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Abstract

Volatility is an important ingredient in economic and financial decision making and
yet the interaction between the levels and volatilities of macroeconomic and finan-
cial variables is not well understood. We propose a class of nonlinear dynamic factor
models that has factor structures for both levels and volatilities. Both sets of latent
factors are modeled jointly in an unrestricted vector autoregressive model. We develop
a computationally convenient approximate filtering method for the estimation of all
factors. The algorithm relies on numerical integration and can be implemented by
augmenting the Kalman filter with weighted least squares regressions. The determin-
istic model parameters can be estimated by maximum likelihood. We derive the large
sample properties of our method. The model is applied in two empirical studies. First,
we consider euro area government bond yields between 2008 and 2012 and show that
the volatility factor became an economically significant predictor of the yield levels
in several countries. Bond purchases by the European Central Bank reduced yields
but not the dispersion of pricing errors. Second, the model is applied for forecasting
the levels of U.S. macroeconomic variables. We show that the inclusion of interacting
volatility factors improves out-of-sample forecasts.
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1 Introduction

The presence of factor structures for the levels of macroeconomic and financial time series

panels has been firmly established. Several recent studies have suggested similar structures

for the volatilities of such panels.1 It is natural to ask how the shocks that drive the level

factors interact with the shocks that drive the volatility factors. For example, we may ask

whether the volatility shocks have, potentially pervasive, influence over the level factors.

And vice versa: whether the level shocks influence the volatility factors. We tackle this

question by proposing a novel dynamic factor model where the level and volatility factors

are jointly modeled in an unrestricted vector autoregressive model. The model is a natural

extension of the dynamic factor model for levels.2

The observations of the nonlinear factor model are modeled by potentially non-Gaussian

densities. The densities are parameterized by two signals: one for the level and one for

the volatility. The deviation from normality is important for macroeconomic and financial

panels where heavy tails and skewness are common features. The signals are modeled by

factor structures to reflect the empirical regularity that levels and volatilities of different

series tend to move together. The common level and volatility factors are modeled jointly

in an unrestricted vector autoregressive model.

The dynamic factor model with interacting level and volatility factors requires the de-

velopment of new methodology for the estimation of the factors and the model parameters.

Two aspects are crucial. First, conventional methods for factor models such as princi-

pal components and maximum likelihood methods based on the Kalman filter cannot be

adopted since the model is potentially non-Gaussian and the volatility factors enter the

model non-linearly. Second, given that the level and volatility factors are contemporane-

ously and non-contemporaneously (lagged) correlated, standard Gibbs sampling routines

such as those developed in Chib, Nardari and Shephard (2006) and more recently Kast-

ner, Fruhwirth-Schnatter and Lopes (2017) also break down. In general, simulation based

1See for some recent examples Jurado, Ludvigson and Ng (2015), Barigozzi and Hallin (2016), Creal and
Wu (2016) and Gorodnichenko and Ng (2017).

2Stock and Watson (2016) provide a recent review of the (structural) factor model literature.
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methods, like particle filtering, Markov Chain Monte Carlo and importance sampling, are

computationally expensive for the type of large dimensional panels that we consider in this

paper. In addition, standard implementations may suffer from infinite variance problems,

see Kohn and Scharth (2016) for a recent discussion.

Instead, we introduce a new approximate online filtering algorithm that is based on nu-

merical integration methods. In this online efficient numerical integration (OENI) algorithm

the infeasible true filtering density is replaced by an approximate filtering density from the

Gaussian family where the mean and variance are chosen to minimize the divergence between

the two densities. The latter criterion can be viewed as an online version of the efficient im-

portance sampling criterion that is considered in Richard and Zhang (2007) and Koopman,

Lucas and Scharth (2015). The minimum variance approximating density can be obtained

by numerical integration methods that are implemented by weighted least squares regres-

sions. As a by-product the algorithm produces an accurate approximation for the marginal

likelihood that we use to obtain maximum likelihood estimates for the deterministic model

parameters. We show that the approximation error is of order Oppn�1q for all quantities

of interest, where n is the cross-sectional dimension of the panel. The approximation error

does not accumulate over time. The main theoretical take away from our approach is that

for nonlinear panels that depend on a small number of common factors numerically efficient

integration methods for the posterior densities are very accurate.

The proposed factor model and the accompanying estimation method can be adopted for

structural analysis as well as forecasting purposes. Moreover, several new questions can be

addressed using the model.

First, as a response to the problem of omitted variables in small structural vector au-

toregressive models it has become standard practice to include common factors from large

macroeconomic panels in structural vector autoregressive models, see Bernanke, Boivin and

Eliasz (2005) and Stock and Watson (2016). Our model extends this approach by also allow-

ing the researcher to control for volatility factors from large panels. Second, the influence of

shocks to volatility factors are of interest in their own right. Several existing identification
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approaches exists in the literature and can be adopted for our model, see Ramey (2016) and

Carriero, Clark and Marcellino (2017). Third, the model facilitates testing the exogeneity

of the variance shocks with respect to the mean shocks. Many recent studies allow for time-

varying variances but assume that the shocks to the variance factor are uncorrelated with

the mean shock, see for examples Koopman and Bos (2004) and Chib et al. (2006). In our

framework a simple likelihood ratio test can asses the appropriateness of this assumption.

A detailed comparison to existing models in the literature is given below.

Two empirical applications have formed the motivation for our extension of the dynamic

factor model. First, a significant literature in finance explains government bond yields across

different maturities and time using three common factors for the conditional mean, see e.g.

Duffie and Kan (1996) and Dai and Singleton (2000). Such factors are often interpreted as

level, slope, and curvature, see e.g. Diebold and Li (2006), Diebold, Rudebusch and Aruoba

(2006), and Christensen, Diebold and Rudebusch (2011). Typically, common factors explain

a large part of the cross-sectional variation in bond yields. During a liquidity crisis, however,

substantial pricing errors can occur. Hu, Pan and Wang (2013) argue that pronounced

deviations of observed yields from their model-implied counterparts are likely due to low

market liquidity and an absence of arbitrage capital. The measurement error volatility

factor can then be interpreted as a market (il)liquidity factor. In our empirical application

we adopt the nonlinear dynamic factor model to study the interaction between the level

and volatility factors for four panels of euro area government bond yields. We find that a

shock to market illiquidity typically increased the level factor and reduced the (negative)

slope factor. I.e., market illiquidity raised all yields, and longer-term yields by more than

short-term yields. The observations that some government bond markets lacked “depth and

liquidity” motivated the ECB to purchase certain government bonds within its Securities

Markets Programme (SMP) between 2010 and 2012.3 Our framework allows us to trace

out the impact of SMP purchases on the term structure of bond yields while controlling

3We refer to Eser and Schwaab (2016), Ghysels, Idier, Manganelli and Vergote (2016) and Pooter, Martin
and Pruitt (2017) for earlier work on the effects of the SMP.
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for market illiquidity and other variables. We find that bond purchases for Italy and Spain

substantially reduced yield levels but not pricing errors.

