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Abstract

We study how Big Tech’s entry into finance affects the macroeconomy and the transmission of
monetary policy. We first document a set of stylized facts on bigtech credit. We then rationalize
this evidence through the lens of a model where Big Techs facilitate firms’ matching on the trade
platform and extend working capital loans, thus adding another source of finance to bank loans.
The Big Tech firm reinforces credit repayment with the threat of exclusion from its ecosystem,
while bank credit is secured against collateral. According to our model: (i) an increase in Big
Tech’s matching efficiency on the commerce platform raises the value for firms of trading in the
platform and the availability of big tech credit, driving output closer to the efficient level; (ii)
credit and output responds less to monetary policy due to the more muted response of firms’
profits relative to physical collateral.
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1 Introduction

Large technology firms such as Alibaba, Amazon, Facebook or Mercado Libre (Big Techs) have

recently started to provide credit to vendors on their commerce platforms. This new type of credit

has already gained some relevance, and given the rise in e-commerce, has the potential to spread

worldwide very rapidly (Cornelli et al. (2020)).1

Changes in financial intermediation can shape the transmission of monetary policy in notable

ways. The business model of Big Techs relies on the collection and use of vast troves of data rather

than collateral to solve agency problems between lenders and borrowers. Credit scoring generated

using machine learning and big data are able to identify firms’ characteristics with more precision

than traditional credit bureau ratings (Frost et al. (2020)). Moreover, due to network effects

and the presence of high switching costs between Big Tech platforms, Big Techs can enforce loan

repayments by the simple threat of an exclusion from their ecosystem if the firm defaults. This

explains why big tech credit is uncorrelated with real estate values, but it is highly correlated instead

with firm-specific characteristics, such as transaction volumes on the Big Tech e-commerce platform

(Gambacorta et al. (2022)). As the share of big tech credit rises, monetary policy will affect credit

supply less via asset prices (via the traditional ”collateral channel” à la Kiyotaki and Moore (1997)),

and more via repayment incentive compatibility constraints within Big Techs’ ecosystems.

Our paper aims to shed some light on the effects of Big Techs’ entry into finance on the

macroeconomy and on monetary policy transmission. We start by documenting some stylized facts

on big tech credit. First, using existing evidence on China we document that big tech credit reacts

by less to changes in asset prices and local economic conditions than bank credit. Second, because

of their different characteristics these two forms of credit respond also very differently to a monetary

policy shock. Specifically, using a simple panel–VAR analysis we document that while bank credit

follows closely the response of house prices (typically used as collateral) and reacts very strongly
1Available data and estimates show that fintech credit volumes reached USD 240 billion in 2019, while big tech

credit volumes surged to USD 530 billion. This represents a dramatic increase since 2013, when volumes were only
USD 9.9 billion and 10.6 billion, respectively. There is substantial variation across countries, with the sum of fintech
and big tech credit flows (“total alternative credit”) equivalent to 5.8% of the stock of total credit in Kenya, 2.0%
in China and 1.1% in Indonesia. In other major markets like the United States, Japan, Korea and the UK, fintech
and big tech lending flows are less than 1% of the stock of total credit. Since 2017, e-commerce revenues have risen
from an estimated 1.4 trillion to 2.4 trillion in 2020, or about 2.7% of global output (Figure 2, left-hand panel). More
recent estimates are that 3.5 billion individuals globally (about 47% of the population) use e-commerce platforms
today. China is the largest market, followed by the United States, Japan, the United Kingdom and Germany. In
countries where Big tech firms are prohibited by law from direct lending (e.g. Indonesia), big tech credit activities are
performed in partnership with financial institutions.
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to monetary policy, the response of big tech credit is not statistically significant. Motivated by

our empirical findings, we develop a model to help rationalize them and predict how the advent of

big tech credit may impact monetary policy transmission in the near future. The analysis focuses

on business-to-business (B2B) transactions (i.e. transactions between firms), which account for

80% of global online transactions. In our framework, a Big Tech platform facilitates the search

and matching between manufacturers and wholesalers, and extends working capital loans to the

former. Manufacturers may finance their working capital with both secured bank credit and big

tech credit, but cannot commit to repay their loans. The central difference between big tech credit

and bank credit relates to borrowers’ opportunity cost of default. Firms that default on bank credit

lose their collateral (real estate). In contrast, those that default on big tech credit lose access to Big

Tech’s e-commerce platform, and hence their future profits (”network collateral”). An incentive

compatible contract thus limits the total amount of credit to the sum of physical and network

collateral. Nominal prices are sticky, and monetary policy affects the real economy. When search

frictions in the goods markets and credit frictions in the financial markets are set to zero, the model

collapses to the basic New Keynesian model.

We obtain two sets of results. First, an expansion in Big Techs, as captured by an increase in

matching efficiency on the commerce platform, raises the value for firms of trading in the platform

and the availability of big tech credit. This in turn relaxes financing conditions and raises firms’

output, driving aggregate output closer to the efficient level. Second, credit and output react less to

monetary policy when firms have access to big tech credit. For given matching efficiency of Big

Techs, this is due to a more muted response of firms’ opportunity cost of default on big tech credit

(future profits) compared to that on bank credit (physical collateral). Furthermore, as matching

efficiency on Big Tech’s commerce platform rises, the expansion in firms’ profits leads to a higher

value of trading in the platform and a larger share of big tech credit. The latter, coupled with

the muted response of this new type of credit, leads to a weaker response of credit and output to

monetary policy.

Our paper contributes to two broad strands of literature. The first is the “financial accelerator”

literature where physical collateral plays a crucial role in the amplification of macroeconomic

fluctuations and the transmission of monetary policy (e.g. Gertler and Gilchrist, 1994). A rise in

collateral values during the expansionary phase of the business cycle typically fuels a credit boom,

3



while their subsequent fall in a crisis weakens both the demand and supply of credit, leading to a

deeper recession. The “collateral channel” was a relevant driver of the Great Depression (Bernanke

(1983)), and of the more recent financial crisis (Mian and Sufi (2011), Bahaj et al. (2019), Ottonello

and Winberry (2020)). Using a structural model, Ioannidou et al. (2022) shows that a 40% drop in

collateral values would lead almost a quarter of loans to become unprofitable, a reduction in average

demand by 16% and a drop in banks’ expected profits of 25%. Our paper contributes to this stream

of the literature by analysing how Big Techs’ use of big data for credit scoring and of “network

collateral” instead of physical collateral could attenuate the link between asset prices, credit and

the business cycle.2

Second, our paper contributes to the literature on financial inclusion by showing how a rise in

matching efficiency between buyers and sellers on commercial platforms can lead to an expansion of

credit supply. Overall, the empirical evidence suggests that Fintech and big tech credit are growing

where the current financial system is not meeting demand for financial services (Bazarbash (2019),

Haddad and Hornuf (2019)). For the case of China, Hau et al. (2021) show that Fintech credit

mitigates supply frictions (such as a large geographic distance between borrowers and the nearest

bank branch), and allows firms with a lower credit score to access credit. In the United States,

Tang (2019) finds that Fintech credit complements bank lending for small-scale loans. Jagtiani and

Lemieux (2018) find that Lending Club has penetrated areas that are underserved by traditional

banks. In Germany, De Roure et al (2016) find that Fintech credit serves a slice of the consumer

credit market neglected by German banks. Cornelli et al. (2020) find that Fintech and big tech

credit are higher where banking sector mark-ups are higher, where there are fewer bank branches

and where banking regulation is less stringent. Frost et al. (2019) use data for Mercado Credito,

which provides credit lines to small firms in Argentina on the e-commerce platform Mercado Libre.

They find that, when it comes to predicting loss rates, credit scoring techniques based on big data

and machine learning have so far outperformed credit bureau ratings.

The paper proceeds as follows. Section 2 describes some stylised facts on big tech credit and

reports some simple empirical evidence that bank credit and big tech credit respond very differently

to a monetary policy shock due to a distinct effectiveness of the collateral channel. Section 3
2Furthermore, since ultimately big tech credit supply is constrained in our setup by firms’ expected profits, our

analysis is also related to the literature on the macroeconomic effects of earnings-based borrowing constraints (e.g.
Drechsel (2022), Lian and Ma (2021)).
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describes our theoretical framework with a special focus on the dual role of the Big Tech firm as

commerce platform and financial intermediary. Section 4 describes the parametrization of the model.

Section 5 shows the steady-state equilibrium as a function of the matching efficiency between sellers

and buyers on the commerce platform. Section 6 studies the effects of big tech credit on the dynamic

responses to a monetary policy shock, and how these effects vary with the matching efficiency on

the commerce platform. Section 8 concludes.

2 Some stylised facts on Big Tech credit and the transmission of
monetary policy shocks

2.1 Expansion of big tech credit and e-commerce

Big tech platforms have expanded their lending around the world. Cornelli et al. (2020) estimates

that the flow of these new forms of credit reached USD 572 billion in 2019, more than doubling

traditional fintech credit (Figure 1, left-hand panel). While fintech credit models are built around

decentralised platforms where individual lenders choose borrowers or projects to lend to in a market

framework, big tech credit is based on a network activity that is developed mainly via e-commerce

platforms. Big Techs can use large-scale micro-level data on users, often obtained from non-financial

activities, to mitigate asymmetric information problems. There is substantial variation across

countries, with the Big Tech credit equivalent to 3.5% of the stock of total credit in China, 2.0% in

Kenya and around 1% in Korea. These figures have further expanded in recent years, especially

during the Covid-19 pandemic due to the strong increase in e-commerce activity.

