Demand drivers of central bank liquidity: A time-to-exit TLTRO analysis

Adina-Elena Fudulache¹

¹ECB

María del Carmen Castillo Lozoya²

²Banco de España

In a nutshell

Motivation: By exploiting banks' early exit behavior from TLTRO following the Oct. 2022 recalibration, our aim is to understand what drives a sticky, prolonged demand for central bank (long-term) operations as opposed to an early exit from such facilities.

Why: New operational framework with a demand-driven floor and new longer-term structural operations; We use the TLTRO phasing-out experience to shed light on the demand drivers of long-term operations and inform their future design.

Our approach: Bank-level analysis; we employ a time-toexit (duration/survival/event history) analysis to study what drives banks' early vs late exit decisions.

Institutional setting

20%

TLTRO **HTM and realised exit** events

1 if >50% TLTRO funds repaid, 0 otherwise

Tightening TLTRO conditions

- TLTROIII conditions not in line with the monetary policy normalisation process: TLTROIII remuneration linked to the average DFR/MRO over the life of the respective operation.
- As policy rates were raised, TLTROIII rates adjusted only very gradually. Disincentive to early repay. Slower than expected balance sheet normalization.
- → TLTROIII re-calibration in October 2022, aligning TLTRO pricing with the monetary policy stance.
- → Ideal laboratory to analyze what drives a prolonged demand for long-term operations.

(Nov. (Dec. (Jan. (Feb. (Mar. (Jun. (Sep. (Dec. follow-22) 22) 23) 23) 23) 23) up 22) 22) 23) 23) 23) 23) up

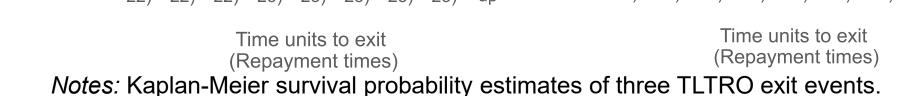
Concern of a

Accelarated balance sheet reduction via TLTRO banks

100%

80%

20%


TLTRO early (voluntary) exit event

1 if >50 %TLTRO funds early repaid, 0 otherwise

Early (voluntary) exit

Only roughly 50% of banks

experienced an early exit!

A discrete-time hazard model for TLTRO early exit

820 TLTROIII participating banks (groups) i = 1,...,820.

bank i at time t, given that the event has not already occurred

Discrete-time values t = 1,2,...,8 (the repayments times between Nov. 22 and Dec. 23.) Discrete-time hazard: conditional probability that the TLTRO early exit event occurred for

$$h_{i,t} = Pr[T_i = t | T_i \ge t, X_{i,t}] \tag{1}$$

 T_i : the discrete random variable that indicates the (uncensored) time of event occurrence for bank i. $X_{i...t}$ a K x 1 vector of bank (country) specific explanatory variables

Cox (1972) extension of the proportional hazards model to discrete-time.

$$\frac{h_{i,t}}{1 - h_{i,t}} = \frac{h_{0,t}}{1 - h_{0,t}} + \exp\{\beta' X_{i,t}\}$$
 (2)

with $h_{0,t}$ the baseline hazard at time t and β' capturing the relative risk associated with covariates values X_{i.t}.

Taking logs, we obtain a model on the logit of the hazard of experiencing the early exit event at time t.

$$\log\left(\frac{h_{i,t}}{1-h_{i,t}}\right) = f(t) + \beta' X_{i,t} \qquad with \ f(t) = \text{logit} (h_{0,t})$$

 $f(t) = \alpha_t$ a set of (exit/repayment) time dummies (no specific functional form) β shift parameters capturing the effects of the covariates on the baseline hazard (logistic scale).

- Estimation via ML. Model fitted by running a logistic regression on the survival dataset (Bank - Repayment times dataset, consisting of banks observed since t = 1 until t_i namely the exit time or the censoring time).
- In the different model specifications, $X_{i,t}$ consists of Country and TLTRO funds characteristics
 - Bank significance and balance sheet characteristics
 - Bank liquidity positions.