Second, recent interest in macroeconomics has turned to the influence of uncertainty on

the levels of macroeconomic variables, see e.g. Bloom (2009) and Jurado et al. (2015). In

our nonlinear factor model uncertainty is captured by the volatility factors. Uncertainty is

allowed to freely interact with the levels of macroeconomic variables. By contrast, Jurado

et al. (2015), Carriero et al. (2017), and Gorodnichenko and Ng (2017) need to impose

a-priori restrictions on how the level and volatility factors can interact. Our framework

facilitates explicit testing for the contemporaneous exogeneity of the volatility factors with

respect to the level factors. In the empirical study we ask whether the volatility factors

improve the prediction of the levels of macroeconomic variables. It is well known that the

standard dynamic factor model for levels is hard to outperform, see Stock and Watson

(2012). Nevertheless we find that adding the volatility factors reduce the mean-squared

forecast errors.

The next section introduces our nonlinear dynamic factor model and clarifies how it

relates to other factor models in the literature. Section 3 presents our estimation methodol-

ogy. Sections 4 and 5 study euro area bond markets and the U.S. macroeconomy. Section 6

concludes and presents directions for further research.

2 Statistical model

We introduce the nonlinear dynamic factor model with interacting level and volatility factors

for the n � 1 observation vectors yt � py1,t, . . . , yn,tq
1, where the index t refers to the time

period. In total we have observations for t � 1 to T . Two sets of common factors are

important in our work: (i) the r level factors ft � pf1,t, . . . , fr,tq
1 and (ii) the q log volatility

factors ht � ph1,t, . . . , hq,tq
1. We summary the factors in the pr � qq � 1 vector αt � pf 1t , h

1
tq
1.
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The model for observations yi,t is summarized by

yi,t|αt
i.d.
� ppyi,t|µi,t, σ

2
i,t;ψq, µi,t � λ1ift, σ2

i,t � exppl1ihtq,

αt � pIk � Φqδ � Φαt�1 � ηt, ηt
i.d.
� Np0,Σq,

(1)

where i.d. stands for independently distributed across i and t, and ppyi,t|µi,t, σ
2
i,t;ψq denotes

a density with mean µi,t and variance σ2
i,t. The inclusion of the parameter vector ψ allows for

the density to depend on time-invariant shape parameters. Examples include parameters for

skewness and tail shape. The common level factors ft are mapped to the means µi,t by the

r � 1 loading vectors λi. The common log volatility factors ht are mapped to the variances

σ2
i,t using the q � 1 loading vectors li and the exponential link function. The common level

and volatility factors are collected in αt and are jointly modeled as a vector autoregressive

model of order one, with pr� qq�1 constant vector δ, pr� qq� pr� qq autoregressive matrix

Φ and pr � qq � 1 vector of shocks ηt which has mean zero and positive definite variance

matrix Σ.

Important examples for the observation density ppyi,t|µi,t, σ
2
i,t;ψq include

yi,t|αt
i.d.
� Npµi,t, σ

2
i,tq, yi,t|αt

i.d.
� tpµi,t, σ

2
i,t, νq, yi,t|αt

i.d.
� sktpµi,t, σ

2
i,t, ξ, νq, (2)

where Np�, �q denotes the normal density, tp�, �, νq the student’s t density with ν degrees

of freedom and sktp�, �, ξ, νq the skewed student’s t density with skewness parameter ξ and

degrees of freedom ν. Other densities could also be considered within our framework.

The key novelty of model (1) lies in its joint unrestricted treatment of the common level

and log volatility factors. The specification explicitly allows for both contemporaneous and

lagged interactions among the means and variances of the model.4 Several recent studies –

discussed below – argue that such interactions are important for forecasting and structural

analysis. In a univariate setting the vector autoregressive model for the latent level and log

4We emphasize that the order of the autoregressive model is taken to be equal to one for notational
convenience only. In principle any high-order VARMA(p,q) model could be considered for the common
factors.
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volatility was considered in Brandt and Kang (2004).5 An independent volatility model,

as in Koopman and Bos (2004) for example, is obtained when restricting Φ and Σ to be

block diagonal, see also Kastner et al. (2017) and references therein. In our framework no

a-priori restrictions are placed on the dynamic interaction between the level and volatility

factors. Volatility is thus fully endogenous and hypothesis tests can be conducted to asses

the appropriateness of the exogenous volatility assumption.

Without further restrictions the parameters in the factor structures for µi,t and σ2
i,t are

not identified. Several identification strategies exist. In many applications they can be

formulated such that the factors have an economic interpretation, see Bai and Li (2012)

for an overview of statistical identification strategies. For example, for the level factors,

by selecting r vectors λi to form the r-dimensional identity matrix the corresponding r

factors become so-called named factors and their interpretation is directly linked to the

corresponding series yi,t, see Stock and Watson (2016). Similar schemes can be considered

for the log volatility factors, see Carriero et al. (2017) for an example.

At this stage we do not impose structural identification assumptions that map the reduced

form shocks ηt to underlying structural shocks. In the literature several approaches exist

for identifying structural shocks in vector autoregressive models, see Ramey (2016) for a

recent review. In principle, any of such identification schemes could be adopted within our

framework. The appropriateness depends on the application at hand.

In several empirical applications the volatility factors have important economic interpre-

tation. We outline two of such applications and highlight how the interaction of the level and

volatility factors improves inference. We return to these examples in our empirical studies

below.

5To our knowledge this is the only paper that has considered a vector autoregressive model for the mean
and variance. The difference is that their model is univariate and they rely on importance sampling methods
for parameter estimation. Their method is infeasible in a multivariate setting.
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2.1 Liquidity in government bond markets

Let yt denote a vector of government bond yields with different maturities and ft the factors

that capture the level, slope and curvature of the term structure. We refer to Duffie and

Kan (1996), Dai and Singleton (2000), Diebold and Li (2006), Diebold et al. (2006) and

Christensen et al. (2011) as examples of term structure models that include these features.

The factors – when mapped to the yields using the λi’s – capture the model-implied value of

the bonds. If arbitrage capital is abundant, then model-implied yields are likely to be close to

the observed yields. During a liquidity crisis, however, market illiquidity becomes a problem

and arbitrage capital dries up, see Hu et al. (2013). As a result there can be substantial

deviations of observed yields from model-implied yields. It follows that the measurement

error volatility factor can be interpreted as a measure of market illiquidity, see Hu et al.

(2013).

Model (1) allows market liquidity, as measured by the volatility factors, to interact which

the level, slope and curvature factors. This enables us to document how illiquidity interacts

with the term structure of interest rates. Further, when augmenting the vector autore-

gressive model for the factors with additional macroeconomic, financial or monetary policy

measurements it enables us to study the effects of such variables on the term structure while

controlling for liquidity. Ang and Piazzesi (2003), Dewachter and Lyrio (2006), Diebold et al.