Since 2017, e-commerce revenues have risen from an estimated $1.4 trillion to $2.4 trillion, or

about 2.7% of global output (Figure 2, left-hand panel). Recent estimates are that 3.5 billion

individuals globally (about 47% of the population) use e-commerce platforms today. China is the

largest market, followed by the United States, Japan, the United Kingdom and Germany. Most

of the activity is business-to-business (B2B) transactions (i.e. transactions between firms), which

account for 80% of global online transactions (Figure 2, right-hand panel).
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Figure 1: Upward trend in big tech credit
Notes: Figures include estimates. CN = China, KE = Kenya, KR = Korea, JP = Japan, RU = Russia, ID = Indonesia,
US = United States, GB = United Kingdom, NL = Netherlands, AU = Australia. 2019 fintech lending volume figures
are estimated for AU, CN, EU, GB, NZ and US. Sources: Cornelli et al. (2020).

Figure 2: Upward trend in e-commerce, mostly via Big Tech platforms
Notes: Source: V. Alfonso, C. Boar, J. Frost, L. Gambacorta and J. Liu (2021): E-commerce in the pandemic and
beyond, BIS Bulletins, no 36, January (left panel); UNCTAD with shares corresponding to averages calculated over
the period 2017-19 (right panel)
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2.2 Big tech credit vs bank credit

Big tech credit is not collateralised and it has a shorter maturity than bank credit. For the case of

China, Gambacorta et al. (2022) show that the Big Tech credit has an average maturity of less

than one year and it is typically renewed several times, as far as the credit approval remains in

place. Often big tech credit assumes the form of a credit line. While two thirds of big tech credit

has a maturity of one year or less this share drops to 43% for bank credit. Similar characteristics

are detected for Mercado Libre in Mexico (Frost et al. 2019).

Due to lack of collateral big tech credit is less correlated with house prices. Moreover, as firms

operate on e-commerce platforms the demand of big tech credit is less correlated with local business

conditions (where the firms is headquartered). Figure 3 gives a summary of the results found by

Gambacorta et al. (2022) comparing the elasticity between different credit types with respect to

house prices and local GDP. In particular, the study compares big tech credit with unsecured (not

collateralised) bank credit and secured (collateralised) bank credit. The main result is that big

tech credit does not correlate with local business conditions and house prices when controlling for

demand factors, but reacts strongly to changes in firm characteristics, such as transaction volumes

and network scores used to calculate firm credit ratings. By contrast, both secured and unsecured

bank credit react significantly to local house prices, which incorporate useful information on the

environment in which clients operate and on their creditworthiness. This evidence implies that the

wider use of big tech credit could reduce the importance of the collateral channel.
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Figure 3: Elasticity of credit with respect to house prices and GDP

Notes: The figure reports the coefficient of three different regressions (one for each credit types) in which the log of
credit is regressed with respect to the log of house prices at the city level, the log of GDP at the city level and a
complete set of time dummies. Significance level: ∗∗p < 0.05; ∗∗∗p < 0.01. Source: Gambacorta et al. (2022).
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2.3 Reactions of big tech and bank credit to a monetary policy shock

To get some preliminary evidence on the different behaviour of big tech and bank credit to a

monetary policy shock we develop a simple panel VAR analysis on annual macroeconomic data for

19 countries over the period 2005 to 20203. The interaction between monetary policy, the credit

market and economic activity is analyzed by means of the following variables: i) the property price

index (pk); ii) real GDP (Y); iii) the consumer price index (p); iv) bank lending (L); v) big tech

credit (B); vi) the short term interest rate (i). Apart from the short term interest rate, all variables

are in logarithm. The property price index and the banking credit data are taken from the BIS

Statistics Warehouse, while the real GDP and the CPI come from the IMF World Economic Outlook

database.

Big tech credit comes from Cornelli et al. (2020)4 while the short term rate has been obtained

from national central banks. Due to the presence of zero-lower bounds and unconventional monetary

policies in some jurisdictions we have used the shadow rate for the United States, the Euro Area,

Japan, the United Kingdom, Switzerland, Canada, Australia, and New Zealand5.

To avoid the problem of spurious correlations, we express all variables in first differences.6 The

starting point of the multivariate analysis is:

zi,t = µ+
p∑

k=1
φkzi,t−k + εi,t (1)

where z = [pk, Y, p, L,B, i] and εi,t is a vector of residuals, for i = 1, ..., N , where N is the number of

countries and t = 1, ...T . The deterministic part of the model includes a constant, while the number

of lags (p) has been set equal to 1 according to the Andrews and Lu (2001) criteria7.
3The 19 countries/currency areas are: Austria, Brasil, Canada, Switzerland, Chile, China, Euro Area, Great

Britain, Indonesia, Israel, India, Japan, South Korea, Mexico, Russia, Thailand, Turkey, US, South Africa.
4Big tech credit is defined as credit disbursed either directly or in partnership with financial institutions by large

companies whose primarily business is technology. For more details, please see Cornelli et al. (2020). Summary
statistics of all the variables used in the analysis are reported in Table A1 in the Appendix. Similar results are
obtained using total alternative credit (the sum of fintech and big tech credit) in the PVAR analysis (results are
available upon request).

5The methodology to calculate the shadow rates is reported in Krippner (2013, 2015), All shadow rates are available
at https://www.ljkmfa.com/visitors/.

6Unit root Phillips–Perron tests for all variables show that the null hypothesis that variables contain unit roots
is always largely rejected. The results for the unit root Phillips–Perron tests for all variables in first differences are
shown in Table A2 in the Appendix.

7The choice of the deterministic component (constant versus trend) has been verified by testing the joint hypothesis
of both the rank order and the deterministic component (so-called Pantula principle). The lag selection procedure is
described in Table A3 in the Appendix.
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Figure 4 shows the dynamic responses of the variables to a monetary policy shock. We use

a standard Cholesky decomposition and order the short term interest rate last (reacting to all

remaining variables).8 The results suggest that bank credit and big tech credit respond very

differently to monetary policy: while a one percentage point increase in the monetary policy rate

has a negative effect on bank credit, it has no significant effect on big tech credit. Importantly

also, the response of bank credit follows closely the one of property prices, while this is not the

case for big tech credit. Precisely, a one percentage point unexpected increase in the monetary

policy rate affects significantly the nominal interest rate for two consecutive years (top left panel).

During these two years, asset prices decline by 0.5 per cent after the first year and by 0.4 in the

second year (bottom right panel), bank credit drops by -1.8 per cent after one year, and by -1.0

per cent after two years (top centre panel). The effect of the monetary policy tightening becomes

statistically insignificant from the third year onwards. By contrast, the monetary policy shock does

not significantly affect big tech credit at any horizon (bottom left panel).

Figure 4 also shows that the monetary tightening induces a decline in the real GDP (top right

panel), and the CPI index. According to the forecast error variance decomposition, a substantial part

of the variability in real GDP, namely almost one quarter, is explained by bank credit, suggesting the

importance of the credit channel of monetary policy transmission (see Figure A2 in the Appendix).

The significant negative effect on the price level arrives with some delay (after one year and half) and

vanishes from the middle of the third year (bottom centre panel), in line with previous estimates.

Overall, our empirical exercise suggests that the use of big tech credit alters the effectiveness of

the credit channel of monetary policy by reducing the relevance of the “collateral channel”.

Next, we build a dynamic macroeconomic model featuring big tech and bank credit that matches

the stylised facts documented above. We then use it to analyse the implications of the expansion of

big tech credit for the macroeconomy and the transmission of monetary policy.
8Because the ordering of the variable is likely to affect orthogonalized IRFs and the interpretation of the results,

we follow the theory and order the interest rate last so it reacts to all variables within one year. This choice is in line
with the literature that analyses the effectiveness of monetary policy shocks using VAR models. Confidence intervals
are calculated using Monte Carlo simulation with p-value bands of 90%. The results do not change altering the order
of the variables in the Cholesky decomposition.
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Figure 4: Estimated impulse responses to a monetary policy shock
Notes: The graphs show the impulse response function for a shock in the ∆ short term rate. The horizontal axis
reports the number of steps in the simulation. Due to the presence of zero-lower bounds and unconventional monetary
policies in some jurisdictions we have used the shadow rate for the United States, the Euro Area, Japan, the United
Kingdom, Switzerland, Canada, Australia and New Zealand.
Source: Authors’ calculations.