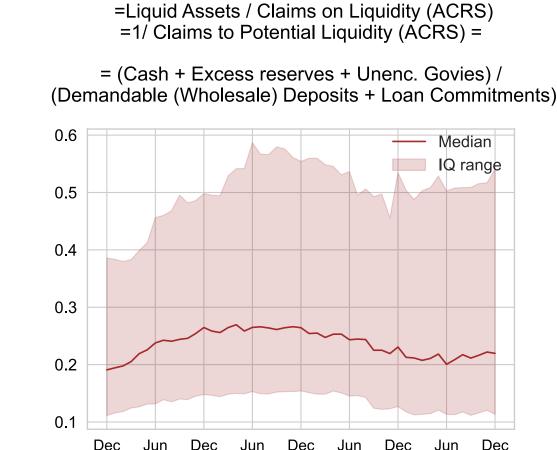
Proprietary market operations data governed by the Eurosystem's **Market Operations Committee (MOC)**

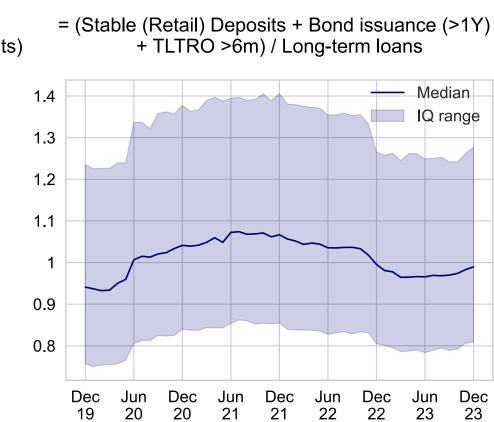
Data

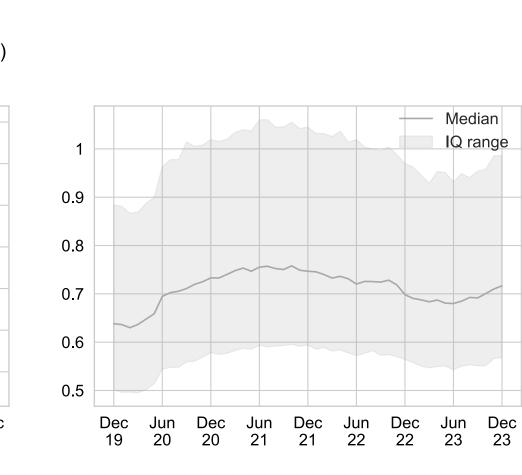
- TOP (tender operations): TLTRO auctions (participation and repayments), participation in SRO, take-up in other operations.
- LM (liquidity management): MRR, CA, SF.
- TLTRO templates: TLTRO group composition
- MOC' Counterparty expert group: supervisory statistics (LCR and NSFR) for the subsample of Spanish banks
- Other confidential bank-level datasets iBSI: bank balance sheet data
- AnaCredit: Unused loan commitments
- CSDB: Bank ratings data
- Public data
 - ECB SDW: Credit demand indicators (country-level), Country-level indicator of financial stress (CLIFS)
 - ECB SMA: DFR expectations

Liquidity positions as key bank characteristics

Why?