(2006), Hordahl, Tristani and Vestin (2006) and Rudebusch and Wu (2008) study the impact

of macroeconomic variables on the term structure, albeit without controlling for liquidity.

2.2 Macroeconomic uncertainty

A large literature in macroeconomics has developed methods for understanding how inno-

vations to the levels of macroeconomic variables influence business cycle fluctuations. A

comprehensive approach, that allow for the inclusion of many variables, is to use structural

dynamic factor models, see Stock and Watson (2005), Bernanke et al. (2005) and Stock and

Watson (2016). In such models the universe of macroeconomic variables is summarized by
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a small number of common level factors. The effects of different level shocks can then be

traced out for many response variables.

Recent interest has broadened to also investigate the influence of volatility shocks on

macroeconomic variables. In particular, studying the influence of volatility and its interaction

with the levels has become an active research field, see e.g. Bloom (2009) and Jurado et al.

(2015). The volatility factors can be interpreted, or labeled, as uncertainty factors when

yt is a vector that spans that space of macroeconomic activity, see Jurado et al. (2015).

Recently, Barigozzi and Hallin (2016), Barigozzi and Hallin (2017) and Gorodnichenko and

Ng (2017) proposed non-parametric methods to estimate level and volatility factors for large

data panels.

In model (1), the volatility factors that capture macroeconomic uncertainty are allowed

to interact freely with the level factors of economic activity. This is in contrast to Jurado

et al. (2015) and Carriero et al. (2017) where the interaction is restricted in different ways.

Our framework allows to investigate, pending appropriate identification assumptions, the

influence of uncertainty shocks on economic activity without imposing a-priori statistical

identification restrictions.6 Moreover we can investigate the influence of other structural

shocks while controlling for macroeconomic uncertainty and additionally use the uncertainty

factors to improve out-of-sample forecasts.

2.3 Discussion

Model (1) is related to various existing models in the literature. This section highlights the

main differences between existing modeling frameworks and our model (1).

As the examples in below (2) illustrate, a novelty is that we can use in principle any

parametric density to have time-varying mean and variance.This allows for heavy-tailed and

skewed distributions which are often found to be appropriate for macro-financial datasets.

6By statistical identification restriction we mean restrictions that are imposed to facilitate the estimation
of the model parameters. Parameter estimation is often non-standard, see also the discussion in Gorod-
nichenko and Ng (2017). Such identification restrictions are not necessarily motivated by economic argu-
ments.
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In general, allowing for heavy-tailed distributions makes the estimates for the factors less

sensitive to outliers. This is similar as what is found when comparing the standard stochas-

tic volatility model with the student’s t stochastic volatility model, see Harvey, Ruiz and

Shephard (1994).

Within the class of stochastic volatility models a closely related model is the stochastic

volatility in mean model, see Koopman and Sandmann (1998) for an initial contribution and

Chan (2017) for an extension with time-varying parameters. In this model the mean is also

determined by the volatility factor. Model (1) is different in at least three ways. First, model

(1) allows for contemporaneous correlation between the shocks to the level and volatility

factors. Second, lagged feedback is allowed among all level and volatility factors. Finally,

model (1) allows for multiple mean and variance factors whereas the standard stochastic

volatility in mean models are univariate.

Within the class of vector autoregressive models, various studies have proposed extensions

with stochastic volatility, see Primiceri (2005) for the initial contribution. More recently,

Carriero et al. (2017) consider a large vector autoregressive model that is augmented with

stochastic volatility. They explicitly allow for lagged interaction between the mean and

variance. However, contemporaneous correlation between the variance and conditional mean

shocks is ruled out.

Closely related to our model are the factor models considered in Barigozzi and Hallin

(2016), Barigozzi and Hallin (2017) and Gorodnichenko and Ng (2017). These studies de-

velop non-parametric methods for the estimation of the common level and volatility factors.

Our approach can be viewed as a likelihood-based approach where we explicitly model the

interactions between the level and volatility factors. Creal and Wu (2016) consider a factor

model where the volatility factors enter the model via the shocks to the common mean fac-

tors. In our model this is not the case as the volatility process is similar as in Jurado et al.

(2015) and uncertainty is thought of as the volatility of the part of the model that is not

explained by the common mean factors.

Finally, Fernandez-Villaverde and Rubio-Ramirez (2013) and Bloom, Floetotto, Jaimovich
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and Terry (2017) consider structural macroeconomic models where stochastic processes for

the levels interact with stochastic processes for the variance. These macro models are quite

far from our setting in terms of model specification, but similar estimation problems arise in

these models as well.

All studies discussed here have in common that they impose some set of restrictions on

the interaction between the mean and variance shocks. Model (1) does not impose such

restrictions and explicitly aims to model the interactions.

3 Estimation

The estimation of the factors and parameters of model (1) is non-trivial as the model is

potentially non-Gaussian and at least a subset of the latent factors – the volatility factors

– enter the model non-linearly. This implies that standard filtering and smoothing methods

based on the Kalman filter cannot be used. We show that when the cross-sectional dimen-

sion of the data n Ñ 8 then an approximate conditional density based on online efficient

numerical integration converges to the true conditional density of αt.

To outline the general estimation problem let the deterministic model parameters of

model (1) be included in θ. This parameter vector includes the shape parameters ψ as well

as all other deterministic model parameters. The conditional filtered mean for functions of

the common factors can be expressed as

Epphpαtq|Yt; θq �

»
αt

hpαtqppαt|Yt; θqdαt (3)

where hpαtq is some function of the factors and Yt � ty1, . . . , ytu. For example hpαtq � αt

gives the filtered mean of the factors. It follows that, in order to obtain conditional mean

estimates, we must know the density ppαt|Yt; θq. However, our model specification implies

that this density has no closed form analytical expression and we must resort to either

approximation methods or simulation methods to solve the integral. We emphasize that the

11



presence of contemporaneous correlation between the common mean and variance factors

rules out simulation methods that treat the mean factors conditional on the variance factors

(and vice versa). This feature of our model excludes computationally convenient iterative

approaches that were considered in for example Chib et al. (2006) and Carriero, Clark and

Marcellino (2016). In general, simulation-based methods are computationally expensive for

the type of large panels that we consider.

Instead, we develop a filtering algorithm that is based on online efficient numerical in-

tegration. The method is similar in spirit when compared to the online Gaussian Laplace

approximation algorithm of Koyama, Castellanos, Shalizi and Kass (2010), but with the

important difference that we compute the approximating filtering density using efficient nu-

merical integration. This approximation is more accurate when compared to the Laplace

approximation, see Richard and Zhang (2007), and has the additional benefits that it can

be implemented by weighted least squares regressions and delivers a smooth marginal like-

lihood. The latter is important for the estimation of the deterministic model parameters θ,

which can now be carried out using the maximum likelihood method.