3 Model

The model is characterized by three main building blocks: search and matching along the production

chain, credit frictions in the production sector, and nominal price rigidities. The model is populated

by (1) a representative household who consumes, invests and works, (2) competitive manufacturers

which produce using labor and physical capital, (3) competitive wholesalers which use manufactured

goods as inputs, (4) monopolistic retailers which buy goods from wholesalers, differentiate them, and

set prices subject to nominal rigidities, (5) a Big Tech firm which facilitates transactions between

manufacturers and wholesalers, and extends credit to the former, (6) banks which give secured loans

to manufacturers, (7) a government which issues risk–free nominal bonds, and (8) a central bank

which sets the nominal interest rate.
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Figure 5: Three layer supply chain in the model

Manufacturers sell products to wholesalers via a Big Tech commerce platform where buyers

and sellers need to search for and match with one another (Figure 5). Manufacturers finance their

working capital in advance of sales with both secured bank credit and big tech credit, and may end

up financially constrained in equilibrium.

3.1 Representative household

The household is infinitely-lived, and chooses each period how much to work Lt, consume Ct and

invest in nominal risk–free public bonds Bt and equity Et to maximize inter-temporal lifetime utility

E0

{ ∞∑
t=0

βt
(
C1−σ
t

1− σ − χ
L1+ϕ
t

1 + ϕ

)}

where Ct ≡ [
∫ 1

0 Ct(j)
ε−1
ε dj]

ε
ε−1 is a standard Dixit-Stiglitz consumption index of differentiated goods

with ε a measure of substitutability among them. The representative household maximization

problem is subject to the sequence of budget constraints

PtCt +Bh
t + EtQ

e
t ≤WtLt +Bh

t−1(1 + it−1) + EtD
e
t + Et−1Q

e
t + Υg

t + Υp
t (2)

for t = 0, 1, 2..., where Pt ≡ [
∫ 1

0 Pt(j)1−εdj]
1

1−ε is the unit price of the consumption basket, Wt is the

nominal revenue per unit of labour, Qet is the unit price of equity, it is the nominal interest rate on

public bonds, De
t is the dividend paid on equity9, Υg

t are lump-sum net transfers by the government

and Υp
t are lump-sum net pay–outs by the private sector (i.e. by manufacturers, wholesalers and

retailers). The household receives their wage as bank deposits at the beginning of period t, and
9Equity investment is used to finance capital in the manufacturing sector. For tractability, capital enters production

right away (see details in Section 3.3.2), and hence, dividends are paid in the same period when the equity investment
is made.
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use them to buy consumption goods. The maximization problem is subject to standard solvency

constraints ruling out Ponzi schemes on bonds and equity

lim
T→∞

E0

{
Λ0,T

Bh
T

PT

}
≥ 0, lim

T→∞
E0

{
Λ0,T

ETQ
e
T

PT

}
≥ 0, (3)

where Λ0,T ≡ βT
C−σT
C−σt

. Household’s optimality conditions write

χCσt L
ϕ
t = Wt

Pt
, (4)

1 = Et
{

Λt,t+1Π−1
t+1(1 + it)

}
, (5)

Qet = De
t + Et

{
Λt,t+1Π−1

t+1Q
e
t+1

}
, (6)

together with the sequence of budget constraints in (2) for t = 0, 1, 2, ..., and the transversality

conditions in (3), where Λt,t+1 ≡ β
C−σt+1
C−σt

is the real stochastic discount factor, Πt ≡ Pt
Pt−1

is the (gross)

inflation rate between t− 1 and t.

3.2 Big Tech firm

The role of the Big Tech firm is twofold – one is to run a commerce platform which facilitates

transactions between manufacturers and wholesalers, the other is to extend credit to manufacturers.

We assume the Big Tech has the ability to collect data and process information about firms’

characteristics, and use it to gradually improve the matching efficiency on its commerce platform.

The operating costs of the Big Tech firm are normalized to zero.

The Big Tech firm makes profits and builds net worth N b
t by hosting the advertisements of

sellers (manufacturers) on its commerce platform, and by perceiving a registration fee from buyers

(wholesalers). Specifically, manufacturers that are not matched with wholesalers at time t (a measure

It) post advertisements on the platform at a unit real cost χm. This implies a total real income

for the Big Tech firm in period t from hosting the advertisements of manufacturers equal to χmIt.

Furthermore, each wholesaler from the continuum of size one pays a unit real fee equal to χw for

each of the St wholesale suppliers it searches. This results in an additional real income for the Big

Tech firm in period t equal to χwSt. The Big Tech invests its net worth at the end of each period in
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nominal risk–free government bonds Bb
t ,

Bb
t = N b

t (7)

and hence,

N b
t = N b

t−1
(
1 + it−1

)
+ χmPtIt + χwPtSt (8)

Within each period, the Big Tech firm has the option to either keep funds idle, or to use them

to extend intra–temporal loans to firms selling products on its commerce platform. Since the bond

market opens only at the end of each period, a priori, the Big Tech is indifferent between keeping

funds idle within period (and getting a zero return) or using them to extend credit (and getting the

competitive intra-period loan interest rate which equals zero). For simplicity, we assume they prefer

the latter option.10 The model is calibrated such that the net worth value of the Big Tech firm is

strictly larger than the incentive–compatible credit that is willing to extend, namely

N b
t

Pt
�
∫ 1

0
L b
t (j)dj (9)

where L b
t (j) is the real value of incentive-compatible credit extended to manufacturer j ∈ [0, 1]. The

latter assumption implies that the Big Tech firm is not financially–constrained. Unlike banks, the

Big Tech can exclude the sellers from its commerce platform in case of default. Thus, as described

later on, while banks need to ask for physical collateral, the Big Tech can enforce repayment by

threatening its clients with the exclusion from the commerce platform.

3.3 Manufacturers

The economy is populated with a continuum of perfectly competitive manufacturers indexed on the

unit interval with access to an identical production technology

ymt (j) = ξ(kmt (j))γ(lmt (j))1−α, j ∈ [0, 1] (10)

where kmt (j) is the capital stock used in production by manufacturer j, lmt (j) is the labor hired by

manufacturer j, ξ is an exogenous technology process, and γ + (1− α) < 1. In the current version
10A marginally small market power on the intra-temporal loan market would make equilibrium loan market rate

strictly positive. In this case, the Big Tech would strictly prefer to lend its funds instead of keeping them idle
(conditional on a strictly positive incentive–compatible demand for intra–temporal credit).
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Manufacturer j
active at t

Manufacturer j
active at t+ 1

Manufacturer j
inactive at t

Manufacturer j
inactive at t+ 1

1− δ

f(xt)δ

1− f(xt)

Figure 6: Manufacturers’ transition probabilities between the active and inactive states from period
t to period t+ 1
Notes: δ is the probability that a manufacturer active at time t becomes inactive at time t + 1, while f(xt) is the
probability that a manufacturer inactive at t becomes active at t+ 1

of the model we assume decreasing returns to scale such that manufacturers have strictly positive

profits in equilibrium given the levels of ymt and pmt decided in the bargaining process11.

Manufacturers sell products to wholesalers. To do so, they need to match with the latter via the

Big Tech’s commerce platform. Every period, some of the existing matches split with exogenous

probability δ, while new ones form with endogenous probability f(xt) (Figure 6). Thus, at each

point in time, the economy is populated with two types of manufacturers: those matched with

wholesalers which use technology (10) to produce (a share At), and those without a match which

do not produce and do not sell (a share It = 1 − At). The latter post instead an advertisement

on the Big Tech platform to signal their availability to supply goods in the next period. For ease

of exposition, hereafter, we’ll call the former “active”, and the latter “inactive”. The timeline of

manufacturers’ operations is summarized in Table 1. Manufacturers found out in period t− 1 their

active or inactive status in period t. Active manufacturers at time t produce and sell their output

to wholesalers, while inactive ones post instead an advertisement at a unit price χm to attract

potential clients (or to maintain the advertisement if they were also inactive at t− 1).

11With constant returns to scale, the profits of active manufacturers are negative given the price and quantities
decided by Nash bargaining. An alternative way to make their profits positive would be to assume manufacturers are
monopolistically competitive.
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3.3.1 Inactive manufacturers

As already mentioned, the It manufacturers that are not matched with wholesalers at time t do not

produce and do not sell goods, and post instead ads on the Big Tech commerce platform at a fixed

unit (real) cost χm.

3.3.2 Active manufacturers

Since all At manufacturers active at date t produce the same quantity in equilibrium, we drop the

index j while describing their individual behaviour. The unit price pmt and the quantity sold ymt by

each of them are determined each period in a decentralized manner via period-by-period collective

Nash bargaining between the manufacturers and the wholesalers which are in a match at time t.12

Each manufacturer producing at time t takes an intra-temporal loan Lt to hire labor lmt at

price Wt and issues equity to buy capital kmt at price Qkt 13. For convenience, we assume that each

manufacturer issues a number of claims equal to the number of units of capital acquired

Et = kmt (11)

and pays the marginal return on capital as dividend. Under this assumption, the price of each equity

claim Qet equals in equilibrium the price of capital Qkt , namely, Qet = Qkt .14 We further assume that

manufacturers incur capital refurbishment costs before reselling capital on the market, and that

these costs equal a share 1− ρ of the future capital value. This implies that the expected resale

value of capital net of refurbishment costs equals Et
{

Λt,t+1ρ
(
Qkt+1
Pt+1

kmt

)}
15.