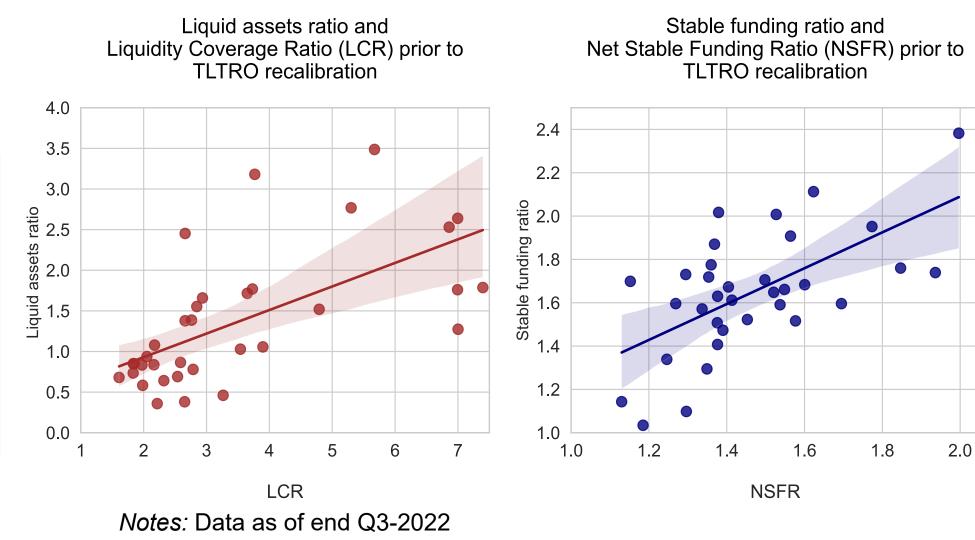

To capture how "available" reserves and stable funding sources really are.


- We find that a bank's share of excess reserves is linked with the time-to-exit TLTRO only after adjusting for the influence of Claims on liquidity such as demandable (wholesale) deposits and unused loan commitments (Acharya et al. 2023, Acharya and Rajan 2024).
- Similarly, a bank's share of stable funding sources significantly affects early exit decisions only when balance sheet items requiring such funding—such as long-term loans—are accounted for.


Construction

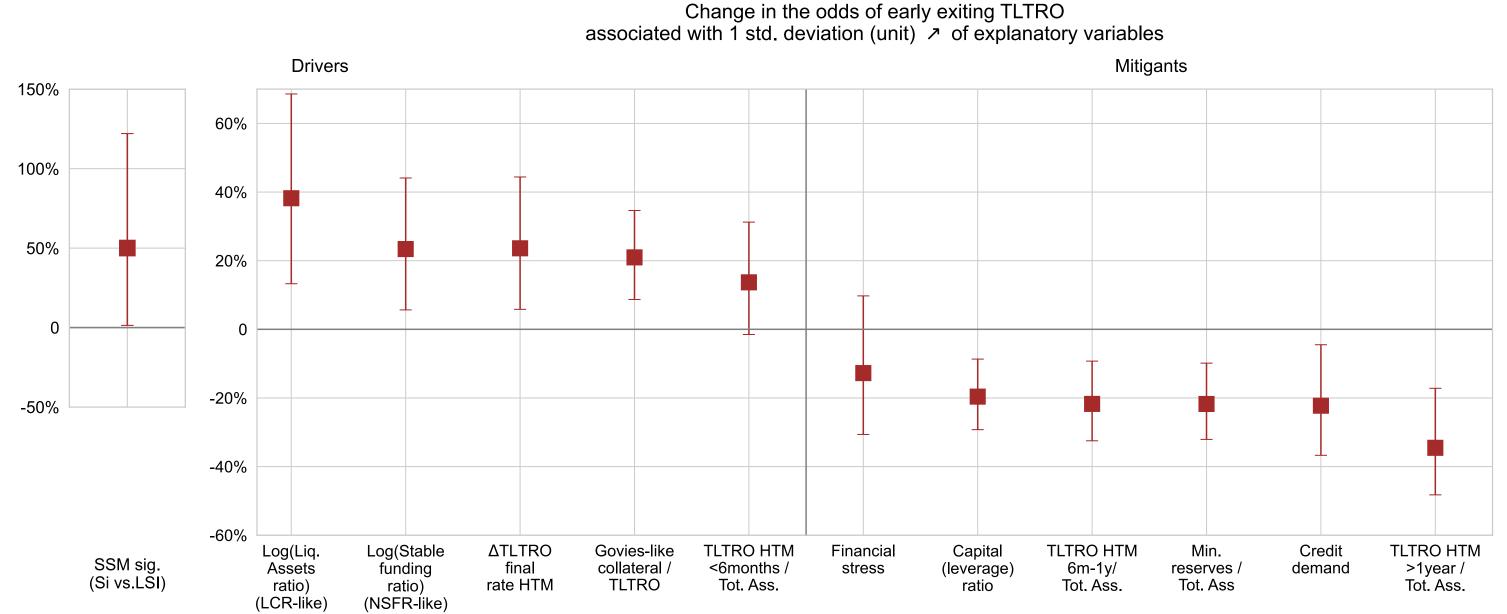
Based on Berger and Bouwman (2009) framework for Bank Liquidity creation (BB framework) and the Claims to Potential Liquidity measure by Acharya et al. 2023 (ACRS framework). Stable Funding ratio = Liquid Assets ratio = Inverse Liquidity Creation ratio =