3.1 Online Efficient Numerical Integration

Let ppαt|Yt; θq, ppαt�1|Yt; θq and ppαt|YT ; θq denote the filtered, predictive and smoothed

true posterior densities. Their efficient numerical integrated counterparts are denoted by

p̂pαt|Yt; θq, p̂pαt�1|Yt; θq and p̂pαt|YT ; θq. These approximating densities are chosen to be-

long to the Gaussian family. The means and variances of the predictive and filtered den-

sities are denoted by ât|t�1 � Ep̂pαt|Yt�1; θq, V̂t|t�1 � Varp̂pαt|Yt�1; θq, ât|t � Ep̂pαt|Ytq and

V̂t|t � Varp̂pαt|Ytq. We aim to recursively obtain these estimates in a way such that the

approximation errors relative to the true conditional densities are bounded and do not ac-

cumulate over time. Importantly, we do not use simulation methods such as importance

sampling to correct for the approximation. The filtered and predictive estimates are ob-

tained recursively as follows.
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Algorithm 1: Online Efficient Numerical Integration (OENI)

(i) Initialize; set t � 1, â1|0 � δ and V̂1|0 � pIk � ΦΦ1q�1Σ

(ii) Filter:

ât|t � ât|t�1 � V̂t|t�1R
1pRV̂t|t�1R

1 � Ĉ�1
t q�1pĈ�1

t b̂t � Rât|t�1q

V̂t|t � V̂t|t�1 � V̂t|t�1R
1pRV̂t|t�1R

1 � Ĉ�1
t q�1RV̂t|t�1

where R � diagpΛ,Lq, with Λ � pλ1, . . . , λnq
1 and L � pl1, . . . , lnq

1.7 The estimated

coefficient Ĉt and b̂t are determined as explained below.

(iii) Predict;

ât�1|t � Φât|t

V̂t�1|t � ΦV̂t|tΦ
1 � Σ

(iv) Increase t � t� 1 and go to step piiq

The recursions above look similar to the standard Kalman filter recursions. The impor-

tant difference is that the filtering step piiq is based on efficient numerical integration. In

particular the 2n�2n coefficient matrix Ĉt and the 2n�1 vector b̂t are chosen such that the

variance of log pppyt|αt; θq{p̂pyt|αt; θqq is minimized. Since the true density is independent

across i we have ppyt|αt; θq �
±n

i�1 ppyi,t|zi,t; θq, where zi,t � pµi,t, log σ2
i,tq

1. This enables us

to choose the approximating Gaussian density as follows

p̂pyt|αt; θq �
n¹
i�1

p̂pyi,t|zi,t; θq, p̂pyi,t|zi,t; θq � exp

�
ai,t � b1i,tzi,t �

1

2
z1i,tCi,tzi,t



, (4)

where the 2 � 1 and 2 � 2 matrices bi,t and Ci,t contain the coefficients that minimize the

variance of log pppyi,t|zi,t; θq{p̂pyi,t|zi,t; θqq. Formally we obtain bi,t and Ci,t from

tbi,t,Ci,tu � arg min
b̃i,t,C̃i,t

»
zi,t

rlog pppyi,t|zi,t; θq{p̂pyi,t|zi,t; θqqs
2 p̂pzi,t|Yt�1; θqdzi,t. (5)

7Here diagp�, �q denotes the diagonal concatenation, e.g. diagpA,Bq �

�
A 0
0 B

�
.
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The optimal coefficients bi,t � pbi,t,1, bi,t,2q and Ci,t � rCi,t,11,Ci,t,12; Ci,t,21,Ci,t,22s are col-

lected in bt � pb1,t,1, . . . , bn,t,1, b1,t,2, . . . , bn,t,2q
1 and

Ct �

�
�� Ct,11 Ct,12

Ct,21 Ct,22

�
�� Ct,lk � diagpC1,t,lk, . . . ,Cn,t,lkq

for l, k � 1, 2. Our approximation is based on the efficient criterion function (5) and can

be viewed as an online version of the efficient importance sampling approach adopted in

Richard and Zhang (2007) and Koopman et al. (2015). Since the log density log ppyi,t|zi,t; θq is

nonlinear in zi,t and potentially non-Gaussian the integral in (5) cannot be solved analytically.

Instead we follow the exposition in Monahan (2001) and use Gaussian-quadrature for the

evaluation of the integral, see also Koopman et al. (2015).

To outline the numerical integration procedure consider a set of abscissa tvlu
L
l�1 with

associated Gauss-Hermite weights hpvlq for l � 1, . . . , L. The numerical implementation of

the minimization (5) is given by

tb̂i,t, Ĉi,tu � arg min
b̃i,t,C̃i,t

Ļ

l,k�1

wl,k

�
log
�
ppyi,t|z

l,k
i,t ; θq{p̂pyi,t|z

l,k
i,t ; θq

	�2
(6)

with wl,k � hpvlqhpvkq expp1
2
v2l q expp1

2
v2kq and zl,ki,t � Riât|t�1�pRiV̂t|t�1R

1
iq
1{2vl,k, with vl,k �

pvl, vkq
1 and Ri � diagpλ1i, l

1
iq. Notice that we do not integrate out zi,t directly but first

rescale zi,t such that p̂pzi,t|Yt�1; θq becomes equal to one. Since log p̂pyi,t|z
l,k
i,t ; θq is a linear

function of the coefficients in bi,t and Ci,t the minimization problem in (10) is equal to a

standard weighted least squares problem. The estimated coefficients b̂i,t and Ĉi,t replace bi,t

and Ci,t in equation (4) and Algorithm 1 is based on this approximating density.

The smoothing density can be obtained by the usual backward recursions. For t �

n, . . . , 1 we may compute

p̂pαt|YT ; θq � p̂pαt|Yt�1; θq

»
αt�1

p̂pαt�1|YT ; θqppαt�1|αt; θq

p̂pαt�1|Yt; θq
dαt�1 (7)
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which is available entirely in closed form. The details are given in Durbin and Koopman

(2012, Chapter 4) and for convenience we include them in the appendix.

3.2 Univariate implementation

In this section we show that there exists a univariate implementation of the online efficient

numerical integration method. The main motivation for a univariate approach is similar

to Koopman and Durbin (2000) who provide a univariate implementation for the Kalman

filter for multivariate state space models. The benefit of the univariate approach is two-fold.

First, similar as in Koopman and Durbin (2000), it is faster when compared to the standard

implementation discussed in Algorithm 1. This follows as it avoids the inversion of matrices

whose sizes are proportional to n. Second, it yields a convenient way of constructing the

marginal likelihood using numerical integration. The marginal likelihood can, as explained in

detail in the next section, be used to obtain maximum likelihood estimates for the parameters

θ.

