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This paper demonstrates the value of nonlinear machine learning techniques in

forecasting macroeconomic time series. We show that a long short-term memory

(LSTM) recurrent neural network outperforms the linear autoregressive model (AR),

the random walk model (RW), seasonal autoregressive model (SARIMA), Markov

switching model (MS-AR) and the simple fully-connected neural network (NN) in

forecasting monthly US CPI inflation. At all horizons the root mean squared forecast

error (RMSFE) of the LSTM is approximately one third of the RMSFE of the

random walk. We also show that rolling-window real-time forecasts of the LSTM

are significantly more accurate compared to the AR and NN forecasts. Additionally

we conduct a sensitivity analysis with respect to hyper-parameters and provide a

qualitative interpretation of what the networks learn by applying a novel layer-wise

relevance propagation technique. We conclude that the good performance of the

LSTM results from their ability to capture nonlinearities in the data in a combination

with their flexible architecture.
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1. Introduction

Accurate inflation forecasting is essential for many economic decisions. Private investors

predict future inflation to adjust their asset holdings, firms forecast the aggregate inflation

level to adjust their prices and maximize profits, central banks use inflation forecasts

to conduct an efficient monetary policy. Fiscal authorities need to forecast inflation

dynamics if they use the rate of inflation to adjust social security payments and income

tax brackets.

Inflation forecasting is an interesting yet challenging task for both academic researchers

and practitioners. As Stock & Watson (2007) point out, inflation in the US has recently

become both easier and harder to predict. On the one hand, since the mid-80s inflation

became less volatile and as a result easier to predict. On the other hand, it became

harder to outperform a naive univariate random walk-type forecast. For example,

Atkeson & Ohanian (2001) show that averaging over the last 12 months gives a more

accurate forecast of the 12-month-ahead inflation than a backward looking Phillips curve.

Macroeconomic literature replies to this challenge by arguing that the inflation process

might be changing over time. Consequently, a nonlinear model would give a more

accurate inflation forecast.1

This paper evaluates the performance of a nonlinear nonparametric method from the

machine learning literature, that is novel in this context - a long short-term memory

recurrent neural network (LSTM) which is a particular type of a neural network (NN).

We see four main advantages of this method. First, LSTMs are flexible and data-

driven. It means that the researcher does not have to specify the exact form of the

nonlinearity. Instead the LSTM will infer it from the data itself. Second, as stated

by the universal approximation theorem (Cybenko, 1989), under some mild regularity

conditions LSTMs and neural networks (NNs) of any type in general can approximate

any continuous function arbitrarily accurately. At the same time these models are more

parsimonious than many other nonlinear time series models (Barron, 1993). Third,

1For example Stock & Watson (2007) fit an integrated moving average (time-varying trend-cycle) model

to the GDP-deflator data, and show that the coefficients in this model changed in the beginning of

70s and then again in the mid 80s. The authors conclude that ”... if the inflation process has changed

in the past, it could change again.”
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LSTMs were developed specifically for the sequential data analysis and were shown to

be very successful with this task. In the machine learning literature this method is

widely applied in text analysis. For example, smartphones use LSTMs to predict the

last word in the sentence and help the user while she is typing a message. Finally, the

recent development of the optimization routines for NNs and the libraries that employ

computer GPUs2 made the training of NNs and RNNs significantly more feasible.

We compare the performance of an LSTM with a simple fully-connected NN model as

well as with several benchmark models that are frequently used for economic forecasting:

a linear autoregressive model (AR), a random walk-type model (RW), a seasonal autoregressive

model SARIMA and a Markov-switching autoregressive model (MS-AR). All our models

are univariate. We take monthly CPI inflation data for the US as a benchmark and

present supplementary analysis for the PCE inflation in the Appendix.

One must note that the performance of neural networks is determined by several

hyper-parameters such as the number of hidden units or the share of the data that is

assigned as training set. To provide some guidance on how to choose these parameters we

conduct an extensive sensitivity analysis. In total we train about 4300 different models.

Moreover, neural networks are often criticized for their ”black box” structure. Since NNs

are nonlinear in parameters it is difficult to interpret what they actually learn and how

the input affects the output. We attempt to access the relevant importance of the model

inputs for the final prediction by applying a layer-wise relevance propagation algorithm

(LRP). The idea of this novel method is to decompose the final predicted value into the

sum of the positive and negative values coming from the activated hidden units. The

outcomes of the hidden units can in turn be decomposed into the contributions of the

input neurons. This allows us to track how the value of a particular input contributes

to the final prediction of the network.

According to our results, the LSTM outperforms all considered models at all forecasting

horizons. The average improvement in terms of the root mean squared forecast error

(RMSFE) is about 50-70%. One-step-ahead RMSFE of the all models is approximately

60% of the corresponding measure for the RW model. At longer horizons, 2 through

15 steps ahead, performance of the AR and NN deteriorates with the relative RMSFEs

2We use Python TensorFlow on 4 NVIDIA K20m GPUs.

3



rising up to about 90% of the random walk’s error. Relative errors of the SARIMA

model converge to one even faster; at 6 steps ahead SARIMA performance is on par

with the RW and at 12-15 steps ahead it performs worse. The MS-AR model performs

well at a 15 steps ahead horizon. However, its shorter forecasts are inferior to all

other considered models. Finally, our main finding is that the LSTM produces the

most accurate predictions at all horizons longer than 2 months. Its errors equal to

approximately 50-30% of the random walk errors. Consequently, the main takeaway from

out analysis is that the LSTM is an efficient nonlinear model for forecasting inflation

especially at longer horizons. Our work suggests that long short-term memory recurrent

neural networks in particular, and machine learning methods in general, deserve more

attention from economists and policymakers.

To further support this statement we put ourselves in the world of policymakers

who has to take decisions in real-time and computed real-time rolling-window forecasts

from the year 2000 onward. This can be easily done with CPI data because it is not

revised. We show that the LSTM achieves a better goodness of fit compared to the AR

and the simple NN methods in terms of both the mean absolute forecast error and the

mean squared forecast error. The difference in the accuracy of one-step-ahead monthly

forecasts is significant as evaluated by the Deabold-Mariano test.

One might wonder how difficult it is to set up a proper neural network model given

that these models are very rich in hyper-parameters. It turns out, that only a few of

them meaningfully affect the performance of the neural networks on the inflation data.

Based on our sensitivity analysis we can conclude that the simple NN performs the best

when Bayesian information criterion (BIC) is used for the lag length selection and when

the maximum number of lags to select from is large. The performance of the NN is

insensitive to the number of hidden units as long as there are more hidden units than

the number of lags. Similarly, the performance of the LSTM model deteriorates if the

number of lags to select from is too small. The accuracy of the LSTM initially increases

with the number of hidden units and then plateaus at around 100. For both models, the

results are highly insensitive to the learning rate parameter. It is also important to train

the LSTM for at least 500 epochs. In other words when setting up an LSTM model for

a forecasting exercise, the researcher should bear in mind two aspects: first he should
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not include too few hidden units or allow for too few lags; second he should train the

model for a sufficient amount of time. Other hyper-parameters appear not to be much

of a concern.