Liquid Assets / (Liquid (wholesale) liabilities + Unused loan commitments) Illiquid (Stable) liab. / Illiquid assets (BB framework) (BB framework)

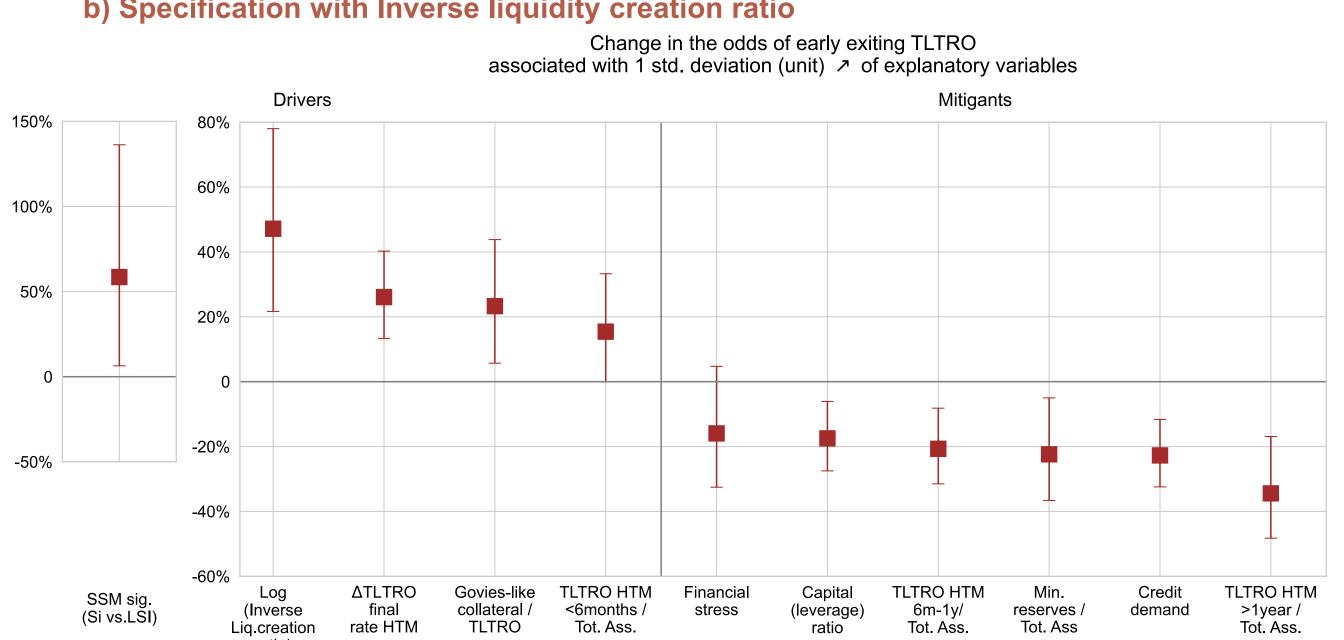

(Liquid Assets + Illiquid (Stable) liab.)/

(Claims on Liquidity + Illiquid assets)

(BB framework)


Regulatory interpretability

- Strong association between the liquidity position indicators and regulatory ratios (for the subsample of Spanish banks).
- Association confirmed using panel regressions with bank fixed effects over Q3 2022-Q4 2023 (unreported).