Two value functions on the manufacturers’ side play an important role in the Nash bargaining

process: (i) the value for a manufacturer of being “active” (V A
t ), namely of being in a match, and

(ii) the value for a manufacturer of being “inactive” (V I
t ), namely of being looking for a match. The

12Note that the aggregate wholesale production is not predetermined at time t: even though the number of
manufacturers producing at time t (At) was decided at t− 1, the quantity produced by each of them is decided at t.

13Since firms’ capital is pledged as collateral for commercial bank loans, firms need to own their capital (rather
than rent it). Therefore, we assume they buy it via equity rather than by using loans.

14A similar simplifying assumption has been used in the literature for instance in Gertler and Karadi (2011).
15The capital refurbishing cost is introduced to allow the credit constraint to bind for standard values of the

collateral pledgeability ratio ν (equal to 70% under our baseline calibration). Without refurbishing cost, since capital
is in fixed aggregate supply (and hence, does not depreciate), its real price significantly exceeds the value of the wage
bill for plausible parameterizations of the model.
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former equals:16

V A
t ≡

pmt
Pt
ξt(kmt )γ(lmt )1−α − Wt

Pt
lmt −

Qkt
Pt
kmt + Et

{
Λt,t+1ρ

(Qkt+1
Pt+1

kmt

)}
+

+ Et
{

Λt,t+1
[
(1− δ)V A

t+1 + δV I
t+1

]}
(12)

where Et
{

Λt,t+1
[
(1 − δ)V A

t+1 + δV I
t+1

]}
is the expected value of the manufacturing firm at t + 1

when with probability 1− δ will maintain its match with the wholesaler and gain V A
t+1, and with

probability δ will lose this match and gain V I
t+1 instead.

The value for a manufacturer of being inactive at time t and posting an advertisement equals

V I
t ≡ −χm + Et

{
Λt,t+1

[
f(xt)V A

t+1 + (1− f(xt))V I
t+1

]}
(13)

where Et
{

Λt,t+1
[
f(xt)V A

t+1 +
(

1−f(xt)
)
V I
t+1

]}
is the expected value at t+1 when with (endogenous)

probability f(xt) the manufacturer will be matched with a wholesaler and gain V A
t+1, and with

probability 1− f(xt) will remain inactive and gain V I
t+1 instead.

The surplus of an active manufacturer from an existing match is thus given by

Smt ≡ V A
t − V I

t ,

After replacing the expressions of V A
t from (12) and of V I

t from (13), and using manufacturer’s

production technology (10) to compute lmt (ymt , kmt ) =
[

ymt
ξt(kmt )γ

] 1
1−α , one may write Smt as a function

of ymt , pmt and kmt as follows

Smt (pmt , ymt , kmt ) =pmt
Pt
ymt −

Wt

Pt
lmt (ymt , kmt )− Qkt

Pt
kmt + Et

{
ρΛt,t+1

[Qkt+1
Pt+1

kmt

]}
+

+ χm + (1− δ − f(xt))Et{Λt,t+1[Smt+1(pmt+1, y
m
t+1, k

m
t+1)]} (14)

For future reference, we define the “reservation return of a manufacturer” Ωt as the minimum gross
16In our model, capital is chosen contemporaneously such that the value for a manufacturer of being inactive in the

network at time t is identical to the outside option for an active manufacturer when it enters the bargaining process.
If capital were chosen instead one period in advance once a manufacturer found out that would be active in the
following period, the two values would be different because inactive manufacturers would not have capital, while active
manufacturers walking away from bargaining would be left with idle capital (and hence with the net capital gains).
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return required by a manufacturer, namely as the return value pmt
Pt
ymt for which its surplus Smt is 0:

Ωt ≡
Wt

Pt
lmt (ymt , kmt ) + Qkt

Pt
kmt − Et

{
ρΛt,t+1

[Qkt+1
Pt+1

kmt

]}
− χw −

(
1− δ − f(xt)

)
Et
{

Λt,t+1
[
Smt+1

]}
(15)

Manufacturing activity is subject to financial frictions. A firm producing at time t needs to

finance the wage bill in advance of sales. The firm starts with no net worth and distributes profits

each period to the household. It thus needs to finance the wage bill with an intra-temporal loan.

There are two sources of credit available: secured bank credit and big tech credit. Both types of

credit are limited. Bank credit L s
t is limited by the expected resale value of manufacturers’ collateral.

The latter is given by a share ν of physical capital value net of refurbishing costs, implying17

L s
t ≤ νEt

{
ρΛt,t+1

[Qkt+1
Pt+1

kmt

]}
(16)

The amount of debt that manufacturers can issue to the Big Tech firm is also limited by moral

hazard. This limit equals the expected gains for manufacturers from retaining access to the Big

Tech network in the following periods (Vt+1):

L b
t ≤ bVt+1 (17)

where Vt+1 ≡ Et
{

Λt,t+1
[
(1 − δ)V A

t+1 + δV I
t+1

]}
is the expected value of retaining access to the

network if manufacturers behave and repay their credit. This is because manufacturers which

default on big tech credit are automatically excluded from the commerce platform from next period

onwards. If credit exceeded the expected gain of staying in the network, they would be better off

defaulting and running away with the funds. Anticipating this, their creditors do not extend credit

above what borrowers would get if they absconded such that the latter always have an incentive to

repay.

In the current version, we assume that a share b < 1 of these future profits can be pledged as

network collateral. The reason is twofold – first, as a short-cut for assuming that access is lost for a

finite number of periods, and second, to account for alternative ways for manufacturers to sell their
17If banks seized wholesaler’s capital, they would need to pay themselves the maintenance costs before reselling it

on the market.
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products outside the Big Tech commerce platform18. In particular, if firms had the alternative to

sell their products outside the commerce platform as well, and chose to default, they would then

lose the difference between the expected profits on the Big Tech commerce platform and those with

the alternative retail option. To the extent that that this difference is (roughly) proportional to a

share of the expected profits on the commerce platform, setting b < 1 accounts for this additional

dimension as well.

Given the two credit constraints, the total amount of credit that manufacturers can get is limited

by both collateral and incentives to remain in the Big Tech network, namely

L b
t + L s

t ≤ bVt+1 + νEt
{
ρΛt,t+1

[Qkt+1
Pt+1

kmt

]}
(18)

Since credit is used to finance labor, manufacturers’ borrowing constraint can be written as

Wt

Pt
lmt (ymt , kmt ) ≤ bVt+1 + νEt

{
ρΛt,t+1

[Qkt+1
Pt+1

kmt

]}
(19)

Note that a binding constraint on manufacturers’ credit ultimately limits manufacturers’ output,

and hence, the aggregate supply of goods in the economy.

3.4 Wholesalers

There is a continuum of size one of such firms. They are all identical and perfectly competitive.

Their behavior can thus be described by the decisions of a representative firm. The representative

wholesaler purchases manufactured goods from all At manufacturers active at time t via the Big

Tech commerce platform, and produces wholesale goods Y w
t with the following linear technology19

Y w
t =

∫ At

0
ymt (j)dj

18The rationale of assuming that the exclusion applies only to a finite number of periods has to do with Big Tech’s
incentives. Specifically, the Big Tech may not want to exclude manufacturers forever from the commerce platform
because it may lose in this case a substantial amount of fees. Alternatively, we could choose to tailor the expression of
the network value to a particular number of finite exclusion periods. For instance, if manufacturers lost access to the
commerce platform for only one period in case of default, the credit limit would be given by Vt+1 − Et

{
Λt,t+2Vt+2

}
.

19We implicitly assume that at each date the active manufacturers are indexed on the interval [0, At].
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where ymt (j) is the quantity purchased from the active manufacturer j decided by Nash–bargaining.

The quantity purchased from each active manufacturer is the same for all wholesalers

ymt (j) = ymt ∀j ∈ [0, At],

implying that the output of the representative wholesaler (and of the wholesale sector as a whole)

equals

Y w
t = Aty

m
t

Each period the representative wholesaler actively searches on the Big Tech commercial platform

for St manufacturers for use in the following period (see the timeline in Figure 1). We denote the

value of a search by Ist (the subscript s denoting ”search”) which equals

Ist ≡ −χw + g(xt)Et{Λt,t+1IBt+1} (20)

where g(xt)Et{Λt,t+1IBt+1} is the expected gain of finding a supplier. Here, g(xt) denotes the

probability to find one (to be defined shortly) and IBt+1 its state–contingent value at t+ 1 (where B

stands for ”business” relation).

As long as the value of a search Ist is strictly positive, firms will add new searches. As the number

of searches increases, the probability g(xt) that any open search finds a suitable manufacturing

supplier decreases. A lower probability of filling an open search reduces the attractiveness of looking

for an additional supplier, and decreases the value of an open search. Thus, in equilibrium, at each

date t, wholesalers will look for new suppliers until the marginal value of an open search is zero.