Rather then treating the neural networks as ”black box” models we try to shed some

light on the reasons behind their good performance. We conduct the layer-wise relevance

propagation LRP analysis, that allows us to identify which model inputs, that is past lags

of inflation, are the most important for the prediction of the inflation today. For example,

the simple NNs mostly pay attention to the most recent lag and the same lag one year

ago when computing their predictions. It seems like neural networks behave similarly

to the AR(1) model. Additionally, they are able to detect the annual seasonality in the

data and take this into account. For the LSTMs the picture is strikingly different. The

pattern it learns is more complex and differs significantly for different data points. We

conclude that the LSTM performance results from its ability to explore the nonlinearity

in the inflation dynamics and its flexibility to adjust the importance of different input

lags for the final predicted value depending on the sample.

This paper is not alone in applying deep learning methods to macroeconomic forecasting.

Ahmed et al. (2010) and Stock & Watson (1998) compared linear and nonlinear methods

for macroeconomic forecasting by averaging their performance over a large number of

macro time series. Similar to our results these studies find that simple NNs perform well

at short forecasting horizons. However, they use a different optimization algorithm to

train the NNs and a different procedure to select the test set. Other examples include

Kuan & Liu (1995) who demonstrated the success of simple and recurrent NNs for the

exchange rate forecasting in several countries, Swanson & White (1997b,a) who evaluated

the advantage of the NNs with time varying coefficients in a real-time forecasting setup,

Kock et al. (2011) who discuss direct versus indirect forecasts with NNs.

Chen et al. (2001), Nakamura (2005) and McAdam & McNelis (2005) discuss the

inflation forecasting with neural networks. These studies show that NNs outperform

benchmark linear models for shorter horizons based on various performance measures.

Our paper is different from the above mentioned literature in that, to the best of our

knowledge, this is the first work that applies an LSTM RNN to inflation forecasting.

Makridakis et al. (2018) do look at LSTM in their large study of the machine learning
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methods. They, however, consider an average performance across a large number of

the data series, and do not look on inflation in isolation. Their study indicates that

machine learning methods do not outperform standard statistical methods on average.

One of the most straightforward reasons for why their conclusion is in contrast with

our findings might be the fact that nonlinear methods are not beneficial for all macro

time-series. They, however, might be superior when one wants to forecasts inflation.

For example, Stock & Watson (1999) found that at 12 months ahead horizon nonlinear

methods perform the best for some macro-variables, including consumer prices, but not

all of them. Another work that is closely related to our study is Elger et al. (2006) who

consider a recurrent neural network but of a different class than the LSTMs analyzed

here. They show that for shorter horizons recurrent NNs are comparable with Markov

switching autoregressive models and at longer horizons Markov switching models are

more accurate. However, they apply a different type of RNN, different cross-validation

and forecast evaluation procedures. Moreover, their study uses GDP inflation data while

we focus on CPI inflation forecasting.

We also use a different optimization algorithm to fit the NN and RNN models than the

existing literature - the Adam optimizer. Our choice of the optimization routine is based

on its success in machine learning applications. While many of the existing papers decide

on a particular architecture of the NN a priori, this study, on the contrary, carefully

investigates how our conclusions about the comparison of different methods are affected

by the hyper-parameters of the NN and the LSTM. Finally, our LRP computation is

novel to the macro forecasting literature. The discussion of LRP in the machine learning

context can be found in Lapuschkin et al. (2016) and Arras et al. (2017). In a broader

sense this paper contributes to the literature on the nonlinear time-series forecasting.

Teräsvirta (2006), Teräsvirta & CASE (2017) provide an overview of these methods.

We consider our work to be different from the usual ”horse-race” exercise. Our goal is

rather to investigate the novel machine learning method in more details. We comment on

the specification selection and try to understand the mechanism behind the successful

performance of the LSTM models. In this regard our work is in line with the recent

paper of Medeiros et al. (2018) that argues that machine learning methods offer a very

promising toolkit for inflation predictions. They focus on multivariate random forest
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models and the current paper supports this conclusion by presenting the evidence for

univariate recurrent neural networks.

The rest of the paper is organized as follows. Section 2 describes our set up and

the forecasting models. It also gives a brief data description. Results are discussed in

Section 3. Section 4 lays out the sensitivity analysis and section 5 presents the layer-wise

relevance propagation analysis. Section 6 concludes.

2. Methodology

We rank the forecasting methods based on the root mean squared forecast error (RMSFE)

for out-of-sample forecasts on the test set. The share of the test set is set to 10% of the

whole data sample, that is the number of observations in the test set N test is equal to

10% of the total number of observations. Test sets are constructed by randomly drawing

N test non-overlapping data sequences of the length p in a Monte Carlo cross validation

setting, where p is the selected lag length . The same procedure is applied to obtain

validation sets for the sensitivity analysis and real-time forecasts. Note that since our

test set is randomly drawn from the entire dataset, our cross-validation results converge

to the leave-one-out cross-validation (LOOCV). However, we can set the number of

replications to be smaller than the sample size as it is required for LOOCV to save

computation time.

We consider indirect (rolling forward) h-step-ahead forecasts. While in theory direct

forecasts are more robust to model misspecifications, they are less efficient if the model

is correctly specified. Marcellino et al. (2006) showed that in the linear forecasting setup

indirect forecasts typically perform better than direct ones. Kock et al. (2011) address

the same issue for nonlinear prediction methods. They conclude that iterated and direct

forecast often have similar performance and their exact ranking is problem- and data-

specific. Direct forecasts also require a separate model for each forecasting horizon and

are thus more complex computationally. We focus on the indirect forecasts in this study

and leave the extension to direct forecasts for our future research.

We are interested in the conditional forecasts which is made at date t− 1. We start
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from the following model:

yt = f (Zt,p;W ) + ut,with Zt,p = [yt−1, ...yt−p] (1)

where yt is a variable of interest, f(·) is an unknown, potentially nonlinear function, W

is the matrix of model parameters (weights), Z collects the lags of y and the number of

lags p is chosen by information criterion.