Let αi,t � pf 1i,t, h
1
i,tq

1, where fi,t and hi,t have the same dimensions as ft and ht. We can

write model (1) alternatively as follows

yi,t|αi,t
i.d.
� ppyi,t|µi,t, σ

2
i,t;ψq, µi,t � λ1ifi,t, σ2

i,t � exppl1ihi,tq,

αi,t �

$'&
'%

pIk � Φqδ � Φαn,t�1 � ηt, ηt � Np0,Σq if i � 1

αi�1,t if i � 2, . . . , n

. (8)

We are interested in the approximate filtering density p̂pαt|yi,t, . . . , y1,t, Yt�1; θq, where we

also condition on the variables yi,t, . . . , y1,t. Instead of updating the factors every time

period we now update the factors for every new (scalar) observation yi,t that comes in.

Denote the predictive and filtered means and variance by â1,t|t�1 � Ep̂pαt|Yt�1; θq, V̂1,t|t�1 �

Varp̂pαt|Yt�1; θq, âi,t|t � Ep̂pαt|yi,t, . . . , y1,t, Yt�1; θq and V̂i,t|t � Varp̂pαt|yi,t, . . . , y1,t, Yt�1; θq.

The online efficient numerical integration recursions are as follows.
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Algorithm 2: Univariate Online Efficient Numerical Integration (U-OENI)

(i) Initialize; set i � 1 and t � 1, â1,1|0 � δ and V̂1,1|0 � pIk � ΦΦ1q�1Σ

(ii) Filter: for i � 1, . . . , n

• if i � 1

âi,t|t � â1,t|t�1 � V̂1,t|t�1R
1
ipRiV̂1,t|t�1R

1
i � Ĉ�1

i,t q
�1pĈ�1

i,t b̂i,t � Riâ1,t|t�1q

V̂i,t|t � V̂1,t|t�1 � V̂1,t|t�1R
1
ipRiV̂1,t|t�1R

1
i � Ĉ�1

i,t q
�1RiV̂1,t|t�1

• if i � 2, . . . , n

âi,t|t � âi�1,t|t � V̂i�1,t|tR
1
ipRiV̂i�1,t|tR

1
i � Ĉ�1

i,t q
�1pĈ�1

i,t b̂i,t � Riâi�1,t|tq

V̂i,t|t � V̂i�1,t|t � V̂i�1,t|tR
1
ipRiV̂i�1,t|tR

1
i � Ĉ�1

i,t q
�1RiV̂i�1,t|t

where Ri � diagpλ1i, l
1
iq. The estimated coefficients Ĉi,t and b̂i,t are determined as

explained below.

(iii) Predict;

â1,t�1|t � Φân,t|t

V̂1,t�1|t � ΦV̂n,t|tΦ
1 � Σ

(iv) Increase t � t� 1 and go to step piiq

The coefficients b̂i,t and Ĉi,t in the filtering step piiq are obtained by a similar criterion

as before. In particular,

tbi,t,Ci,tu � arg min
b̃i,t,C̃i,t

»
zi,t

rlog pppyi,t|zi,t; θq{p̂pyi,t|zi,t; θqqs
2 p̂pzi,t|Yt�1, yi�1,t, . . . , y1,t; θqdzi,t.

(9)

The integrating density is given by p̂pzi,t|Yt�1; θq � NpRiâ1,t|t�1,RiV̂1,t|t�1R
1
iq for i � 1 and

by p̂pzi,t|Yt�1, yi�1,t, . . . , y1,t; θq � NpRiâi�1,t|t,RiV̂i�1,t|tR
1
iq for i � 2, . . . , n. The integral

in (9) cannot be computed analytically. We therefore resort again to numerical integration

using Gaussian quadrature.
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The numerical implementation of the minimization (9) is given by

tb̂i,t, Ĉi,tu � arg min
b̃i,t,C̃i,t

Ļ

l,k�1

wl,k

�
log ppyi,t|z

l,k
i,t ; θq{p̂pyi,t|z

l,k
i,t ; θq

�2
(10)

with wl,k � hpvlqhpvkq expp1
2
v2l q expp1

2
v2kq. For i � 1 we have zl,ki,t � Riâ1,t|t�1�pRiV̂1,t|t�1R

1
iq
1{2vl,k,

with vl,k � pvl, vkq
1. For i � 2, . . . , n we have zl,ki,t � Riâi�1,t|t�1 � pRiV̂i�1,t|t�1R

1
iq
1{2vl,k.

3.3 Likelihood evaluation

We adopt the maximum likelihood method for the estimation of the time-invariant parame-

ters θ. This is a common estimation approach for dynamic factor models when the levels of

the data are driven by common factors, see e.g. Doz, Giannone and Reichlin (2012), Bai and

Li (2012), Jungbacker and Koopman (2014), Banbura and Modugno (2014) and Bai and Li

(2016). We show that the output of the univariate online numerical integration algorithm

can be used to obtain an efficient approximation of the marginal likelihood.

In particular, we approximate the marginal likelihood by

p̂py; θq �
T¹
t�1

n¹
i�1

ppyi,t|yi�1,t, . . . , y1,t, Yt�1; θq

�
T¹
t�1

n¹
i�1

»
zi,t

ppyi,t|zi,t; θqp̂pzi,t|yi�1,t, . . . , y1,t, Yt�1; θq dzi,t (11)

where both ppyi,t|zi,t; θq and p̂pzi,t|Yt�1, yi�1,t, . . . , y1,t; θq are known, but since ppyi,t|zi,t; θq is

non-Gaussian and nonlinear with respect to the variance factors we cannot compute this

integral in closed form. Instead, we notice that since the integral is low (two)-dimensional

we can use numerical integration to obtain an arbitrarily accurate estimate. In particular,

ˆ̂ppy; θq �
T¹
t�1

n¹
i�1

Ļ

l,k�1

wl,kppyi,t|z
l,k
i,t ; θq (12)

with zl,ki,t � Riâ1,t|t�1 � pRiV̂1,t|t�1R
1
iq
1{2vl,k and vl,k � pvl, vkq

1 for i � 1. For i � 2, . . . , n we

have zl,ki,t � Riâi�1,t|t�1 � pRiV̂i�1,t|t�1R
1
iq
1{2vl,k.
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3.4 Accuracy of Online Efficient Numerical Integration

This section studies the regularity conditions that ensure that the approximating densities

and the marginal likelihood are close to their population counterparts. The next theorem

establishes that the estimated conditional mean and variance for αt are close to their popu-

lation counterparts based on model (1).

Theorem 1. Let yt be generated by model (1) and assume that ppyt|αt; θq is five times

continuously differentiable, 1
n

°n
i�1 λiλ

1
i Ñ Dλ with Dλ of full rank, and 1

n

°n
i�1 lil

1
i Ñ Dl

with Dl of full rank. We have that

(i) ât|t � Eppαt|Yt; θq �Op
�
1
n

�

(ii) ât�1|t � Eppαt�1|Yt; θq �Op
�
1
n

�

(iii) V̂t|t � Varppαt|Yt; θq �Op
�
1
n

�

(iv) V̂t�1|t � Varppαt�1|Yt; θq �Op
�
1
n

�

where ât|t, ât�1|t, V̂t|t and V̂t�1|t are computed as in Algorithm 1.