Thus, the equation describing the number of searches St is obtained for Ist = 0, namely for

χw = g(xt)Et{Λt,t+1IBt+1} (21)

The value of an existing relation with a manufacturing supplier at time t equals

IBt = Pwt
Pt
ywt −

pmt
Pt
ymt + (1− δ)Et

{
Λt,t+1IBt+1

}
(22)

where Pwt
Pt
ywt −

pmt
Pt
ymt are current real profits for the wholesaler from the relation with the supplier,

and (1− δ)Et{Λt,t+1IBt+1} is the expected value of the match at t+ 1 when with probability 1− δ it
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will be maintained. Since (21) holds in equilibrium, the expression of IBt in (22) further writes as

IBt = Pwt
Pt
ywt −

pmt
Pt
ymt + χm(1− δ)

g(xt)
(23)

One may write expression (23) for t+1, and combine it with equation (21) to obtain the manufacturing

supplier–search equation

χw
g(xt)

= Et
{

Λt,t+1
[Pwt+1
Pt+1

ywt+1 −
pmt+1
Pt+1

ymt+1 + χw(1− δ)
g(xt+1)

]}
(24)

The surplus for the representative wholesaler from an existing match is thus given by

Swt ≡ IBt − Ist (25)

which, using the expression of IBt in (23) and Ist = 0, can be written in equilibrium as a function of

pmt and ymt as follows

Swt (pmt , ymt ) ≡ Pwt
Pt
ywt −

pmt
Pt
ymt + χw(1− δ)

g(xt)
(26)

For future reference, we define the “reservation cost of a wholesaler” Ω̄t as the maximum amount

that the representative wholesaler can pay for an additional manufactured goods supplier, namely

the value of pmt
Pt
ymt for which its surplus Swt is 0,

Ω̄t ≡
Pwt
Pt
ywt + χw(1− δ)

g(xt)
(27)

3.5 Matching

Wholesalers search each period for inactive manufacturers in the network. That is, wholesalers

cannot buy their inputs on the manufactured goods market instantaneously. Rather, manufactured

goods suppliers need to be found first through a costly and time–consuming search process. If a

match is formed at time t, manufacturers start producing and selling goods at time t + 1. The

matching function

M(St, It) = σmS
η
t I

1−η
t , η ∈ (0, 1)
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gives the number of manufacturers which post advertisements (and do not produce) closing a deal

with the wholesale sector at time t. σm ∈ (0, 1) is a scale parameter reflecting the efficiency of the

matching process. As previously mentioned, we link the efficiency of the matching process σm to

the volume of data available to the Big Tech. The higher such volume, the more efficiently can

the Big Tech firm match sellers with buyers on the commerce platform. Notice that the matching

function is increasing in its arguments and satisfies constant returns to scale.

Since client–searching and matching is a time–consuming process, matches formed in t− 1 only

start producing in t. Furthermore, existing matches on the manufactured goods market might be

severed for exogenous reasons at the beginning of any given period, so that the stock of active

matches is subject to continual depletion. We denote with δ the exogenous fraction of the active

manufacturers which split with their client and need to post an advertisement. Hence, the number

of manufacturers active at time t+ 1 (determined at t) evolves according to the following dynamic

equation

At+1 = (1− δ)At +M(St, It),

which simply says that the number of matched (active) manufacturers at the beginning of period

t+ 1, At+1, is given by the fraction of matches in t that survives to the next period, (1− δ)At, plus

the newly-formed matches at time t, M(St, It).

We can now compute the endogenous probabilities for an inactive manufacturer to find a

match f(xt), and for an open search to be filled by a manufacturer g(xt). We first define the the

manufactured goods market tightness (xt) as the relative number of open searchers relative to the

number of inactive manufacturers

xt ≡ St/It (28)

The manufactured goods market is tight (the value of xt is high) when there are very few inactive

manufacturers It relative to the number open searches St.
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Table 1 Timeline operations – manufacturers and wholesalers

Period t− 1 Each manufacturer j ∈ [0, 1] finds out if it is active or inactive at t

Period t Manufacturers: Manufacturer j ∈ [0, 1]:

If active, produces and sells its output to wholesalers; to do so:

(i) at the beginning of the period, issues equity Et to buy capital kmt ,
gets working capital loan Lt to hire labor lmt , and produces ymt ;

(ii) at the end of the period, repays the working capital loan and
transfers the return on capital as dividend to equity investors and
any remaining profits to the household.

If inactive, pays a fee χm to post an ad on the Big Tech platform,
and transfers net period profit to the household

Wholesalers: The representative wholesaler:

(i) buys inputs from all At active manufacturing suppliers

(ii) searches for St manufacturing suppliers for use at t+ 1, paying a
unit fee equal to χw for each of these searches

Matching:

Active manufacturers and wholesalers bargain over the price pmt and
the quantity ymt of manufactured goods

Period t+ 1 If active at t, manufacturer j sells capital kmt and pays the household
back the value of its equity investment QetEt−1.

The probability that an open search is filled with an inactive manufacturer, g(xt) equals

g(xt) ≡
M(St, It)

St
= σm

(St
It

)η−1
= σmx

η−1
t (29)

Note that this probability decreases in xt, implying that wholesalers find its more difficult to find a

manufactured goods supplier when the wholesale market is tight. Similarly, the probability that any

inactive manufacturer is matched with an open search at time t, f(xt), is given by

f(xt) ≡
M(St, It)

It
= σm

(St
It

)η
= σmx

η
t (30)
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and increases in xt. This implies that inactive manufacturers find wholesale clients more easily

when the wholesale market tightness is high, that is, when the number of inactive manufacturers is

low relative to the one of open searches by wholesalers.

3.6 Retailers

Retailers are monopolistically competitive and each produces a differentiated good i ∈ [0, 1]. Each

retailer i buys wholesale goods, differentiate them with the technology

Yt(i) = Y w
t (i) (31)

which transforms one unit of wholesale good into one unit of retail good, and then re-sells them to

the household. Each retailer i is subject to a downward sloping demand schedule

Yt(i) =
(
Pt(i)
Pt

)−ε
Yt (32)

and sets its price in the presence of nominal rigidities à la Calvo (1983). Specifically, in any given

period each retailer can reset its price with a fixed probability 1− θ that is independent of the time

elapsed since the last price adjustment. Forward-looking retailers choose their price to maximize

expected future discounted profits given the demand for the goods they produce and under the

hypothesis that the price they set at date t applies at date t+ k with probability θk. The optimality

condition associated with the problem above takes the form (see e.g. Gaĺı (2015)):

∞∑
k=0

θkEt{Λt,t+kYt+k/t(1/Pt+k)(P ∗t −M (1− τ)Pwt+k} = 0 (33)

where M ≡ ε
1−ε is the optimal markup in the absence of constraints on the frequency of price

adjustment, and τ = 1
ε a subsidy on the purchase of intermediate goods. This subsidy corrects for

market power distorsions in the flexible price version of the model (and, hence also in steady-state)

and is financed with lump-sum taxes. With this subsidy, there are three remaining frictions in the

model: nominal rigidities, matching frictions and credit frictions.

3.7 Banks

Banks finance intra-period secured loans by issuing intra-period deposits (used in transactions).

These deposits are received by households at the beginning of the period and used to purchase
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consumption goods at the end of the period.

3.8 Central bank

The central bank sets the nominal risk–free policy rate it in line with the simple rule

1 + it = 1
β

Πφπ
t

(Yt
Y

)φy
eνt (34)

where Y is steady-state output and νt is a monetary policy shock following an AR(1) process. By

arbitrage, the risk-free interest rate on government bonds equals the policy rate in equilibrium.

3.9 Government

The government issues the one period public nominal risk–free bonds held by households Bh
t and by

the Big Tech firm Bb
t , subsidizes the purchase of wholesale goods by retailers at rate τ , and balances

the budget with lump–sum transfers/taxes Υg
t :

Bh
t +Bb

t =
(
Bh
t−1 +Bb

t−1

)(
1 + it−1

)
+ Υg

t + τPmt

∫ 1

0
Y m
t (i)di (35)

3.10 Market clearing

3.10.1 Retail goods market

Market clearing implies Ct(i) = Yt(i), ∀i ∈ [0, 1] and hence,

Ct = Yt, (36)

where Yt ≡ [
∫ 1

0 Yt(i)
1− 1

ε di]
ε
ε−1 . Using the definition of the aggregate price level and the fact that all

firms resetting prices will choose an identical price P ∗t , we obtain that aggregate price dynamics in

this environment are described by

Pt =
[
θ(Pt−1)1−ε + (1− θ)(P ∗t )1−ε

] 1
1−ε

(37)

After dividing both sides by Pt−1, the expression above is equivalent to

Π1−ε
t = θ + (1− θ)

(
P ∗t
Pt−1

)1−ε
(38)
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3.10.2 Wholesale goods market

Market clearing requires aggregate demand for wholesale goods by all retailers i ∈ [0, 1] to equal

their aggregate supply by wholesalers:

∫ 1

0
Yt(i)di = Y w

t (39)

3.10.3 Manufactured goods market

Market clearing requires aggregate demand for manufactured goods by wholesalers to equal their

aggregate supply by all active manufacturers at time t:

Y w
t = Aty

m
t (40)

The quantity produced by each wholesaler ymt and the price of a manufactured good pmt are

determined by period–by–period Nash–bargaining. The outcome of the latter process is described

in detail in the next section.

