

Innovation in customer authentication methods, card-based internet payments and User Experience: empirical evidence from Italy

Guerino Ardizzi (*)

Roma, December 1*st* 2017

Digital Transformation of the Retail Payments Ecosystem (Joint European Central Bank-Banca d'Italia Conference Roma, 30 November and 1 December 2017)

(*) Bank of Italy, Market and Payment System Oversight. The views expressed are those of the author and do not involve the responsibility of the Bank.

Motivation of this paper

Digital payment innovation:

- right balance between security and positive user-experience
- lack of empirical analysis

PSD2 introduces ad hoc obligations for payment services providers to apply **strong customer authentication (SCA)** for remote electronic payments

This paper is a first attempt to assess the impact of a security innovation on (card-based) internet payments

Research questions:

- the massive adoption of multi-factor authentication methods may have negative impacts on the user experience?
- policy implications?

- Literature
- Model
- Results
- Conclusion & policy issues

Literature

Key findings from the literature (*):

- ✓ Security concerns may be an impediment to the confidence of the adoption of digital services
- ✓ User experience can suffer as digital products become more complicated because of security innovations. Empirical results are limited.

(*)

Consumers' payment and perception of safety

Hayashi et al. (2015); Schu and Stavins (2015); Kosse (2013)

Digital products, security and usability

Svilar and Zupancic (2016); Krol et al. (2015); Braz and Robert (2006)

Consumer experience and multi-factor safety technology

De Cristofaro et al. (2016); Adyen (2014).

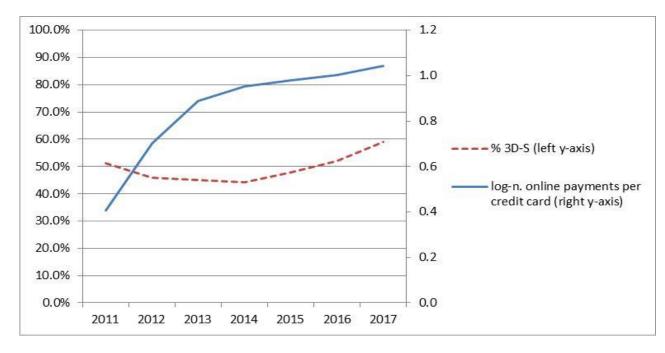
Model: strategy

Card-based internet payments

Cards are still the payment instrument most frequently used for e-commerce, also due to mobile technologies.

"3D-Secure" protocol

It's a two-factor authentication method for online card transactions linking the e-merchant, the acquiring PSP and the issuing PSP, adopted by the industry in the past already, with different penetration rate among countries.


Dataset (source: Bank of Italy, banking statistics)

Bank panel data over the period 2011H1 – 2016H2, representative of 80 percent of the card-based Internet payments sector (from 200 up to 376 observations); information about : number of cards, percentage of cards used over the Internet, total volume and value of card transaction (of which Internet transactions), percentage of "3-D secure" based transactions, other control variables (such as bank size and type).

Focus on credit cards over the Internet

Model: data

Pattern of the 3D Secure rate and credit card turnover over the Internet in Italy

Source: Bank of Italy, banking statistics

Model: equation

Assessing the user experience: one can assume a relationship between the Internet card **turnover** (transaction per card), the 3D Secure adoption (percentage of 3DS transactions) and other control variables *Z*:

$$TURNOVER_{it} = \alpha_0 + \alpha_1 3DS_{it} + \sum_h \alpha_h Z_{it} + u_{it}$$
[1]

An alternative specification considers as a dependent variable the share of credit cards on total **cards** which has been **activated online** :