One and two step-ahead forecasts based on the information set Ft−1 can be computed

as:

ŷt|t−1 = E [yt|Ft−1] = f (Zt,p;W ) (2)

ŷt+1|t−1 = E [yt+1|Ft−1] = E
[
f
(
ŷt|t−1, Zt,p−1;W

)
|Ft−1

]
= (3)

= E [f (f(Zt,p;W ) + ut, Zt,p−1;W ) |Ft−1]

Because the function f(·) is nonlinear we cannot take the error term ut out of the

expectation operator as in the linear case. Ideally one would need to estimate the

expectation term by numerical integration. However, moving beyond the 2-step-ahead

forecast would require evaluating multiple integrals. Moreover, the assumption about

the distribution of the ut could matter for the result and it would be hard to justify what

this distribution should be. Finally, numerical integration or integration by bootstrap

could introduce additional inefficiency.

We overcome this problem by assuming that the error term is zero in all states ut = 0.

It implies that our forecast is not an unbiased conditional mean estimator.3 In other

words, our nonlinear models receive solely the information about the first moment of the

1-step-ahead forecast when they compute the h ≥ 2 forecasts. It means that if anything

we only harm the performance of the nonlinear estimators. Our results can be seen as

the lower bound of potential forecasting performance of the nonlinear methods.

3All the models are fit under the early-stopping rule. The parameters are regularized in order to achieve

a better generalization. As a result the estimators are biased by construction in any case.
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2.1. Forecasting Models

1. RW: random walk-type forecasts are constructed as a simple average over the n

previous periods (Stock & Watson, 2007; Atkeson & Ohanian, 2001).

ŷt|t−1 =
1

n

n∑
i=1

yt−i (4)

The results are presented for the standard random walk model that is n=1. We also

tried n=3, 6 or 12 and obtain very similar results in terms of model comparison.

2. AR(p): univariate autoregession model of an order p .

ŷt|t−1 = A+BZt−1,with Zt−1 = [yt−1, ...yt−p] (5)

3. NN: simple fully-connected neural network (Swanson & White, 1997b):

ŷt|t−1 = b+
N∑
n=1

wn · σ
(
bn +

P∑
τ=1

wnτ yt−τ
)

(6)

where σ(·) is a non-linear activation function,4 b is a bias of the output and bn is a bias

of the hidden units n, wn is a weight from the hidden unit n to the output, wnτ is a

weight from the lag τ to the hidden unit n. Figure 1 sketches the structure of a simple

NN model (biases are ignored).

4. LSTM: Long short-term memory recurrent neural network.

LSTM represents a particular type of a recurrent neural network which is in turn a

specific type a simple fully connected neural network (Figure 2). The difference between

the NN and the recurrent neural network (RNN) comes from the recurrent nature of the

latter. An RNN consists of a NN which is repeated as many times as there are data

lags in the input. The prediction is computed sequentially after each time step of the

input. Intermediate output, which is called the ”state” of the network, is used as an

additional input at the next time step. Representation of a standard recurrent neural

network is given on the Figure 3. Recurrent propagation of the state is represented by

the horizontal arrows. Note that the weights of the network stay the same, i.e. the

”RNN” block in the schematic is identical for every time step.

4We use rectified linear unit (ReLU) which is defined as σ(x) = max(0, x). Our choice is motivated by

the computational efficiency of this nonlinear function (Nair & Hinton, 2010).
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ŷt|t−1yt−1

yt−2

w1
1

w2
1

w1

Figure 1: Fully-connected Neural Network (p=2)

The RNN’s structure has two important implications. First, the network is explicitly

informed that the input lag yt−2 comes before the lag yt−1. More recent lags are likely

to be more important for the final prediction. This stands in contrast to the simple NN

that treats all the lags equally such that the sequence of lags does not matter. Second,

the network remembers information about the distant input lags when computing the

final output. In text analysis, for example, if an RNN is used to predict the last word in

the sentence, the first few words can inform the network about whether the sentiment

of the sentence is positive or negative. In our application, the state of the RNN can

potentially infer the information about trend, cycle or seasonality. Another appealing

feature of the RNN which is, however, less relevant in our application, is that the input

sequences {yt−τ}pτ=1 do not have to be all of the same length, i.e. p can be variable.

The LSTM network is used in a sequence similar to the aforementioned RNN of which

it is a special kind. It is distinct through its internal structure consisting of so called

”gates”. These allow the network to decide on its own what part of the network state

and the input it wants to remember on the next iteration and what part it can forget.

Such architecture leads to a better empirical performance (Hochreiter & Schmidhuber,

1997). A representation of an LSTM cell is given in Figure 4. This cell is used recursively

as many times as there are data lags in the model.
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Figure 2: Classification of Artificial Neural Networks

ŷt|t−1RNNRNNRNN

yt−3 yt−2 yt−1

Figure 3: Basic Representation of a Recurrent Neural Network (p=3)

Figure 4: LSTM Cell Representation

Here yt−1 represents the input at the time step t (for example a lagged inflation

value). c is the ”state” of the network which represents its memory about the past. ht

denotes the output of the LSTM at the step t. σ and tanh represent the gates which are

small neural networks that have the sigmoid function or the hyperbolic tangent function
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as activations at the output. On the left of the diagram one can see that the prediction

of the network for the period t that was computed on the previous step (ht−1) and the

input value at this step (yt−1) are combined and then filtered through the four gates.

These determine what part of the state ct−1 should be forgotten, what and how much

information should be added to the state and how the prediction for the step t should

be adjusted based on the state. On the right side of the diagram the output of the cell

is presented: it is a new updated value ht, and ŷ that is computed from it.

5. Other nonlinear models: SARIMA(p, d, q)(P,D,Q)S and MS-AR.

We additionally looked at two nonlinear time-series methods: a seasonal autoregressive

model (SARIMA) and a Markov switching autoregressive model (MS-AR). The choice

of the SARIMA model (Lütkepohl, 2005) is motivated by the fact, that the performance

of the nonlinear neural network models might be resulting from their ability to capture

seasonality and it is interesting to compare their performance with a linear seasonal

model. Based on the ACF and PACF analysis5 we select the SARIMA(1,1,1)(0,0,1)[12]

model. We set the number of seasons to be 12 because we use monthly data.

The choice of the Markov switching model is motivated by the findings of Elger

et al. (2006) that the Markov switching model is superior to the neural network in

inflation forecasting at longer horizons. We use the same model specification, that is

a two-state discrete Markov chain with regime-switching volatility and constant across

regimes autoregressive parameters.

Both methods are trained with the maximum likelihood method implemented in the

statsmodels library in Python.6 Note that the SARIMA and the MS-AR are trained with

a different training procedure than the rest of the models. Consequently, the differences

in the forecasting performance of these two models result from both the optimization

routine and the model structured. We would also like to stress that even though these

models are more common than the neural networks they are neither simple nor easy to

fit. A number of issues such as model specification, selection of the hyper-parameters

and local optima are applicable to SARIMA and MS-AR.