3.10.4 Capital market

Capital is in fixed aggregate supply K̄ and does not depreciate (“real estate”). Market clearing

requires aggregate demand for capital by all active manufacturers to equal its aggregate supply:

Atk
m
t = K̄ (41)

3.10.5 Labor market

Market clearing requires aggregate demand for labor by all active manufacturers to equal its supply

by the representative household:

Atl
m
t = Lt (42)

3.10.6 Bond market

Market clearing requires that demand for government bonds by the household and by the Big Tech

firm to equal their supply by the government:

Bh
t +Bb

t = Bt (43)
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3.10.7 Equity market

Market clearing requires that the demand for equity claims by the representative household to equal

their supply by active manufacturers wiling to finance physical capital:

Et = Atk
m
t (44)

3.11 Bargaining

In equilibrium, the wholesalers and manufacturers which are in a match obtain a total return that is

strictly higher than the expected return of unmatched wholesalers and manufacturers. The reason

is that if a manufacturer and a wholesaler separate, each will have to go through an expensive and

time-consuming process of search before meeting another partner. Hence, a realized job match needs

to share this pure economic rent which is equal to the sum of expected search costs for two parties.

We assume that this rent is shared through period–by–period collective Nash bargaining. That

is, the outcome of the bargaining process maximizes the weighted product of the parties’ surpluses

from the match according to the parties’ relative bargaining power. Bargaining takes place along

two dimensions, the price of a manufactured good pmt and the manufactured output ymt , and it is

subject to the manufacturers’ credit and technology constraints. As a result, the set {pmt , ymt } is

given by the solution to the following bargaining problem20:

{pmt , ymt , kmt } = argmax
[
Smt (pmt , ymt , kmt )

]ε[
Swt (pmt , ymt )

]1−ε
, 0 < ε < 1

subject to

Wt

Pt
lmt (ymt , kmt ) ≤ bVt+1 + νEt

{
ρΛt,t+1

[Qkt+1
Pt+1

kmt

]}
(45)

where ε is the (relative) bargaining power of the active manufacturer. According to the credit

constraint (45), the production cost cannot exceed the sum of the access value to the Big Tech

platform Vt+1 and of the physical collateral value νEt
{

Λt,t+1
[
ρ
Qkt+1
Pt+1

kmt

]}
21. Because the two parties

bargain simultaneously over the price and individual quantity of manufactured goods, the outcome

is (privately) efficient and the price of manufactured goods plays only a distributive role. As shown
20The optimal choices of pmt and ymt requires as well an appropriate choice of the capital stock kmt .
21lmt is substituted in the bargaining problem using the technology constraint, and that the constraint entering the

bargaining problem is a combination of the borrowing and technology constraints.
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shortly, the Nash bargaining model, in effect, is equivalent to one where ymt is chosen to maximize

the joint surplus of the match, while pmt is set to split that surplus according to parameter ε.

The price pmt chosen by the match satisfies the optimality condition

εSmt = (1− ε)Swt (46)

As mentioned above, this condition implies that the total surplus of a match is shared according

to the parameter ε. Specifically, letting STt ≡ Smt + Swt denote the total surplus from a match, we

obtain from (46) that Smt = εSTt and Swt = (1− ε)STt . Using the expressions of Smt from (14), and

of Swt from (26), one may further write (46) as an equation in pmt as follows

pmt
Pt
ymt = εΩ̄t + (1− ε)Ωt

We now turn to the determination of quantity ymt chosen by the match. The latter satisfies the

following optimality condition

ymt : εSwt
(
Wt

Pt

∂lmt (ymt , kmt )
∂ymt

− pmt
Pt

)
= (1− ε)Smt

(
Pwt
Pt
− pmt
Pt
− λt

1− ε
Wt

Pt

∂lmt (ymt , kmt )
∂ymt

(Swt
Smt

)ε)

where λt ≥ 0 is the Lagrangian multiplier on a manufacturer’s credit constraint22. Using (46), this

optimality condition can be further simplified under our baseline calibration with ε = 1− ε as23:

Pwt
Pt

= 1
1− α

Wt

Pt

lmt
ymt

[
1 + λt

1− ε

]
, λt ≥ 0 (47)

In the absence of credit frictions, this condition implies that the real return for a wholesaler on a

manufactured good equates its marginal production cost at the manufacturer level. With credit

frictions, tighter credit constraints (i.e. higher λt) translate in higher marginal production costs and

hence in upward pressures on inflation.

Finally, the optimality condition with respect to capital for ε = 1− ε writes as

Qkt
Pt

= γ
Pwt
Pt

ymt
kmt

+
(

1 + νλt
ε

)
Et
{
ρΛt,t+1

[Qkt+1
Pt+1

]}
(48)

22Note that the optimization problem is rephrased such that λt ≥ 0.
23The relative bargaining power of sellers and buyers may play an important role for the equilibrium allocation. In

this analysis however we remain agnostic about such effects and give both equal bargaining power. This allows also to
simplify the equilibrium expressions.
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In the absence of credit frictions, this condition defines a standard capital demand equation where

the price of capital equals its marginal return and the discounted value of its future expected value.

Note that with credit frictions capital demand accounts for how capital affects the tightness of the

credit constraint via the collateral value. Subsequently, the marginal nominal return on capital, and

hence the nominal dividend paid to the household at time t on each equity claim equals

De
t = γPmt

ymt
kmt

+
(
Pt
νλt
ε

)
Et
{
ρΛt,t+1

[Qkt+1
Pt+1

]}
(49)

As credit constraints tighten (i.e. λt increases), the price of capital increases. This is because its

marginal value as collateral asset (and hence, its marginal contribution in production) increases. To

sum up, equations (45), (46), (47), (48) and (49) describe the outcome of the bargaining process

which determines λt, pmt , ymt , kmt and De
t . Without matching and credit frictions, the model nests

the basic three-equations NK model.24

4 Parametrization of the model

We parametrize our model at quarterly frequency. One may split structural parameters of the

model in four groups (Table 2). The first group includes the standard of the basic New Keynesian

model (i.e. discount factor β, curvature of consumption utility σ, curvature of labor disutility ϕ,

labor share 1− α, elasticity of substitution between retail goods ε, Calvo index of price rigidities θ).

These parameters are set to their textbook values in Gaĺı (2015), Chapter 3. The labor disutility

parameter χ is also standard and chosen such that the efficient level of labor in steady state is one.

Policy coefficients φπ and φy are set to describe the Taylor (1993) policy rule.

The second group of parameters concerns physical capital. In this group, the index to decreasing

returns to capital (real estate) is set as in Iacoviello (2005), capital pledgeability ratio is set to 0.7,

fixed capital aggregate supply is normalized to 1, and refurbishing costs are set to 15% from capital

market value.

The third group of structural parameters concerns the standard search and matching parameters

– the relative bargaining power ε, the matching function parameter η and the probability to separate

from an existing match δ. We choose to remain agnostic about the effects of the relative bargaining
24This is also true without credit frictions only when γ = α (i.e. for constant returns to scale).
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Table 2: Parametrization

Parameter Description Value

β Discount factor 0.995
σ Curvature of consumption utility 1
ϕ Curvature of labor disutility 5
χ Labor disutility 0.75

1− α Labor share 0.75
ε Elasticity of substitution of goods 9
θ Calvo index of price rigidities 0.75
φπ Taylor coefficient inflation 1.5
φy Taylor coefficient output 0.5/4

K̄ Fixed supply of capital (real estate) 1
γ Elasticity of output to real estate 0.03

1-ρ Capital refurbishing cost (% from capital value) 15%
ν Pledgeability ratio of capital as collateral 0.7

ε Relative bargaining power of the seller 0.5
η Matching function parameter 0.5
δ Probability to separate from an existing match 5%

χw Big tech fees for manufacturers 0.1
χm Big tech fees for wholesalers 0.3
b Pledgeability ratio of network value 0.7
σm Matching efficiency [0, 1]

Note: Values are shown in quarterly rates.

power ε and the relative contribution to matching η, by setting both to 0.5. The probability to

separate from an existing match is set to 5%.

The final group of parameters plays a key role in the parametrization of our model. This category

is composed by: the matching efficiency σm which takes values from 0 to 1, the fees perceived by the

Big Tech network, χw and χm, set such that the matching probability g(x) ∈ [0, 1] in steady-state

for all σm ∈ [0, 1], and the network value pledgeability ratio b set to 10%.
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5 Big Tech efficiency and the macroeconomy: comparative statics

This section studies how the provision of big tech credit affects steady-state allocation, and how

these effects vary with the matching efficiency between sellers and buyers on Big Tech’s commerce

platform. To do so, we solve for the steady-state of the model as a function of the matching efficiency

σm. To disentangle the effect of big tech credit, we compare results in our baseline case (blue line)

with those in a counterfactual economy without big tech credit (red line), i.e. with bank credit

only. With this exercise, we aim to shed some light on how Big Techs’ entry into finance affects the

macroeconomy, and how these effects may change as these companies acquire more data on their

clients, and are able to match more efficiently sellers with buyers on their commerce platforms.

According to our results reported in Figure 7, the availability of big tech credit increases total

credit (left middle panel), relaxes credit constraints (middle right panel) and increases output

approaching it to its efficient level (top left panel). These effects work via the binding borrowing

constraint (45). Specifically, the availability of big tech credit allows manufacturers to pledge their

future expected profits Vt+1 (top right panel) as “network collateral” alongside physical capital.