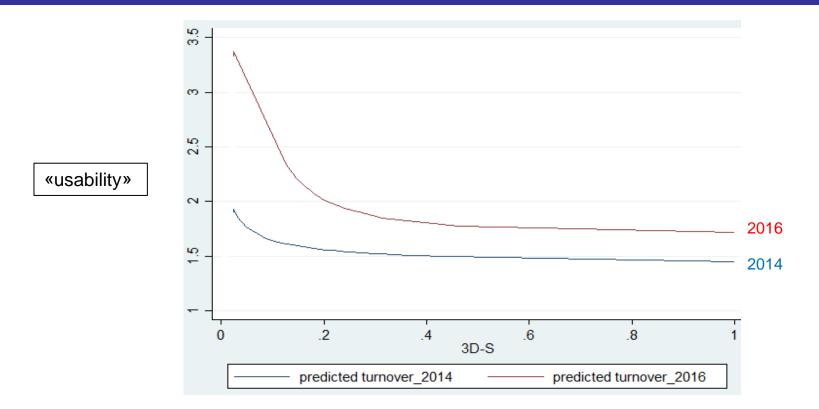
$$CARDONL_{it} = \alpha_0 + a_1 3DS_{it} + \sum_h \alpha_h Z_{it} + u_{it}$$
[2]

H0: 3D-Secure authentication methods introduce additional steps in the payment workflows which can impact the user experience (turnover or card adoption as a proxy).

Results

Estimates Equation 1 "TURNOVER" : unbalanced bank panel data, 2011-2016; results

+		
Regressors *	FE	GMM-Style
3D-S	346**	457**
	(.1433)	(.1906)


Estimates Equation 2 "CARDONL" : bank panel data, 2011-2016; results

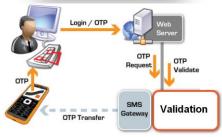
Regressors *	FE	GMM-Style	
3D-S	097**	075*	
	(.407)	(.047)	

Results support the hypothesis of negative effects of the two-factor authentication method (such as the 3-D-Secure protocol) on the user-experience (expressed in term of card turnover or card online adoption). Such outcomes are robust both in static panel data specifications (FE models) and the dynamic ones (GMM estimator à la Arellano-Bond).

Among the regressors time dummies and a set of environmental variables (Z) which can influence the use of card-based internet payments are included. <u>See appendix</u>

Results

Predicted turnover ("usability") with upward shifts over time: "learning by doing", consumer awareness, technology improvements


Conclusion & policy issues

- Potential trade-off between security technologies and usability:
 - ✓ empirical evidence
- The issue is aknowledged by the regulator (EBA GLs, PSD2-EBA RTS):
 - ✓ SCA combined with:
 - low value transactions
 - transaction risk analysis
- The issue must be addressed by the payment industry:
 - ✓ «education» (consumer awareness)
 - ✓ SCA with different usabilities

...examples of SCA with different usability

11

Thanks!

appendix: results

Regressors *	FE	GMM-Style	Regressors *	FE	GMM-Style
3D-S	346**	457**	3D-S	097**	075*
	(.1433)	(.1906)		(.407)	(.047)
$\sum_{h} Z$	yes	yes	$\sum_{h} Z$	yes	yes
Time dummy	yes	yes	Time dummy	yes	yes
Constant	yes	yes	Constant	yes	yes
Observations	376	367	Observations	222	195
Groups	58	58	Groups	42	37
Rª	0.30		Rª	0.48	
AR1(p-value)		0.012	AR1(p-value)		0.13
AR2(p-value)		0.776	AR2(p-value)		0.01
Hansen test (p-value)		0.175	Hansen test (p-value)		0.83

Estimates Equation 1 "TURNOVER" : unbalanced bank panel data, 2011-2016; results

Estimates Equation 2 "CARDONL" : unbalanced bank panel data, 2011-2016; results

^{*} Dependent variable: *TURNOVER* = log-value of credit card based Internet transaction divided number of issued credit card; robust standard errors in round brackets.

Dependent variable: CARD_ONLINE = percentage share of credit cards active at least once for Internet payments during the reference period

Coefficients and p-values in parentheses. FE=fixed effect estimator: GMM-Style =Arellano-Bond two-step system GMM estimator (all covariates – with the exception of dummies - are treated as endogenous and instrumented through their lagged values). Among the regressors, time dummies and a set of environmental variables (Z), which can influence the provision of card-based internet services (type of PSP, internet market share, cross-border penetration, share of alternative payment methods, network dimension, etc.), are included. See <u>Model: results</u>