5Available upon request.
6Available on statsmodels.org
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2.2. Optimization Algorithm

All models (except the RW, SARIMA and MS-AR) are trained by backpropagation

with an adaptive stochastic gradient descent optimizer - Adam - whose success was

largely documented in the machine learning literature (Kingma & Ba, 2014). Adam is

different form the standard stochastic gradient descent algorithm in that it updates

each parameter θ separately and changes the speed of the adjustment η depending

on the ”momentum” mt or approximated first-oder moment and the ”friction” vt or

approximated second-order moment of the gradient gt.

mt = β1mt−1 + (1− β1) · gt (7)

vt = β2vt−1 + (1− β2) · g2
t (8)

m̂t =
mt

1− β1
t (9)

v̂t =
vt

1− β2
t (10)

θt+1 = θt − η ·
m̂t√
v̂t + ε

(11)

Here β1 and β2 are tuning parameters of the estimator. Typical values are: β1 =

0.9, β2 = 0.999.

Parameter updating is stopped when the RMSFE stops to decline for the test set and

not for the train set. This early stopping rule regularizes the parameters and ensures a

better generalization of the model. Since the standard frequentist procedure of fitting

AR models does not include any regularization we rewrite our AR in a simple NN form

and train it in the same way as NN and LSTM models.7 More specifically, we represent

the AR model as a special case of a simple NN with a linear activation function and no

hidden layer.

2.3. Data

We use monthly data on annual US CPI inflation from the FRED database of the Federal

Reserve Bank of St. Louis for 1960:01 - 2018:07 which constitutes 703 observations

(Appendix A presents the data series as well as the Dicky-Fuller test for non-stationarity).

7Alternatively, one can use a Bayesian AR model with a prior that imposes shrinkage.
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Inflation rates are calculated as annual growth rates of the consumer price indices. The

data are non-seasonally adjusted. Since we use annual growth rates the seasonality

should not be an issue. Moreover, we do not to use the seasonally-adjusted series that

are computed by the Bureau of Labor Statistics because the seasonality filters that they

use can favor nonlinear methods. More specifically, the seasonal adjustment is a two-

sided non-linear data transformation. Nonlinear methods can, potentially, achieve a

good fit by simply unraveling the seasonal transformation. Additionally, the seasonally

adjusted data are subject to annual revisions and thus cannot be used for our real-

time forecasting exercise. We are also interested in testing the hypothesis that neural

networks can automatically learn the seasonality of the data.

As a robustness check in the Appendix D we present the results for personal consumption

expenditures (PCE) data for the same time span. PCE inflation rates were computed

by the same procedure as for the CPI.

3. Results

3.1. Average Forecasting Performance

This section presents the results of the model estimation and compares their average

forecasting performance on the test set. We start by accessing the accuracy of our models

in terms of the average RMSFE of point forecasts, where the average is computed over

20 runs of Monte-Carlo cross-validation.

To rank the AR, NN and LSTM models we proceed as follows. On the first step

for each model type we specify a range of possible values for every hyper-parameter.

The hyper-parameters include information criteria (AIC, BIC, HQIC or use the given

maximum lag length without any information criteria), maximum lag length to select

from (12 or 24), number of hidden units for neural networks (range from 10 to 100) and

the initial learning rate for the Adam optimizer (range from 0.001 to 0.3). In total we

train 4420 different models. On the second step we select top 10% of each of the model

types: AR, NN and LSTM. For those top candidates we run cross-validation to obtain

mean and standard errors of the RMSFE at each forecast horizon. We finally rank the

models based on their test errors after the cross-validation and present results for the
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best performer for each model.

SARIMA and MS-AR models were estimated with the maximum likelihood method

without a hyper-parameter tunning. Their errors are computed on the randomly sampled

test sets exactly as for the other methods.

Table 1 summarizes the performance for all forecasting models relative to the RW

which is taken as a benchmark. The results suggest 4 conclusions. First, at all horizons

performance of all models is systematically superior to the simple RW model; the forecast

errors of alternative models range between 23% and 90% of the RW’s errors. Second, the

LSTM gives more accurate predictions than all other methods even at the 15-step-ahead

horizon. The RMSFE of the LSTM is on average just one third of the RW’s. Third,

performance of the AR and NN models track each other closely at each forecasting

horizon. As the number of forecast steps h increases, the performance of the AR and

NN models deteriorates and their forecast errors become closer in magnitude to the

RW. Third, the performance of the SARIMA and the MS-AR models are in general

slightly worse than of the other methods at all forecasting horizons. Our explanation

for this observation is the different training procedure. The parameters of the AR, NN

and LSTM models are regularized to achieve a better generalization. In contrast, the

SARIMA and the MS-AR are estimated by the maximum likelihood.

Our results are in line with Elger et al. (2006) since we also find that the simple NN

outperforms the MS-AR model at shorter horizons and becomes less accurate than the

MS-AR at longer horizons (12 or more month ahead). However, in contrast to their

results our specification of the recurrent neural network - the LSTM - outperforms the

MS-AR model at all horizons.

Since our networks are trained by a local optimizer multiple optima might be a

concern. We follow the literature (Stock & Watson, 1998) and look at the distributions

of the forecast errors after training the networks on the same train and test set but

with randomly chosen initial values for the parameters. Low variance in this random

initialization experiment indicates that the models converge to approximately the same

forecast (in terms of RMSFE) in each optimization chain. Table 2 presents the absolute

values of RMSFE, standard errors (first number in the brackets) and the random initialization

variance (second number in the brackets) after this exercise for the models trained with
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Table 1: CPI Forecast RMSFE relative to Random Walk

Test Error h=2 h=3 h=6 h=12 h=15

AR 0.58 (0.10) 0.69 (0.08) 0.68 (0.09) 0.76 (0.09) 0.87 (0.07) 0.90 (0.07)

NN 0.55 (0.06) 0.65 (0.07) 0.68 (0.05) 0.75 (0.05) 0.91 (0.03) 0.95 (0.02)

LSTM 0.59 (0.08) 0.37 (0.09) 0.28 (0.10) 0.23 (0.08) 0.24 (0.11) 0.27 (0.13)

SARIMA 0.60 (0.13) 0.76 (0.14) 0.80 (0.14) 0.96 (0.18) 1.11 (0.14) 1.11 (0.16)

MS-AR 0.69 (0.12) 1.14 (0.21) 1.17 (0.23) 1.26 (0.26) 1.07 (0.13) 0.73 (0.08)

RW 0.48 0.66 0.87 1.30 2.00 2.19

Note: standard errors are computed by 20 runs of Monte-Carlo cross-validation. The values for RW are absolute and given in

%. h indicates the forecast horizon.

ADAM optimizer: simple NN, LSTM and the AR.