Everything else equal, the higher collateral allows manufacturers to borrow more, and to hire more

labor. This leads to higher output and a relaxation of credit constraints.

Notably, the higher output translates in a higher value for manufacturers to be active in the

network (bottom right panel), and hence, to even higher expected profits than in the absence of

big tech credit. As a result, a key feedback loop emerges between the volume of big tech credit

and manufacturers’ output which works to amplify the effect of this new type of credit on the

macroeconomy.

The effect of big tech credit is magnified as the matching efficiency on the commerce platform

rises. A higher matching efficiency increases the probability for a manufacturer to find a client

(bottom left panel in Figure 7), and leads to higher expected profits, a higher value of being active

on the commerce platform (top right panel), and ultimately a larger “network collateral” (right top

panel). Everything else equal, the higher network collateral allows manufacturers to borrow more

(45), and hire more labor. This relaxes to a larger extent the tightness of borrowing constraints

relative to the case with bank credit only (middle right panel) and translates in larger effects on

total credit and output (gap). The increased relevance of big tech credit is also reflected in its higher
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share in total credit (Figure 8).
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Figure 7: Steady-state equilibrium as a function of matching efficiency on the commerce platform
Notes: Output gap: the % deviation of output from its efficient level (Y − Y e)/Y . Network collateral: expected
profits that manufacturers would lose in case of default bV . Total credit: Aggregate big tech credit and bank credit.
Manufacturer value of being active: V a. Probability to find a wholesale client: f(x). Matching efficiency: σm
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Figure 8: Steady-state share of big tech credit as the matching efficiency rises

Notes: Share of big tech credit: ratio of big tech credit and total credit. Matching efficiency: σm

6 Transmission of monetary policy: dynamic analysis

How does Big Techs’ entry into finance affect the transmission of monetary policy? We turn now to

our core research question by comparing the dynamic responses to monetary policy in our baseline

economy with those in a counterfactual economy without big tech credit. As in the previous section,

we look first at the effect of big tech credit at a given matching efficiency, and then study how this

effect varies as the matching efficiency on Big Tech’s commerce platform increases. For the first

experiment, we parametrize the matching efficiency to match the steady-state elasticities of bank

credit to real estate and of big tech credit to network profits to the ones estimated by Gambacorta

et al. (2022) in China.25

Figure 9 shows that access to big tech credit dampens the response of output to monetary policy,

and that the effect works via the credit channel. Specifically, in the baseline case with both types

of credit (dark blue line), output (top left panel) responds less to monetary policy than in the

counterfactual economy with bank credit only (red line). The figure shows that the weaker response

of output is associated with a weaker response of total credit (top right panel), explained by a low

sensitivity of big tech credit compared to that of secured bank credit (middle panels). The lower

sensitivity of big tech credit can be further traced to the significantly lower sensitivity of “network

collateral” (i.e. expected profits on the Big Tech platform, bottom left panel) compared to that of

physical collateral (i.e. real estate values pledged as collateral, bottom right panel). The findings in
25See Figures 3 and A7 in the Appendix.
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Figure 9 are corroborated by the comparison of the dynamic responses to monetary policy in the

(counterfactual) polar economies with big tech credit only and, respectively, with bank credit only.26
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Figure 9: Dynamic responses to a monetary policy shock
Notes: The monetary policy shock is an unexpected rise in the policy rate of 25 basis points. Matching efficiency
σm ≈ 0.178 which gives an elasticity of big tech credit to network sales similar to current one estimated based on
Chinese data by Gambacorta et al. (2022) (see figure A7 in the Appendix). In the specification with bank credit only,
one needs a response coefficient to inflation higher than the coefficient of the simple Taylor rule (1993) (i.e. 3 instead
of 1.5) to ensure equilibrium uniqueness. Thus, for comparison reasons, in both experiments the coefficient to inflation
in the monetary policy rule is set to 3 instead of 1.5.

26See Figure A3 in the Appendix. For comparison reasons, the level of matching efficiency is set such that the two
polar economies are characterized by the same output to credit ratio and the same credit constraint tightness (i.e. at
the intersection of the violet and red lines in Figure A5 in the Appendix.
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Figure 10: Dynamic responses to a monetary policy shock
Notes: The monetary policy shock is an unexpected rise in the policy rate of 25 basis points. The low level of matching
efficiency corresponds to σm ≈ 0.178 which gives an elasticity of big tech credit to network sales similar to current one
estimated based on Chinese data by Gambacorta et al. (2020) (see figure A7 in the Appendix). The high level of
efficiency corresponds to σm ≈ 0.93 and characterizes the highest matching efficiency when both type of credit are
available in Figure 7 (blue solid line). The monetary policy regime is described by simple Taylor rule (1993).

The effects of big tech credit on monetary policy transmission are found to be even stronger for

higher levels of matching efficiency. Specifically, the effect of monetary policy on output is weaker if

the matching efficiency is higher than the baseline efficiency considered in Figure 9 (Figure 10, blue

line), while no such differences exist in the absence of big tech credit (Figure A4 in the Appendix).

This is because a higher share of total credit, the share of big tech credit, is less responsive to
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monetary policy.

The quantitatively insignificant response of big tech credit and the strong response of bank

credit in the middle panels in Figures 9 or 10 are broadly in line with the empirical estimates in

section 2. Thus, overall, our empirical and analytical results point to a dampening of the effect of

monetary policy on credit and output as the matching efficiency of Big Tech platforms and the

share of big tech credit rise.

7 Conclusions

Motivated by the recent advent of Big Tech companies into finance, we study how this may shape

the transmission of monetary policy. We first document that big tech and bank credit respond very

differently to monetary policy, and then develop a model to rationalize our findings and help make

predictions for the future. Our model focuses on the interaction between firms on the e-commerce

platforms and on business-to-business (B2B) transactions, which account for 80% of global online

transactions. In our framework, a Big Tech platform intermediates the search and matching between

manufacturers and wholesalers and extends working capital loans to the former subject to limited

commitment. Firms have access to both big tech credit and secured bank credit. Nominal prices

are rigid and monetary policy affects real economic dynamics.

We obtain two sets of results. First, according to our model, an expansion in Big Techs, as

captured by an increase in matching efficiency on the commerce platform, raises the value for firms

of trading in the platform and the availability of big tech credit. This in turn relaxes financing

conditions and raises firms’ output, driving aggregate output closer to the efficient level. Second, big

tech credit reacts less to monetary policy due to a more muted response of firms’ opportunity cost

of default on this type of credit (future profits) compared to that of bank credit (physical collateral).

Furthermore, as matching efficiency on Big Tech’s commerce platform rises, our analysis shows that

the expansion in firms’ profits leads to a higher opportunity cost of default on big tech credit, a

higher borrowing limit, looser credit constraints and, ultimately, a higher share of big tech credit.

The latter, coupled with the muted response of this new type of credit, leads to weaker responses of

credit and output to monetary policy when matching efficiency on Big Tech’s commerce platform is

higher.
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Going forward, one may extend our analysis to include interalia, business-to-consumer (B2C)

transactions and household credit, Big Techs’ financing constraints, complementarity/substitutability

between big tech credit and bank credit, Big Tech’s market power, or a trade-off between efficiency

and privacy.
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9 Appendix

9.1 Additional information on the VAR analysis

This section reports some additional information on the VAR analysis. In particular Table A1

reports the summary statistics of the variables used in the regression, while Table A2 shows the

results for the unit root Phillips–Perron tests for all variables in first differences.

Observations Mean Std dev Min Max
∆ Ln(property price index) 274 0.05 0.05 -0.02 0.16
∆ Ln(real GDP) 304 0.01 0.09 -0.16 0.16
∆ Ln(CPI) 304 0.03 0.03 -0.00 0.10
∆ Ln(banking credit) 304 0.07 0.13 -0.32 0.46
∆ Ln(big tech credit) 304 0.29 1.17 -1.61 8.79
∆ short term rate 304 -0.27 1.64 -9.50 7.77

Table A1: Summary statistics

Notes: The sample includes 19 countries over the period 2005-2020. Data winsorised at the 5th and 95th percentiles.
Due to the presence of the zero lower bound and unconventional monetary policies in some jurisdictions we have used
the shadow rate for the United States, the Euro Area, Japan, the United Kingdom, Switzerland, Canada, Australia
and New Zealand. Sources: Cornelli et al. (2020); Krippner (2013) and (2015); BIS; IMF, World Economic Outlook;
World Bank; national data; authors’ calculations.