The theorem implies that the errors due to the efficient numerically integrated Gaussian

density approximation vanish as n grows large. In addition, the errors do not accumulate

over time. The theorem takes model (1) as correctly specified. It would be of interest

to study the behavior of the approximate filter for misspecified models. We leave this to

future work. Theorem 1 applies equally for the univariate implementation since Algorithm

2 computes the same quantities as Algorithm 1, e.g. ât|t � ân,t|t, ât�1|t � â1,t|t, V̂t|t � V̂n,t|t

and V̂t�1|t � V̂1,t|t.

4 Euro area sovereign bond yields

This section applies our model (1) to vectors yt of euro area sovereign bond yields. We

consider bonds issued by the four largest euro area countries: Germany, France, Italy and
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Spain. We first study the interaction among the mean and variance factors. The interpreta-

tion of the variance factor as an (il)liquidity factor allows us to study how market illiquidity

interacts with the term structure factors. We then use the model to study the effects of

ECB bond purchases on both the term structure and market liquidity. For this we aug-

ment the process for the factors αt with additional variables as in Diebold et al. (2006).

The application illustrates how model (1) can be adopted to conduct a relevant structural

analysis.

4.1 Yield and SMP data

We obtain zero-coupon government bond yields from Thomson/Reuters. The sample starts

on 1 October 2008 after the collapse of Lehman brothers and ends before the allotment of

the ECB’s first very long term refinancing operation (VLTRO) on 21 December 2012, see

Eser and Schwaab (2016). We consider the 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 month

maturity sampled at the daily frequency. This yields T � 840 for n � 10 yields.

Figure 1 plots the yield data for our four countries. Table 1 provides descriptive statistics

for the yields. All yield curves are upward sloping on average. The unconditional dispersion

of yields decreases with maturity. For Italy and Spain, a brief period of yield curve inversion

is visible during the euro area sovereign debt crisis in late 2011. Italy and Spain were

relatively more affected by the crisis than France and Germany. The latter may even have

benefited from flight-to-safety effects during the crisis, see e.g. ECB (2014).

For our structural analysis we consider data on SMP bond purchases by country at a

daily frequency. Bond purchases are entered at par values. Assets were purchased in over-

the-counter dealer markets via non-anonymous trades. As a result, market participants

quickly learned that SMP-related trades were taking place on intervention days. Figure 2

plots weekly total purchases across all five countries as well as their accumulated book value

over time. Noticeably, the daily purchase data are unevenly spread over time. The largest

purchases occurred after the introduction of the SMP on 10 May 2010 and after its cross-

sectional expansion to include Italy and Spain on 8 August 2011. No German and French
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bonds were purchased within the SMP.

4.2 Interaction of term structure and illiquidity factors

We consider model (1) with a Student’s t density for the bond yields. This implies that ψ

now includes a (common) degrees of freedom parameter that captures the thickness of the

tails of the observation densities. We consider a model with r � 3 level factors and q � 1

volatility factor. The choice of r � 3 is standard in the literature, see e.g. Diebold and Li

(2006) and Diebold et al. (2006). The choice of q � 1 is motivated by a preliminary data

analysis. To facilitate the interpretation of the mean factors as level, slope and curvature

factors we adopt the Nelson-Siegel structure for the loadings of the level factors. The ith

loading vector is therefore given by

λi �

�
1,

1 � e�κτi

κτi
,
1 � e�κτi

κτi
� e�κτi



,

where τi is the maturity of the ith yield.

The decay parameter κ is estimated along with the other time-invariant parameters by

maximum likelihood as outlined in Section 3. We implement the filtering algorithm using

20 weights for the numerical integration procedure and for the evaluation of the marginal

likelihood. The standard errors of the parameters are computed by inverting the negative

Hessian evaluated at the maximum likelihood estimates.

The estimated conditional mean and volatility factors are plotted in Figure 3. The

conditional mean factors are approximately similar across countries until mid-2010, and

diverge considerably afterwards. There are pronounced differences in the estimated volatility

factors as well. Estimated volatility is typically low for France and Germany during the entire

sampling period. By contrast, the volatility estimates for Italy and Spain fluctuate heavily.

For Italy, volatility doubles in the course of the sovereign debt crises.

Figure 4 plots the impulse responses that are obtained from a one standard deviation

shock to the volatility factor. This allows us to study the interaction between the level
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and volatility factors. The impulse response is identified by a recursive scheme where the

volatility factor is ordered last. This means that the level, slope and curvature factors do not

respond contemporaneously to a volatility shock. We find, consistently across countries, that

volatility increases the level factor and reduces the (negative) slope factor. The effect of the

volatility shock on the curvature factor is mixed and is typically not significantly different

from zero. The impulse responses suggest that market illiquidity was a main determinant of

euro area sovereign bond yields at all maturities, and tended to increase long-term yields more

than short-term yields. The observation that some government bond markets lacked “depth

and liquidity” motivated the ECB to undertake its Securities Markets Program between 2010

and 2012. This is where we turn next.

4.3 Impact of ECB asset purchases

This section studies the effect of ECB bond purchases within the SMP on the term structure

of sovereign bond yields as well as on the associated liquidity factors. To this end we follow

Diebold et al. (2006) and augment the factor process with additional conditioning variables.

Let pt denote the amount of bond purchases in ebillion for either Italy or Spain on day t. In

addition, we denote by xt a 2�1 vector that contains additional variables. Vector xt contains

a country-specific credit default swap (CDS) spread as well as the euro area three-month

overnight index swap (OIS) rate. We include the CDS spread to capture country-specific

default risk perceptions during the sovereign debt crisis. The OIS rate summarizes the

monetary policy stance as e.g. implied by other conventional and unconventional monetary

policies at the time. The state equation becomes

αt � ppt, f
1
t , h

1
t, x

1
tq
1, αt � pI � Φqδ � Φαt�1 � ηt, ηt � Np0,Σq, (13)

where the interpretation of the time-invariant coefficients is unchanged.

We note that SMP purchases are ordered first in equation (13). We also order these pur-

chases first in a Choleski decomposition to identify the VAR structural shocks. Proceeding
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in this way implicitly assumes that the purchase amounts are predetermined with respect to

the yields and the other variables. Eser and Schwaab (2016) argue that substantial coordina-

tion within the Eurosystem required the intervention decisions and purchase amounts to be

predetermined at the daily frequency. Such coordination was required since it was in prac-

tice not the ECB as a single institution, but the whole Eurosystem, consisting of the ECB

and the (then) 17 NCBs, which jointly implemented the SMP and undertook the purchases.

As a large number of institutions were involved, a strategy for the day had been, as a rule,

discussed and fixed before markets open. The strategies were generally not conditional on

yield developments during the upcoming trading day. We refer to Eser and Schwaab (2016)

for the institutional detail.

While purchases had been fixed before markets opened, purchases were still determined

against the backdrop of an escalating sovereign debt crisis. As a result, purchases were only

observed during an intense crisis, whose symptoms included high CDS spreads, pronounced

market illiquidity, and volatile yields. Each of these elements is controlled for in our VAR

specification.