Table 2: CPI Forecast RMSFE and Random Initialization Variance

Model Test Error h=2 h=3 h=6 h=12

AR 0.28 (0.05, 0.00) 0.46 (0.06, 0.00) 0.59 (0.08, 0.00) 0.98 (0.12, 0.00) 1.74 (0.15, 0.00)

NN 0.27 (0.03, 0.01) 0.43 (0.05, 0.01) 0.60 (0.04, 0.01) 0.98 (0.06, 0.01) 1.82 (0.06, 0.01)

LSTM 0.28 (0.04, 0.04) 0.24 (0.06, 0.04) 0.24 (0.09, 0.04) 0.30 (0.11, 0.07) 0.47 (0.21, 0.17)

Note: Mean and standard deviation of various models after 20 runs of Monte-Carlo cross-validation (first number in the brackets) and after 20

runs on the same data with randomized starting values (second number in the brackets).

AR and NN forecasts have almost no variance due to the initialization which implies

that the training algorithm is robust and finds the same optimum in every run. For the

LSTM, on contrary, the random-initialization-variance constitutes a large portion of the

total variation in the forecast. Two conclusions can be drawn from this observation.

First, the loss function of the best performing LSTM is high-dimensional and highly

non-linear. It contains 409018 parameters and is hard to optimize. The outcome of

optimization is rather unstable and depends on the starting points. Second, even withing

8The best performing LSTM has 100 hidden units which means that at each time step each of its 4 gates

transforms 100 states from the previous step and a 1-dimensional input into 100 updated states. Each

update also contains a bias parameter. After the last lag of the data the final state of the network

is transformed into the final 1-dimensional output by multiplying the state by a (100x1) matrix. A

bias is added at this final step. As a result the LSTM has 4 × ((101 × 100) + 100) + 100 + 1 = 40901

parameters.
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these wide random-initialization bounds the performance of the LSTM is unambiguously

better at all forecasting horizons. It might become a caveat if one is interested in a precise

parameter identification. However, it does not seem to be a concern since the row model

parameters have no meaningful interpretation and can hardly be the ultimate goal of

the analysis.

3.2. Real Time Forecasting

After documenting a good performance of the LSTM models we conduct a counter-

factual exercise to answer the question ”What would have happened if forecasters were

using LSTM models instead of AR to predict inflation since the year 2000?”. This

question is particularly relevant from the policymaker’s perspective since the he or she

has to make decisions in real-time and therefore need forecasts based on the data available

in real-time.

We recursively compute inflation forecasts year by year. Estimations for the year

2001 are based solely on the information up until 2000, including lag length selection,

model fitting and cross-validation to select the hyper-parameters and to compute the

confidence bounds. Forecasts for h ≥ 2 are computed by iterating forward the 1-step-

ahead forecast.

One-step-ahead rolling window forecasts. In Figure 5 we plot the realization of CPI

inflation (red solid line) together with the corresponding forecasts (blue dashed lines).

Each point on the forecast line is computed recursively as a one-step-ahead point forecast

by training the model on the preceding 480 months (rolling window procedure). The

series are aligned such that the vertical distance represents the forecast error. Forecast

lines are in general similar but do differ in some periods. Visual inspection suggests that

the LSTM forecast is on average more accurate. The statistics in Table 3 confirm more

formally that over the entire forecasting period the LSTM’s 1-month-ahead forecast is

more accurate both in terms of MSFE and MAFE (mean absolute forecast error).

To access the significance of the sample forecast superiority we conduct the Diebold-

Mariano test (2002) with modification suggested by Harvey et. al (1997) to account

for serial correlation.9 Given two forecast series the test computes a forecast error loss

9The code is taken from John Tsang: https://github.com/johntwk/Diebold-Mariano-Test.
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Figure 5: In-Sample Real-Time 1-step-ahead Forecasts, %, 2000:01-2018:12

Table 3: Summary Statistics for Real-Time Forecasts Errors

MAFE MSFE DM test (AR) DM test (NN)

statistics p-value statistics p-value

AR 0.55 0.56 n.a. n.a. n.a. n.a.

LSTM 0.37 0.31 -5.14 0.00 -3.72 0.00

NN 0.46 0.42 -3.61 0.00 n.a. n.a.
Note: MAFE stands for mean absolute forecast error, MSFE stands for mean squared forecast error.

The comparison model for the Diebold-Mariano test is indicated in brackets, MSFE is used as a criterion

for the test.

differential d12t = L(e1t)−L(e2t) for each t and runs a z -test of the hypothesis that the

mean of the differential is zero. The error loss function L(·) is specified by the researcher;

we chose quadratic loss, e.i. L(et) = e2
t . Under the null, the Diebold-Mariano statistic
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is distributed according to a normal distribution:

d̄12

σ̂d̄
∼ N(0, 1)

Here d̄12 is the sample average of the loss differential and the σ̂d̄ is its sample variance.

Test statistics and p-values are presented in Table 3. The results indicate a significant

superiority of the LSTM forecasts. Both mean differentials for the LSTM versus NN and

versus AR are negative and significant.

Longer horizons indirect forecasts. Figures 6 through 9 depict several examples of

the 1 to 12 month ahead predictions of the different models. Red solid lines depict the

real data series and the blue dashed lines are the forecasts. Pictures for all years 2000

through 2018 are presented in the Appendix B.

These pictures confirm the conclusions of Table 1. For some years the gain in accuracy

of the LSTM performance is noticeable especially at longer horizons. For example, for

years 2002, 2003, 2004, 2006, 2007. However, the accuracy has a high variance. One of

the reason for that are the ”wild” forecasts that LSTM produces for several years, for

example, 2010, 2017. The problem is particularly severe for longer horizons. Implausible

forecasts can presumably be eliminated by the researcher through forecast trimming.

4. Sensitivity Analysis

The performance of neural networks depends crucially on the selected hyper-parameters.

It can also depend on the lag selection criterion and maximum number of lags that this

criterion is allowed to choose from. To access the sensitivity of our forecasting models

to the parameter choices we consider the best performing 10% of each model type and

take a closer look at their hyper-parameters.

Table 4, Table 5 and Table 6 present the top 10 performers among AR models, top 10

among NNs and top 10 among LSTMs respectively. Figure 10 and Figure 11 present the

sensitivity of the best performing NN and LSTM models respectively. To create these

plots we took the top performing NN or LSTM model, varied one hyper-parameter of

interest at a time - the number of hidden units, initial learning rate for the optimizer,

number of training epochs or the share of the train set - and documented the changes

in the model’s performance.
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Figure 6: Real-Time Forecast 2007
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Figure 7: Real-Time Forecast 2008

Figure 8: Real-Time Forecast 2009
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Figure 9: Real-Time Forecast 2010

We now document some recommendations regarding the hyper-parameters for each

model type.

AR model. The AR model performs equally well over most lag selection criteria.

Based on the results in Table 4 AIC, BIC or fixed number of lags result in virtually the

same performance. None of the models with HQIC enters the top 10 list which implies

that this does not lead to the good performance. Leaning rate for AR should be at least

0.1 and the network should be trained for at least 5000 epochs.