Results: Drivers and mitigants of TLTRO early exit

a) Specification with Liquid assets ratio and Stable funding ratio.

b) Specification with Inverse liquidity creation ratio

Notes: This figure plots the percentage change in the odds of early exit associated with one-standard-deviation (unit) increase in each explanatory variable together with the standard errors, in decreasing order.

Demand for standard refinancing operations (SRO)

Our liquidity position measures also explain demand for SRO: Banks with weaker liquidity positions were more likely to use SRO during the TLTRO phasing-out. This effect was more pronounced for TLTRO late exiters (Interactions with Time-to-exit TLTRO unreported).

Liquidity positions and demand for SRO **SRO** participation **3mLTRO** participation Dependent variable: MRO participation (MRO or 3mLTRO) 0.024** 0.022** 0.001 -Log(Liquid assets ratio) (t-1) (0.004)(0.009)(0.010)0.053 0.057** 0.080** -Log(Stable funding ratio) (t-1) (0.033)(0.023)(0.033)0.076** 0.060*** 0.118*** Log(Liquidity creation ratio) (t-1) (0.031)(0.030)(0.021)0.375 0.453 0.453 0.374 0.467 0.467 R squared Bank fixed effects Country x Month fixed effects SSM sign. x Month fixed effects TLTRO repayment rate, capital ratio, minimum reserves required 10,150 10,184 10,150 10,184 10,150 10,184 Observations 808 807 808 807 808 807 Number of banks

Notes: This table reports results from OLS regressions at the bank-month level. In Columns (1)-(2) the dependent variable is a dummy variable, taking on the value of one if a bank participated in the main refinancing operation (MRO) and zero otherwise. In Columns (3) -(4) the dependent variable is a dummy variable, taking on the value of one if a bank participated in the regular long-term operation with three months maturity (3mLTRO) - and zero otherwise. In columns (5)-(6) the dependent variable is a dummy variable, taking on the value of one if a bank participated in any of the SRO, i.e. either the MRO or the 3mLTRO - and zero otherwise. Standard errors are clustered at the bank level and reported in parentheses. *, **, *** mean significance at ten, five, and one percent, respectively.

Conclusions and policy implications

- Design features such as maturity structure, pricing, and collateral type, as well as balance sheet
- characteristics such as capital (leverage) ratio and minimum reserves emerge as key demand drivers. A bank's share of excess reserves or stable funding is not (strongly) linked to banks' early/late exit decisions; however, our bank liquidity indicators show a strong relationship with the demand for central bank reserves.
- The regulatory interpretability of the liquidity position ratios coupled with the evidence for an NSFR-value of operations with maturities exceeding six months, suggest a link between the demand for (long-term) central bank liquidity and the fulfillment of regulatory liquidity ratios.
- Despite the different purpose of TLTRO, our findings have policy implications for the design of the new structural long-term operations under the revised ECB operational framework, envisaged to be calibrated in 2026. Understanding the relative importance of demand drivers can also help policymakers assess which design features are most critical when calibrating the operations.
- Our liquidity position measures, which differentiate between short-term and long-term bank liquidity needs could serve as monitoring indicators to identify shifts in the demand for longer-term versus shortterm operations, thereby informing the optimal timing for activating the new structural longer-term refinancing operations.

References

- Acharya, V. and R. Rajan (2024) "Liquidity, Liquidity Everywhere, Not A Drop To Use -Why Flooding Banks With Central Bank Reserves May Not Expand Liquidity", Journal of Finance 79(5), 2943-2991.
 - Acharya, V., R. Chauhan, R. Rajan and S. Steffen (2023) "Liquidity Dependence and the Waxing and Waning of Central Bank Balance Sheets".
 - Berger, A. N. and C. H. S. Bouwman (2009). Bank Liquidity Creation. The Review of Financial Studies 22(9), 3779–3837.

Adina-Elena Fudulache **European Central Bank** Email: adina_elena.fuduache@ecb.europa.eu

Contact