∆ Ln
(property

price
index)

∆ Ln
(real

GDP)

∆ Ln
(CPI)

∆ Ln
(banking
credit)

∆Ln
(Big
Tech

credit)

∆
(short
term
rate)

Stat p-
value Stat p-

value Stat p-
value Stat p-

value Stat p-
value Stat p-

value
Inverse
chi-squared
(38)

81.05 0.00 134.28 0.00 104.65 0.00 204.68 0.00 63.08 0.01 206.43 0.00

Inverse
normal -3.91 0.00 -7.34 0.00 -5.78 0.00 -10.33 0.00 -4.3 0.00 -10.91 0.00

Inverse
logit t(99) -4.02 0.00 -8.15 0.00 -6.12 0.00 -12.84 0.00 -4.55 0.00 -13.02 0.00

Modified inv
chi-squared 4.94 0.00 11.04 0.00 7.64 0.00 19.12 0.00 2.88 0.00 19.32 0.00

Table A2: Unit root tests

Notes: Based on Phillips-Perron tests. The null hypothesis is that all panels contain unit roots. The sample includes
19 countries over the period 2005-2020. Data winsorised at the 5th and 95th percentiles. Due to the presence of
zero-lower bounds and unconventional monetary policies in some jurisdictions we have used the shadow rate for the
United States, the Euro Area, Japan, the United Kingdom, Switzerland, Canada, Australia and New Zealand. Sources:
Authors’ calculations.
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The lag selection has been based on a number of tests. Below Table A3 presents results from the

first-, second-, third-, and fourth-order panel VAR models using the first four lags of the endogenous

variables as instruments. For the fourth-order panel VAR model, only the coefficient of determination

(CD) is calculated because the model is just-identified. Based on the three model-selection criteria

by Andrews and Lu (2001), the first-order panel VAR is the preferred model because this has the

smallest MBIC, MAIC, and MQIC. For a lag equal to 1 also the CD is minimized27.

Lags CD J J pvalue MBIC MAIC MQIC
1 0.95 130.12 0.07 -446.33 -85.88 -231.63
2 0.98 76.71 0.33 -307.60 -67.29 -164.46
3 0.99 49.51 0.07 -142.64 -22.49 -71.08
4 0.98

Table A3: Lag selection

Notes: The sample includes 19 countries over the period 2005-2020. Data winsorised at the 5th and 95th percentiles.
Sources: Authors’ calculations.

After fitting the reduced-form panel VAR, it is useful to understand whether past values of a

variable, say, x, are useful in predicting the values of another variable y, conditional on past values

of y, that is, whether x ”Granger-causes” y (Granger (1969)). This is implemented as separate Wald

tests with the null hypothesis that the coefficients on all the lags of an endogenous variable are

jointly equal to zero; thus the coefficients may be excluded in an equation of the panel VAR model.

Table A4 below shows the test on whether the coefficients on the lags of each variables are

zero. For example, the tests that the changes in banking credit or monetary policy interest rates

do not Granger-cause the change in the logarithm of the property price index are rejected at the

95% confidence level. Interestingly, while big tech credit does not Granger cause the property price

index, it Granger causes real GDP, banking credit and the short term rate.

The coefficients on the reduced-form panel VARs cannot be interpreted as causal influences

without imposing identifying restrictions on the parameters. If the fitted VAR model is stable, it can

be reformulated as an infinite-order VMA, on which assumptions about the error covariance matrix

may be imposed. Impulse Response Functions (IRFs) and Forecast Error Variance Decompositions

(FEVDs) have known interpretation when the panel VAR model is stable. Figure A1 shows that
27While we also want to minimize Hansen’s J statistic, it does not correct for the degrees of freedom in the model

like the MMSC by Andrews and Lu (2001).

41



Equation
/excluded

∆ Ln
(property

price
index)

∆ Ln
(real

GDP)

∆ Ln
(CPI)

∆ Ln
(banking
credit)

∆ Ln
(big tech
credit)

∆ short
term
rate

chi2 df p-
value chi2 df p-

value chi2 df p-
value chi2 df p-

value chi2 df p-
value chi2 df p-

value
∆ Ln
(property
price
index)

0.16 1 0.69 13.44 1 0.00 0.71 1 0.40 0.45 1 0.51 17.9 1 0.00

∆ Ln
(real
GDP)

0.31 1 0.58 0.05 1 0.83 0.73 1 0.39 0.01 1 0.92 3.1 1 0.08

∆ Ln
(CPI) 1.55 1 0.21 7.03 1 0.01 7.05 1 0.01 9.07 1 0.00 1.1 1 0.29

∆ Ln
(banking
credit)

9.44 1 0.00 114.62 1 0.00 1.04 1 0.31 0.4 1 0.53 1.2 1 0.28

∆ Ln
( alternative
credit)

0.01 1 0.92 3.37 1 0.07 1.86 1 0.17 5.95 1 0.02 6.4 1 0.01

∆ short
term
rate

4.2 1 0.04 8.2 1 0.00 1.8 1 0.18 5.25 1 0.02 2.59 1 0.11

All 26.69 5 0.00 141.9 5 0.00 27.65 5 0.00 29.23 5 0.00 13.12 5 0.02 26.8 5 0.00

Table A4: PVAR Granger test

Notes: The null hypothesis of the test is that the excluded variable does not Granger-cause the equation variable. The
sample includes 19 countries over the period 2005-2020. Data winsorised at the 5th and 95th percentiles. Due to the
presence of zero-lower bounds and unconventional monetary policies in some jurisdictions we have used the shadow
rate for the United States, the Euro Area, Japan, the United Kingdom, Switzerland, Canada, Australia and New
Zealand. Sources: Authors’ calculations.
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our PVAR is stable because all the moduli of the companion matrix are smaller than one and the

roots of the companion matrix are all inside the unit circle.
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Figure A1: Roots of the companion matrix

Notes: Source: Authors’ elaboration.

Now that we have established that the panel VAR model is stable, we can calculate orthogonalized

IRFs and FEVDs. Orthogonalized IRFs and FEVDs may change depending on how the endogenous

variables are ordered in the Cholesky decomposition. Specifically, the ordering constrains the timing

of the responses: shocks on variables that come earlier in the ordering will affect subsequent variables

contemporaneously, while shocks on variables that come later in the ordering will affect only the

previous variables with a lag of one period.

In order to evaluate how much of the variability of the real GDP is driven by changes in banking

credit and total alternative credit, we have computed the forecast error variance decomposition

(FEVD) for different variables. This exercise helps us to get a sense of the amount of information

coming from each variable in the formation of the forecasts. The top centre panel of Figure A2 shows

that a substantial part of the variability of real GDP is explained by bank credit. This could be due

to the importance of the credit channel in the financing of consumption and investment. Almost

one quarter of the real GDP variability can be attributed to the bank credit variable. Changes in
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interest rates explain about 5% of the GDP variability, while changes in the CPI explain another 7%.

Asset price movements contribute only for 3%, while the impact of total alternative forms of credit

contribute for less than 2%, due to the still limited macroeconomic footprint of this form of credit.

Figure A2: Forecast-error variance decomposition

Notes: The graphs show the forecast-error variance decomposition. The response variable is indicated in the panel
title and the impulse variable in the legend. The horizontal axis reports the number of steps in the simulation. Due
to the presence of zero-lower bounds and unconventional monetary policies in some jurisdictions we have used the
shadow rate for the United States, the Euro Area, Japan, the United Kingdom, Switzerland, Canada, Australia and
New Zealand. Source: Cornelli et al (2020); Krippner (2013) and (2015); BIS; IMF, World Economic Outlook; World
Bank; national data; authors’ calculations.
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9.2 Model-based dynamic responses to a monetary policy shock
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Figure A3: Dynamic responses to a monetary policy shock

Notes: The monetary policy shock is an unexpected rise in the policy rate of 25 basis points. The two polar cases
are compared at given credit–to–output ratio (which is equivalent in the model to a given tightness of the credit
constraint). As shown in the middle panel in Figure 7 by the red and the magenta lines, this obtains for σm ≈ 0.85. In
the specification with bank credit only, one needs a response coefficient to inflation higher than 3 (when the response
to output is set as in the Taylor rule) to ensure equilibrium uniqueness. Thus, for comparison reasons, the monetary
policy rule assumed in this experiment has a response coefficient to inflation equal to 3 instead of the one in the
simple Taylor rule (1993) equal to 1.5.
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Figure A4: Dynamic responses to a monetary policy shock

Notes: The monetary policy shock is an unexpected rise in the policy rate of 25 basis points. The low level of matching
efficiency corresponds to σm ≈ 0.178 which gives an elasticity of big tech credit to network sales similar to current one
estimated based on Chinese data by Gambacorta et al. (2020). The high level of efficiency corresponds to σm ≈ 0.93
and characterizes the highest matching efficiency when both type of credit are available in Figure 7 (blue solid line). In
the specification with bank credit only, one needs a response coefficient to inflation higher than 3 (when the response
to output is set as in the Taylor rule) to ensure equilibrium uniqueness. Thus, for comparison reasons, the monetary
policy rule assumed in this experiment has a response coefficient to inflation equal to 3 instead of the one in the
simple Taylor rule (1993) equal to 1.5.
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Figure A5: Steady-state equilibrium as a function of matching efficiency on the commerce platform

Notes: Output gap: the % deviation of output from its efficient level (Y − Y e)/Y . Network collateral: expected
profits that manufacturers would lose in case of default bV a. Total credit: Aggregate big tech credit and bank credit.
Manufacturer value of being active: V a. Probability to find a wholesale client: f(x). Matching efficiency: σm
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Figure A6: Steady-state and matching efficiency

Notes: Share of big tech credit: ratio of big tech credit and total credit. Matching efficiency: σm

Figure A7: Steady-state and matching efficiency

Notes: Matching efficiency: σm
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