NN model. As can be seen in Table 5 the simple NN performs best when Bayesian

information criterion is used for the lag length selection and when the maximum number

of lags to select from is large. The performance of the NN is insensitive to the number

of hidden units as long as there are more hidden units than lags. Initial learning rate

is also irrelevant for the the NN’s performance. The bottom left plot on the Figure 10

indicates that the test error of the NN achieves minimum at around 1000 epochs and
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Table 4: Top Best Models of AR with Parameters

Test Error h=2 h=3 h=6 h=12 h=15 infc p Lag LR epochs

1 0.28 0.46 0.59 0.98 1.74 1.96 None 24 24 0.3 16000

2 0.29 0.50 0.67 1.01 1.84 2.08 bic 14 24 0.1 16000

3 0.29 0.50 0.66 1.01 1.84 2.08 bic 14 24 0.3 16000

4 0.30 0.42 0.54 0.97 1.79 1.98 None 24 24 0.1 5000

5 0.30 0.45 0.65 1.17 1.70 1.98 aic 19 24 0.1 10000

6 0.30 0.50 0.65 1.00 1.85 2.08 bic 14 24 0.3 10000

7 0.30 0.46 0.64 1.16 1.73 1.98 aic 19 24 0.3 10000

8 0.30 0.46 0.61 1.00 1.77 1.97 None 24 24 0.1 18000

9 0.30 0.49 0.65 0.98 1.84 2.08 bic 14 24 0.1 10000

10 0.30 0.51 0.68 1.02 1.85 2.08 bic 14 24 0.1 18000

Note: selection is based on the average 1-step-ahead RMSFE. h - number of forecast steps, infc - information criterion, p is

either the optimally selected number of lags or the max lag, Lag - maximum number of lags.

stays unchanged afterwards.10

LSTM model. The results for the LSTM are rather mixed with regard to the information

criteria. Three best performing models are the ones with a fixed and large number of

lags. The maximum number of lags of the top models is 24 which was the largest number

we try. The forecast error of LSTM initially decreases with the number of hidden units

and then plateaus at around 100. As for the NN the LSTM results are highly insensitive

to the learning rate parameter and for both models it is essential to allow for a reasonable

number of the training epochs. The best LSTMs are normally trained for 2000 epochs.

In summary, a researcher should bear in mind two aspects when deciding on the

LSTM architecture: first the number of hidden units and the maximum number of lags

for the information criterion both should not be too small; second the researcher should

train the model for a sufficient amount of time. Other hyper-parameters appear not to

be much of a concern.

10Note that the train error is strictly decreasing in the number of training epochs while the test error

is not - the problem called over-fitting. Training of the networks is therefore stopped at the point

of the test error minimum and before the train error arrives its minimum. This represents the

”early-stopping” principle.
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Table 5: Top Best Models of NN with Parameters

Test Error h=2 h=3 h=6 h=12 h=15 n infc p Lag LR epochs

1 0.27 0.43 0.60 0.98 1.82 2.09 50 bic 14 24 0.00 2000

2 0.27 0.42 0.59 0.96 1.81 2.07 100 bic 14 24 0.00 1000

3 0.27 0.42 0.59 0.97 1.81 2.08 100 bic 14 24 0.00 2000

4 0.27 0.43 0.61 0.96 1.83 2.07 50 bic 14 24 0.00 2000

5 0.27 0.44 0.60 0.99 1.84 2.07 20 bic 14 24 0.00 2000

6 0.27 0.43 0.60 0.98 1.83 2.07 100 bic 14 24 0.00 2000

7 0.28 0.44 0.61 0.99 1.84 2.08 100 bic 14 24 0.00 1000

8 0.28 0.42 0.58 0.94 1.78 2.10 100 bic 14 24 0.01 2000

9 0.28 0.44 0.60 0.95 1.82 2.10 50 bic 14 24 0.00 1000

10 0.28 0.45 0.61 0.95 1.81 2.07 50 bic 14 24 0.01 2000

Note: h - number of forecast steps, n - number of hidden units, infc - information criterion, p is either the optimally selected number

of lags or the max lag, L - maximum number of lags, LR - learning rate.

Table 6: Top Best Models of LSTM with Parameters

Test Error h=2 h=3 h=6 h=12 h=15 n infc p Lag LR epochs

1 0.28 0.24 0.24 0.30 0.47 0.60 100 None 24 24 0.03 2000

2 0.28 0.20 0.19 0.23 0.41 0.51 100 None 24 24 0.00 2000

3 0.29 0.24 0.23 0.27 0.43 0.52 100 None 24 24 0.01 2000

4 0.29 0.39 0.45 0.57 1.19 1.48 100 aic 19 24 0.01 1000

5 0.29 0.38 0.46 0.70 1.38 1.67 100 bic 14 24 0.03 2000

6 0.29 0.38 0.45 0.55 1.16 1.42 50 aic 19 24 0.03 2000

7 0.29 0.37 0.44 0.55 1.11 1.41 50 aic 19 24 0.01 2000

8 0.30 0.40 0.47 0.60 1.18 1.48 100 aic 19 24 0.03 1000

9 0.30 0.22 0.23 0.26 0.42 0.55 100 None 24 24 0.10 2000

10 0.30 0.38 0.45 0.52 1.09 1.35 50 aic 19 24 0.00 2000

Note: h - number of forecast steps, n - number of hidden units, infc - information criterion, p is either the optimally selected number

of lags or the max lag, L - maximum number of lags, LR - learning rate.
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Figure 10: Sensitivity Analysis, Simple NN. Dots indicate mean RMSFE and black bars indicate 90%

credible sets after 20 runs of Monte-Carlo cross-validation.

5. Understanding the Mechanism: Layer-wise Relevance

Propagation

After fitting NN and LSTM models one is naturally interested in interpreting what the

networks learned from the data and understanding what features of the input (in our

applications different lags) are the most important for the network outcome. In contrast

to linear models it is not possible to directly interpret the weights of the neural networks

since the final prediction is a nonlinear function of the network parameters.
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Figure 11: Sensitivity Analysis, LSTM. Dots indicate mean RMSFE and black bars indicate 90%

credible sets after 20 runs of Monte-Carlo cross-validation.

Lapuschkin et al. (2016) suggest to access the importance of model inputs by layer-

wise relevance propagation (LRP). A detailed description of the LRP algorithm lies

beyond the scope of this paper and we will only sketch the main idea. The LRP procedure

attaches a value to every neuron (including the input neurons - lags) that quantifies its

contribution to the network output. This value is called ”relevance”. It is computed

layer-wise by aggregating the signals that a neuron contributes to its successors. The

signal’s value depends on the weights attached to the connections between a given neuron

and its successors. Relevance of the input ”neurons” give an estimation of their relative

importance for the final prediction.
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Figure 12 depicts two examples of the LRP measurement for the top performing

NN (top row) and the top performing LSTM (bottom row). Additional LRP plots can

be found in the Appendix C. The black solid line depicts the actual data. Each bar

represents the relevance of a particular lag which was fed into the model as an input.