Figure 5 plots the impulse response functions of a e1 bn shock to bond purchases on

the level and volatility factors. Figure 6 maps these impulse responses to the yield curve at

different day-ahead horizons. We find that bond purchases lowered yields across the entire

maturity spectrum. Yields decreased slightly more at the medium-to-long end than the short

end. The impact estimates of -2 bps per e1 bn of purchases is in the ballpark of the estimates

reported in the literature.8 In addition, Figure 6 suggests that the initial impact (solid black

line) is fairly persistent, and still present and economically significant a few weeks (dotted

lines) after an intervention.

While purchases lowered yield levels, Figure 5 also suggests that purchases did not lower

the dispersion of pricing errors. We conjecture that this finding is related to the commu-

nication strategy adopted by the ECB at the time. On the two key announcement dates

8E.g., Eser and Schwaab (2016) report an initial impact estimate of -1.4 bps per e1 bn of purchases for
Italy and -5.8 bps per e1 bn of purchases for Spain.
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for the SMP, the ECB announced that it would undertake bond purchases and what their

objective would be, but did not disclose the total amounts that would be spent, nor a time

frame over which the program would be active, nor which countries or set of securities would

be targeted. While reducing risk premia overall, the program therefore also likely added to

pricing uncertainty in the cross section of the bonds.

5 Uncertainty in macroeconomics

5.1 Data and preliminary analysis

We consider a panel of quarterly macroeconomic and financial time series. The series span

a wide selection of macroeconomic and financial variables and is similar as in Carriero et al.

(2017). The series are summarized in Table 2. In total we have n � 29 series. The sampling

period is from 1959-Q1 until 2017-Q2 and spans a total of T � 234 time periods. Each series

is transformed to ensure stationarity and standardized to have mean zero and unit variance.

A preliminary factor analysis – summarized in Figure 7 – reveals the following. The

eigenvalue ratio estimator of Ahn and Horenstein (2013) indicates that two common mean

factors are appropriate for this panel. 9 To get an indication for the number of log variance

factors we square the principal components residuals (obtained using the first two principal

components) and apply the log transformation. Next, we apply the eigenvalue ratio estimator

of Ahn and Horenstein (2013) to this panel of volatility proxies, see also Barigozzi and Hallin

(2016) and Barigozzi and Hallin (2017). The eigenvalues and their ratios for this panel are

shown in the bottom row of Figure 7. The ratio estimate indicates that 1 common factor

is present. Admittedly, for the variance factors the evidence is less strong and a panel with

q � 2 common log variance factors can also be considered.

In Table 2 we show the R2’s of the regression of the series on the two principal com-

ponents for the mean and the R2’s of the regression of the volatility proxies on the first

9This is confirmed by the edge-estimator of Onatski (2010) and several Bai and Ng (2002) information
criteria.
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principal component for the panel of volatility proxies. We find that the principal compo-

nents explain approximately 45% of the mean variance and about 16% of the variation of the

volatility proxies. Financial series and series for real economic activity are explained quite

well, whereas series related to prices are hard to explain.

5.2 Interaction level factors and uncertainty

Next, we estimate the parameters of model (1) using the online efficient numerical integration

approach. The estimated factors that are computed based on the maximum likelihood

estimates for the deterministic parameters are shown in Figure 8. For the level factors we

find that the two factors have very different dynamics. The first level factor evolves slowly

over time and can be viewed as a business cycle factor.10 The factor reaches its lowest point

around 2009 and the slow recovery from the crisis is clearly visible. It loads most heavily

on the real-variables such as housing starts and permits, industrial production and income.

The second level factor is noisy and corresponds mainly to the financial variables such as

the industry portfolios and the excess returns.

The volatility factor is also pro cyclical and peaks during recessions. The largest peak

is for the recent financial crisis but also the period after 2000 shows a longer period of

increased uncertainty. For comparison purposes we also show the uncertainty factor from

Jurado et al. (2015) in the same plot. The pattern of this factor is similar which confirms

the interpretation of this factor as capturing uncertainty.

To investigate the interaction among the level and volatility factors we compute the

impulse responses of a shock to the volatility factors on the level factors. The impulse

responses are shown in Figure 9. We find no significant responds for the first level factor

which mainly reflects the movements of the real variables in the panel. The response on the

second level factor, which corresponds mainly with the financial variables, is significant and

negative for about 8 quarters.

10The autoregressive coefficient associated with this series is high (around 0.9).
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5.3 Forecasting using uncertainty factors

Next, we discuss the results from an out-of-sample forecasting study. The set-up is as fol-

lows. We consider model (1) for different combinations of level and volatility factors. For

each model we forecast h � 1, 2, 3 and 4 quarters ahead using a recursive window that starts

from 1989-Q4. Hence the first forecast is for 1990-Q1 and the last forecast is constructed

for 2017-Q2. In total we have 113 out-of-sample forecasts for each model. We compute the

mean squared error for each forecast and show in Table 3 the averages over all forecasts.

Results to be added

6 Conclusions

In this paper we have introduced a nonlinear dynamic factor model for panels of observa-

tions that admitted a factor structure for both the levels and volatilities. A key novelty in

our framework was the interaction between the common level and volatility factors via an

unrestricted vector autoregressive model. To facilitate the estimation of the common factors

we developed an approximate online filtering algorithm. The algorithm relied on replacing

the infeasible filtering density with a Gaussian density that was chosen to minimize the vari-

ance between the two densities. The properties on the filter are attractive for large panels.

The model is applied to panels of government bond yields and a panel of macroeconomic

variables. We illustrated its usefulness for structural analysis and forecasting.
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Appendix

6.1 Proof of Theorem 1

To be added

6.2 Smoothing

Let ât|T � Ep̂pαt|YT ; θq and V̂t|T � Varp̂pαt|YT ; θq. These quantities can be computed by the
backward recursions based on the output of Algorithm 1.

Algorithm 3: Smoothing recursions

(i) Initialize; set t � T , N̂T � 0 and r̂T � 0

(ii) Smooth:

rt�1 � R1pRV̂t|t�1R
1 � Ĉ�1

t q�1pĈ�1
t b̂t � Rât|t�1q � L1

trt
Nt�1 � R1pRV̂t|t�1R

1 � Ĉ�1
t q�1R � L1

tNtLt

ât|T � ât|t�1 � V̂t|t�1rt�1

V̂t|T � V̂t|t�1 � V̂t|t�1Nt�1V̂t|t�1

where R � diagpΛ,Lq, with Λ � pλ1, . . . , λnq
1 and L � pl1, . . . , lnq

1, and Lt � I �
ΦV̂t|t�1R

1pRV̂t|t�1R
1 � Ĉ�1

t q�1.

(iii) Decrease t � t� 1 and go to step piiq

We refer to Durbin and Koopman (2012, Chapter 4) for the derivation. The univariate
implementation for the smoothing recursions is as follows.

