' balance sheet size; TDF does not
 - Smaller bank deposits reduce the size of potential liquidity shocks
 - Less effect on increasing illiquid loan rates above IOER than TDF...
 - ...or on increasing deposit rates through interbank channel than TDF

RRPs vs. TDF

- The tool which raises bank term deposit rates R^{D0} the most
 - o depends on which marginal cost is increasing faster:
 - balance sheet costs or interbank monitoring costs
 - o Balance sheet costs increasing faster: RRP increases R^{D0} more
 - Will occur when term deposits are large relative to interbank loans
 - o Monitoring cost increasing faster: TDF increases R^{D0} more
 - Will occur when interbank loans are large relative to term deposits
- Result: Maximizing R^{D0} (and consequently other rates e.g. R^{B})
 - may require usage of both tools concurrently

Outline

- 1. Model
- 2. Benchmark results with balance sheet costs
- 3. Results with liquidity shocks
- 4. Comparison of the tools
- 5. Conclusion

Conclusion

- Model of banking and monetary policy to determine short term interest rates
 - Bank balance sheet costs
 - Liquidity shocks
 - Interbank lending costs
- Analytical framework to analyze the Fed's monetary policy tools
 - Fixed-rate RRPs provide better floor on rates with less volatility than fixed-quantity RRPs
 - Overnight RRPs absorb liquidity shocks, provide rate floor, and reduce rate volatility better than term RRPs
 - o RRPs increase deposit rates by decreasing balance sheet costs
 - TDF pulls up deposit rates by raising interbank lending rates and loan rates above IOER more than RRPs do
 - Using RRPs and TDF concurrently may best increase rates

Future Research

Extensions of the model

- Optimal contracting over a richer set of deposit and bond contracts
- Aggregate liquidity shocks; financial stability shocks
- Greater role for price determination with fiscal dominance
- Central bank objective function and welfare analysis
- Effects of tools on real economy: bank lending, output and inflation

Expansions of policy analysis

- Consider other combinations of tools
- Consider other frictions, economic agents, and broader policy tools
 - o Securities dealers, repo market, bond collateral, and RRP collateral
 - RRP floor without take-up
 - GSFs and fed funds market
 - Tapering, forward guidance, raising IOER, and asset sales
- Diagnostic tool to interpret market rates and flows during the unwind

• 31