The LSTM has 14 lags and the NN has 24. The rightmost value of each plot depicted

with a dashed line is the 1-step-ahead prediction of the corresponding network. Red bars

indicate the lags which contribute positively to the predicted values and blue bars imply

that the value at the corresponding lag tells the network to decrease the final prediction.

Intensity of the color measures the magnitude of the relevance so white bars represent

zero relevance.

Figure 12: LRP plots for NN (top row) and LSTM (bottom row)

Several observations are worth pointing out. The plots for the NN suggest that the

most recent lag (t=-1) as well as the 12th and 13th lags normally contribute the most

to the final network outcome. Additionally, the lags with the kinks in the data are

sometimes important as, for example, the 3rd lag on the left upper plot. In a nutshell,
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Figure 13: LRP plot for the best AR model

when computing its 1-step-ahead prediction the simple NN takes the average over the

most recent lag and the same lag one year ago and then adjusts the forested value if some

extreme turns in the trend were observed. It seems like the NN is able to understand

the annual nature of the data. It builds a model which is close to an AR(1) in its spirit

but adjusted for the annual data structure.

The results for LSTM are more complex. In general the network learns a periodic

pattern in which a series of 3-4 blue bars are followed by a series of 3-4 red bars. The

most recent lags (1st to 4th) have a positive contribution for the majority of the years,

6th through 8th lags normally contribute negatively and so on. Another observation

is that the magnitude of the inflation level at a particular lag seems to be important.

Extremely low values often have very small relevance, so the color of the bars for these

lags is almost white. While it is not possible to find a simple rule for how the LSTM

decides on its forecast value, our LRP analysis suggests that this recurrent neural network

fits a nonlinear periodic function and constructs its prediction based on the presence of

peaks and declines at particular lags. Additional plots in the appendix also support

these conclusions.

The fact that the NN model performs very similar to the regularized AR model (which

coefficients are depicted on the Figure 13) signals that it is hard to judge if accounting
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for non-linearity automatically improves forecasts (Álvarez-Dı́az & Gupta, 2016). The

good performance of the LSTM, instead, comes from the combination of non-linearity

and a non-sparsity of the model in a sense that the LSTM pays equal attention to all

data lags. This conclusion is in accordance with Medeiros et al. (2018) who argue that

machine learning methods select non-sparse model specifications.

Moreover, the coefficients for the AR model are fixed for all data points. It means

that the contribution of the nth lag to the final prediction is constant or, in other words,

this lag always has the same relevance. For the NN model this relevance does not have

to be constant but in fact, as we see from the Figure 12, it varies very little from one

data point to the other. In contrast, the relevance of the lag n is different for different

data points in the LSTM model. The LSTM takes advantage of its flexible architecture

and treats different data points differently.

6. Conclusion

This paper evaluates the performance of a nonlinear machine learning method - the long

short-term memory recurrent neural network (LSTM) - on the inflation forecasting and

compares it to the standard fully connected neural network as well as to the classical

methods - the random walk model, linear autoregsression models, seasonal ARIMA

model and the Markov switching model.

According to our findings the LSTM outperforms all other forecasting techniques

especially at longer horizons with the RMSFE being approximately one third to one halve

of the errors for the classical models. We further investigate the real-time forecasting

performance of the LSTM by computing 1-month-ahead predictions in a rolling-window

setting. We find that its prediction is significantly superior to the NN and VAR forecasts.

However, the errors of indirect LSTM forecasts at longer horizons exhibit high variation.

LSTMs are extremely accurate in some years and produce ”wild forecasts” in others.

Implausible forecasts can presumably be eliminated by the researcher through forecast

trimming. It remains an open question whether the efficiency of long term forecasts can

be further improved by explicitly optimizing the models for a particular forecast horizon

(direct forecasts) or for an average inflation rate over the next 12 months.

We show that LSTM models are sensitive to the choice of a few hyper-parameters
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and it is therefore worth one’s while to tailor these parameters according to the specific

forecasting task. Our LRP analysis suggests some intuition for the reasons behind the

good performance of the LSTM networks: In addition to capturing the nonlinear features

of the data these recurrent neural networks are adjusting to the composition of those

inputs that are most relevant for the final prediction. In contrast to the AR and simple

NN model LSTMs do not induce sparsity and use all data lags for computing the forecast.

In the light of our results further analysis of the LSTM’s performance on predicting

other macroeconomic time series as well as inflation prediction in a multivariate-forecasting

setting seems to be a promising avenue for future research.
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Teräsvirta, Timo. 2006. Forecasting economic variables with nonlinear models. Handbook of economic

forecasting, 1, 413–457.
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Appendices

A. CPI Inflation Data

Figure 14: Annual CPI Inflation, % , Monthly frequency, from 1960-01 to 2018-07

Augmented Dicky-Fuller Test:

ADF-statistics: -3.06

p-value: 0.02
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B. 12-Months-Ahead Forecasts

Figure 15: Real Time Forecasts, Forecast Step h=1:12, 2000-2005
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Figure 16: Real Time Forecasts, Forecast Step h=1:12, 2006-2011
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Figure 17: Real Time Forecasts, Forecast Step h=1:12, 2012-2018:07
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C. LRP Analysis

Figure 18: Layer-wise Relevance Propagation Analysis for Simple NN, Examples (part 1)
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Figure 19: Layer-wise Relevance Propagation Analysis for Simple NN, Examples (part 2)
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Figure 20: Layer-wise Relevance Propagation Analysis for LSTM, Examples (part 1)
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Figure 21: Layer-wise Relevance Propagation Analysis for LSTM, Examples (part 2)
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D. Results for Personal Consumption Expenditures (PCE)

In this section we present the results for the data on PCE inflation - presumably the

primary inflation indicator that the US central bank uses to develop economic policy.

These results were created in the same way as the ones presented above. The general

conclusion of the main text remains the same.

As can be seen in Table 7 and Table 8, all models systematically perform better than

random walk, The LSTM model shows the best performance. On this dataset the LSTM

is not out-performing the simpler NN and the AR model significantly indicating that

the more sophisticated structure of the LSTM is not necessary for this data.