Algorithm 4: Smoothing recursions (univariate)

(i) Initialize; set t � T , N̂n,T � 0 and r̂n,T � 0

(ii) Smooth:
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• for i � n, . . . , 1

ri�1,t � R1
ipRiV̂i�1,t|tR

1
i � Ĉ�1

i,t q
�1pĈ�1

i,t b̂i,t � Riâi�1,t|tq � L1
i,tri,t

Ni�1,t � R1
ipRiV̂i�1,t|tR

1
i � Ĉ�1

i,t q
�1Ri � L1

i,tNi,tLi,t

rn,t�1 � Φ1r0,t
Nn,t�1 � Φ1N0,tΦ

ât|T � â1,t|t�1 � V̂1,t|t�1r0,t�1

V̂t|T � V̂1,t|t�1 � V̂1,t|t�1N0,t�1V̂1,t|t�1

(iii) Decrease t � t� 1 and go to step piiq

6.3 Numerical Integration

To be added
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Table 1: Descriptive Statistics European Yields

Country Maturity Mean Sd Skew Kurt Min Max

France 2 1.00 0.51 2.08 8.09 0.23 3.62
5 2.52 0.46 0.22 3.40 1.60 4.10
10 3.52 0.38 -0.49 2.94 2.55 4.45

Germany 2 0.91 0.53 1.55 6.10 0.03 3.30
5 2.15 0.55 -0.23 2.95 0.86 3.82
10 3.05 0.50 -0.69 2.86 1.72 4.21

Italy 2 1.87 1.15 2.07 8.13 0.75 8.39
5 3.71 0.99 1.70 6.20 2.64 7.90
10 4.75 0.67 1.57 5.64 3.87 7.35

Spain 2 1.73 1.03 1.49 5.46 0.50 6.07
5 3.71 0.82 0.71 2.50 2.69 6.38
10 4.69 0.73 0.79 2.43 3.82 6.91

We report the mean, standard deviation, skewness, kurtosis, minimum and maximum statistics for the

two-, five- and ten-year maturities for France, Germany, Italy and Spain. The sample is daily data from 1

October 2008 to 20 December 2012.
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Table 2: Macroeconomic and Financial Time Series

Series Transformation R2-mean R2-variance
All Employees: Total non-farm 4 0.743 0.060
IP Index 4 0.788 0.059
Capacity Utilization: Manufacturing 3 0.707 0.187
Help wanted to unemployed ratio 3 0.629 0.086
Unemployment rate 3 0.692 0.040
Real personal income 4 0.290 0.092
Weekly hours: goods-producing 1 0.097 0.134
Housing starts 2 0.282 0.536
Housing permits 2 0.275 0.467
Real consumer spending 4 0.351 0.011
Real manufacturing and trade sales 4 0.680 0.082
Orders for durable goods 4 0.437 0.070
Avg. hourly earnings, goods-prod. 5 0.006 0.026
PPI, finished goods 5 0.004 0.150
PPI, commodities 5 0.002 0.097
PCE price index 5 0.018 0.154
Federal funds rate 3 0.265 0.160
S&P 500 4 0.884 0.153
Spread, Baa-10y Treasury 1 0.252 0.109
Excess return 1 0.972 0.243
SMB FF factor 1 0.252 0.100
HML FF factor 1 0.131 0.361
Momentum factor 1 0.103 0.331
Spread book-to-market 1 0.219 0.280
Industry portfolio 1 1 0.851 0.174
Industry portfolio 2 1 0.796 0.149
Industry portfolio 3 1 0.819 0.041
Industry portfolio 4 1 0.667 0.178
Industry portfolio 5 1 0.858 0.198
Total - 0.451 0.163

The transformation codes indicate: 1. no transformation, 2. log yi,t, 3. ∆yi,t, 4. ∆ log yi,t and 5.

∆2 log yi,t. The R2 for the mean is obtained by regressing each series yi,t on the first two principal components

of the panel for yt. The R2 for the variance is obtained by regressing each volatility proxy r̂i,t � logpyi,t �

λ̂1if̂tq
2 with λ̂i and f̂t estimated by PCA using 2 factors on the first principal component of the panel for r̂t.
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Table 3: Out of Sample Forecasting Results

h � 1 r � 1 r � 2 r � 3 h � 2 r � 1 r � 2 r � 3
q � 0 q � 0
q � 1 q � 1
q � 2 q � 2
q � 3 q � 3

h � 3 r � 1 r � 2 r � 3 h � 4 r � 1 r � 2 r � 3
q � 0 q � 0
q � 1 q � 1
q � 2 q � 2
q � 3 q � 3

Average mean squared errors for different forecasting horizons and different combinations of level and

volatility factors.
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Figure 1: Government Bond Yields
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The figure shows the daily government bond yields with 1, 5 and 10 year maturities for France, Germany,

Italy and Spain between 01-10-2008 and 20-12-2011.

Figure 2: Bond Market Purchases SMP Programme
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Weekly and total SMP purchase amounts. The figure plots the book value of settled SMP purchases as of

the end of a given week. We report weekly purchases across countries (left panel) as well as the cumulative

amounts (right panel). Maturing amounts are excluded.
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Figure 3: Estimated Factors for Government Bond Yields
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We show the conditional mean estimates for the common mean and variance factors together with their

95% confidence bounds.
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Figure 4: Impulse Responses from Volatility Shocks on Yield Curve Factors
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We show the impulse responses of a one standard deviation shock to the volatility factor on the level,

slope and curvature factors together with their 95% confidence bounds.
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Figure 5: Impulse Responses from Purchases on Yield Curve Factors
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We show the impulse responses of a one billion euro shock to the purchases on the level, slope and

curvature factors together with their 95% confidence bounds.
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Figure 6: Effects of Purchases on Yields with Different Maturities

Day 0 Day 5 Day 10 Day 15 

1 2 3 4 5 6 7 8 9 10 11

-0.01

0.00

Italy
Day 0 Day 5 Day 10 Day 15 

1 2 3 4 5 6 7 8 9 10 11

-0.02

-0.01

0.00

Maturity

Maturity

Spain

We show the impulse responses for different days of a one billion euro shock to the purchases on the yields

for different maturities.
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Figure 7: Eigenvalue results for Macroeconomic and Financial Panel
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We show the ordered eigenvalues and eigenvalue ratios for 1
T
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t (top row) and 1
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t (bottom

panel) where r̂i,t � logpyi,t � λ̂1if̂tq
2 with λ̂i and f̂t estimated by PCA using 2 factors.
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Figure 8: Estimated Factors for Macroeconomic and Financial Panel
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We show the conditional mean estimates for the common mean and variance factors together with their

95% confidence bounds.
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Figure 9: Impulse Responses from Volatility Shocks on Level Factors
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We show the impulse responses of a one standard deviation shock to the volatility factor on the level

factors together with their 95% confidence bounds.
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