Table 7: PCE Forecast RMSFE relative to Random Walk

Test Error h=2 h=3 h=6 h=12

AR 0.25 (0.05) 0.32 (0.05) 0.38 (0.04) 0.48 (0.07) 0.43 (0.08)

LSTM 0.28 (0.04) 0.29 (0.04) 0.29 (0.04) 0.30 (0.05) 0.34 (0.07)

NN 0.25 (0.05) 0.29 (0.04) 0.34 (0.05) 0.47 (0.07) 0.41 (0.08)

SARIMA 0.24 (0.06) 0.29 (0.07) 0.30 (0.07) 0.35 (0.08) 0.51 (0.10)

MS-AR 0.37 (0.10) 0.40 (0.11) 0.39 (0.11) 0.62 (0.35) 2.47 (0.79)

RW 0.48 0.66 0.87 1.30 2.00

Note: standard errors are computed by 20 runs of Monte-Carlo cross-validation. The values for RW are absolute and given in

%. h indicates the forecast horizon.

Table 8: PCE Forecast RMSFE and Random Initialization Variance

Model Test Error h=2 h=3 h=6 h=12

AR 0.12 (0.02, 0.00) 0.21 (0.03, 0.00) 0.34 (0.04, 0.00) 0.62 (0.09, 0.00) 0.87 (0.17, 0.00)

LSTM 0.14 (0.02, 0.06) 0.19 (0.03, 0.05) 0.26 (0.03, 0.05) 0.39 (0.06, 0.05) 0.67 (0.14, 0.15)

NN 0.12 (0.02, 0.00) 0.19 (0.03, 0.01) 0.30 (0.04, 0.02) 0.60 (0.09, 0.02) 0.82 (0.15, 0.01)

Note: Mean and standard deviation of various models after 20 runs of Monte-Carlo cross-validation (first number in the brackets) and after 20

runs on the same data with randomized starting values (second number in the brackets).
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D.1. Real Time Forecasting

Figure 22 shows the results of the real time forecast exercise. From Table 9 one can

see that the methods are very close to each other in terms of performance. This is in

accordance to the results in Table 7, since the real time forecasting is a one-step ahead

exercise. On this forecast horizon the crossvalidation also showed only small differences

between the models.

Figure 22: In-Sample Real-Time 1-step-ahead Forecasts, %, 2000:01-2018:12

D.2. Sensitivity Analysis

The best performing combinations of hyperparameters can be seen in Tables 10, 11 and

12. The models showed the same patterns in the sensitivity of the performance to certain

parameter changes as before with the PCI data.
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Table 9: Summary Statistics for Real-Time Forecasts Errors

MAFE MSFE DM test (AR) DM test (NN)

statistics p-value statistics p-value

AR 0.13 0.03 -1.36 0.18 -0.77 0.45

LSTM 0.15 0.04 n.a. n.a. 1.12 0.26

NN 0.14 0.04 n.a. n.a. n.a. n.a.
Note: MAFE stands for mean absolute forecast error, MSFE stands for mean squared forecast error.

The comparison model for the Diebold-Mariano test is indicated in brackets, MSFE is used as a criterion

for the test.

Table 10: Top Best Models of AR with Parameters

Test Error h=2 h=3 h=6 h=12 h=15 infc p Lag LR epochs

1 0.12 0.21 0.34 0.62 0.87 0.80 None 24 24 0.30 18000

2 0.12 0.21 0.33 0.61 0.84 0.80 None 24 24 0.05 18000

3 0.13 0.24 0.36 0.61 0.87 0.95 None 19 19 0.10 16000

4 0.13 0.23 0.35 0.65 1.14 1.21 hqic 14 19 0.10 16000

5 0.13 0.24 0.35 0.63 0.89 0.94 None 19 19 0.10 18000

6 0.14 0.22 0.34 0.63 0.85 0.78 None 24 24 0.10 18000

7 0.14 0.24 0.35 0.65 1.15 1.22 hqic 14 14 0.30 10000

8 0.14 0.26 0.36 0.64 0.88 0.93 None 19 19 0.30 18000

9 0.14 0.23 0.34 0.63 0.85 0.80 None 24 24 0.30 10000

10 0.14 0.23 0.34 0.62 0.82 0.78 None 24 24 0.05 10000

Note: selection is based on the average 1-step-ahead RMSFE. h - number of forecast steps, infc - information criterion, p is

either the optimally selected number of lags or the max lag, Lag - maximum number of lags.
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Table 11: Top Best Models of NN with Parameters

Test Error h=2 h=3 h=6 h=12 h=15 n infc p Lag LR epochs

1 0.12 0.19 0.30 0.60 0.82 0.75 50 None 24 24 0.03 3000

2 0.13 0.21 0.28 0.55 1.05 1.22 100 aic 14 24 0.01 2000

3 0.13 0.21 0.31 0.59 1.09 1.18 20 aic 14 24 0.03 3000

4 0.13 0.21 0.30 0.57 0.98 1.08 100 bic 14 24 0.00 3000

5 0.13 0.20 0.29 0.56 1.02 1.13 100 aic 14 24 0.03 3000

6 0.13 0.19 0.27 0.53 0.98 1.15 100 bic 14 24 0.01 2000

7 0.13 0.20 0.29 0.58 1.03 1.16 50 aic 14 24 0.01 2000

8 0.13 0.22 0.32 0.60 1.07 1.21 50 hqic 5 12 0.03 3000

9 0.13 0.22 0.32 0.61 1.07 1.15 100 bic 14 24 0.00 2000

10 0.13 0.21 0.32 0.61 1.07 1.19 20 aic 14 24 0.00 3000

Note: h - number of forecast steps, n - number of hidden units, infc - information criterion, p is either the optimally selected number

of lags or the max lag, L - maximum number of lags, LR - learning rate.

Table 12: Top Best Models of LSTM with Parameters

Test Error h=2 h=3 h=6 h=12 h=15 n infc p Lag LR epochs

1 0.14 0.19 0.26 0.39 0.67 0.81 100 None 12 12 0.01 3000

2 0.14 0.18 0.20 0.30 0.48 0.55 100 None 24 24 0.03 3000

3 0.14 0.19 0.24 0.37 0.66 0.81 100 hqic 14 24 0.03 2000

4 0.14 0.19 0.24 0.38 0.67 0.80 20 None 24 24 0.03 3000

5 0.14 0.22 0.29 0.44 0.79 0.94 20 aic 7 12 0.03 3000

6 0.14 0.19 0.24 0.37 0.64 0.80 100 bic 14 24 0.01 3000

7 0.14 0.23 0.30 0.49 0.89 1.04 20 bic 5 12 0.01 3000

8 0.14 0.19 0.24 0.36 0.66 0.79 50 bic 14 24 0.01 3000

9 0.14 0.19 0.24 0.39 0.73 0.90 100 bic 14 24 0.03 3000

10 0.15 0.22 0.29 0.44 0.77 0.89 50 bic 5 12 0.00 3000

Note: h - number of forecast steps, n - number of hidden units, infc - information criterion, p is either the optimally selected number

of lags or the max lag, L - maximum number of lags, LR - learning rate.
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